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Abstract Higher-order processes with parameterization are capable of abstraction and application
(migrated from the lambda-calculus), and thus are computationally more expressive. For the minimal
higher-order concurrency, it is well-known that the strong bisimilarity (i.e., the strong bisimulation
equality) is decidable in absence of parameterization. By contrast, whether the strong bisimilarity is
still decidable for parameterized higher-order processes remains unclear. In this paper, we focus on
this issue. There are basically two kinds of parameterization: one on names and the other on pro-
cesses. We show that the strong bisimilarity is indeed decidable for higher-order processes equipped
with both kinds of parameterization. Then we demonstrate how to adapt the decision approach to
build an axiom system for the strong bisimilarity. On top of these results, we provide an algorithm
for the bisimilarity checking.
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1 Introduction

Bisimulation is a most important concept for comparing the behaviour of computing systems, partic-
ularly concurrent systems. An accompanying vital question is to check whether two given systems are
equal in terms of bisimulation, hence the bisimilarity checking. Bisimilarity checking is an important
topic in concurrency theory and formal verification. Basically there are two directions for this topic. One
is to adopt an abstract manner, using process rewrite systems [13]. An advantage of this direction is that
some core techniques can be extracted and potentially adapted to various models. The other is to work
directly on concrete models [18]. An edge of this direction is that some well-defined operators can be
harnessed thoroughly to guide the checking. We focus on the second direction in this work.

The bisimilarity checking, including checking bisimulation equalities, simulations, and preorders,
has been attracting tremendous attention in the past few decades [9, 11–13, 23]. In contrast to the fruit-
ful work of bisimilarity checking on first-order models, checking bisimulation equalities for higher-order
processes has been more challenging. Much fewer results have been known in higher-order process mod-
els. Indeed, a major reason is that higher-order processes communicate in the fashion of process-passing
(i.e., program-passing), and have the innate capability of encoding recursion. Besides, the standard
bisimulation for higher-order processes, i.e., the context bisimulation, is strikingly different from those
for first-order processes. It requires the matching of two output processes to be compared in arbitrary
contexts. To this point, simplifying the context bisimilarity has also been a significant topic [19, 20].
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To this day, the best known result of bisimilarity checking for higher-order processes is reported in
[15], to our knowledge. In that work, Lanese et al. show that the strong bisimilarity checking of HOcore
processes is decidable. As a matter of fact, they show that all known strong bisimilarities in HOcore
are decidable. HOcore is a minimal higher-order process model that only has the input, (asynchronous)
output, and the concurrency operator (i.e., the parallel composition). HOcore is also proven to be Turing
complete, and this result is somehow refined toward a more implementable interpretation [3], in the
manner of encoding lambda-calculus in HOcore through abstract machines.

That HOcore is Turing complete renders its process-termination problem undecidable. This fact
adds to the contrast that the strong bisimilarity is decidable, which in turn implies the decidability of
the barbed congruence. Technically, the decidability is achieved by showing all the strong bisimilarities
to be coincident with a very special strong bisimilarity, called IO-bisimilarity, which is decidable by its
definition in the first place. On the basis of this decidability outcome, a complete axiom system is also
established, as well as an algorithm with acceptable complexity. It is then possible to implement the
algorithm for bisimilarity checking HOcore processes in software systems [1]. Intuitively, the essential
element making the strong bisimilarity decidable is that HOcore does not have the restriction operator,
and thus the capability of expressing recursion is weakened. It is also shown that if restriction is recov-
ered, i.e., if at least four static (i.e., top concurrency level) restrictions are included in HOcore, then the
strong bisimilarity immediately becomes undecidable. The undecidability is proven through a reduction
from the PCP; similar reductions are also used in other settings, e.g., the Ambient calculus [8]. Building
upon [10, 15] further studies the possibility of making the termination decidable, in the setting of a frag-
ment of HOcore where nested higher-order outputs are disabled. Specifically, it is shown that in such a
setting the termination of processes becomes decidable (though convergence is still undecidable), due to
the reason that the Minsky machines are no longer expressible. Technically, such decidability is achieved
using the well-structured transition systems employed in [7]. Following [10, 18] shows that termination
turns back to be undecidable if such a fragment of HOcore is enriched with a passivation operator [22],
because Turing completeness is retained with the help of passivation.

In [6], Bundgaard et al. study the decidable fragments of Homer [5], a higher order process model
with the capacity of expressing locations. They show that two subcalculi of Homer have decidable barbed
bisimilarity, in both the strong and weak forms. Intuitively, Homer supports certain kind of pattern match-
ing of name sequences that model the locations of resources, and this plays a central role in enhancing
the expressiveness. For this reason, Homer can encode first-order processes and is computationally com-
plete, leaving little hope for the decidability of bisimilarities. Therefore, to obtain decidability, some
constraints have to be devised. Technically, such constraints are imposed through a finite control prop-
erty. That is, some finite reachability criterion is excerpted on the semantics of Homer processes. Such
a criterion is the key reason for the decidability of barbed bisimilarities. The approach of [6] provides a
valuable reference for acquiring decidability sub-models from a more powerful full model.

However, there is still much space one can exploit concerning bisimilarity checking for higher-order
processes, as mentioned in [15]. HOcore is a minimal model, with somewhat low modelling capacity.
It would be interesting to quest for a more expressive model by adding certain constructs, while stil-
l maintaining the decidability result. Parameterization has been known to be an effective approach of
promoting the expressiveness of higher-order processes, that is, abstraction-passing is strictly more ex-
pressive than mere process-passing [14]. In this work, we focus on the minimal higher-order processes
with parameterization, notation Πmp, basically HOcore extended with parameterization. This minimal
model contains solely the most elementary parts to formalize higher-order concurrency, with extension
of the abstraction and application, two operations originating from the lambda-calculus [2]. We will
show that in such a calculus, the strong bisimilarity remains decidable. Similar result is only conjectured
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in [15]. To this point, we go beyond that conjecture in two respects. Firstly, although our general ap-
proach resembles that of [15], the technical route has some key lemmas with essentially different proof
structures, due to the complication brought by the parameterization. Secondly, we consider two kinds
of parameterization, i.e., both on names and on processes themselves, rather than only one kind. Thus
we are working on a potentially more expressive model. This is evidenced by the following two facts.
(1) Parameterization, in particular process parameterization, brings strictly more expressiveness to the
higher-order process model [14]. (2) Moreover, name parameterization is more expressive than process
parameterization [27]. Intuitively, this is true because we can somehow encode process parameterization
with name parameterization, using an idea akin to that of encoding process-passing into name-passing.
To the best of our knowledge, there has been little work about the decidability of bisimilarities in such
a model. The decidability result of this work not only pushes outward the boundary of higher-order
processes with decidable bisimilarity, but also digs more into the realm of bisimilarity checking more
challenging behavioural equalities, such as weak or branching bisimilarity.

Contribution Now we summarize the main contribution of this paper.
• We show that in the minimal higher-order process model with parameterization, the strong bisimilar-
ities, including the standard context bisimilarity together with other well-known bisimulation equalities,
are all decidable. We borrow and revamp the ideas from [15], i.e., defining a bisimilarity decidable from
the very beginning and then showing that the bisimilarities of interest coincide with it. The major novel
parts are those tackling the parameterization. Due to the presence of the parameterization, we have a
completely new design of the key bisimilarities, particularly those defined directly over open processes
(i.e., those processes carrying free variables), as wel as the normal bisimulation that needs new forms of
triggers for the two kinds of parameterizations. In turn, the congruence proofs must take these changes
into consideration. Moreover, some crucial properties for establishing the coincidence of the bisimilar-
ities have entirely new proof methods, in particular, among others, the preservation of substitution that
claims the closure of variable substitutions with respect to the strong bisimilarity (since now a variable
can take an abstraction). Indeed, the discussion of the mutual inclusion of various bisimilarities calls
for more rigorous and fine-grained investigation in the setting of parameterization. More explanation is
given in Sections 2, 3.
• With the decidability in place, we design an axiom system and a checking algorithm, in roughly the
same vein as those in [15], with the following difference. (1) For the axiom system, the core part amounts
to reducing the deduction of the strong bisimilarity to the extended structural congruence. Previously,
such extension includes a distribution law. Now with parameterization in the game, we have to further
extend the structural congruence with the laws for the application operation. (2) For the bisimilarity-
checking algorithm, the core is to transform a term (possibly with parameterization) into certain normal
form with the help of a tree representation of the process, and then the bisimilarity checking can be read-
ily done almost syntactically on the normal form. In presence of parameterization, we extend the tree to
accommodate abstractions and applications, as well as the normalization procedure. In such an extended
procedure, we execute applications as many times any possible, and operate the tree in a bottom-up fash-
ion so as to improve on performance. The algorithm has linear space complexity and polynomial time
complexity slightly better than available ones. More details are given in Sections 4, 5.
An extended version of this paper with more details is available [26].
Organization The remainder of this paper is organized as follows. Section 2 gives the definitions of the
process model and the strong bisimilarities. Section 3 presents the decidability of the strong bisimilari-
ties, with detailed proofs. Section 4 does the axiomatization and proves its correctness. In Section 5, we
demonstrate an algorithm for the bisimilarity checking, and analyses its complexity. Section 6 concludes
this paper and points to some future work.
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2 Preliminary

In this section, we first define Πmp, the minimal higher-order process model extended with parame-
terization. Then we introduce the strong bisimilarities to be discussed.
Syntax Calculus Πmp has the following syntax.

P,Q := 0
∣∣∣X ∣∣∣m(X).P

∣∣∣m(Q)
∣∣∣P |Q ∣∣∣〈X〉P ∣∣∣P〈Q〉 ∣∣∣〈x〉P ∣∣∣P〈n〉

Πmp expressions (or terms, processes) are represented by capital letters. For the sake of convenience,
we divide names (ranged over by m,n,u,v...) into two groups: one for name constants (ranged over by
a,b,c,d,e...) and the other for name variables (ranged over by x,y,z...). The elements of the calculus
have their standard meaning. One notices that the output is non-blocking, i.e., asynchronous. Sometimes
we write m[Q] for output. Input m(X).P and process abstraction 〈X〉P bind the process variable X , and
name abstraction 〈x〉P binds the name variable x. Otherwise, a process or name variable is free. Bound
variables can be replaced subject to α-conversion, and the resulting term is deemed as the same. A term
is closed if it does not have free process variables. Otherwise it is open. Operations fpv(·), bpv(·), pv(·),
fnv(·), bnv(·), nv(·), nc(·), n(·) respectively return the free process variables, bound process variables,
process variables, free name variables, bound name variables, name variables, name constants, and names
of a set of terms. A variable or name is fresh if it does not appear in the terms under examination. We
use ·̃ for a tuple, for example, a tuple of terms P̃ and a tuple of names m̃. Process substitution P{Q/X}
(respectively name substitution P{m/x}) denotes the replacement of process variable X (respectively
name variable x) with the process Q (respectively name m). Substitutions can be extended to tuples in
the expected way, i.e., pairwise replacement.

Parameterization refers to abstraction and application, and sometimes parameterization and abstrac-
tion are used interchangeably. Intuitively the process abstraction 〈X〉P (respectively name abstraction
〈x〉P) abstracts in P the process variable X (respectively name variable x), which is supposed to be
instantiated by a concrete process Q (respectively name d) in the application (〈X〉P)〈Q〉 (respectively
(〈x〉P)〈d〉); then in turn the application gives rise to an applied form P{P/X} (respectively P{d/x}). The
constructs of abstract and application stem from the counterpart in the lambda-calculus, and somehow
extend the domain of the lambda-calculus to a concurrent setting. To ensure correct use of abstraction and
application, a type system was designed by Sangiorgi in his seminal thesis [19]. The typing rules in the
type system effect to exclude badly formed expressions, such as (〈x〉P)〈A〉 and 〈A〉P in which A is a (non-
variable) term, P | 〈X〉Q (dangling abstraction), and so on. That type system is important but not essential
for our work here, so we do not present it and always assume that terms are well-formed subject to typ-
ing; interested readers can refer to [19,21] and reference thereof for more details. Term P1 |P2 | · · · |Pk is
abbreviated as Πk

i=1Pi. We also have some CCS-like operations defined as follows: a.P def
= a(X).P where

X /∈ pv(P); a def
= a.0; a def

= a0. A context C[·] is an expression with some sub-expression replaced by the
hole [·], and C[A] means substituting the hole with A.

Semantics We denote by≡ the standard structural congruence extended by the rules for application, i.e.,
the smallest congruence meeting the following laws among which the last two formulate the application.
(P |Q) |R≡ P |(Q |R), P |Q≡ Q |P, P |0≡ P, (〈X〉P)〈Q〉 ≡ P{Q/X}, (〈x〉P)〈m〉 ≡ P{m/x}

Calculus Πmp has the following operational semantics on open terms, with symmetric rules skipped.
In the third rule, we assume bpv(λ ) ∩ fpv(Q) = /0.

m(X).P
m(X)−−−→P mQ

m(Q)−−−→0

P λ−→P′

P |Q λ−→P′ |Q
P

m(A)−−−→P′ Q
m(X)−−−→Q′

P |Q τ−→P′ |Q′{A/X}

Q≡ P P λ−→P′ P′ ≡ Q′

Q λ−→Q′
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The semantics grant a term three kinds of actions: input P
a(X)−−→P′ means that P can receive a term on

channel a to replace the variable X acting as a place-holder in P (here we have a late instantiation style);

output P
a(Q)−−→P′ means that P can send a term Q (which could be an abstraction) on channel a in an

asynchronous fashion; interaction P τ−→P′ means that P makes a communication of some term between
concurrent components. Actions are ranged over by α,λ . Operations fpv(·), bpv(·), pv(·), fnv(·), bnv(·),
nv(·), nc(·), n(·) and also substitutions can be extended to actions in the expected way accordingly. We

sometimes write P λ−→· to represent the transition P λ−→P′ for some P′ if P′ is not important. Modelling
application as part of the structural congruence follows the line of reduction in lambda-calculus, though
there are other options (see [19, 21]). Thus up-to ≡, a term can be somehow turned into an equivalent
one by applying applications as many times as possible, ending up with a term containing only those
application of the form X〈A〉. As in [19], we ensure that applications (substitutions) are bound to end
(i.e., normalized), so as to avoid Ω-like terms such as O〈O〉 in which O def

= 〈X〉(X〈X〉). Said another
way, in the sense of order, we focus on abstractions with finite order, not ω order. See [19, 21] for more
discussion about this. We further notice that if infinite application were to be admitted (though this is a bit
strange), then essentially one would retrieve replication, e.g., !P def

= O′〈O′〉 in which O′ def
= 〈X〉(P |X〈X〉).

This would probably lead to a drastically different situation, which we do not tackle in this work. Before
moving on, we give an example to illustrate the modelling capability of Πmp. We define two processes P
and Q executing a simple protocol, making good use of the parameterization.

P def
= aA |b(X).(X〈B〉 |O), Q def

= a(X).(X〈c〉 |c(Y ).R), A def
= 〈x〉(b[〈Z〉xZ])

P |Q τ−→ ≡ b(X).(X〈B〉 |O) |A〈c〉 |c(Y ).R ≡ b(X).(X〈B〉 |O) |b[〈Z〉cZ] |c(Y ).R
τ−→ ≡ (〈Z〉cZ)〈B〉 |O |c(Y ).R ≡ cB |O |c(Y ).R
τ−→ ≡ R{B/Y}|O

The protocol goes as follows: (1) P sends Q an abstraction A over channel a (which is agreed upon
beforehand); (2) Q instantiates the name abstraction carried by A with a name c chosen by Q alone (not
necessarily negotiated with P before starting the protocol); (3) Part of the code of A, i.e., 〈Z〉cZ is sent
back to P over channel b chosen by P alone previously; (4) Process B, e.g., some computational resource
or data, is sent to Q over channel c, so as to be used in R. In the entire protocol, P and Q only agree on
the channel name a, and initially do not disclose on which channel the resource is to be transmitted.

Below we give the notion of “guarded” and some relevant properties.

