
Types and Programming Languages

Lecture 5. Extensions of simple types

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Spring, 2016

cxj@sjtu.edu.cn

Coming soon

I Simply typed λ-calculus has enough structure to make its
theoretical properties interesting, but it is not yet much of a
programming language.

I Close the gap with more familiar languages by introducing:
Base types, Unit type, Pairs, Tuples, Records, Sum, etc.

I An important theme throughout the part is the concept of
derived forms.

Coming soon

I Simply typed λ-calculus has enough structure to make its
theoretical properties interesting, but it is not yet much of a
programming language.

I Close the gap with more familiar languages by introducing:
Base types, Unit type, Pairs, Tuples, Records, Sum, etc.

I An important theme throughout the part is the concept of
derived forms.

Coming soon

I Simply typed λ-calculus has enough structure to make its
theoretical properties interesting, but it is not yet much of a
programming language.

I Close the gap with more familiar languages by introducing:
Base types, Unit type, Pairs, Tuples, Records, Sum, etc.

I An important theme throughout the part is the concept of
derived forms.

Outline

Simple extensions
Base types
Unit type and sequencing
Ascription
let bindings
Pairs and tuples
Records

More extensions
Sums and variants
General recursion

Base types

I Every programming language provides base types, such as
numbers, booleans, or characters, plus appropriate primitive
operations for manipulating these values.

I For theoretical purposes, we abstract away from the details of
particular base types and their operations.

New types. T ::= · · · | A

where A denotes some base type.For example,
λx : A.x : A→ A

λf : A→ A .λx : A.f (f (x)) : (A→ A)→ A→ A

Base types

I Every programming language provides base types, such as
numbers, booleans, or characters, plus appropriate primitive
operations for manipulating these values.

I For theoretical purposes, we abstract away from the details of
particular base types and their operations.

New types. T ::= · · · | A

where A denotes some base type.

For example,
λx : A.x : A→ A

λf : A→ A .λx : A.f (f (x)) : (A→ A)→ A→ A

Base types

I Every programming language provides base types, such as
numbers, booleans, or characters, plus appropriate primitive
operations for manipulating these values.

I For theoretical purposes, we abstract away from the details of
particular base types and their operations.

New types. T ::= · · · | A

where A denotes some base type.For example,
λx : A.x : A→ A

λf : A→ A .λx : A.f (f (x)) :

(A→ A)→ A→ A

Base types

I Every programming language provides base types, such as
numbers, booleans, or characters, plus appropriate primitive
operations for manipulating these values.

I For theoretical purposes, we abstract away from the details of
particular base types and their operations.

New types. T ::= · · · | A

where A denotes some base type.For example,
λx : A.x : A→ A

λf : A→ A .λx : A.f (f (x)) : (A→ A)→ A→ A

The Unit type

New terms t ::= · · · | unit

New values v ::= · · · | unit

New types T ::= · · · | Unit

New typing rules T-Unit
Γ ` unit : Unit

I Unit type can be found in the ML family.

I The main application is in languages with side effects, such as
assignments to reference cells.

I Similar to void in languages like C and Java.

Derived forms: Sequencing and Wildcards

Two ways to add sequencing

1. add new syntax, evaluation and typing rules for sequencing:

t ::= · · · | t1; t2

E-Seq
t1 −→ t ′1

t1; t2 −→ t ′1; t2
E-SeqNext

unit; t2 −→ t2

T-Seq
Γ ` t1 : Unit Γ ` t2 : T

t1; t2 : T

2. Define it as derived forms:

t1;t2
def
= (λx : Unit .t2) t1 where x 6∈ FV (t2)

Derived forms: Sequencing and Wildcards

I Derived form has another name: syntactic sugar.

I The advantage is that we can extend the surface syntax
without adding any complexity about theorems to be proved.

I Derived form has been heavily used in modern language
definitions.

I Another derived form: wildcard λ .t
def
= λx .t where

x 6∈ FV (t).

