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Abstract— In this paper, we integrate the traditional finite-
state automata (words, or string based) into the membrane
computing paradigm, as previous work prevalently concentrated
on multiset based automata. We apply P systems with string
objects (worms) to implement finite automata, that is, simulating
their running, showing that P systems with string objects can
properly hold the computability of finite automata. We give the
concept of P system with string objects and finite automata,
describe the implementation details, and finally make some future
work expectation.

I. INTRODUCTION

We implement (or simulate) the traditional finite(-state)
automata [6][7], which receive (ordered) strings (finite symbol
sequence, or words) as input and stop after reading the input
with computing by transition relation, within the paradigm
of membrane computing. That is, we use P systems with
string objects (or worms) [11][12][13][15] to realize the run-
ning of finite automata, which, as far as we are concerned,
is not an research area that has been heavily covered in
membrane computing, though some work similar (but not
the same essentially, they are multisets based automata) does
exist [8][9][10]. On the other hand, albeit some results on
universality in computational power have been investigated
and proved [14][16][17], the direct and detailed construction of
some machines of relatively smaller complexity has not been
studied. We consider it also important to work out direct con-
structions of these specific machines, as these implementation
(of for instance finite automata) offers some relatively simple
and elementary but useful apparatus (gadget) in computation
(also from practical viewpoint). And those things such as
the relationship with the cited references will be properly
explained in the main body of this paper, for example the
difference of P systems we use from those in related work.

Motivation

In fact, the P automata introduced and analyzed in [8][9]
and other related articles, based on multisets of objects, are
not consistent with the traditional concept of finite automata,
which are based on words. The difference lies in that P au-
tomata recognizes “strings” different from that recognized by
traditional finite automata. By “string”, we generally assume
that there is an order among the symbols constituting the
string, that is, the same symbol in different position of the
string should be considered different. For example, in string
abad the two a’s are different. When the order is neglected,

the “string” then degenerates to a symbols bag, or multiset in P
systems. Therefore, precisely speaking, P automata recognizes
multisets of symbols from the alphabet associated with it, not
“strings”.

The difference described above renders P automata a special
branch in automata theory. However, from either theoretic and
practical point of view, string based automata are still an in-
teresting area that deserves attention in membrane computing.
P systems with string objects (or worms) make it possible to
implement finite automata with P systems. In this variant of
P systems, (real) strings are introduced and handled, in the
form of splitting, concatenation, replication and etc.. By now,
the study of P systems with string objects has been mainly
on the computational power [14][16], few application of them
has been reported.

We propose to combine the two aspects mentioned above,
that is, to introduce string objects (worms), with their nec-
essary operations, into the automata theory with respect to
P systems. Thus, we can embroil traditional automata in P
systems and examine the recognizing power of P systems
on strings. We begin by implementing the most basic finite
automata with finite words (strings). To be more concrete, in
order to achieve this goal, we have to do some melding work.
That is, we think it necessary to make use of the operations
of two kinds of P systems, one with anti-port rules [3] and the
other with string operation rules, to form an integral system
that can simulate finite automata. In the rest of this paper, we
try to do this.

II. FINITE AUTOMATA

In this section, we give a brief introduction to the concept of
finite automata. Here we stick to the nondeterministic version
of finite automata, as the deterministic finite automata are
special cases of the former, and every nondeterministic finite
automata can be converted to a deterministic one. So if we
do not state explicitly, all the automata in discussion are
nondeterministic.

A Nondeterministic Finite Automata (NFA) is the following
structure

A = (Σ, Q, s0, F, ∆),

where
• Σ. The alphabet.
• Q. The set of states.



• s0 ∈ Q. The initial state.
• F ⊆ Q. The set of final states.
• ∆ ⊆ Q × Σ × Q. The transition relation consisting of

transition rules of the form:

(q, a, p) ∈ ∆,

which means that in state q, the automata can read a
symbol a and then transit to state p.

A running of an automata on some input string can be
described as follows. The automata reads the input string’s
symbol one by one, from the left to the right (you can
imagine there is a reading head scanning the input string).
On the current symbol and current state of the automata, one
of the transition rules is applied to make the state of the
automata transit to a new state, and meanwhile the reading
head moves right for the next successive symbol in the string.
A running process starts with the initial state and the reading
head positioned on the leftmost symbol of the string, then
continues step by step that is described above, and the whole
computation halts when the string is exhausted, that is, the
reading head moves beyond the rightmost symbol of the string.