Definition 1. A variable X is guarded in P if X merely occurs in the following two situations. (1)
X occurs in P’s subexpressions of the form m(Y ).P′ (in which Y could be the same as X), or Y 〈P′〉 (in
which Y is not X). (2) X occurs free in P’s subexpressions of the form mP′. A term P is guarded if any
free variable of it is guarded.

In what follows, we have the abbreviations: Trm
def
= m, TrD

m
def
= 〈Z〉mZ, TrD,d

m
def
= 〈z〉m[〈Z〉(Z〈z〉)]. The

proofs of the coming two lemmas are by transition induction.

Lemma 2. We have the following transition properties.

(1) If P λ−→P′, then P{R/X} λ{R/X}−−−−→P′{R/X} for every R with fpv(R)∩ (pv(P)∪pv(λ )∪{X}) = /0.

(2) If P{R/X} λ ′−→P1 with X guarded in P and fpv(R)∩ (pv(P)∪{X}) = /0, then P λ−→P′, P1 ≡ P′{R/X},
and λ ′ is λ{R/X} with fpv(R)∩pv(λ ) = /0.

(3) If P{Trm/X} λ ′−→P1 with m fresh and not in λ ′, then P λ−→P′, P1 ≡ P′{Trm/X}, and λ ′ is λ{Trm/X}.
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(4) If P{TrD
m/X} λ ′−→P1 with m fresh and not in λ ′, then P λ−→P′, P1 ≡ P′{TrD

m/X}, and λ ′ is λ{TrD
m/X}.

(5) If P{TrD,d
m /X} λ ′−→P1 with m fresh and not in λ ′, then P λ−→P′, P1≡P′{TrD,d

m /X}, and λ ′ is λ{TrD,d
m /X}.

(6) If P λ−→P′, then P{g/m} λ{g/m}−−−−→P′{g/m}.
(7) If P{g/m} λ ′−→P1 and λ ′ is not τ , then P λ−→P′ in which λ ′ is λ{g/m}, and P1 ≡ P′{g/m}.
(8) If P{g/m} τ−→P1, then there are several possibilities: (a) P τ−→P′ and P1 ≡ P′{g/m}. (b) P mA−→· and

P
g(Y )−−→·. That is, P ≡ mA |g(Y ).P2 |P3, and P1 ≡ (P2{A/Y}|P3){g/m}. (c) P

gA−→· and P
m(Y )−−−→·. That is,

P≡ gA |m(Y ).P2 |P3, and P1 ≡ (P2{A/Y}|P3){g/m}.

Lemma 3. Assume that P is a term and X is a process variable. There are P′ in which X is guarded and
natural number k > 0 such that one of the following cases is true. (1) P ≡ P′ |Πk

i=1X, and P{R/X} ≡
P′{R/X}|Πk

i=1R for every R. (2) P ≡ P′ |Πk
i=1X〈Ai〉, and P{R/X} ≡ P′{R/X}|Πk

i=1R〈Ai{R/X}〉 for
every R. (3) P≡ P′ |Πk

i=1X〈mi〉, and P{R/X} ≡ P′{R/X}|Πk
i=1R〈mi〉 for every R.

The strong bisimilarities In the following, we first present a provably decidable strong bisimilarity,
named strong HO-IO bisimilarity. Then we go head to define the various strong bisimilarities, including
the strong context bisimilarity and other strong bisimilarities of concern. These strong bisimilarities turn
out to be equal.

Strong HO-IO bisimilarity We define a bisimulation called strong HO-IO bisimulation, with the
corresponding equality called strong HO-IO bisimilarity. As will be seen, the most desirable properties
we want from this bisimilarity is that it is decidable. The definition needs to take into account the
abstractions, because the terms transmitted to be compared may be abstractions. Jumping ahead, the
other strong bisimulations to be defined also have this requirement for abstractions.

Definition 4 (Strong HO-IO bisimilarity). A symmetric binary relation R over Πmp terms is a strong
HO-IO bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉A, then Q is a process-
abstraction 〈Y 〉B, and AR B. (3) If P is a name-abstraction 〈y〉A, then Q is a name-abstraction 〈y〉B,

and AR B. (4) If P aA−→P′, then Q aB−→Q′ with AR B and P′R Q′. (5) If P
a(X)−−→P′, then Q

a(X)−−→Q′ and
P′R Q′. (6) If P ≡ X |P′, then Q ≡ X |Q′ and P′R Q′. (7) If P ≡ X〈A〉 |P′, then Q ≡ X〈B〉 |Q′,
and AR B and P′R Q′. (8) If P ≡ X〈d〉 |P′, then Q ≡ X〈d〉 |Q′ and P′R Q′. The strong HO-IO
bisimilarity, notation ∼◦hoio , is the largest strong HO-IO bisimulation.

Strong HO bisimilarity The concept of strong HO bisimilarity is due to Thomsen [24].

Definition 5 (Strong HO bisimilarity). A symmetric binary relation R over closed Πmp terms is a strong
HO bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉P′, then Q is a process-
abstraction 〈Y 〉Q′, and P′{A/Y}R Q′{A/Y} for every closed A. (3) If P is a name-abstraction 〈y〉A, then
Q is a name-abstraction 〈y〉B, and AR B. (4) If P aA−→P′, then Q aB−→Q′ with AR B and P′R Q′. (5) If

P
a(X)−−→P′, then Q

a(X)−−→Q′ and for every closed A, it holds that P′{A/X}R Q′{A/X}. (6) If P τ−→P′, then
Q τ−→Q′ and P′R Q′. The strong HO bisimilarity, notation ∼ho , is the largest strong HO bisimulation.

Strong context bisimilarity We denote by E(X) a process E possibly with X appearing free in it, i.e.,
fpv(E)⊆ {X}. Accordingly, E(A) denotes E(X){A/X}. As a nearly standard version of the bisimilarity
for higher-order processes, the context bisimulation was proposed by Sangiorgi [19].
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Definition 6 (Strong context bisimilarity). A symmetric binary relation R over closed Πmp terms is
a strong context bisimulation, if whenever PR Q the following properties hold. (1) If P is a non-
abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉P′, then Q is a process-abstraction
〈Y 〉Q′, and P′{A/Y}R Q′{A/Y} for every closed A. (3) If P is a name-abstraction 〈y〉A, then Q is a

name-abstraction 〈y〉B, and AR B. (4) If P
a(X)−−→P′, then Q

a(X)−−→Q′ and for every closed A, it hold-
s that P′{A/X}R Q′{A/X}. (5) If P aA−→P′ in which A is a non-abstraction, process-abstraction , or
name-abstraction, then Q aB−→Q′ for some B that is respectively a non-abstraction, process-abstraction ,
or name-abstraction, and for every E(X), it holds that E(A) |P′R E(B) |Q′. (6) If P τ−→P′, then Q τ−→Q′

and P′R Q′. The strong context bisimilarity, notation ∼ctx , is the largest strong context bisimulation.

We note that ∼ctx can be extended to open process terms, similar for ∼ho. That is, for open terms P
and Q with fpv(P,Q) = X̃ , P ∼ctx Q if and only if P{R̃/X̃} ∼ctx Q{R̃/X̃} for any closed R̃.

Strong normal bisimilarity Higher-order process expressions here may be parameterized over pro-
cesses themselves or names. Accordingly, abstractions can be transmitted in communications, and thus
process variables have three types: non-abstraction, process-abstraction, and name-abstraction. We refer
the reader to [19] for the detailed formalization of types. To cater for our need, knowing which of the
three types a process variable belongs to is sufficient for our work. For convenience, we may simply say
that a process variable is a non-abstraction, process-abstraction, or name-abstraction.

Before presenting the definition of the strong normal bisimilarity, we give the definition of trigger-
s: Trm

def
= m, TrD

m
def
= 〈Z〉mZ, TrD,d

m
def
= 〈z〉m[〈Z〉(Z〈z〉)]. These triggers correspond to the three types of

process variables represented above, and will be used to handle abstractions bound to instantiate these
process variables. The concept of triggers was proposed by Sangiorgi and plays a prevalent role in the
manipulation of higher-order processes; see [19] [25]. We stress that the design of the normal bisim-
ulation in this work requires new forms of triggers due to the presence of parameterization. The work
in [15] only needs the simplest form of triggers acting as synchronizers sending handshaking signals,
i.e., m. However in contrast, in the setting of parameterization, triggers should bear the responsibility
of relocating the parameters for an abstraction. This design is non-trivial in general, and we harness the
results in the previous work [25] to devise different forms of triggers used by the parameterization. It is
not hard to prove that the strong normal bisimilarity is a congruence [19].

Definition 7 (Strong normal bisimilarity). A symmetric binary relation R over closed Πmp terms is a
strong normal bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉P′, then Q is a process-
abstraction 〈Y 〉Q′, and for every closed A it holds for fresh m that:
(a) P′{Trm/Y}R Q′{Trm/Y}, if Y is a non-abstraction. (b) P′{TrD

m/Y}R Q′{TrD
m/Y}, if Y is a process-

abstraction. (c) P′{TrD,d
m /Y}R Q′{TrD,d

m /Y}, if Y is a name-abstraction.
(3) If P is a name-abstraction 〈y〉A, then Q is a name-abstraction 〈y〉B, and AR B.

(4) If P
a(X)−−→P′, then Q

a(X)−−→Q′ and for every closed A, it holds for fresh m that:
(a) P′{Trm/X}R Q′{Trm/X}, if X is a non-abstraction. (b) P′{TrD

m/X}R Q′{TrD
m/X}, if X is a process-

abstraction. (c) P′{TrD,d
m /X}R Q′{TrD,d

m /X}, if X is a name-abstraction.

(5) If P aA−→P′, there are three possibilities: (a) If A is not an abstraction, then Q aB−→Q′ for non-abstraction
B, and it holds for fresh m that m.A |P′R m.B |Q′. (b) If A is a process-abstraction 〈Y 〉A1, then Q aB−→Q′

for process-abstraction B that is 〈Y 〉B1, and it holds for fresh m that m(Z).A〈Z〉 |P′R m(Z).B〈Z〉 |Q′. (c)
If A is a name-abstraction 〈y〉A1, then Q aB−→Q′ for name-abstraction B that is 〈y〉B1, and it holds for fresh
m that m(Z).Z〈A〉 |P′R m(Z).Z〈B〉 |Q′.
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(6) If P τ−→P′, then Q τ−→Q′ and P′R Q′. The strong normal bisimilarity, notation ∼nr , is the largest
strong normal bisimulation.

We can also extend ∼nr to open terms. For open terms P and Q with fpv(P,Q) = {X̃1, X̃2, X̃3}, P ∼nr

Q if and only if P{T̃rm1
/X̃1}{T̃rD

m2
/X̃2}{T̃rD,d

m3
/X̃3} ∼nr Q{T̃rm1

/X̃1}{T̃rD
m2
/X̃2}{T̃rD,d

m3
/X̃3}, where each

variable in X̃1, X̃2 and X̃3 is respectively a non-abstraction, process-abstraction and name-abstraction, and
is replaced with the corresponding trigger for that variable type. The corresponding tuples of triggers are

respectively denoted by T̃rm1
, T̃rD

m2
and T̃rD,d

m3
, where the names of all the triggers are fresh.

Open strong normal bisimilarity The following bisimilarity is a variant of the strong normal bisimi-
larity on open terms. It is basically an extension of the same bisimilarity in [15].

Definition 8 (Open strong normal bisimilarity). A symmetric binary relation R over Πmp terms is an
open strong normal bisimulation, if whenever PR Q the following properties hold.
(1) If P is a non-abstraction, then so is Q. (2) If P is a process-abstraction 〈Y 〉A, then Q is a process-
abstraction 〈Y 〉B, and AR B. (3) If P is a name-abstraction 〈y〉A, then Q is a name-abstraction 〈y〉B, and
AR B. (4) If P aA−→P′ or P τ−→P′, then Q matches P in the same way as in strong normal bisimilarity. (5)
If P

a(X)−−→P′, then Q
a(X)−−→Q′ and P′R Q′. (6) If P≡ X |P′, then Q≡ X |Q′ and P′R Q′.

(7) If P≡ X〈A〉 |P′, then Q≡ X〈B〉 |Q′ and moreover the following is valid for fresh m.
(a) If A is not an abstraction, then so is B and m.A |P′R m.B |Q′. (b) If A is a process-abstraction,
then so is B and m(Z).A〈Z〉 |P′R m(Z).B〈Z〉 |Q′. (c) If A is a name-abstraction, then so is B and
m(Z).Z〈A〉 |P′R m(Z).Z〈B〉 |Q′.
(8) If P≡ X〈d〉 |P′, then Q≡ X〈d〉 |Q′ and P′R Q′.

The open strong normal bisimilarity, notation ∼◦nr , is the largest open strong normal bisimulation.

3 Deciding the strong bisimilarity for Πmp

In this section, we first establish the decidability of the strong HO-IO bisimilarity. This is the cor-
nerstone of the decidability for other bisimilarities. Then we discuss the relationship between the strong
bisimilarities, and eventually obtain the coincidence between them. As such, all of the strong bisimilari-
ties are decidable.

3.1 The decidability and properties of ∼◦hoio

To facilitate discussion on decidability, we need a metric of the syntactical structure of a term.

Definition 9 (Depth of a term). The depth depth(P) of a term P is a mapping from terms to natural
numbers defined as follows.
depth(0) = 0, depth(X) = 1, depth(m(X).P1) = depth(P1)+1, depth(m(P1)) = depth(P1)+1,
depth(P1 |P2) = depth(P1)+depth(P2), depth(〈X〉P1) = depth(P1)+1, depth(X〈P1〉) = depth(P1)+1,
depth(P1〈P2〉) = depth(P3{P2/Y}) (where P1 is 〈Y 〉P3), depth(〈x〉P1) = depth(P1)+1,
depth(X〈n〉) = 1, depth(P1〈n〉) = depth(P3{n/y}) (where P1 is 〈y〉P3)

An immediate property is that both of P≡ Q and P∼◦hoio Q implies depth(P) = depth(Q). The proof
of this property is by induction over the depth of P. The details are put in Appendix A.

Lemma 10. If P≡ Q or P∼◦hoio Q, then depth(P) = depth(Q).

Strong HO-IO bisimulation up-to ≡ Bisimulation up-to ≡ is a useful technique to establish bisim-
ulations. Its definition is obtained by replacing R with ≡ R ≡ in every clause of Definition 4. The



9

advantage of the up-to technique is that if R is a strong HO-IO bisimulation up-to ≡, then R ⊆∼◦hoio.
See [16, 21] for a thorough introduction and discussion.
Congruence Through standard state-diagram-chasing argument, one can prove that ∼◦hoio is an equiva-
lence relation. It is also a congruence, as the follow-up lemma reveals. See [15, 19] for a reference of
proof; we also provide a proof in Appendix A.

Lemma 11 (Congruence). On Πmp terms, ∼◦hoio is congruence. That is, suppose P and Q are Πmp terms,
then P ∼◦hoio Q implies: (1) a(X).P ∼◦hoio a(X).Q; (2) a(P) ∼◦hoio a(Q); (3) P |R ∼◦hoio Q |R; (4) 〈X〉P ∼◦hoio

〈X〉Q; (5) 〈x〉P ∼◦hoio 〈x〉Q; (6) Y 〈P〉 ∼◦hoio Y 〈Q〉.

Decidability We now establish the decidability of ∼◦hoio. As a premise, we have the following structural
property, whose proof is a simple induction over the semantic rules.

Lemma 12. Suppose P is a Πmp term. Then: (1) If P
a(A)−−→P′, then P ≡ a(A) |P′. (2) If P

a(X)−−→P′, then
P≡ a(X).P1 |P2 and P′ ≡ P1 |P2.