Ascription

Another simple feature is the ability to explicitly ascribe a
particular type to a given term.

New terms t ::= · · · | t as T

New evaluation rules

E-Ascribe
v1 as T −→ v1

E-Ascribe1
t1 −→ t ′1

t1 as T −→ t ′1 as T

New typing rules T-Ascribe
Γ ` t1 : T

Γ ` t1 as T : T

Purpose of ascription

I For documentation and maintenance

I For controlling the printing of complex types

I For abstract away some types, especially in PLs with type
inference, such as SML.

Note that we add new syntax, semantics rules to add ascription.
How to consider ascription as derived forms? (See Homework.)

let bindings

It is often useful — both for avoiding repetition and for increasing
readability — to give names to some of its subexpressions.

let bindings are very common syntax in a lot of PLs, such as ML
family, Scheme, but with slightly different scoping rules.

New terms t ::= · · · | let x = t in t

New evaluation rules
E-LetV

let x = v1 in t2 −→ [x 7→ v1]t2

E-Let
t1 −→ t ′1

let x = t1 in t2 −→ let x = t ′1 in t2

New typing rules T-Let
Γ ` t1 : T1 Γ, x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2

let bindings

It is often useful — both for avoiding repetition and for increasing
readability — to give names to some of its subexpressions.

let bindings are very common syntax in a lot of PLs, such as ML
family, Scheme, but with slightly different scoping rules.

New terms t ::= · · · | let x = t in t

New evaluation rules
E-LetV

let x = v1 in t2 −→ [x 7→ v1]t2

E-Let
t1 −→ t ′1

let x = t1 in t2 −→ let x = t ′1 in t2

New typing rules T-Let
Γ ` t1 : T1 Γ, x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2

let bindings

It is often useful — both for avoiding repetition and for increasing
readability — to give names to some of its subexpressions.

let bindings are very common syntax in a lot of PLs, such as ML
family, Scheme, but with slightly different scoping rules.

New terms t ::= · · · | let x = t in t

New evaluation rules
E-LetV

let x = v1 in t2 −→ [x 7→ v1]t2

E-Let
t1 −→ t ′1

let x = t1 in t2 −→ let x = t ′1 in t2

New typing rules T-Let
Γ ` t1 : T1 Γ, x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2

let bindings, as derived forms

let x = t1 in t2
def
= (λx : T1.t2) t1

Where T1 comes from? Type checker!

The desugaring of sequencing is a transformation on terms.
However, The desugaring of let binding is a transformation on
typing derivations.

We will NOT treat let bindings as a derived form.

let bindings, as derived forms

let x = t1 in t2
def
= (λx : T1.t2) t1

Where T1 comes from? Type checker!

The desugaring of sequencing is a transformation on terms.
However, The desugaring of let binding is a transformation on
typing derivations.

We will NOT treat let bindings as a derived form.

let bindings, as derived forms

let x = t1 in t2
def
= (λx : T1.t2) t1

Where T1 comes from?

Type checker!

The desugaring of sequencing is a transformation on terms.
However, The desugaring of let binding is a transformation on
typing derivations.

We will NOT treat let bindings as a derived form.

let bindings, as derived forms

let x = t1 in t2
def
= (λx : T1.t2) t1

Where T1 comes from? Type checker!

The desugaring of sequencing is a transformation on terms.
However, The desugaring of let binding is a transformation on
typing derivations.

We will NOT treat let bindings as a derived form.

Pairs

The simplest compound data structure is pairs, or more generally
tuples, of values.