Suppose the automata is A and the input string is w ∈ Σ∗.
When one running of A on w leaves A in a state belonging
to the set F of A, we say that the automata accepts (or
recognizes) w. Otherwise, if no running halts in one of the
final state, we say that the automata A rejects w. Moreover,
the language, under Σ, that is recognized by an automata A
is defined as

L(A) = {w ∈ Σ∗ | A accepts w}.
It is well known that the language class recognized by finite
automata is the regular language class[7]. More explanation
on the basic concept of finite automata can be found in [6].

Example of a finite automaton

We consider a simple example. Let the alphabet be Σ =
{a, b}, suppose we want to design a finite automaton that
recognizes strings that have an odd number of a’s. We can
define the automaton as follows.

A = (Σ, Q, q0, qf , R),

where Σ = {a, b}, Q = {q0, qf}, q0, qf are the initial state
and final state, respectively. R is defined as

(q0, a, qf ) (qf , a, q0)
(q0, b, q0) (qf , b, qf ).

Remark 1: • One can easily check that the automaton
defined above indeed recognizes strings having an odd
number of a’s, with no regard to the number of b’s in
them.

• In fact, the automaton is a deterministic one, despite that
we define it in the nondeterministic style, because we
consider nondeterministic finite automata in this paper.
Meanwhile, it is well known that every nondeterministic
finite automaton can be converted to a deterministic finite

automaton, with some subset construction algorithm [6],
so our discussion does not lose generality.

The automaton can be represented graphically as below. In

Fig. 1. The automaton recognizing strings having an odd number of a’s.

Figure 1, each state is represented by a circle with the name
of it in the circle. The initial state has an edge without source
pointing to it, and the final state is doubly encircled and has
an edge without destination leaving it. Each labeled directed
edge corresponds to an element in the transition relation. For
example, a labeled edge q

a−→ p indicates that there is an
element (q, a, p) in the transition relation.

There are a wealth of examples in [6] and [7]. Here we just
mention a typical one. For instance, from the example above
we can construct finite automata recognizing strings having an
even number of a’s, an even number of a’s and an odd number
of b’s, a’s whose number is 3n(n = 1, 2, ...), and etc..

III. P SYSTEMS WITH STRING OBJECTS

Here we give the definition of the P system with string
objects. We define it as follows. Note we use · to indicate
string concatenation, and most time it is omitted.

Definition 2 (P system with string objects): A P system
with string objects has the following structure.

Π = (V, µ, A1, ..., Am, (R1, S1, M1, C1), ..., (Rm, Sm, Mm, Cm), i0),

where
• The degree is m.
• V . The alphabet.
• µ. The (embedded) membrane structure. It is of a tree structure.
• Ai(i = 1, ..., m). The initial multiset of string objects in region

i.
• Rulei : (Ri, Si, Mi, Ci)(i = 1, ..., m). Suppose

TAR , {here, out}∪
{inj | j is one of the embedded (son) membranes.},

and tar, tar1, tar2 ∈ TAR. The rules are explained as follows.
– Ri(replication): r : (a → u1||u2; tar1, tar2), a ∈ V and

u1, u2 ∈ V ∗. For any strings w1, w2, w3 ∈ V ∗, we write
w1 ⇒r (w2, w3) if w1 = x1ax2, w2 = x1u1x2, w3 =
x1u2x2 for some x1, x2 ∈ V ∗. And w2, w3 will be
communicated to regions tar1, tar2, respectively.

– Si(splitting): r : (a → u1|u2; tar1, tar2), a ∈ V and
u1, u2 ∈ V ∗. For any strings w1, w2, w3 ∈ V ∗, we write
w1 ⇒r (w2, w3) if w1 = x1ax2, w2 = x1u1, w3 = u2x2

for some x1, x2 ∈ V ∗. And w2, w3 will be communicated
to regions tar1, tar2, respectively.

– Mi(mutation): r : (a → u; tar), a ∈ V and u ∈
V ∗. It is in fact a context-free rewriting rule. For any
strings w1, w2 ∈ V ∗, we write w1 ⇒r w2 if w1 =



x1ax2, w2 = x1ux2for some x1, x2 ∈ V ∗. And w2 will
be communicated to region tar.