Lemma 13 (Decidability). On Πmp terms, ∼◦hoio is decidable.
Proof of Lemma 13. We decide whether P∼◦hoio Q by induction on depth(P).
Induction basis. In this case depth(P) is 0 or 1. The case depth(P) is 0, i.e., P is 0, is trivial because no
action is possible from P and it has no free variables. If depth(P) is 1, i.e., P is X or X〈d〉, then no action
is possible from P. One simply checks that Q is also X or X〈d〉 respectively.
Induction step. We perform a (finite) check of each clause of ∼◦hoio in an inductive way.
(1) If P is a non-abstraction, then check that Q is also a non-abstraction.
(2) If P is a process-abstraction 〈X〉A, then check that Q is also a process-abstraction 〈X〉B (up-to α-
conversion), and continue with checking A ∼◦hoio B using induction hypothesis since the depth of A de-
creases with respect to P, i.e., depth(A)< depth(P).
(3) If P is a name-abstraction 〈x〉A, then check that Q is also a name-abstraction 〈x〉B (up-to α-conversion),
and continue with checking A ∼◦hoio B using induction hypothesis since the depth of A decreases with re-
spect to P, i.e., depth(A)< depth(P).

(4) If P
a(X)−−→P′, we check that Q

a(X)−−→Q′ and P′ ∼◦hoio Q′. There might be a few (but finite) possibilities
concerning Q′. If all such checks fail, then we conclude that P and Q are not strong HO-IO bisimilar. For
each possible check, we know by Lemma 12 that P≡ a(X).P1 |P2 and P′ ≡ P1 |P2. Since the depth of the
terms decrease, i.e., depth(P′)< depth(P), we use induction hypothesis to continue checking P′ ∼◦hoio Q′.

(5) If P
a(A)−−→P′, we check that Q

a(B)−−→Q′ with A∼◦hoio B and P′ ∼◦hoio Q′. There might be a few (but finite)
possibilities concerning B and Q′. If all such checks fail, then we conclude that P and Q are not strong
HO-IO bisimilar. For each possible check, we know by Lemma 12 that P≡ a(A) |P′. Since the depth of
the terms decrease, i.e., depth(P′)< depth(P) and depth(A)< depth(P), we use induction hypothesis to
continue checking A∼◦hoio B and P′ ∼◦hoio Q′.
(6) If P≡ X |P′, we check that Q≡ X |Q′ and P′ ∼◦hoio Q′. There might be a few (but finite) possibilities
concerning Q′. If all such checks fail, then we conclude that P and Q are not strong HO-IO bisimilar. For
each possible check, since the depth of the terms decrease, i.e., depth(P′)< depth(P), we use induction
hypothesis to continue checking P′ ∼◦hoio Q′.
(7) If P ≡ X〈A〉 |P′, we check that Q ≡ X〈B〉 |Q′ with A ∼◦hoio B and P′ ∼◦hoio Q′. There might be a
few (but finite) possibilities concerning B and Q′. If all such checks fail, then we conclude that P and
Q are not strong HO-IO bisimilar. For each possible check, since the depth of the terms decrease,
i.e., depth(P′) < depth(P) and depth(A) < depth(P), we use induction hypothesis to continue checking
A∼◦hoio B and P′ ∼◦hoio Q′.
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(8) If P ≡ X〈d〉 |P′, we check that Q ≡ X〈d〉 |Q′ and P′ ∼◦hoio Q′. There might be a few (but finite)
possibilities concerning Q′. If all such checks fail, then we conclude that P and Q are not strong HO-IO
bisimilar. For each possible check, since the depth of the terms decrease, i.e., depth(P′)< depth(P), we
use induction hypothesis to continue checking P′ ∼◦hoio Q′.

Bisimilarity Preservation To connect the strong HO-IO bisimilarity with the strong context bisimilarity
and other bisimilarities, we need some preparation. In what follows, we show that the strong HO-IO
bisimilarity preserves substitutions and τ simulation, as stated in the following two lemmas in a sequel.

Lemma 14 (Name-substitution-preserving). Assume P∼◦hoio Q. Then P{g/m} ∼◦hoio Q{g/m} for all g,m.

We note that to keep well-formed, substitutions should not (and are always assumed not to) break
the legality of the terms under operation. The following lemma states that ∼◦hoio is invariant with respect
to process substitution. As mentioned, the proof of this lemma (i.e., the process substitution preserving
property) is entirely different from the counterpart in [15], in that we are obliged to conduct an induction
on the sizes of the terms because a term in the position of application, say the term A in X〈A〉, may
introduce extra structures. That is, the proof of the preservation of process substitution becomes much
more involved due to the process parameterization. In the current setting, a process variable can be
instantiated by a process abstraction which is in turn fed with a process from the context. This would
give rise to certain circular arguments, so the original proof method of [15] no longer works. To work
around this difficulty, one has to use induction based approach. This approach somewhat reminds one of
the difficulty in proving the congruence properties for higher-order processes.

Lemma 15 (Process-substitution-preserving). Let P∼◦hoio Q. Then P{R/X} ∼◦hoio Q{R/X} for all R,X.

The proofs of Lemmas 14 and 15 are put in Appendix A. An observation as a corollary from these
two lemmas is that ∼◦hoio is closed under abstraction, both name abstraction and process-abstraction.

Corollary 16. Assume P∼◦hoio Q. It holds that 〈X〉P ∼◦hoio 〈X〉Q and 〈x〉P ∼◦hoio 〈x〉Q.

The following lemma is important and directly attributed to the open-style nature of ∼◦hoio .

Lemma 17 (τ-preserving). Assume P∼◦hoio Q. If P τ−→P′, then Q τ−→Q′ and P′ ∼◦hoio Q′.

Proof of Lemma 17. The proof is by induction on the derivation of P τ−→P′.

(1) P τ−→P′ comes from the interaction of components of P. That is, P
a(A)−−→·, P

a(X)−−→·, and P τ−→P′. One

can assume X to be fresh as it is bound. So this can be rewritten as P
a(A)−−→ · a(X)−−→P1 where P1{A/X}≡ P′.

Because P∼◦hoio Q, Q can simulate by Q
a(B)−−→ · a(X)−−→Q1 ∼◦hoio P1, where A ∼◦hoio B, and Q1{B/X} def

= Q′.
Now since the higher-order output is non-blocking, the two consecutive actions can contribute to forming
a τ action, i.e., Q τ−→Q′, and we are left with showing P′ ∼◦hoio Q′. From P1 ∼◦hoio Q1, Lemma 15, we know

P′ ≡ P1{A/X} ∼◦hoio Q1{A/X} def
= Q′′. By the congruence properties, we can derive due to A ∼◦hoio B that

Q′′ ≡ Q1{A/X} ∼◦hoio Q1{B/X} ≡ Q′. Hence we conclude P′ ∼◦hoio Q′.
(2) P τ−→P′ comes from a component of P alone. That is, P ≡ P1 |P2, P1

τ−→P′1, and P′ ≡ P′1 |P2. Then we
conclude by induction hypothesis.

3.2 Relating the strong bisimilarities

We represent detailed relationship between the strong bisimilarities defined so far. Such relationship
will be established step by step. Eventually, as our ultimate goal, it will be demonstrated that all these
strong bisimilarities coincide with each other. This coincidence immediately entails that every and each
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of them is decidable, and moreover paves way for further discussion on the axiomatization and algorithm.
We first establish the coincidence between ∼ho and ∼◦hoio, and then move on to the remainder parts.

∼ho and ∼◦hoio coincide The following lemma gives a characteristic of the strong HO bisimilarity. Its
proof is a standard bisimulation deduction, with details in Appendix A.

Lemma 18. Suppose fpv(P,Q)=X̃=X1, ...,Xn. For fresh h and any closed R̃, it holds that P{R̃/X̃} ∼ho

Q{R̃/X̃} if and only if h(X1). · · · .h(Xn).P ∼ho h(X1). · · · .h(Xn).Q.

As Lemma 19 states, the strong HO bisimilarity and the strong HO-IO bisimilarity are actually
coincident. With the help of Lemma 18, and Lemmas 14, 15, 17 as well, we can prove the mutual
inclusion of the two strong bisimilarities. The details are provided in Appendix A.

Lemma 19. On Πmp terms, ∼ho =∼◦hoio.

Relating ∼ho and the other strong bisimilarities We now tackle the relationship between the strong
HO bisimilarity and other strong bisimilarities, including the strong context bisimilarity (∼ctx), strong
normal bisimilarity (∼nr), and open strong normal bisimilarity (∼◦nr), as well as the remaining part of
the overall picture of coincidence. To do this, we need some preparation. The following lemma will be
useful. The proof employs the usual bisimulation-establishing method. The details are in Appendix A.

Lemma 20. Assume that m is fresh with respect to P1, Q1, P and Q, said otherwise m /∈ fn(P1,Q1,P,Q).
(1) If m.P1 |P ∼◦nr m.Q1 |Q, then P1 ∼◦nr Q1 and P ∼◦nr Q. (2) If m(Z).P1〈Z〉 |P ∼◦nr m(Z).Q1〈Z〉 |Q, then
P1 ∼◦nr Q1 and P ∼◦nr Q. (3) If m(Z).Z〈P1〉 |P ∼◦nr m(Z).Z〈Q1〉 |Q, then P1 ∼◦nr Q1 and P ∼◦nr Q.

Using a similar proof strategy as Lemma 20, one can prove similarly the result for ∼nr.

Corollary 21. The result of Lemma 20 also holds if one replaces ∼◦nr with ∼nr in the statement.

Next in Lemma 22, we present the first two implications about the strong bisimilarities. Basically,
the proof of Lemma 22(1) utilizes the congruence of∼ho and the proof of Lemma 22(2) uses the fact that
the requirements of ∼nr are actually special cases of ∼ctx. The details can be found in Appendix A.

Lemma 22. (1) ∼ho implies ∼ctx on Πmp processes. (2) ∼ctx implies ∼nr on Πmp processes.
We now demonstrate, in Lemma 23, the two last inclusions about the strong bisimilarities, so as to

finalize the jigsaw. The proofs of them use the usual bisimulation construction approach, by exploiting
Lemmas 2,20 and Corollary 21. The details are placed in Appendix A.

Lemma 23. (1) ∼nr implies ∼◦nr on Πmp processes. (2) ∼◦nr implies ∼◦hoio on Πmp processes.

The follow-up lemma essentially fills what is left in the relationship between the strong bisimilarities.

Lemma 24. ∼ho, ∼◦nr, and ∼ctx coincide on open and closed Πmp processes.

Proof of Lemma 24. The following circular implications prove this lemma.

∼◦hoio
Lemma 19 //ii

Lemma 23(2)

∼ho
Lemma 22(1) // ∼ctx

Lemma 22(2) // ∼nr
Lemma 23(1) // ∼◦nr

The main theorem From Lemma 24 and Lemma 13, we now have the main result of this section.

Theorem 25. All the strong bisimilarities, that is, ∼◦hoio, ∼ho, ∼ctx, ∼nr, and ∼◦nr, coincide on open and
closed Πmp processes, and are all decidable.
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4 Axiomatization
In this section, we make an axiom system for the strong bisimilarities based on the decidability re-

sult. For simplicity, we denote by ∼ the strong bisimilarity, since all the strong bisimilarities coincide.
Basically, the equation set of the axiom system is composed of the extended structural congruence. Com-
pared with the setting without parameterization [15], we have extra equations describing the application
operation. We use a similar approach to prove the correctness of the axiom system.

The axiom system of [15] consists of the basic structural congruence laws and an extended distribu-
tion law DIS: a(x).

(
P |∏k−1

1 a(x).P
)
= ∏

k
1 a(x).P. Recall that the rules for application are modeled as a

part of the structural congruence. To admit parameterization, we introduce the following two more laws
APP1 and APP2: (〈X〉P)〈Q〉 = P{Q/X}, (〈x〉P)〈m〉 = P{m/x}. We will show that the basic laws for
the structural congruence, together with law DIS and moreover laws APP1 and APP2, are sufficient for a
complete axiom system. More specifically, we first prove that any term P has a unique prime decompo-
sition ∏

k
i=1 Pi, and then that any term can be simplified to a normal form (denoted as nf(P)) by the laws

above. By the soundness of the laws, we infer P∼ nf(P). Finally we prove that for any P and Q, P∼ Q
if and only if nf(P)≡ nf(Q).

Let A be the axiom system containing DIS, APP1, APP2 and the commutative monoid laws for
parallel composition. We will prove the completeness of A in the remainder of this section. We start
by the cancellation property. The point of proving this property is to deem ∼ as ∼◦hoio [15], and the most
involved cases are those concerning the abstractions. We provide the details in Appendix B.

Proposition 26 (Cancellation). For all P,Q and R, if P |R∼ Q |R then P∼ Q.

The notion of prime processes is due to [15,17]. A process P is prime if P 6∼ 0 and P∼ P1 |P2 implies
P1 ∼ 0 or P2 ∼ 0. If P ∼∏

n
i=1 Pi where each Pi is prime, we call ∏

n
i=1 Pi is a prime decomposition of P.

The following proposition states that for any process, there is a unique prime decomposition up to the
strong bisimilarity and permutation of indices. Instantiating∼ as∼◦hoio, one can prove this proposition by
induction on the size of the given process. We give the proof in Appendix B.

Proposition 27 (Unique prime decomposition). Given a process P, if there are two prime decompositions
P ∼ ∏

k
i=1 Pi and P ∼ ∏

l
j=1 Q j, then n = m and there is a permutation σ : {1,2, . . . ,n} → {1,2, . . . ,n},

such that Pi ∼ Qσ(i) for each i ∈ {1,2, . . . ,n}.

We write P Q if there are P′ and Q′ such that P≡ P′, Q≡ Q′, and Q′ can be obtained from P′ by
rewriting a subterm of P′ by laws DIS, APP1, APP2 from left to right. A process P is in normal form if
it cannot be simplified by using . Any process P has a unique normal form up to ≡, denoted as nf(P).
It is not hard to derive the following property.

Lemma 28. If P Q, then P∼ Q. For any P, P∼ nf(P).

Next we give a lemma crucial for the completeness proof. Its counterpart in non-parameterization
setting was first presented in [15]. The proof of Lemma 29 is put in Appendix B.

Lemma 29. If a(X).P∼Q |Q′ (Q,Q′� 0), then a(X).P∼∏
k
i=1 a(X).A (k>1) with a(X).A in normal form.

Now we can prove the completeness of the axiom system A . Basically, the proof of the completeness
uses a similar approach as that of [15]. The main novelty here is to accommodate the parameterization
in the equation system and the corresponding parts in the induction, i.e., those parts concerning the
abstraction and application for names and processes.

Lemma 30 (Completeness). For any P,Q, if P∼ Q then nf(P)≡ nf(Q).
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Proof of Lemma 30. We first show the following two properties simultaneously: 1. If A is a prefixed
process in normal form, then A is prime; 2. For any A,B in normal form, A ∼ B implies A ≡ B. We
proceed by induction on depth(A). The case depth(A) = 0 is immediate as the only term of this size is 0.
Suppose the property holds for all depth(A)< n with n≥ 1.
(1) Assume A is of the form a(X).A′. Suppose A is not prime, A∼P1 |P2. By Lemma 29, A∼∏

k
i=1 a(X).B

with k > 1 and a(X).B in normal form. Then A′ ∼ B |∏k−1
i=1 a(X).B. By ind. hyp. for 2, we have

A′ ≡ B |∏k−1
i=1 a(X).B. Then A≡ a(X).(B |∏k−1

i=1 a(X).B), a contradiction to that A is in normal form.
(2) Suppose A∼ B, we proceed by a case analysis on the structure of A.
• A is X . We have that B should be the same variable X .
• A is m(X).P. Assume B is not prime, B∼ P1 |P2. By Lemma 29, we know A∼∏

k
i=1 a(X).Q with k > 1

and a(X).Q in normal form. But according to property 1, A is prime, a contradiction. We thus have B is
m(X).Q with P∼ Q. By ind. hyp., P≡ Q. We thus have A≡ B.
• A is m(Q). We have that B is m(Q′) with Q∼ Q′. By ind. hyp., Q≡ Q′. We thus have A≡ B.
• A is 〈X〉P. We have that B is 〈X〉Q and P∼ Q. By ind. hyp., P≡ Q. We thus have A≡ B.
• A is X〈Q〉. We have that B is X〈Q′〉 and Q∼ Q′. By ind. hyp., Q≡ Q′. We thus have A≡ B.
• A is 〈x〉P. We have that B is 〈x〉Q and P∼ Q. By ind. hyp., P≡ Q. We thus have A≡ B.
• A is X〈n〉. We have that B is X〈n〉, and then A≡ B.
• A is ∏

k
i=1 Pi with k > 1 and Pi is not a parallel composition. We discuss over the possible shape of Pi.