New terms t ::= · · · | {t, t} | t.1 | t.2
New values t ::= · · · | {v , v}
New types t ::= · · · | T1 × T2 product type

New evaluation rules
E-PairBeta1

{v1, v2}.1 −→ v1
E-PairBeta2

{v1, v2}.2 −→ v2

E-Proj1
t1 −→ t ′1

t1.1 −→ t ′1.1
E-Proj2

t1 −→ t ′1
t1.2 −→ t ′1.2

E-Pair1
t1 −→ t ′1

{t1, t2} −→ {t ′1, t2}
E-Pair1

t2 −→ t ′2
{v1, t2} −→ {v1, t ′2}

New typing rules T-Pair
Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1, t2} : T1 × T2

T-Proj1
Γ ` t1 : T1 × T2

Γ ` t1.1 : T1
T-Proj1

Γ ` t1 : T1 × T2
Γ ` t1.2 : T2

Pairs

The simplest compound data structure is pairs, or more generally
tuples, of values.

New terms t ::= · · · | {t, t} | t.1 | t.2
New values t ::= · · · | {v , v}
New types t ::= · · · | T1 × T2 product type
New evaluation rules

E-PairBeta1
{v1, v2}.1 −→ v1

E-PairBeta2
{v1, v2}.2 −→ v2

E-Proj1
t1 −→ t ′1

t1.1 −→ t ′1.1
E-Proj2

t1 −→ t ′1
t1.2 −→ t ′1.2

E-Pair1
t1 −→ t ′1

{t1, t2} −→ {t ′1, t2}
E-Pair1

t2 −→ t ′2
{v1, t2} −→ {v1, t ′2}

New typing rules T-Pair
Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1, t2} : T1 × T2

T-Proj1
Γ ` t1 : T1 × T2

Γ ` t1.1 : T1
T-Proj1

Γ ` t1 : T1 × T2
Γ ` t1.2 : T2

Pairs

The simplest compound data structure is pairs, or more generally
tuples, of values.

New terms t ::= · · · | {t, t} | t.1 | t.2
New values t ::= · · · | {v , v}
New types t ::= · · · | T1 × T2 product type
New evaluation rules
E-PairBeta1

{v1, v2}.1 −→ v1
E-PairBeta2

{v1, v2}.2 −→ v2

E-Proj1
t1 −→ t ′1

t1.1 −→ t ′1.1
E-Proj2

t1 −→ t ′1
t1.2 −→ t ′1.2

E-Pair1
t1 −→ t ′1

{t1, t2} −→ {t ′1, t2}
E-Pair1

t2 −→ t ′2
{v1, t2} −→ {v1, t ′2}

New typing rules

T-Pair
Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1, t2} : T1 × T2

T-Proj1
Γ ` t1 : T1 × T2

Γ ` t1.1 : T1
T-Proj1

Γ ` t1 : T1 × T2
Γ ` t1.2 : T2

Pairs

The simplest compound data structure is pairs, or more generally
tuples, of values.

New terms t ::= · · · | {t, t} | t.1 | t.2
New values t ::= · · · | {v , v}
New types t ::= · · · | T1 × T2 product type
New evaluation rules
E-PairBeta1

{v1, v2}.1 −→ v1
E-PairBeta2

{v1, v2}.2 −→ v2

E-Proj1
t1 −→ t ′1

t1.1 −→ t ′1.1
E-Proj2

t1 −→ t ′1
t1.2 −→ t ′1.2

E-Pair1
t1 −→ t ′1

{t1, t2} −→ {t ′1, t2}
E-Pair1

t2 −→ t ′2
{v1, t2} −→ {v1, t ′2}

New typing rules T-Pair
Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1, t2} : T1 × T2

T-Proj1
Γ ` t1 : T1 × T2

Γ ` t1.1 : T1
T-Proj1

Γ ` t1 : T1 × T2
Γ ` t1.2 : T2

Tuples

It’s easy to generalize pairs to tuples. Pair is a 2-tuple.
New terms t ::= · · · | {t i∈1..ni } | t.i
New values t ::= · · · | v i∈1..ni