– Ci(crossing-over): r : (z; tar1, tar2), z ∈ V +. For
any strings w1, w2, w3, w4 ∈ V ∗, we write (w1, w2) ⇒z

(w3, w4) if w1 = x1zx2, w2 = y1zy2, w3 = x1zy2,
w4 = y1zx2 for some x1, x2, y1, y2 ∈ V ∗. And w3, w4

will be communicated to regions tar1, tar2, respectively.
Remark 3: Note that we make a little extension to the rules

(especially the splitting rule) in comparison with the definition
in [11]. That is, we allow empty string in some place of the
rules (the ui’s and wi’s). For example, in the splitting rule,
u1 and u2 belong to V ∗, not V +; so do w1, w2, w3. This
extension won’t do any harm to the computational power of
the system, since the extended rules are no less powerful than
the original ones. What is more, they offer some flexibility in
application, only on the condition that we should keep an eye
on the obviously meaningless cases, which we think will not
bring much complexity.

We describe the successful computation of the P system
defined above as follows.

Definition 4 (Successful computation): P systems defined
as in Definition 2 performs a successful computation if

It halts, that is there is no further rules applicable in any
region of the system, with the output possibly in i0, if

defined.
Otherwise, the computation fails, that is the computation never
halts and no output will be available.

More explanation on the characteristics of the P system
defined above can be found in [11][12][13].

IV. SIMULATING FINITE AUTOMATA

In this section, we give the detail of the simulation of finite
automata using P systems with string objects. To achieve this,
we need to make a little extension to the P system defined
in Definition 2, that is, we need to introduce condition to the
four rules in it. Now the rules on strings are of the following
form:

〈rule of one of the four types; condition F 〉,
where the condition can be a multiset of string objects,
indicating that the rule can only be applied when objects in
the condition F exist in the current membrane.

For example, the conditioned splitting rule: r : (a →
u1|u2; tar1, tar2;F), a ∈ V and u1, u2 ∈ V ∗, F ⊆ V ∗. It
means that the rule can be applied only in presence of the
string objects in F .

Two steps comprise the simulation:
• Use splitting to read input
• Use conditioned rules to simulate transition rules of the

finite automata.
Suppose the finite automata is A = (Σ, Q, q0, F, ∆). We
define the following P system to simulate it.

ΠA = (V, µ, A1, ..., Am, (R1, S1, M1, C1), ..., (Rm, Sm, Mm, Cm), i0),

where
• The degree is m = 4.
• V = Σ ∪Q ∪ {a′ | a ∈ Σ}. The alphabet.

• µ = [1 [2 [3 ]3 [4 ]4 ]2 ]1. 1 is the place to hold the input string.
2 is the main computation place, where the transition rules are
applied. 3 is the place to collect some intermediate objects. 0
is the environment. And 4 is the output region.

• Ai(i = 1, ..., m). The initial multiset of string objects in region
i. Here A1 holds the input string. A2 holds the initial state (q0)
of the automata. A0, A3, A4 are all empty.

• Rulei : (Ri, Si, Mi, Ci)(i = 1, ..., m). Here the rules are all
conditioned rules.

We give the detail of the rules in each region below.
Here we explain the rules in each region. First we make some

assumption.
• Rules are applied in a sequential manner on a single string, that

is, only one rule can be applied to the string at a time. This is
from the fact that usually an object takes part in one reaction
at a time.

• We suppose that rules of all the types (Ri, Si, Mi, Ci) function
in the following way:
If one rule finds more than one point in a string suitable for
the application of it, it always strictly effects on the first it

meets in the string (note strings are ordered from left to right)
This is a natural premise, since usually a certain reaction will
choose the first required object (or a point/site) it encounters in
a sequence (string), as in most gene regulation cases. This is
economic and effective from practical point of view.

Now suppose rule (p, a, q) ∈ ∆ is the rule to be simulated. The
rules are defined below.
• Rules in region 1. Rules here read in the leftmost unprocessed

symbol (that under the reading head, or the current symbol) in
the input string and send it to region 2 for further computation.
We need a derived rule, Rd, which reads in the current symbol
and removes it from the input string. It can be defined as follows

Rd : Σ∗ → Σ ∪ {λ}(λ indicates empty string).