- If there exists j s.t. Pj = X , then B≡ X |B′. Thus A≡ B follows by ind. hyp. on ∏1≤i≤k,i 6= j Pi and B′.
- If there exists j s.t. Pj = X〈Q〉, then B≡ X〈Q′〉 |B′ with Q∼ Q′ and B′ ∼∏1≤i≤k,i6= j Pi. By ind. hyp.,

A≡ B.
- If there exists j s.t. Pj = X〈n〉, then B≡ X〈n〉 |B′ with B′ ≡∏1≤i≤k,i 6= j Pi. By ind. hyp., A≡ B.
- If there exists j s.t. Pj = m(Q), then B must contain an output component on the same channel. We

thus have B = m(Q′) |B′ with Q′ ∼Q and B′ ∼∏1≤i≤k,i6= j Pi. By ind. hyp., Q′ ≡Q and B′ ≡∏1≤i≤k,i 6= j Pi,
which implies A≡ B.

- The last case is A = ∏
k
i=1 mi(Xi).Pi. According to property 1, each component mi(Xi).Pi is prime.

Similarly, B ≡ ∏
l
i=1 ni(Yi).Qi and each component ni(Yi).Qi is prime. By Proposition 27, k = l and

mi(Xi).Pi ∼ ni(Yi).Qi for 1≤ i≤ k (up to a permutation of indices). By ind. hyp. Pi ≡ Qi for all i, which
finally implies A≡ B.

Now for P,Q, assume P ∼ Q. Let A def
= nf(P) and B def

= nf(Q). By Lemma 28, A ∼ P ∼ Q ∼ B. As
A,B are in normal form, have A≡ B, and then nf(P)≡ nf(Q), as needed.

5 Algorithm for the bisimilarity checking
In this section, based on the results in the previous sections, we develop an algorithm for checking

the strong bisimilarity. We utilize the tree approach proposed in [15], i.e., encoding a Πmp process as a
tree, normalizing this tree to be compared up-to syntax. Differently now, the tree and the normalization
takes parameterization into consideration. We define a function db that assigns De Bruijn indices to
variables [4, 15]. Here the variables include the ones introduced by input prefixed processes, name
abstraction and process abstraction. Following [15], we introduce the representation of a term by a tree.
We write t[m1, . . . ,mk] for a tree with label t and subtrees m1, . . . ,mk.
Definition 31 (Tree representation). The tree representation of P is defined inductively as follows.
(1) Tree(0) = 0[ ], (2) Tree(X) = db(X)[ ], (3) Tree(a(X).P) = a[Tree(P)],
(4) Tree(a(Q)) = aO[Tree(Q)], (5) Tree(x(X).P) = db(x)[Tree(P)], (6) Tree(x(Q)) = db(x)O[Tree(Q)],
(7) Tree(∏n

i=1 Pi) = par[Tree(P1), . . . ,Tree(Pn)], (8) Tree(〈X〉P) = abs[Tree(P)], (9) Tree(〈P〉Q) =
app[Tree(P),Tree(Q)], (10) Tree(〈x〉P) = abs[Tree(P)], (11) Tree(〈P〉n) = app[Tree(P),n[ ]].
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The algorithm deciding the strong bisimilarity depends on the following 3 normalization steps:
Normalization: (1) In the first step, the term is rewritten by the application rules APP1, APP2 if
possible. (2) The second step focuses on the normalization of parallel composition. W.l.o.g., we can
assume that the children of parallel composition nodes are not parallel composition nodes. After this
step, every parallel composition node has at least two sorted child nodes, and none of them is 0. (3) The
last step aims to apply DIS from left to right if possible.

Now we explain the detailed algorithms given as pseudocodes below. A tree node n has the following
attributes: n.type for the type of corresponding process, the values can be zero, var, inp, out, par, abs,
app; n.label for the label of the tree node; n.numChildren for the number of children nodes; n.children
for the lists of all child nodes. The algorithm App realizes the application operation. It requires three
parameters: nraw, ind, and neval . The tree is traversed top-down and all variables from term nraw are
replaced with process neval if the De Bruijn index matches ind. In the process of application, if there are
more than one occurrence of an abstracted variable, say X , to be replaced, there will be more than one
duplications of neval . The nests of application may result in an exponential explosion on the number of
tree nodes. However, we can make optimization by reusing neval , that is, each occurrence of X points to
the same tree of neval . Then it is guaranteed that the space cost for normalized terms is still linear, leading
to acceptable time complexity of the algorithm.

Algorithm NS1 deals with terms for application. The tree is traversed bottom-up. Every term in
the form of 〈X〉P)〈Q〉 or 〈x〉P)〈m〉 are rewritten as P{Q/X} or P{m/x} respectively. Terms in the form
of X〈Q〉 and X〈n〉 remain unchanged. Algorithm NS2 deals with parallel composition. First all zero
processes are removed. Then, if attribute numChildren is 0, the tree is collapsed to a zero node. If
attribute numChildren is 1, the tree is collapsed to its single child. After this, all children nodes are
sorted. In algorithm NS3, the tree is traversed bottom-up to find subtrees which can apply DIS from left
to right. Lines 11-24 decides if node n matches the pattern with the left-hand side of DIS. It harnesses
the property that all children nodes have been sorted in normalization step 2. If it fails to match the
pattern, the node n remains unchanged and the function returns in line 18 or 22. Otherwise, the term
is rewritten at lines 25-26. As a consequence of Lemma 30, the following lemma shows that, if two
terms are strongly bisimilar, they can be normalized to the same tree by the three normalization steps.
By checking the equalities of the two trees, we can decide the strong bisimilarity between Πmp terms.

Lemma 32. Let P,Q be two terms. Let TP, TQ be the tree representations of P,Q respectively. Assume
that T ′P, T ′Q are the normalized trees after the normalization steps 1-3. Then P∼Q if and only if T ′P = T ′Q.

We now analyze the complexity of the algorithm. Given processes P and Q, let n be the sum of the
number of nodes in the tree representations of P and Q. The algorithm App and NS1 traverse the tree
for one time and can be done in O(n) time. The most time-consuming part of NS2 is sorting, which can
be done in O(n log(n)) time. The algorithm NS3 can be performed in O(n) time. Therefore, bisimilarity
checking takes in O(n log(n)) time in total. As explained above, the space complexity is O(n).

Application App(nraw,ind,neval)

Require: Tree nodes nraw, neval , an integer ind.
1: if (nraw.type == ‘var’ or nraw.type == ‘inp’) and

nraw.label == ind then
2: nraw = neval
3: end if
4: if nraw.type == ‘out’ and nraw.label == indO then
5: nraw = neval
6: nraw.label = (nraw.label)O

7: end if
8: if nraw.type == ‘inp’ or nraw.type == ‘abs’ then
9: ind = ind +1

10: end if
11: for i = 1 to n.numChildren do
12: App(nraw.children[i], ind , neval)
13: end for
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Normalization Step 1 NS1(n)

Require: A tree node n
1: for i = 1 to n.numChildren do
2: NS1(n.children[i])
3: end for

4: if n.type == ‘app’ then
5: if n.children[1].type == ‘abs’ then
6: App(n.children[1].children[1], 1, n.children[2])
7: end if
8: end if

Normalization Step 2 NS2(n)

Require: A tree node n
1: for i = 1 to n.numChildren do
2: NS2(n.children[i])
3: end for
4: if n.type == ‘par’ then
5: j = 1
6: for i = 1 to n.numChildren do
7: if n.children[i].type 6= ‘zero’ then
8: n.children[ j] = n.children[i]
9: j = j + 1

10: end if

11: end for
12: n.numChildren = j - 1
13: if n.numChildren == 0 then
14: n.type = ‘zero’
15: end if
16: if n.numChildren == 1 then
17: n = n.children[1]
18: end if
19: end if
20: sortChildren(n)

Normalization Step 3 NS3(n)

Require: A tree node n
1: for i = 1 to n.numChildren do
2: NS3(n.children[i])
3: end for
4: if n.type == ‘inp’ then
5: p = n.children[1]
6: if p.type == ‘par’ then
7: smallIndex=-1
8: small,big=null
9: pc1=p.children[1]

10: pc2=p.children[p.numChildren]
11: if pc1.type == ‘inp’ and pc1.label == n.label and

pc1.children[1] == pc2 then
12: small = pc2, big = pc1,
13: smallIndex = p.numChildren

14: else if pc2.type==‘inp’ and pc2.label == n.label and
pc2.children[1]==pc1 then

15: small = pc1, big = pc2
16: smallIndex = 1
17: else
18: return
19: end if
20: for i = 2 to n.numChildren-1 do
21: if p.children[i] 6= big then
22: return
23: end if
24: end for
25: p.children[smallIndex] = big
26: n = n.children[1]
27: end if
28: end if

6 Conclusion
In this paper, we have exhibited that even in presence of parameterization, which can increase the

expressiveness of higher-order processes, the strong bisimilarity is still decidable for Πmp. The proving
approach extends the previous one for HOcore, with several significant distinctions due to parameteriza-
tion. This decidability result comes with the more powerful modelling capability of the process model,
and is thus of both fundamental and practical importance to some extent. Besides, an axiom system and
an algorithm are provided. They can be used as an intermediate prototype for potential application of the
higher-order process model, in particular the bisimilarity checking. A further work is to try expanding the
model to allow more convenient modelling capability, e.g., locations, while maintaining the decidability
result. A far more challenging job is to consider the decidability of the weak bisimilarity.
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Appendix

A Proofs for Section 3

In this appendix, we provide the detailed proofs for Section 3.

Proof of Lemma 10. If P ≡ Q, we make a case analysis on the derivation of P ≡ Q. In the rest of the
proof, we focus on the situation when P ∼◦hoio Q. W.l.o.g, we assume that depth(P) ≤ depth(Q), and
the proof is conducted by an induction on depth(P). If depth(P) = 0, P is 0 and Q must also be 0 and
depth(P) = depth(Q). If depth(P)> 0, there are several possibilities.

• If P is a process-abstraction 〈Y 〉A, then Q is a process-abstraction 〈Y 〉B, and A ∼◦hoio B. We
have depth(A) = depth(B) by depth(A) < depth(P) and induction hypothesis. Then depth(P) =
depth(A)+1 = depth(B)+1 = depth(Q).

• If P is a name-abstraction 〈y〉A, then it is similar with the last case.

• If P aA−→P′, then Q aB−→Q′ with A ∼◦hoio B and P′ ∼◦hoio Q′. We have both depth(A) = depth(B) and
depth(P′) = depth(Q′) by induction hypothesis. Then depth(P) = depth(A) + depth(P′) + 1 =
depth(B)+depth(Q′)+1 = depth(Q).

• If P
a(X)−−→P′, then Q

a(X)−−→Q′ and P′ ∼◦hoio Q′. We have depth(P′) = depth(Q′) by induction hypoth-
esis. Then depth(P) = depth(P′)+1 = depth(Q′)+1 = depth(Q).

• If P≡ X |P′, then Q≡ X |Q′ and P′ ∼◦hoio Q′. We have depth(P′) = depth(Q′) by induction hypoth-
esis. Then depth(P) = depth(P′)+1 = depth(Q′)+1 = depth(Q).

• If P≡ X〈A〉 |P′ or P≡ X〈d〉 |P′, then it is similar with the last case.

Proof of Lemma 11. We prove these closure properties at the same time by proving the following relation
to be a strong HO-IO bisimulation.

R
def
=

{
(a(X).P,a(X).Q), (a(P),a(Q)), (P |R,Q |R),
(〈X〉P,〈X〉Q), (〈x〉P,〈x〉Q), (Y 〈P〉,Y 〈Q〉),

∣∣∣∣ P ∼◦hoio Q
}
∪ ∼◦hoio

Suppose (P1,Q1) ∈R, we tackle each form (P1,Q1) can take. Symmetric cases are skipped.

1. (P1,Q1) is (a(X).P,a(X).Q). Then a(X).P
a(X)−−→P can be matched by a(X).Q

a(X)−−→Q and PR Q.

2. (P1,Q1) is (a(P),a(Q)). Then a(P)
a(P)−−→0 can be matched by a(Q)

a(Q)−−→0, and PR Q and 0R 0.

3. The cases (P1,Q1) takes the forms (〈X〉P,〈X〉Q), (〈x〉P,〈x〉Q), or (Y 〈P〉,Y 〈Q〉) are trivial since
they do not have actions (the semantics does not allow action inside an abstraction or application).

4. The case that (P1,Q1) is (P |R,Q |R) is most involved, and we make further analysis. Clearly
neither of P |R and Q |R can be an abstraction.

(a) Suppose P |R a(A)−−→· in which · represents a certain term.
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i. The action comes from P, i.e., P
a(A)−−→P′ and P |R a(A)−−→P′ |R. Since P ∼◦hoio Q, Q matches

by Q
a(B)−−→Q′ with A ∼◦hoio B and P′ ∼◦hoio Q′. So Q |R a(B)−−→Q′ |R. This simulation works

because AR B and P′ |R R Q′ |R due to P′ ∼◦hoio Q′.

ii. The action comes from R, i.e., R
a(A)−−→R′ and P |R a(A)−−→P |R′. So one simulates by

Q |R a(A)−−→Q |R′, with ARA and P |R′ R Q |R′ due to P ∼◦hoio Q.

(b) Suppose P |R a(X)−−→·.
i. The action comes from P, i.e., P

a(X)−−→P′ and P |R a(X)−−→P′ |R. Since P ∼◦hoio Q, Q matches

by Q
a(X)−−→Q′ with P′ ∼◦hoio Q′. So Q |R a(X)−−→Q′ |R. This finishes the simulation because

P′ |R R Q′ |R due to P′ ∼◦hoio Q′.

ii. The action comes from R, i.e., R
a(X)−−→R′ and P |R a(X)−−→P |R′. So one simulates by

Q |R a(X)−−→Q |R′, with P |R′ R Q |R′ due to P ∼◦hoio Q.
(c) Suppose P |R≡ X |O.

i. The form results from P, i.e., P ≡ X |P′ and P |R ≡ X |P′ |R. Since P ∼◦hoio Q, we have
Q ≡ X |Q′ with P′ ∼◦hoio Q′. So Q |R ≡ X |Q′ |R. This does the simulation because
P′ |R R Q′ |R due to P′ ∼◦hoio Q′.

ii. The form results from R, i.e., R ≡ X |R′ and P |R ≡ X |P |R′. Also one knows that
Q |R≡ X |Q |R′. This closes the simulation because P |R′ R Q |R′ due to P ∼◦hoio Q.

(d) Suppose P |R≡ X〈A〉 |O.
i. The form results from P, i.e., P≡ X〈A〉 |P′ and P |R≡ X〈A〉 |P′ |R. Since P ∼◦hoio Q, we

have Q≡ X〈B〉 |Q′ with A ∼◦hoio B and P′ ∼◦hoio Q′. So Q |R≡ X〈B〉 |Q′ |R. This does the
simulation because AR B and P′ |R R Q′ |R due to P′ ∼◦hoio Q′.

ii. The form results from R, i.e., R≡ X〈A〉 |R′ and P |R≡ X〈A〉 |P |R′. Also one knows that
Q |R ≡ X〈A〉 |Q |R′. This closes the simulation because ARA and P |R′ R Q |R′ due to
P ∼◦hoio Q.