New types t ::= · · · | {Ti∈1..ni } product type
New evaluation rules

E-TupleBeta
{v i∈1..ni }.j −→ vj

E-Proj
t1 −→ t ′1

t1.j −→ t ′1.j

E-Tuple
tj −→ t ′j

{v i∈1..j−1i , tj , t
k∈j+1..n
k } −→ {v i∈1..j−1i , t ′j , t

k∈j+1..n
k }

New typing rules

T-Tuple
∀i Γ ` ti : Ti

Γ ` {t i∈1..ni } : {Ti∈1..ni }
T-Proj

Γ ` t1 : {Ti∈1..ni }
Γ ` t1.j : Tj

Records

11.8 Records 129

→ {} Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

{li=ti
i∈1..n} record

t.l projection

v ::= ... values:

{li=vi
i∈1..n} record value

T ::= ... types:

{li:Ti
i∈1..n} type of records

New evaluation rules t -→ t′

{li=vi
i∈1..n}.lj -→ vj (E-ProjRcd)

t1 -→ t′1

t1.l -→ t′1.l
(E-Proj)

tj -→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E-Rcd)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

Figure 11-7: Records

have a tuple in which all the fields to the left of field j have already been

reduced to values, then that field can be evaluated one step, from tj to t′j .

Again, the use of metavariables enforces a left-to-right evaluation strategy.

11.8 Records

The generalization from n-ary tuples to labeled records is equally straightfor-

ward. We simply annotate each field ti with a label li drawn from some pre-

determined set L. For example, {x=5} and {partno=5524,cost=30.27} are

both record values; their types are {x:Nat} and {partno:Nat,cost:Float}.

We require that all the labels in a given record term or type be distinct.

The rules for records are given in Figure 11-7. The only one worth noting

is E-ProjRcd, where we rely on a slightly informal convention. The rule is

meant to be understood as follows: If {li=vi
i∈1..n} is a record and lj is the

label of its j th field, then {li=vi
i∈1..n}.lj evaluates in one step to the j th value,

vj . This convention (and the similar one that we used in E-ProjTuple) could

be eliminated by rephrasing the rule in a more explicit form; however, the

cost in terms of readability would be fairly high.

11.8.1 Exercise [« 3]: Write E-ProjRcd more explicitly, for comparison. �

Records

Surface difference:

I Fields in records has names, pairs does not.

I We can treat pairs as special records labeled 1, 2, 3,

Deeper difference: Compilers may implement them in distinct
ways. Pair has strict orders. However, PLs treat the order of fields
in records differently, e.g.

I in SML, order does not matter:
{l = 2,m = 4} = {m = 4, l = 2};

I in rules of Figure 11-7, orders matter, i.e.,
{l = 2,m = 4} 6= {m = 4, l = 2}

I we will latter use subtyping to make records with different
field permutations equivalent.

Rules for records are similar to those for tuples. Please refer to
Figure 11-7 in the textbook.

Records

Surface difference:

I Fields in records has names, pairs does not.

I We can treat pairs as special records labeled 1, 2, 3,

Deeper difference: Compilers may implement them in distinct
ways. Pair has strict orders. However, PLs treat the order of fields
in records differently, e.g.

I in SML, order does not matter:
{l = 2,m = 4} = {m = 4, l = 2};

I in rules of Figure 11-7, orders matter, i.e.,
{l = 2,m = 4} 6= {m = 4, l = 2}

I we will latter use subtyping to make records with different
field permutations equivalent.

Rules for records are similar to those for tuples. Please refer to
Figure 11-7 in the textbook.

Records

Surface difference:

I Fields in records has names, pairs does not.

I We can treat pairs as special records labeled 1, 2, 3,

Deeper difference: Compilers may implement them in distinct
ways. Pair has strict orders. However, PLs treat the order of fields
in records differently, e.g.

I in SML, order does not matter:
{l = 2,m = 4} = {m = 4, l = 2};

I in rules of Figure 11-7, orders matter, i.e.,
{l = 2,m = 4} 6= {m = 4, l = 2}

I we will latter use subtyping to make records with different
field permutations equivalent.