In fact, it can be deemed as a kind of macro of rules. Now

(Rd ; in2)

suffices to serve as the read-in step. Below we define the Rd
rule. And we find it sufficient to use the splitting rule.

Rd : a → (a | λ ; in2, here), a ∈ Σ,

that is, if w = x1ax2(x1, x2 ∈ Σ∗), then

w ⇒Rd (x1a, x2),

with x1a communicated to region 2 and x2 remaining in region
1.
The desired case is that x1 = λ, so that the leftmost symbol
of w is read out and sent to region 2 for further computation,
which forms a fragment of the successful computation path.
Note that when x1 6= λ, the computation will never halt, due
to the rules in region 2, thus fail.

• Rules in region 2. Rule2 can be divided into two parts.
– Making the transition:

(p → q ; here ; a), (p, a, q) ∈ ∆
(a → a′ ; in3 ; ∅), a ∈ Σ

– Halting control:

(p → p ; here ; ∅), p ∈ Q
(pf → pf ; in4 ; ∅)

The two rules in halting control ensure that the transition are
made exactly in terms of that of the automata being simulated,
which will leave no state symbol here, otherwise, the first rule
in the halting control here will be applied forever.



• Rules in region 3. Rule3 = ∅.
• Rules in region 4. Rule4 = ∅.
Remark 5: • Only one state symbol appears in region 2 at a

certain moment.
• The splitting rule (see Definition 2 for its definition) in region 1

ensures that the input string is stripped one symbol by another
(from left to right) to the end, that is no symbol left in region
1 (all have been sent to region 2), when Rd cannot be applied
any more and nothing happens in region 1 henceforth.

• After the symbol read in by Rd is processed (some transition
rule has been applied), it is moved to region 3, which in a sense
can be treated as a garbage collector. We do not send it out to
the environment, because in region 3 some more manipulation
is possible if needed, while it is not in the environment.

• The P system runs in a nondeterministic way. That is, wrong
computational paths may exist, and the simulation succeeds
whenever there is at least one computational path that success-
fully simulates the automata correctly. If we want to make the
simulation deterministic, we have to extend the rules to make
them probably more powerful.

• The input string is destroyed during the computation. This is not
important from computational viewpoint but can be improved.

From the construction above, we can obtain the main result below.

Result
First we give the definition of the successful simulation of a finite

automata.
Definition 6 (Successful simulation): A P system with string ob-

jects Π (successfully) simulates a finite automata A, whose recog-
nizing language is denoted by L(A), if the following holds

∀w ∈ Σ∗, w ∈ L(A) iff Π halts on input w,

where how the input is made depends on the P system.
Then we can arrive at the main result of this paper. Note in the P

system we constructed above, the input is put in region 1 initially.
Theorem 7: Given a finite automata A, the P system ΠFA as

defined in Section IV simulates it, in the way of Definition 6.
Actually, the result is obvious from the definition and the explanation
above. The proof is straightforward. By now, we have finished our
major task, the finite automata have been simulated using P systems
with string objects.

V. FUTURE WORK

Since the finite automata can be implemented by P systems with
string-objects, we bravely think that other traditional automata can be
implemented too, with the powerful operations on strings in such P
systems, and in fact this computing approach comes probably from
DNA computing, where different models of computation has been
studied and formalized (such as [18]). Therefore, we think this work
is somewhat meaningful and necessary, since they can serve as the
basis of the computational power in the whole membrane computing
paradigm. And the candidate is not difficult to think of, for example
pushdown automata. Though a little ambitious, we still consider it
a relatively practical goal, since there has been some work on the
computational power of string-based P systems, and the universality
has been obtained [16][17]. We hope that these work can be finished
in the near future. But obstacles are not absent in this work. For
example, to implement the pushdown automata we need to simulate
a stack, which is a data structure that has not been realized before.
So more details have to be settled.

VI. CONCLUSION

In conclusion, we have done several things. We first explained the
motivation for our work, that is, the current state of the research in
automata in P systems may need some extension to finite automata in
that string (or words) should be considered. Second, we introduced

the variant of P systems, the string-based P systems, which we make
use of to implement finite automata. Then we give the detailed
definition of the implementation of finite automata using P systems
with string objects. Finally, we make some discussion on the topic
we work on here. We think our work above contributes to the field
of membrane computing in that it serves as a direct construction of
traditional automata in membrane computing.
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