(e) Suppose P |R≡ X〈d〉 |O.
i. The form results from P, i.e., P≡ X〈d〉 |P′ and P |R≡ X〈d〉 |P′ |R. Since P ∼◦hoio Q, we

have Q ≡ X〈d〉 |Q′ with P′ ∼◦hoio Q′. So Q |R ≡ X〈d〉 |Q′ |R. This does the simulation
because P′ |R R Q′ |R due to P′ ∼◦hoio Q′.

ii. The form results from R, i.e., R≡ X〈d〉 |R′ and P |R≡ X〈d〉 |P |R′. Also one knows that
Q |R≡ X〈d〉 |Q |R′. This closes the simulation because P |R′ R Q |R′ due to P ∼◦hoio Q.

Proof of Lemma 14. We define R to be

R
def
= {(P{g/m},Q{g/m}) ||| P∼◦hoio Q}

and show it to be a strong HO-IO bisimulation up-to ≡ . Suppose (P{g/m},Q{g/m}) ∈R. Below we
verify each clause of HO-IO bisimulation up-to ≡(?). Lemma 2 and Lemma 3 would be helpful.

1. If P{g/m} is not an abstraction, then P is not either. Since P∼◦hoio Q, Q must not be an abstraction,
neither is Q{g/m}.

2. If P{g/m} is a process-abstraction, then it must be the case that P ≡ 〈X〉M1 and P{g/m} ≡
〈X〉(M1{g/m}). Since P ∼◦hoio Q, Q must be of the form 〈X〉M2 and M1 ∼◦hoio M2. So Q{g/m} ≡
〈X〉(M2{g/m}), and M1{g/m}R M2{g/m}.
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3. If P{g/m} is a name-abstraction, then it must be the case that P≡〈x〉M1 and P{g/m}≡ 〈x〉(M1{g/m})
(we can assume neither of m and g is x up-to α-conversion). Since P ∼◦hoio Q, Q must be of the
form 〈x〉M2 and M1 ∼◦hoio M2. So Q{g/m} ≡ 〈x〉(M2{g/m}), and M1{g/m}R M2{g/m}.

4. We now tackle input action simulation, as output is similar. Suppose P{g/m} a(Y )−−→P1.

In terms of Lemma 2, the action that comes from P{g/m} has several possibilities: (1) P
h(Y )−−→P′

in which h is neither m nor g, a is h, and P1 ≡ P′{g/m}. (2) P
g(Y )−−→P′, a is g, and P1 ≡ P′{g/m}.

(3) P
m(Y )−−−→P′, a is g, and P1 ≡ P′{g/m}.

We focus on the last case, as the others are similar. In that case, since P∼◦hoio Q, Q
m(Y )−−−→Q′ ∼◦hoio P′.

So Q{g/m} g(Y )−−→Q1 ≡ Q′{g/m}. We have P1 ≡ P′{g/m}R Q′{g/m} ≡ Q1 because P′ ∼◦hoio Q′.

5. Suppose P{g/m} a(A)−−→P1.

Like the input case, in terms of Lemma 2, the action that comes from P{g/m} has several pos-

sibilities: (1) P
h(A1)−−−→P′ in which h is neither m nor g, a is h, A is A1{g/m}, and P1 ≡ P′{g/m}.

(2) P
g(A1)−−−→P′, a is g, A is A1{g/m}, and P1 ≡ P′{g/m}. (3) P

m(A1)−−−→P′, a is g, A is A1{g/m}, and
P1 ≡ P′{g/m}.

We focus on the last case, as the others are similar. In that case, since P ∼◦hoio Q, Q
m(B1)−−−→Q′

with A1 ∼◦hoio B1 and P′ ∼◦hoio Q′. So Q{g/m} g(B)−−→Q1 ≡ Q′{g/m} in which B ≡ B1{g/m}. We
have P1 ≡ P′{g/m}R Q′{g/m} ≡ Q1 and A ≡ A1{g/m}R B1{g/m} ≡ B because P′ ∼◦hoio Q′ and
A1 ∼◦hoio B1.

6. Suppose P{g/m} ≡ Y |M.

The form stems from P ≡ Y |M1 where M ≡M1{g/m}. Since P ∼◦hoio Q, Q ≡ Y |N1 and M1 ∼◦hoio

N1. So Q{g/m} ≡ Y |N where N ≡ N1{g/m}. We have M ≡M1{g/m}R N1{g/m} ≡ N because
M1 ∼◦hoio N1.

7. Suppose P{g/m} ≡ Y 〈A〉 |M.

The form stems from P ≡ Y 〈A1〉 |M1 where A ≡ A1{g/m} and M ≡ M1{g/m}. Since P ∼◦hoio Q,
Q ≡ Y 〈B1〉 |N1, and A1 ∼◦hoio B1 and M1 ∼◦hoio N1. So Q{g/m} ≡ Y 〈B〉 |N where B ≡ B1{g/m}
and N ≡ N1{g/m}. We have A ≡ A1{g/m}R B1{g/m} ≡ B and M ≡M1{g/m}R N1{g/m} ≡ N
because A1 ∼◦hoio B1 and M1 ∼◦hoio N1.

8. Suppose P{g/m} ≡ Y 〈d〉 |M.

The form that P{g/m} takes has a few possibilities: (1) P≡ Y 〈h〉 |M1 where h is neither m nor g,
d is h, and M ≡M1{g/m}. (2) P ≡ Y 〈g〉 |M1, d is g, and M ≡M1{g/m}. (3) P ≡ Y 〈m〉 |M1, d is
g, and M ≡M1{g/m}.
We focus on the last case, for the others are similar. In that case, since P∼◦hoio Q, Q≡Y 〈m〉 |N1 and
M1 ∼◦hoio N1. So Q{g/m} ≡Y 〈g〉 |N where N ≡ N1{g/m}. We have M ≡M1{g/m}R N1{g/m} ≡
N because M1 ∼◦hoio N1.

Proof of Lemma 15. On the whole, we proceed by induction on the sum of the depth of R and the depth
of P. Notice that X can be a non-abstraction, process-abstraction, or name-abstraction.
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Induction Basis. The basis comprises the cases that depth(R) is 0 or 1, and depth(P) is 0 or 1.

One notable point is that being either 0 or Y (a free variable), R does not contribute to the action from
P{R/X} at all. In other words, the transition by P{R/X}must result from the original process P (similar
for Q{R/X}). In the case of R ≡ Y , it basically amounts to renaming variable X to another variable Y .
Now we expand the cases for the basis.

1. R is 0. In this case, the type of X is non-abstraction. We define R1 as follows.

R1
def
= {(P{0/X},Q{0/X}) |P ∼◦hoio Q}∪ ∼◦hoio

We show that R1 is a strong HO-IO bisimulation (up-to ≡). Suppose (P{0/X},Q{0/X}) ∈R1.
(a) If P{0/X} is not an abstraction, neither is P. Since P ∼◦hoio Q, Q is not an abstraction, neither

is Q{0/X}.
(b) If P{0/X} is a process-abstraction 〈Z〉P1, then it must be the case that P is of the form
〈Z〉P2 and P1 ≡ P2{0/X}. Since P ∼◦hoio Q, Q is also a process-abstraction, say 〈Z〉Q2 with
P2 ∼◦hoio Q2. Then Q{0/X} is a process-abstraction 〈Z〉Q1 in which Q1 ≡ Q2{0/X}. So we
have

P1 ≡ P2{0/X}R1 Q2{0/X} ≡ Q1

because P2 ∼◦hoio Q2.
(c) If P{0/X} is a name-abstraction 〈z〉P1, then it must be the case that P is of the form 〈z〉P2

and P1 ≡ P2{0/X}.
Since P ∼◦hoio Q, Q is also a name-abstraction, say 〈z〉Q2 with P2 ∼◦hoio Q2. Then Q{0/X} is
a process-abstraction 〈z〉Q1 in which Q1 ≡ Q2{0/X}. So we have

P1 ≡ P2{0/X}R1 Q2{0/X} ≡ Q1

because P2 ∼◦hoio Q2.

(d) If P{0/X} a(Z)−−→P1, then it must stem from P. That is, P
a(Z)−−→P′ and P1 ≡ P′{0/X}. Since

P ∼◦hoio Q, Q
a(Z)−−→Q′ and P′ ∼◦hoio Q′. So Q{0/X} a(Z)−−→Q1 ≡ Q′{0/X}. Hence we have

P1 ≡ P′{0/X}R1 Q′{0/X} ≡ Q1

because P′ ∼◦hoio Q′.

(e) If P{0/X} a(A1)−−−→P1, then it must stem from P. That is, P
a(A)−−→P′, and A1 ≡ A{0/X} and P1 ≡

P′{0/X}. Since P ∼◦hoio Q, Q
a(B)−−→Q′, and A ∼◦hoio B and P′ ∼◦hoio Q′. So Q{0/X} a(B1)−−−→Q1,

where B1 ≡ B{0/X} and Q1 ≡ Q′{0/X}. Hence we have

A1 ≡ A{0/X}R1 B{0/X} ≡ B1
P1 ≡ P′{0/X}R1 Q′{0/X} ≡ Q1

because A ∼◦hoio B and P′ ∼◦hoio Q′.
(f) If P{0/X} ≡Y |P1, then it must stem from P as follows: P≡Y |P′, and P1 ≡ P′{0/X}. Since

P ∼◦hoio Q, Q≡Y |Q′, with P′ ∼◦hoio Q′. Thus Q{0/X} ≡Y |Q1, where Q1 ≡Q′{0/X}. Hence
we have

P1 ≡ P′{0/X}R1 Q′{0/X} ≡ Q1

because P′ ∼◦hoio Q′.
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(g) If P{0/X}≡Y 〈A1〉 |P1, then it must stem from P as follows: P≡Y 〈A〉 |P′, and A1≡ A{0/X}
and P1 ≡ P′{0/X}. Since P ∼◦hoio Q, Q ≡ Y 〈B〉 |Q′, with A ∼◦hoio B and P′ ∼◦hoio Q′. So
Q{0/X} ≡ Y 〈B1〉 |Q1, where B1 ≡ B{0/X} and Q1 ≡ Q′{0/X}. Hence we have

A1 ≡ A{0/X}R1 B{0/X} ≡ B1
P1 ≡ P′{0/X}R1 Q′{0/X} ≡ Q1

because A ∼◦hoio B and P′ ∼◦hoio Q′.

(h) If P{0/X} ≡Y 〈d〉 |P1, then it must stem from P as follows: P≡Y 〈d〉 |P′, and P1 ≡ P′{0/X}.
Since P ∼◦hoio Q, Q ≡ Y 〈d〉 |Q′, with P′ ∼◦hoio Q′. Thus Q{0/X} ≡ Y 〈d〉 |Q1, where Q1 ≡
Q′{0/X}. Hence we have

P1 ≡ P′{0/X}R1 Q′{0/X} ≡ Q1

because P′ ∼◦hoio Q′.

2. R is Y . In this case, X can be of any type, but the discussion is similar. To taste the argument, we
define R2 as follows.

R2
def
= {(P{Y/X},Q{Y/X}) |P ∼◦hoio Q}∪ ∼◦hoio

We show that R2 is a strong HO-IO bisimulation (up-to ≡). Suppose (P{Y/X},Q{Y/X}) ∈R2.

(a) If P{Y/X} is not an abstraction, neither is P. Since P ∼◦hoio Q, Q is not an abstraction, neither
is Q{Y/X}.

(b) If P{Y/X} is a process-abstraction 〈Z〉P1, then it must be the case that P is of the form
〈Z〉P2 and P1 ≡ P2{Y/X}. Since P ∼◦hoio Q, Q is also a process-abstraction, say 〈Z〉Q2 with
P2 ∼◦hoio Q2. Then Q{Y/X} is a process-abstraction 〈Z〉Q1 in which Q1 ≡ Q2{Y/X}. So we
have

P1 ≡ P2{Y/X}R2 Q2{Y/X} ≡ Q1

because P2 ∼◦hoio Q2.

(c) If P{Y/X} is a name-abstraction 〈z〉P1, then it must be the case that P is of the form 〈z〉P2
and P1 ≡ P2{Y/X}.
Since P ∼◦hoio Q, Q is also a name-abstraction, say 〈z〉Q2 with P2 ∼◦hoio Q2. Then Q{Y/X} is
a process-abstraction 〈z〉Q1 in which Q1 ≡ Q2{Y/X}. So we have

P1 ≡ P2{Y/X}R2 Q2{Y/X} ≡ Q1

because P2 ∼◦hoio Q2.

(d) If P{Y/X} a(Z)−−→P1, then it must stem from P. That is, P
a(Z)−−→P′ and P1 ≡ P′{Y/X}. Since

P ∼◦hoio Q, Q
a(Z)−−→Q′ and P′ ∼◦hoio Q′. So Q{Y/X} a(Z)−−→Q1 ≡ Q′{Y/X}. Hence we have

P1 ≡ P′{Y/X}R2 Q′{Y/X} ≡ Q1

because P′ ∼◦hoio Q′.
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(e) If P{Y/X} a(A1)−−−→P1, then it must stem from P. That is, P
a(A)−−→P′, and A1 ≡ A{Y/X} and P1 ≡

P′{Y/X}. Since P ∼◦hoio Q, Q
a(B)−−→Q′, and A ∼◦hoio B and P′ ∼◦hoio Q′. So Q{Y/X} a(B1)−−−→Q1,

where B1 ≡ B{Y/X} and Q1 ≡ Q′{Y/X}. Hence we have

A1 ≡ A{Y/X}R2 B{Y/X} ≡ B1
P1 ≡ P′{Y/X}R2 Q′{Y/X} ≡ Q1

because A ∼◦hoio B and P′ ∼◦hoio Q′.
(f) We consider P{Y/X} ≡ Y |P1 in which the Y in Y |P1 results from the substitution {Y/X}.

The other possibilities are similar.
So if P{Y/X} ≡ Y |P1, then it must stem from P as follows: P ≡ X |P′, and P1 ≡ P′{Y/X}.
Since P ∼◦hoio Q, Q≡ X |Q′, with P′ ∼◦hoio Q′. Thus Q{Y/X} ≡Y |Q1, where Q1 ≡Q′{Y/X}.
Hence we have

P1 ≡ P′{Y/X}R2 Q′{Y/X} ≡ Q1

because P′ ∼◦hoio Q′.
(g) We consider P{Y/X}≡Y 〈A〉 |P1 in which the Y in Y 〈A〉 results from the substitution {Y/X}.

The other possibilities are similar.
So if P{Y/X} ≡ Y 〈A1〉 |P1, then it must stem from P as follows: P ≡ X〈A〉 |P′, and A1 ≡
A{Y/X} and P1 ≡ P′{Y/X}. Since P ∼◦hoio Q, Q≡ X〈B〉 |Q′, with A ∼◦hoio B and P′ ∼◦hoio Q′.
Thus Q{Y/X} ≡ Y 〈B1〉 |Q1, where B1 ≡ B{Y/X} and Q1 ≡ Q′{Y/X}. Hence we have

A1 ≡ A{Y/X}R2 B{Y/X} ≡ B1
P1 ≡ P′{Y/X}R2 Q′{Y/X} ≡ Q1

because A ∼◦hoio B and P′ ∼◦hoio Q′.
(h) There are several subcases. We consider P{Y/X} ≡ Y 〈d〉 |P1 in which the Y in Y 〈d〉 results

from the substitution {Y/X}. The other possibilities are similar.
So if P{Y/X} ≡ Y 〈d〉 |P1, then it must stem from P as follows: P ≡ X〈d〉 |P′, and P1 ≡
P′{Y/X}. Since P ∼◦hoio Q, Q ≡ X〈d〉 |Q′, with P′ ∼◦hoio Q′. Thus Q{Y/X} ≡ Y 〈d〉 |Q1,
where Q1 ≡ Q′{Y/X}. Hence we have

P1 ≡ P′{Y/X}R2 Q′{Y/X} ≡ Q1

because P′ ∼◦hoio Q′.

3. R is Y 〈e〉. This case is similar to the previous case. Actually it is simpler because confining to
the form Y 〈e〉 (which can be somehow imagined as a special meta-variable, informally) effects to
reduce the cases-analysis in establishing the strong HO-IO bisimulation.