Rules for records are similar to those for tuples. Please refer to
Figure 11-7 in the textbook.

Records

Surface difference:

I Fields in records has names, pairs does not.

I We can treat pairs as special records labeled 1, 2, 3,

Deeper difference: Compilers may implement them in distinct
ways. Pair has strict orders. However, PLs treat the order of fields
in records differently, e.g.

I in SML, order does not matter:
{l = 2,m = 4} = {m = 4, l = 2};

I in rules of Figure 11-7, orders matter, i.e.,
{l = 2,m = 4} 6= {m = 4, l = 2}

I we will latter use subtyping to make records with different
field permutations equivalent.

Rules for records are similar to those for tuples. Please refer to
Figure 11-7 in the textbook.

Records

Surface difference:

I Fields in records has names, pairs does not.

I We can treat pairs as special records labeled 1, 2, 3,

Deeper difference: Compilers may implement them in distinct
ways. Pair has strict orders. However, PLs treat the order of fields
in records differently, e.g.

I in SML, order does not matter:
{l = 2,m = 4} = {m = 4, l = 2};

I in rules of Figure 11-7, orders matter, i.e.,
{l = 2,m = 4} 6= {m = 4, l = 2}

I we will latter use subtyping to make records with different
field permutations equivalent.

Rules for records are similar to those for tuples. Please refer to
Figure 11-7 in the textbook.

Outline

Simple extensions
Base types
Unit type and sequencing
Ascription
let bindings
Pairs and tuples
Records

More extensions
Sums and variants
General recursion

Variant types

We need heterogeneous collections of values in many cases:

I a node in a tree can be a leaf or an interior node with children;

I a list cell can be either nil or a cons cell carrying a head and
a tail,

I a node of an abstract syntax tree in a compiler can represent
a variable, an abstraction, an application, etc

Type-theoretic mechanism that supports this kind of programming
is variant types.
A more familiar name for variant type is union, or more precisely,
disjoint union.
Sum is the binary version of variant type.

Variant types

We need heterogeneous collections of values in many cases:

I a node in a tree can be a leaf or an interior node with children;

I a list cell can be either nil or a cons cell carrying a head and
a tail,

I a node of an abstract syntax tree in a compiler can represent
a variable, an abstraction, an application, etc

Type-theoretic mechanism that supports this kind of programming
is variant types.

A more familiar name for variant type is union, or more precisely,
disjoint union.
Sum is the binary version of variant type.

Variant types

We need heterogeneous collections of values in many cases:

I a node in a tree can be a leaf or an interior node with children;

I a list cell can be either nil or a cons cell carrying a head and
a tail,

I a node of an abstract syntax tree in a compiler can represent
a variable, an abstraction, an application, etc

Type-theoretic mechanism that supports this kind of programming
is variant types.
A more familiar name for variant type is union, or more precisely,
disjoint union.
Sum is the binary version of variant type.

Sums

Constructors and accessors

t ::= · · ·
inl t tagging (left)
inr t tagging (right)
case t of case

inl x ⇒ t
| inr x ⇒ t

v ::= · · ·
inl v tagged value (left)
inr v tagged value (right)

T ::= · · ·
T + T sum type

Sums, example

Your score may be an integer number, or a grade (P/F).

Types : Score = Int + Char

Constructor : t1 = inl 59 : Score, t2 = inr ‘F ‘ : Score

Accessor : a good teacher = λt.case t of
inl x ⇒ inl (max(x , 60))
| inr x ⇒ inr ‘P‘

Quiz.
1. Give the evaluation rule and typing rule for sum.
2. Does the ”uniqueness of types” still hold for languages with
sum? Why?

Sums, example

Your score may be an integer number, or a grade (P/F).

Types : Score = Int + Char

Constructor : t1 = inl 59 : Score, t2 = inr ‘F ‘ : Score

Accessor : a good teacher = λt.case t of
inl x ⇒ inl (max(x , 60))
| inr x ⇒ inr ‘P‘

Quiz.
1. Give the evaluation rule and typing rule for sum.
2. Does the ”uniqueness of types” still hold for languages with
sum? Why?