4. P is 0, Y , Y 〈e〉, X , or X〈e〉. In all these cases, the premise P ∼◦hoio Q regulates that Q must
accordingly take the same forms 0, Y , Y 〈e〉, X , or X〈e〉 respectively. So the result follows in a
straightforward fashion.

Induction step. Assume the result (of this lemma) for depth no greater than the natural number n and prove it
for n+1. Overall, still we have several situations depending what X is: non-abstraction, process-
abstraction, or name-abstraction. The case for process-abstraction is where we may need the
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induction hypothesis. For example, when R is substituted in for X , the sub-terms of the forms
R〈A〉∼◦hoio R〈B〉 in which A∼◦hoio B may call for induction, say, R takes certain shape like 〈Z〉(Z〈R′〉).
Otherwise we can simply apply congruence properties (Lemma 11) and also Lemma 14.

First we establish the result for guarded X , and then extend to the general situation. We define R as

R
def
= {(P{R/X}|O1,Q{R/X}|O2) ||| P∼◦hoio Q, O1 ∼◦hoio O2}∪ ∼◦hoio

and show it to be a strong HO-IO bisimulation up-to ≡. Suppose (P{R/X}|O1,Q{R/X}|O2) ∈R. We
notice that neither P{R/X}|O1 nor Q{R/X}|O2 can be an abstraction. In order to prove the result, we
verify each clause of HO-IO bisimulation up-to ≡, in which procedure Lemma 2 and Lemma 3 may be
called. The bisimulation checks of the requirements of HO-IO bisimulation up-to ≡ are very much alike
so we shall focus on the input case. Importantly, we make use of ’guarded’ meaning that X is in an
un-firable position.

• We focus on input action simulation, as output and the others are similar. Now suppose we have

P{R/X}|O1
a(Y )−−→·. Up-to α-conversion, we can assume that Y is not X , since the substitution

P{R/X} is trying to replace those free occurrence of X in P.
(a) The action comes from P{R/X}.

That is, P{R/X} a(Y )−−→P′ and P{R/X}|O1
a(Y )−−→P′ |O1. Since X is guarded in P, by Lemma 2,

P
a(Y )−−→P1 and P′ ≡ P1{R/X}. Because P ∼◦hoio Q, Q

a(Y )−−→Q1 with P1 ∼◦hoio Q1. So by Lemma

2, Q{R/X} a(Y )−−→Q1{R/X} def
= Q′ and Q{R/X}|O2

a(Y )−−→Q′ |O2. We want to show that P′ |O1
and Q′ |O2 are related by R , i.e., they can be rewritten into the shapes requested by R . By
Lemma 3, there are three possibilities.

i. X is non-abstraction, i.e., it is supposed to be instantiated by a term that is not an ab-
straction. In this case,

P1 ≡ P′1 |Πn
i=1X

Q1 ≡ Q′1 |Πm
i=1X

where X is guarded in P′1 and Q′1.

Since P1 ∼◦hoio Q1, for the following two expressions,

P′1 |Πn
i=1X

Q′1 |Πm
i=1X

besides P′1 ∼◦hoio Q′1 (in which X is guarded), it must be the case that n=m. Thus we
know

Πn
i=1R ≡ Πm

i=1R

Hence, we have due to P′1 ∼◦hoio Q′1 (in which X is guarded) that

P′1{R/X}|Πn
i=1R |O1

R
Q′1{R/X}|Πm

i=1R |O2

That is,
P′ |O1 ≡R ≡ Q′ |O2

This completes the simulation.
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ii. X is process-abstraction, i.e., it is supposed to be instantiated by a term that is a process-
abstraction. In this case,

P1 ≡ P′1 |Πn
i=1X〈Ai〉

Q1 ≡ Q′1 |Πm
i=1X〈Bi〉

where X is guarded in P′1 and Q′1.
For the following two expressions,

P′1 |Πn
i=1X〈Ai〉

Q′1 |Πm
i=1X〈Bi〉

besides P′1 ∼◦hoio Q′1 (in which X is guarded), it must be the case that n=m and Ai ∼◦hoio Bi

for all natural number i in the range of 1 through n. Thus we infer for each i

R〈Ai{R/X}〉 ∼◦hoio R〈Bi{R/X}〉

by means of congruence properties and induction hypothesis. We notice that the induc-
tion hypothesis is called for Ai and Bi. We also note that here one may need induction
hypothesis because process-abstraction is capable of using part of R (i.e., its partial code)
when being instantiated by some Ai (and Bi), and this in turn brings us to the very first
situation. We stress that the induction step applies because the structure of Ai is relative-
ly diminished with respect to P or the structure of R is consumed during the instantiation.
So this yields

Πn
i=1R〈Ai{R/X}〉 ∼◦hoio Πm

i=1R〈Bi{R/X}〉

Hence from this equality, we have due to P′1 ∼◦hoio Q′1 (in which X is guarded) that

P′1{R/X}|Πn
i=1R〈Ai{R/X}〉 |O1

R
Q′1{R/X}|Πm

i=1R〈Bi{R/X}〉 |O2

That is,
P′ |O1 ≡R ≡ Q′ |O2

which closes the simulation.

iii. X is name-abstraction, i.e., it is supposed to be instantiated by a term that is a name-
abstraction. In this case,

P1 ≡ P′1 |Πn
i=1X〈di〉

Q1 ≡ Q′1 |Πm
i=1X〈ei〉

where X is guarded in P′1 and Q′1.

For the following two expressions,

P′1 |Πn
i=1X〈di〉

Q′1 |Πm
i=1X〈ei〉

besides P′1 ∼◦hoio Q′1 (in which X is guarded), it must be the case that n=m and di=ei for
all natural number i in the range of 1 through n. Thus we know for each i

R〈di〉 ≡ R〈ei〉
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and thus
Πn

i=1R〈di〉 ≡ Πm
i=1R〈ei〉

Hence, we have due to P′1 ∼◦hoio Q′1 (in which X is guarded) that

P′1{R/X}|Πn
i=1R〈di〉 |O1

R
Q′1{R/X}|Πm

i=1R〈ei〉 |O2

That is,
P′ |O1 ≡R ≡ Q′ |O2

which completes the simulation.

(b) The action comes from O1. That is, O1
a(Y )−−→O′1 and

P{R/X}|O1
a(Y )−−→P{R/X}|O′1. Since O1 ∼◦hoio O2, O2

a(Y )−−→O′2 with O′1 ∼◦hoio O′2. So we have

Q{R/X}|O2
a(Y )−−→Q{R/X}|O′2, and moreover

P{R/X}|O′1 R Q{R/X}|O′2

as required.

Now we deal with the situation when X may occur unguarded. We stress that the entire proof is
by induction on total depth of R and P. The detailed arguments are very much like the case we have
done for the guarded situation, except that we are directly working on∼◦hoio instead of certain constructed
bisimulation R . Using Lemma 3, we have three possibilities.

1. X is non-abstraction, i.e., it is supposed to be instantiated by a term that is not an abstraction. In
this case,

P≡ P′′ |Πn
i=1X

Q≡ Q′′ |Πm
i=1X

where X is guarded in P′′ and Q′′.

Since P ∼◦hoio Q, for the following two expressions,

P′′ |Πn
i=1X

Q′′ |Πm
i=1X

it must be that P′′ ∼◦hoio Q′′ (in which X is guarded), and n=m. Thus we know from the previous
discussion that P′′{R/X} ∼◦hoio Q′′{R/X}, and moreover

Πn
i=1R ≡ Πm

i=1R

Hence by congruence properties, we have

P′′{R/X}|Πn
i=1R ∼◦hoio Q′′{R/X}|Πm

i=1R
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2. X is process-abstraction, i.e., it is supposed to be instantiated by a term that is a process-abstraction.
In this case,

P≡ P′′ |Πn
i=1X〈Ai〉

Q≡ Q′′ |Πm
i=1X〈Bi〉

where X is guarded in P′′ and Q′′.
Since P ∼◦hoio Q, for the following two expressions,

P′′ |Πn
i=1X〈Ai〉

Q′′ |Πm
i=1X〈Bi〉

it must be the case that P′′ ∼◦hoio Q′′ (in which X is guarded), n=m, and Ai ∼◦hoio Bi for all nat-
ural number i in the range of 1 through n. Thus we know from the previous discussion that
P′′{R/X} ∼◦hoio Q′′{R/X}, and moreover for each i

R〈Ai{R/X}〉 ∼◦hoio R〈Bi{R/X}〉

by means of congruence properties and/or induction hypothesis. This yields

Πn
i=1R〈Ai{R/X}〉 ∼◦hoio Πm

i=1R〈Bi{R/X}〉

From this equality, we have by congruence that

P′′{R/X}|Πn
i=1R〈Ai{R/X}〉 ∼◦hoio Q′′{R/X}|Πm

i=1R〈Bi{R/X}〉

3. X is name-abstraction, i.e., it is supposed to be instantiated by a term that is a name-abstraction.
In this case,

P≡ P′′ |Πn
i=1X〈di〉

Q≡ Q′′ |Πm
i=1X〈ei〉

where X is guarded in P′′ and Q′′.

Since P ∼◦hoio Q, for the following two expressions,

P′′ |Πn
i=1X〈di〉

Q′′ |Πm
i=1X〈ei〉

it must be that P′′ ∼◦hoio Q′′ (in which X is guarded), n=m, and di=ei for all natural number i in the
range of 1 through n. Thus we know from the previous discussion that P′′{R/X} ∼◦hoio Q′′{R/X},
and moreover for each i

R〈di〉 ≡ R〈ei〉

and thus
Πn

i=1R〈di〉 ≡ Πm
i=1R〈ei〉

Hence, we have by congruence that

P′′{R/X}|Πn
i=1R〈di〉 ∼◦hoio Q′′{R/X}|Πm

i=1R〈ei〉
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The entire proof is now completed.

Proof of Lemma 18. We prove this lemma in two directions.
• The ”only if” direction.

The initial n consecutive input actions

h(X1). · · · .h(Xn).P
h(R1)−−−→ ·· · h(Rn)−−−→P{R̃/X̃}

can be matched by

h(X1). · · · .h(Xn).Q
h(R1)−−−→ ·· · h(Rn)−−−→Q{R̃/X̃}

to reach two bisimulation terms P{R̃/X̃} ∼ho Q{R̃/X̃} for any R̃. So the result follows. More
specifically, one can establish the following bisimulation relation as represented.

{(h(X1). · · · .h(Xn).P,h(X1). · · · .h(Xn).Q) |P{R̃/X̃} ∼ho Q{R̃/X̃}}

∪

(Pi,Qi)

∣∣∣∣∣∣ h(X1). · · · .h(Xn).P
h(R1)−−−→ ·· · h(Ri)−−−→Pi,

h(X1). · · · .h(Xn).Q
h(R1)−−−→ ·· · h(Ri)−−−→Qi,

i = 1, ...,n−1


∪ ∼ho

• The ”if” direction. From the assumption
h(X1). · · · .h(Xn).P ∼ho h(X1). · · · .h(Xn).Q, we infer that

h(X1). · · · .h(Xn).P
h(R1)−−−→ ·· · h(Rn)−−−→P{R̃/X̃}

must be matched by the following.

h(X1). · · · .h(Xn).Q
h(R1)−−−→ ·· · h(Rn)−−−→Q{R̃/X̃}

So we conclude that P{R̃/X̃} ∼ho Q{R̃/X̃}.

Proof of Lemma 19. We prove two directions.

∼ho is a strong HO-IO bisimulation. Suppose P ∼ho Q to prove P ∼◦hoio Q. We show that the following
relation R1 is a strong HO-IO bisimulation.

R1
def
=

(P,Q)

∣∣∣∣∣∣∣∣∣∣
P{T̃/X̃} ∼ho Q{T̃/X̃},

where Ti
def
=


Trmi if Xi is not of an abstraction type
TrD

mi
if Xi is of a process-abstraction type

TrD,d
mi

if Xi is of a name-abstraction type


and the names mi in m̃ are fresh


W.l.o.g., in R1 we can assume X̃ to comprise/be all the unguarded free variables in P and Q, that is,

the remaining free variables in P{T̃/X̃} and Q{T̃/X̃} are all guarded (in other words, P and Q are in a
somewhat saturated form concerning guarded variables). This makes sense because ∼ho is closed under
substitution by its definition of extension to open terms.

Suppose PR1 Q, and P λ−→P′. Let Ỹ be the free guarded variables of P{T̃/X̃} and Q{T̃/X̃}, and R̃
be closed terms. We make a case analysis.
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1. P is not an abstraction. Trivial.

2. P is a name-abstraction. Trivial.

3. P is a process-abstraction. This case holds because∼ho is closed under substitution by its definition
concerning process-abstraction and open terms (and Lemma 18 as well), and the variables are
guarded. Specifically, assume that P is 〈Z〉P′ in which Z is unguarded in P′ (the case Z is guarded
is simpler). We consider the case that Z is not of an abstraction type, and the other cases are similar
(the only difference is the form of the trigger to replace the abstracted variable corresponding to
the type of the variable).
Since P ∼ho Q, Q is also a process abstraction, say, 〈Z〉Q′, and moreover P′{R/Z} ∼ho Q′{R/Z}
for every closed R. Thus taking R as Trm′ (m′ is fresh) (depending on the type of Z, one may choose
the other two triggers in terms of the type of Z respectively), we have

P′{Trm′/Z}{T̃/X̃} ∼ho Q′{Trm′/Z}{T̃/X̃}

Hence we derive P′R1 Q′ as desired.

4. Output. We first note that the output clauses of strong HO bisimulations and strong HO-IO bisim-

ulations are the same. Specifically, suppose P
a(A)−−→P′ and we argue that Q can match as requested

by the strong HO-IO bisimulations. By Lemma 2, we know that

P{T̃/X̃}{R̃/Ỹ} a(A{T̃/X̃}{R̃/Ỹ})−−−−−−−−−−→P′{T̃/X̃}{R̃/Ỹ}

for every closed R̃.
Since P{T̃/X̃}{R̃/Ỹ} ∼ho Q{T̃/X̃}{R̃/Ỹ} (this is by the definition of ∼ho over open terms), we
have the bisimulation as

Q{T̃/X̃}{R̃/Ỹ} a(B1)−−−→Q1 ≡ Q′{T̃/X̃}{R̃/Ỹ} ∼ho P′{T̃/X̃}{R̃/Ỹ}
B1 ≡ B{T̃/X̃}{R̃/Ỹ} ∼ho A{T̃/X̃}{R̃/Ỹ}

By Lemma 2 and because Ỹ are guarded, we have

Q{T̃/X̃} a(B{T̃/X̃})−−−−−−→Q′{T̃/X̃}

and moreover P′{T̃/X̃} ∼ho Q′{T̃/X̃}. Using Lemma 2 once again since T̃ only hold fresh names

m̃, we have Q
a(B)−−→Q′. This also entails that P′R1 Q′ together with AR1 B.

5. Input. Suppose P
a(X)−−→P′ and we argue that Q can match as required by the strong HO-IO bisim-

ulations. Notice that no instantiation of the variable held by the input is needed, so there would
(possibly) be a new process variable (i.e., X); this can be handled in the space of ∼ho as in the
definitions of it and R1, by following the definitional bisimulation on closed terms. The overall
approach of analysis is similar to the output case.
By Lemma 2, we know that

P{T̃/X̃}{R̃/Ỹ} a(X)−−→P′{T̃/X̃}{R̃/Ỹ}

for every closed R̃.
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Since P{T̃/X̃}{R̃/Ỹ} ∼ho Q{T̃/X̃}{R̃/Ỹ} (this is by the definition of ∼ho over open terms), we
have the bisimulation as the following.

Q{T̃/X̃}{R̃/Ỹ} a(X)−−→Q1 ≡ Q′{T̃/X̃}{R̃/Ỹ}
and for every closed R′

Q′{T̃/X̃}{R̃/Ỹ}{R′/X} ∼ho P′{T̃/X̃}{R̃/Ỹ}{R′/X}

By Lemma 2 and noticing that Ỹ are guarded, we have

Q{T̃/X̃} a(X)−−→Q′{T̃/X̃}

and moreover P′{T̃/X̃} ∼ho Q′{T̃/X̃}. Using Lemma 2 once again since T̃ merely hold fresh

names m̃, we have Q
a(X)−−→Q′. Also this yields P′R1 Q′.

6. Suppose P≡ X |O. So P{T̃/X̃} ≡ Trmi |O{T̃/X̃} in which mi is from T̃ . For convenience we still
use X̃ (which will not raise confusion). We will use the assumption that each mi is fresh.

Then P{T̃/X̃} mi−→O{T̃/X̃} and we argue that Q can match as requested by the strong HO-IO
bisimilarity. By Lemma 2, we know that

P{T̃/X̃}{R̃/Ỹ} mi−→O{T̃/X̃}{R̃/Ỹ}

for every closed R̃.
Since P{T̃/X̃}{R̃/Ỹ} ∼ho Q{T̃/X̃}{R̃/Ỹ} (this is by the definition of ∼ho over open terms), we
have the bisimulation as

Q{T̃/X̃}{R̃/Ỹ} mi(B1)−−−→O1 ≡ O′{T̃/X̃}{R̃/Ỹ} ∼ho O{T̃/X̃}{R̃/Ỹ}
B1 ≡ B{T̃/X̃}{R̃/Ỹ} ∼ho 0

By Lemma 2 and because Ỹ are guarded, we have

Q{T̃/X̃} mi(B)−−−→O′{T̃/X̃}

and moreover, O{T̃/X̃} ∼ho O′{T̃/X̃} and B{T̃/X̃} ∼ho 0. Since mi is fresh, we infer that Q must
have a free variable X in the parallel firable position, and B≡ 0 (otherwise the above equivalence
with would fail, resulting in a contradiction). Thus we have the following.

Q≡ X |O′

Furthermore, we have OR1 O′ as required.

7. Suppose P ≡ X〈A〉 |O. Again we use the assumption that mi is fresh. So we have P{T̃/X̃} ≡

(TrD
mi
)〈A{T̃/X̃}〉 |O{T̃/X̃} in which mi is from T̃ . Then P{T̃/X̃} mi(A{T̃/X̃})−−−−−−−→O{T̃/X̃} and we

argue that Q can match as requested by the strong HO-IO bisimilarity. By Lemma 2, we know that

P{T̃/X̃}{R̃/Ỹ} mi(A{T̃/X̃}{R̃/Ỹ})−−−−−−−−−−→O{T̃/X̃}{R̃/Ỹ}
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for every closed R̃.

Since P{T̃/X̃}{R̃/Ỹ} ∼ho Q{T̃/X̃}{R̃/Ỹ} (this is by the definition of ∼ho over open terms), we
have the bisimulation as

Q{T̃/X̃}{R̃/Ỹ} mi(B1)−−−→O1 ≡ O′{T̃/X̃}{R̃/Ỹ} ∼ho O{T̃/X̃}{R̃/Ỹ}
B1 ≡ B{T̃/X̃}{R̃/Ỹ} ∼ho A{T̃/X̃}{R̃/Ỹ}

By Lemma 2 and because Ỹ are guarded, we have

Q{T̃/X̃} mi(B{T̃/X̃})−−−−−−−→O′{T̃/X̃}

and moreover, O{T̃/X̃} ∼ho O′{T̃/X̃} and A{T̃/X̃} ∼ho B{T̃/X̃}. Since mi is fresh, we infer that
Q must have a free variable X in the parallel firable position, and also the following.

Q≡ X〈B〉 |O′

Furthermore, we have OR1 O′ as well as AR1 B.

8. Suppose P ≡ X〈d〉 |O. Once again the assumption that mi is fresh will be used. So P{T̃/X̃} ≡
(TrD,d

mi
)〈d〉 |O{T̃/X̃} in which mi is from T̃ .

Then P{T̃/X̃} mi(〈Z〉(Z〈d〉))−−−−−−−→O{T̃/X̃} and we argue that Q can match as requested by the strong
HO-IO bisimilarity. By Lemma 2, we know that

P{T̃/X̃}{R̃/Ỹ} mi(〈Z〉(Z〈d〉))−−−−−−−→O{T̃/X̃}{R̃/Ỹ}

for every closed R̃.

Since P{T̃/X̃}{R̃/Ỹ} ∼ho Q{T̃/X̃}{R̃/Ỹ} (this is by the definition of ∼ho over open terms), we
have the bisimulation as

Q{T̃/X̃}{R̃/Ỹ} mi(B1)−−−→O1 ≡ O′{T̃/X̃}{R̃/Ỹ} ∼ho O{T̃/X̃}{R̃/Ỹ}
B1 ≡ B{T̃/X̃}{R̃/Ỹ} ∼ho 〈Z〉(Z〈d〉)

By Lemma 2 and because Ỹ are guarded, we have

Q{T̃/X̃} mi(B{T̃/X̃})−−−−−−−→O′{T̃/X̃}

and moreover, O{T̃/X̃} ∼ho O′{T̃/X̃} and 〈Z〉(Z〈d〉) ∼ho B{T̃/X̃}. Since mi is fresh, we infer
that Q must have a free variable X in the parallel firable position, and B must be of the form
〈Z〉(Z〈d〉) (otherwise the above equivalence with would fail, causing a contradiction). Thus we
have the following.

Q≡ X〈d〉 |O′

Furthermore, we have OR1 O′ as desired.
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∼◦hoio is a strong HO bisimulation. Suppose P ∼◦hoio Q to prove P ∼ho Q. We show that the following
relation R2 is a strong HO bisimulation.

R2
def
= {(P,Q) |P ∼◦hoio Q}∪ ∼◦hoio

We notice that∼◦hoio is closed under substitution (Lemma 15 and Lemma 14), and moreover is τ-preserving
(Lemma 17). Also notice that a strong HO bisimulation and a strong HO-IO bisimulation share the same
requirement of output simulation. So the analysis becomes somewhat amenable in isolation.

Suppose PR2 Q and P λ−→P′. We note that we can focus on the case that P and Q are closed. If they
are not (i.e., open), say fpv(P,Q)={X1, ...,Xn}, we can use to Lemma 15 to derive P{R̃/X̃} ∼◦hoio Q{R̃/X̃}
for all closed R̃. Then we can use the same method to discuss over P{R̃/X̃} and Q{R̃/X̃} to show that

they are HO bisimilar, and in turn P and Q are HO bisimilar. Therefore, the case analysis on P λ−→P′

below takes P and Q as closed.

1. Cases that P and Q are some kind of abstractions. These are straightforward by simply noticing
the salient property that ∼◦hoio is closed under substitution (Lemma 15).

2. Input: P
a(X)−−→P′. Since P ∼◦hoio Q, we know

Q
a(X)−−→Q′ ∼◦hoio P′

Now because ∼◦hoio is closed under substitution (Lemma 15), we have

P′{R/X} ∼◦hoio Q′{R/X}

for every closed R. Thus we derive that P′{R/X}R2 Q′{R/X}.

3. Output : P
a(A)−−→P′. Since P ∼◦hoio Q, we know

Q
a(B)−−→Q′ ∼◦hoio P′ and A ∼◦hoio B

We thus have P′R2 Q′ and AR2 B.

4. τ: P τ−→P′. Since P ∼◦hoio Q and ∼◦hoio is τ-preserving (Lemma 17), we know

Q τ−→Q′ ∼◦hoio P′

We thus have P′R2 Q′.

Proof of Lemma 20. We shall focus on the case (2), since cases (3) and (1) are similar and case (1) can
also be referred to [15].

In the first part of this proof, we show that the relation R defined below is an open strong normal
bisimulation, and thus establish P ∼◦nr Q. Notice that here ∏i Pi is a shortcut for ∏

k
i=1 Pi for some k ∈ N.
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Also note that in R, every m with a subscript is fresh with respect to P, Q, and those P and Q with
subscripts as well.

R
def
=

(P,Q)

∣∣∣∣∣∣∣∣
∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P

∼
◦nr

∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q


To reach the bisimulation, suppose PR Q and we make a case analysis.

1. Obviously these terms cannot be abstractions.

2. Suppose P
a(A)−−→P′.

There are three possibilities depending on the type of A. However, they are similar, and we focus
on one of them.

(a) A is a process abstraction. In this case, we know that

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P
a(A)−−→ ∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

Since PR Q and all the m with subscripts are fresh (actually freshness is not essential because
these fresh names can only release input actions), in terms of the definition of R , we have

∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q
a(B)−−→ ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′

and
m′(Z′).A〈Z′〉 |∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

∼◦nr m′(Z′).B〈Z′〉 |∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′
(1)

Thus one can observe that
Q

a(B)−−→Q′.

and
m′(Z′).A〈Z′〉 |P′ R m′(Z′).B〈Z′〉 |Q′

because from (1) we have the following.

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |m′(Z′).A〈Z′〉 |P′
∼◦nr ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |m′(Z′).B〈Z′〉 |Q′

Moreover, Q can actually simulate P in a more tight way. Specifically, from (1) one can
readily see that P′R Q′, by incorporating the components m′(Z′).A〈Z′〉 and m′(Z′).B〈Z′〉 in
the indexed collections respectively.

(b) A is a name abstraction. Similar.
(c) A is not an abstraction. Similar.

We stress that, as one can see, the continuations of output by P and Q, i.e., P′ and Q′ respectively,
are also directly related by R, so they are also open strong normal bisimilar.
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3. Suppose P τ−→P′. We know that

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P
τ−→ ∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

Since PR Q and all the m with subscripts are fresh (this is not essential because those prefixes can
only fire input actions), we have

∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q
τ−→ ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′

and
∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

∼◦nr ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′
(2)

Thus one can see from the matching above that

Q τ−→Q′.

and
P′ R Q′

thanks to (2).

4. Suppose P
a(X)−−→P′. We know that

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P
a(X)−−→ ∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

Since PR Q and all the m with subscripts are fresh, by the definition of R , we have

∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q
a(X)−−→ ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′

and
∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

∼◦nr ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′
(3)

Thus one can see from the matching above that

Q
a(X)−−→Q′.

and
P′ R Q′

thanks to (3).
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5. Suppose P≡ X |P′. We have

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P
≡ ∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |X |P′

Since PR Q and all the m with subscripts are fresh, in terms of the definition of R , we have

∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q
≡ ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |X |Q′

and
∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

∼◦nr ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′
(4)

From this, one can see that
Q≡ X |Q′

and
P′R Q′

due to (4).

6. Suppose P ≡ X〈A〉 |P′. We tackle the case that A is a process-abstraction, and the other cases are
similar. In this case, we know that

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P
≡ ∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |X〈A〉 |P′

Since PR Q and all the m with subscripts are fresh, in terms of the definition of R , we have

∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q
≡ ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |X〈B〉 |Q′

and
m′(Z′).A〈Z′〉 |∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

∼◦nr m′(Z′).B〈Z′〉 |∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′
(5)

From this matching, one can observe that

Q≡ X〈B〉 |Q′

and
m′(Z′).A〈Z′〉 |P′ R m′(Z′).B〈Z′〉 |Q′

because from (5) we have the following.

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |m′(Z′).A〈Z′〉 |P′
∼◦nr ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |m′(Z′).B〈Z′〉 |Q′

Furthermore, Q can simulate P in a more directly way. By (1) one can easily see that P′R Q′,
by means of combining the components m′(Z′).A〈Z′〉 and m′(Z′).B〈Z′〉 in the indexed collections
respectively.
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7. Suppose P≡ X〈d〉 |P′. We know that

∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P
≡ ∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |X〈d〉 |P′

Since PR Q and all the m with subscripts are fresh, in terms of the definition of R , we have

∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q
≡ ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |X〈d〉 |Q′

and
∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉 |P′

∼◦nr ∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉 |Q′
(6)

From this matching, one can see that
Q≡ X〈d〉 |Q′

and
P′R Q′

due to (6).

Now for the second part, we proceed to show that P1 ∼◦nr Q1. We prove this by the way of ’con-

sumption’. We recall that by the previous arguments, P ∼◦nr Q and whenever P λ−→P′ it holds that Q λ−→Q′

with P′ ∼◦nr Q′ (for output there is some attached fresh-name-guarded concurrent parallel process as des-
ignated by the open strong normal bisimulation, but this does not defeat the fact P′ ∼◦nr Q′, as already
discussed above).

We start from the premise (e.g., m(Z).P1〈Z〉 |P∼◦nr m(Z).Q1〈Z〉 |Q), and use the following two facts
to consume P and Q in a somewhat synchronous fashion.

1. The first fact is that P λ−→P′ must be bisimulated by Q λ−→Q′, among which the case of output is
proven in the first part of the proof of this lemma. We notice that the bisimulation for output will
introduce some new fresh names in the corresponding accompanying concurrent construct. This
is fine since that part will join the big product (i.e., some ∏), and the size of P and Q continues to
diminish.

2. The second fact is that if P reveals an unguarded free process variable (of certain type), say Y , then
so does Q. Thus we can remove this Y and continue with the rest of the processes P and Q. We
notice that the case when Y is a process-abstraction is similar to the output situation. Anyhow the
size of P and Q keeps dwindling away with the bisimulating procedure.

In summary, we can use the method described above to destruct P and Q until reaching 0, since they are
strongly bisimilar w.r.t. ∼◦nr . More importantly, such a procedure must halt because both P and Q have a
finite syntactical structure (or process size, said otherwise), which is bound to be consumed completely.

After depleting P and Q while keeping bisimilar, we are eventually left with

m(Z).P1〈Z〉 |∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉

∼
◦nr

m(Z).Q1〈Z〉 |∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉
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for some index sets from which i, j,k take value respectively. We stress that neither m(Z).P1〈Z〉 not
m(Z).Q1〈Z〉 takes part in the consumption procedure, because m is fresh. This is also true for the other

parts actually. Now clearly each of them can make an input
m(Z)−−→ that must be matched by the other. So

we have as needed
P1 |∏i mi.Pi |∏ j m j(Z j).Pj〈Z j〉 |∏k mk(Zk).Zk〈Pk〉

∼
◦nr

Q1 |∏i mi.Qi |∏ j m j(Z j).Q j〈Z j〉 |∏k mk(Zk).Zk〈Qk〉
At this moment, we can reuse the approach of the first part of this proof to deduct that P1 ∼◦nr Q1, as
desired.

Proof of Lemma 22(1). We can merely focus on closed processes, since both∼ho and∼ctx extend to open
processes in the same way. To show that ∼ho is a strong context bisimulation, one only needs to examine
the output case, since the other cases request the same things. Suppose P ∼ho Q and P aA−→P′, then
Q aB−→Q′ with A ∼ho B and P′ ∼ho Q′. So A and B have the same abstraction type by the definition of
strong HO bisimulation. We notice that ∼ho is a congruence and preserved by substitutions because it
coincides with ∼◦hoio (Lemma 19). So for every E(X), we have as needed that E(A) |P′ ∼ho E(B) |Q′ by
the congruence properties.

Proof of Lemma 22(2). We focus on closed processes, since ∼ctx extends to open processes in a way
stronger than that of ∼nr. That is, for two open terms P and Q with fpv(P,Q) = X̃ , we have P ∼ctx

Q if and only if P{R̃/X̃} ∼ctx Q{R̃/X̃} for any closed R̃. By taking the arbitrary closed R̃ to the corre-
spondence triggers as required by ∼nr, we can achieve P∼nr Q. Actually the same idea applies to closed
processes, which we now elaborate. Suppose P ∼ctx Q for closed P and Q. We analyse the cases in which
∼nr and ∼ctx appear to have different requirements. Basically, the cases for ∼nr are simply special cases
of ∼ctx.
(1) If P is a process-abstraction 〈Y 〉P′, then Q is a process-abstraction 〈Y 〉Q′, and P′{A/Y}R Q′{A/Y}
for every closed A. Taking such an A to be the corresponding triggers depending on the type of Y will

yield what is requested by ∼nr. (2) If P
a(X)−−→P′, then Q

a(X)−−→Q′ and for every closed A, it holds that
P′{A/X}R Q′{A/X}. As the previous case, one can take A to be the corresponding triggers in terms of
the type of Y , so as to meet the requirement of ∼nr. (3) If P aA−→P′ in which A is a non-abstraction,
process-abstraction, or name-abstraction, then Q aB−→Q′ for some B that is respectively a non-abstraction,
process-abstraction , or name-abstraction, and for every E(X), it holds that E(A) |P′R E(B) |Q′. In order
to have what is required by∼nr, we can set E(X) to be m.X , m(Z).X〈Z〉, and m(Z).Z〈X〉 (m fresh), relying
on the type of A, i.e., non-abstraction, process-abstraction, or name-abstraction, respectively.