Sums, semantics

E-CaseInl
case (inl v0) of inl x1 ⇒ t1 | inr x2 ⇒ t2 −→ [x1 7→ v0]t1

E-Case
t0 −→ t ′0

case t0 of inl x1 ⇒ t1 | inr x2 ⇒ t2
−→ case t ′0 of inl x1 ⇒ t1 | inr x2 ⇒ t2

E-Inl
t1 −→ t ′1

inl t1 −→ inl t ′1

T-Inl
Γ ` t1 : T1

Γ ` inl t1 : T1 + T2

T-Case
Γ ` t0 : T1 + T2 Γ, x1 : T1 ` t1 : T Γ, x2 : T2 ` t2 : T

case t0 of inl x1 ⇒ t1 | inr x2 ⇒ t2 : T

Symmetric rules for inr are omitted.

Sums and uniqueness of types

This rule breaks the uniqueness of types:

T-Inl
Γ ` t1 : T1

Γ ` inl t1 : T1 + T2

Solutions include:

I Keep it as a “variable” which will be instantiated later.
Mainly used in PLs with type inference.

I Allow any T2. We will explore this option when discussing
subtyping.

I Ascription: use explicit annotation to tell the compiler or type
checker which type T2 is intended.

inl t as T

T-Inl
Γ ` t1 : T1

Γ ` inl t1 as T1 + T2 : T1 + T2

Sums and uniqueness of types

This rule breaks the uniqueness of types:

T-Inl
Γ ` t1 : T1

Γ ` inl t1 : T1 + T2

Solutions include:

I Keep it as a “variable” which will be instantiated later.
Mainly used in PLs with type inference.

I Allow any T2. We will explore this option when discussing
subtyping.

I Ascription: use explicit annotation to tell the compiler or type
checker which type T2 is intended.

inl t as T

T-Inl
Γ ` t1 : T1

Γ ` inl t1 as T1 + T2 : T1 + T2

Sums and uniqueness of types

This rule breaks the uniqueness of types:

T-Inl
Γ ` t1 : T1

Γ ` inl t1 : T1 + T2

Solutions include:

I Keep it as a “variable” which will be instantiated later.
Mainly used in PLs with type inference.

I Allow any T2. We will explore this option when discussing
subtyping.

I Ascription: use explicit annotation to tell the compiler or type
checker which type T2 is intended.

inl t as T

T-Inl
Γ ` t1 : T1

Γ ` inl t1 as T1 + T2 : T1 + T2

Variants

Like the relation between pair and records. Variants are extensions
of sum type with fields.

t1 =< none = unit > as < none : Unit, some : Nat >

t2 =< some = 20 > as < none : Unit, some : Nat >

f = λx : < none : Unit, some : Nat >.
case x of

< none = u > ⇒ 999
| < some = v > ⇒ v

In ML family, this type is called option.

Enumerations and Single-Field variants

I We can construct enumerations by using variants, each field
has type Unit.

Weekday =< monday : Unit, tuesday : Unit, · · · , friday : Unit >

The access of this enumeration is very annoying. We will have
alternatives later.

I The single-field variants looks silly, but is useful to
abstract/hide information.

DollarAmount =< dollars : Float >

EuroAmount =< euros : Float >

Discussion: variants v.s. Datatypes

Variant type is analogous to the ML datatype

type T = l1 of T1 | · · · | ln of Tn

But there are several differences worth noticing

I For ML datatype, we do not use li(ti) as T to explicitly tell
the compiler T , instead the constructor li has type Ti → T .

I Enumeration is much easier with datatype, we omit of Unit:

type Weekday = monday | · · · | friday

I ML datatype has several additional important features:
I Recursive datatype:

type NatList = nil | cons of Nat * NatList
I Parametric datatype:

type ’a List = nil | cons of ’a * ’a List

List is called a type operator.

General recursion

Another facility found in most programming languages is the
ability to define recursive functions.
Here is one way to define a function iseven:

ff = λ ie:Nat→ Bool.λ x:Nat.
if iszero x then true

else if iszero (pred x) then false

else ie (pred (pred x));

iseven = fix ff;

Quiz.
What’s the type of ff?

General recursion

fix itself cannot be defined in the simply typed lambda-calculus.
We simply add it as primitives.

New terms t ::= · · · | fix t

New evaluation rules

E-FixBeta
fix (λx : T1.t2) −→ [x 7→ fix (λx : T1.t2)]t2

E-Fix
t1 −→ t ′1

fix t1 −→ fix t ′1

New typing rules T-Fix
Γ ` t1 : T1 → T1
Γ ` fix t1 : T1

New derived forms
letrec x : T1 = t1 in t2

def
= let x = fix (λx : T1.t1) in t2

General recursion

fix itself cannot be defined in the simply typed lambda-calculus.
We simply add it as primitives.

New terms t ::= · · · | fix t

New evaluation rules
E-FixBeta

fix (λx : T1.t2) −→ [x 7→ fix (λx : T1.t2)]t2

E-Fix
t1 −→ t ′1

fix t1 −→ fix t ′1

New typing rules

T-Fix
Γ ` t1 : T1 → T1
Γ ` fix t1 : T1

New derived forms
letrec x : T1 = t1 in t2

def
= let x = fix (λx : T1.t1) in t2

General recursion

fix itself cannot be defined in the simply typed lambda-calculus.
We simply add it as primitives.

New terms t ::= · · · | fix t

New evaluation rules
E-FixBeta

fix (λx : T1.t2) −→ [x 7→ fix (λx : T1.t2)]t2

E-Fix
t1 −→ t ′1

fix t1 −→ fix t ′1

New typing rules T-Fix
Γ ` t1 : T1 → T1
Γ ` fix t1 : T1

New derived forms
letrec x : T1 = t1 in t2

def
= let x = fix (λx : T1.t1) in t2

General recursion

fix itself cannot be defined in the simply typed lambda-calculus.
We simply add it as primitives.

New terms t ::= · · · | fix t

New evaluation rules
E-FixBeta

fix (λx : T1.t2) −→ [x 7→ fix (λx : T1.t2)]t2

E-Fix
t1 −→ t ′1

fix t1 −→ fix t ′1

New typing rules T-Fix
Γ ` t1 : T1 → T1
Γ ` fix t1 : T1

New derived forms
letrec x : T1 = t1 in t2

def
= let x = fix (λx : T1.t1) in t2

More on fix

I Notice that the type T1 in rule T-Fix is not restricted to
function types.

I fix implies that every type is inhabited by some term.

divergeT = λ : Unit.fix (λx : T.x);

divergeT (unit) has type T, and has non-terminating
evaluation.

I The simply typed lambda-calculus with numbers and fix,
called PCF (Programming Computable Functions), is the
simplest language with a range of subtle semantic phenomena.

List

Typing features can be classified into

I base types such as Bool and Unit

I type constructors such as → and ×
I List is also a type constructor: For every T, List T returns a

type describing finite length lists whose elements typed T.

Please refer to Figure 11-13 for syntax and semantics of List.

Conclusion

I Real programming languages usually include: Base types, Unit
type, Pairs, Tuples, Records, Sum, etc.

I fix can not be typed in simply typed lambda calculus. Most
languages do not have explicit fix, but allow recursive
definitions of functions.

I An important theme throughout the part is the concept of
derived forms.

Homework

I 11.4.1, 11.5.2, 11.8.2, 11.11.1, 11.11.2

	Simple extensions
	Base types
	Unit type and sequencing
	Ascription
	let bindings
	Pairs and tuples
	Records

	More extensions
	Sums and variants
	General recursion