Proof of Lemma 23(1). We prove that ∼nr is an open strong normal bisimulation. Suppose P ∼nr Q, we
verify that P and Q satisfy the requirement of the open strong normal bisimulation.

To prepare, we note that for process P and Q, there are in general three kinds of free variables and we
can replace them with proper triggers. That is, we have the following substitution by the corresponding
triggers altogether:

P{T̃rm1
/X̃1}{T̃rD

m2
/X̃2}{T̃rD,d

m3
/X̃3}

in which the substitution notation represents that each variable in X̃1, X̃2 and X̃3 is respectively of the
type of non-abstraction, process-abstraction and name-abstraction, and moreover, is replaced with the
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corresponding trigger for the variable types. Accordingly, the tuples of triggers are represented by T̃rm1
,

T̃rD
m2

and T̃rD,d
m3

, respectively. We note that the names of all the triggers are fresh.
Assuming {X̃1, X̃2, X̃3}= fpv(P,Q), it is not hard to have the following equivalence from the definition

of the strong normal bisimilarity on open processes; see [15, 19] for a reference. We notice that the first
equality is based on open processes whereas the second is on closed ones.

P ∼nr Q
if and only if

P{T̃rm1
/X̃1}{T̃rD

m2
/X̃2}{T̃rD,d

m3
/X̃3} ∼nr Q{T̃rm1

/X̃1}{T̃rD
m2
/X̃2}{T̃rD,d

m3
/X̃3}

Now we proceed to showing the implication claimed by the lemma, by establishing the bisimu-
lation between P and Q using the equivalence above. For the sake of convenience, we abbreviate

{T̃rm1
/X̃1}{T̃rD

m2
/X̃2}{T̃rD,d

m3
/X̃3} as σ .

1. The matching of Q when P is not an abstraction or is a name-abstraction is trivial. If P is a process-
abstraction of the form 〈Y 〉A in which Y is of the type of process-abstraction (cases when Y is of
the type of name-abstraction or non-abstraction are similar), then since P ∼nr Q, Q must take the
form 〈Y 〉B, and moreover

Aσ{TrD
m′/Y} ∼nr Bσ{TrD

m′/Y}

Hence we have A ∼nr B, as required.

2. Suppose P
a(X)−−→P′. We assume X has the type of process abstraction, and the other cases are

similar. By Lemma 2, Pσ
a(X)−−→P′σ . Since Pσ ∼nr Qσ , we know that Qσ

a(X)−−→Q1 and

P′σ{TrD
m′/X} ∼nr Q1{TrD

m′/X}

for fresh m′. Using Lemma 2 again, we have Q
a(X)−−→Q′ where Q1 ≡ Q′σ , and moreover the

following.
P′σ{TrD

m′/X} ∼nr Q′σ{TrD
m′/X}

We thus have P′ ∼nr Q′, as required.

3. Suppose P
a(A)−−→P′. We focus on the case A is a process-abstraction, and the others are similar. By

Lemma 2, Pσ
a(Aσ)−−−→P′σ . Since Pσ ∼nr Qσ , we know that Qσ

a(B1)−−−→Q1 and

m′(Z).(Aσ)〈Z〉 |P′σ ∼nr m′(Z).(B1)〈Z〉 |Q1

for fresh m′. Using Lemma 2 again, we have Q
a(B)−−→Q′ where B1 ≡ Bσ and Q1 ≡ Q′σ , and

moreover the following.

m′(Z).(Aσ)〈Z〉 |P′σ ∼nr m′(Z).(Bσ)〈Z〉 |Q′σ

We thus have
m′(Z).(A)〈Z〉 |P′ ∼nr m′(Z).(B)〈Z〉 |Q′

as required.
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4. Suppose P τ−→P′. By Lemma 2, Pσ
τ−→P′σ . Since Pσ ∼nr Qσ , we know that Qσ

τ−→Q1 and

P′σ ∼nr Q1.

Using Lemma 2 again, we have Q τ−→Q′ where Q1 ≡ Q′σ , and moreover the following.

P′σ ∼nr Q′σ

We thus have P′ ∼nr Q′, as required.

5. If P ≡ X |P′, we need to show that Q ≡ X |Q′ and P′ ∼nr Q′. Here X ∈ X̃1 and we suppose the
trigger replacing X has name mX

1 . To prove this, we observe that

Pσ
mX

1−→0 |P′σ

Thanks to Pσ ∼nr Qσ , Qσ is supposed to match this action. Now because mX
1 is fresh, Q must

contain a free X so as to be able to make an output on mX
1 . So we know that Q must take the form

X |Q′. Moreover, Qσ matches Pσ by

Qσ
mX

1−→0 |Q′σ

with
m′.0 |P′σ ∼nr m′.0 |Q′σ

where m′ is fresh. Using Corollary 21, we derive P′σ ∼nr Q′σ and thus P′ ∼nr Q′, as needed.
Actually this is straightforward because m′ is fresh, so one can consume it simultaneously from
m′.0 |P′σ and m′.0 |Q′σ .

6. If P≡ X〈A〉 |P′ in which A is a process-abstraction (the other cases are similar), we need to show
that Q≡X〈B〉 |Q′ and m′(Z).A〈Z〉 |P′ ∼nr m′(Z).B〈Z〉 |Q′ for fresh m′. Here X ∈ X̃2 and we assume
the trigger replacing X has name mX

2 . To do this, we observe that

Pσ
mX

2 (Aσ)
−−−−→0 |P′σ

Since Pσ ∼nr Qσ , Qσ has to match this action. Now because mX
2 is fresh, Q must have a free X

so as to be capable of an output over mX
2 . Therefore, we claim that Q must take the form X〈B〉 |Q′.

Moreover, Qσ matches Pσ by

Qσ
mX

2 (Bσ)
−−−−→0 |Q′σ

with
m′(Z).(Aσ)〈Z〉 |P′σ ∼nr m′(Z).(Bσ)〈Z〉 |Q′σ

Hence we have
m′(Z).A〈Z〉 |P′ ∼nr m′(Z).B〈Z〉 |Q′

as desired.
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7. If P ≡ X〈d〉 |P′, we need to show that Q ≡ X〈d〉 |Q′ and P′ ∼nr Q′. Here X ∈ X̃3 and we assume
the trigger replacing X has name mX

3 . To do this, we observe that

Pσ
mX

3 (〈Z〉(Z〈d〉))−−−−−−−−→0 |P′σ

Due to Pσ ∼nr Qσ , Qσ has to match this action. Now because mX
3 is fresh, Q must have a free X

so as to be able to fire an output on mX
3 . Therefore, we know that Q must take the form X〈e〉 |Q′.

Moreover, Qσ matches Pσ by

Qσ
mX

3 (〈Z〉(Z〈e〉))−−−−−−−−→0 |Q′σ

with
m′(Z1).Z1〈(〈Z〉(Z〈d〉))〉 |P′σ ∼nr m′(Z1).Z1〈(〈Z〉(Z〈e〉))〉 |Q′σ

where m′ is fresh.
Using Corollary 21, we derive 〈Z〉(Z〈d〉) ∼nr 〈Z〉(Z〈e〉) and P′σ ∼nr Q′σ .
Actually this is also a straightforward consequence of the congruence properties of ∼nr. Basically,
one use the freshness of m′ to establish the equivalence between P′σ ∼nr Q′σ and then by con-
suming them in the manner of strong bisimulation, one obtain the equivalence between 〈Z〉(Z〈d〉)
and 〈Z〉(Z〈e〉).
From this, we know that d is the same as e (otherwise it would break the bisimulation equivalence,
since the former is potentially capable of doing actions on d but the other cannot), and in the
meanwhile P′ ∼nr Q′, as desired.

Now the proof is completed.

Proof of Lemma 23(2). We show that ∼◦nr is a strong HO-IO bisimulation. Suppose P ∼◦nr Q. Examining
the definitions of the two bisimulations, one can see that the difference consists in two clauses: the output
case and the case when P takes an open form with a free variable of the process-abstraction type.

1. If P aA−→P′ in which A is a process abstraction (the cases A is of other abstraction types are similar),
then Q aB−→Q′ for process-abstraction B that is 〈Y 〉B1, and it holds for fresh m that m(Z).A〈Z〉 |P′ ∼◦nr

m(Z).B〈Z〉 |Q′. Now using Lemma 20, we have A ∼◦nr B and P′ ∼◦nr Q′, as required by the strong
HO-IO bisimulation.

2. If P ≡ X〈A〉 |P′ in which A is a process abstraction (the cases A is of other abstraction types are
similar), then Q ≡ X〈B〉 |Q′, and moreover B is also a process abstraction and m(Z).A〈Z〉 |P′ ∼◦nr

m(Z).B〈Z〉 |Q′ for fresh m. By Lemma 20, we have A ∼◦nr B and P′ ∼◦nr Q′, as required by the
strong HO-IO bisimulation.

B Proofs for Section 4

In this appendix, we provide the detailed proofs for Section 4.

Proof of Proposition 26. The proof idea is similar to the one in [15,17], but with strict extension tackling
abstractions. For the sake of simplicity, we take ∼ to be ∼◦hoio. If R is 0, P∼ Q follows immediately. So
we can assume that R is not 0, and thus neither P nor Q is an abstractions. We prove simultaneously the
following two claims by induction on depth(P)+depth(Q)+depth(R):
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1. If P |R∼ Q |R then P∼ Q.

2. For an input action or output action λ , if R λ−→R′ and P |R ∼ Q |R′, then Q λ−→Q′ for some Q′ s.t.
P∼ Q′.

Proof of 1.
• Both P and Q are non-abstractions. Otherwise terms P |R and Q |R are invalid.

• For an input action or output action λ , suppose that P λ−→P′, we then have P |R λ−→P′ |R, which can

be matched by either: (a) Q |R λ−→Q′ |R, or (b) Q |R λ−→Q |R′. Every transition deceases the depth
of the process strictly, so depth(P′) < depth(P). For case (a), by induction hypothesis for 1, we
have P′ ∼ Q′. For case (b), by induction hypothesis for 2, we have P′ ∼ Q′.

• If P≡ X |S, then X |S |R∼ Q |R. We distinguish between the source of the variable X from Q |R.
(a) If the variable X comes from R, which can be rewritten as X |S′ for some S′, then S |X |S′ ∼
Q |S′. Since depth(S′)< depth(R), by induction hypothesis for 1, we have S |X ∼ Q, thus P ∼ Q.
(b) Otherwise, Q≡ X |S′ for some S′, then S |R∼ S′ |R. Since depth(S′)+depth(S)< depth(Q)+
depth(P), by induction hypothesis for 1, we have S∼ S′, and then P∼Q follows by the congruence
property.

• If P ≡ X〈A〉 |S, then X〈A〉 |S |R ∼ Q |R. By Definition 4, there is a component X〈B〉 in Q |R. (a)
If R ≡ X〈B〉 |S′, we thus have A ∼ B and S |X〈B〉 |S′ ∼ Q |S′. Since depth(S)+ depth(X〈B〉)+
depth(S′) < depth(P)+ depth(R), by induction hypothesis for 1, we have S |X〈B〉 ∼ Q, and then
P∼ Q follows by the congruence property. (b) Otherwise, Q≡ X〈B〉 |S′, we thus have A∼ B and
S |R ∼ S′ |R. Since depth(S′)+ depth(S) < depth(Q)+ depth(P), by induction hypothesis for 1,
we have S∼ S′, and then P∼ Q follows by the congruence property.

• If P ≡ X〈d〉 |S, then X〈d〉 |S |R ∼ Q |R. By Definition 4, there is a component X〈d〉 in Q |R. (a)
If R≡ X〈d〉 |S′, we have P |S′ ∼Q |S′. Since depth(S′)< depth(R), by induction hypothesis for 1,
we have P∼ Q. (b) Otherwise, Q≡ X〈d〉 |S′, we have S |R∼ S′ |R. Since depth(S′)+depth(S)<
depth(Q)+depth(P), by induction hypothesis for 1 we have S∼ S′, and then P∼Q follows by the
congruence property.

The case when starting from Q is symmetric, thus we conclude that P∼ Q.

Proof of 2.

Assume that R λ−→R′ and P |R ∼ Q |R′. Then we have P |R λ−→P |R′, and there exists some S s.t.

Q |R′ λ−→S with P |R′ ∼ S. There are two cases:

• The transition Q |R′ λ−→S derives from the component Q, i.e., Q λ−→Q′ and P |R′ ∼ Q′ |R′. Since
depth(Q′)< depth(Q), by induction hypothesis for 1, we have P∼ Q′.

• The transition Q |R′ λ−→S derives from the component R′, i.e., R′ λ−→R′′ and P |R′ ∼ Q |R′′. Since

depth(R′′)< depth(R′), by induction hypothesis for 2, we have Q λ−→Q′ for some Q′ s.t. P∼ Q′.

Proof of Proposition 27. We proceed by induction on depth(P). Again, we take ∼ to be ∼◦hoio.
• If some Pi ∼Q j (w.l.o.g., assume that P1 ∼Q1), then we have the following two prime decomposi-

tions for P: P∼ P1 |∏k
i=2 Pi and P∼Q1 |∏l

j=2 Q j. By Proposition 26, we have ∏
k
i=2 Pi ∼∏

l
j=2 Q j.

By induction hypothesis, the two prime decompositions ∏
k
i=2 Pi and ∏

l
j=2 Q j are identical up to ∼

and permutation of indices. Thus ∏
k
i=1 Pi and ∏

l
j=1 Q j are also identical.
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• Assume that for every i, j we have Pi � Q j.

– If either k = 1 or l = 1, then k = l = 1 and P1 ≡ Q1 by the definition of prime process. This
is a contradiction.

– If k, l≥ 2, w.l.o.g., we can assume that depth(P1)≤ depth(Pi) for any 1≤ i≤ k and depth(P1)≤
depth(Q j) for any 1≤ j ≤ l.
∗ If P1 is X , as P∼∏

l
j=1 Q j, then one of Q j must be X , a contradiction.

∗ If P1 is X〈A〉, as P ∼∏
l
j=1 Q j, then one of Q j must be X〈B〉 with B ∼ A, we thus have

X〈A〉 ∼ X〈B〉, a contradiction.
∗ If P1 is X〈d〉, as P∼∏

l
j=1 Q j, then one of Q j must be X〈d〉, a contradiction.

∗ If P1 = m(X).R. Since depth(R) < depth(P), by induction hypothesis, R has a unique

prime decomposition R = ∏
h
g=1 Rg. We have P = ∏

k
i=2 Pi |m(x).(∏h

g=1 Rg)
m(X)−−−→P′ with

unique prime decomposition P′ ∼ ∏
h
g=1 Rg |∏k

i=2 Pi. Since P ∼ ∏
l
j=1 Q j, w.l.o.g., the

corresponding transition is ∏
l
j=1 Q j

m(X)−−−→T |∏l
j=2 Q j ∼ P′. By induction hypothesis,

the prime decomposition of T |∏l
j=2 Q j should be ∏

h
g=1 Rg |∏k

i=2 Pi. As Q2 is prime, it
must be equal with a process in

⋃h
g=1 Rg∪

⋃k
i=2 Pi. Since depth(Rg)< depth(Q2) for any

1≤ g≤ h, by Lemma 10, Rg � Q2 for any 1≤ g≤ h, thus Q2 ∼ Pi for some 2≤ i≤ k,
a contradiction with the assumption that Pi � Q j for every i, j.
∗ If P1 is m(R). Similar to the last case.

Proof of Lemma 29. By Proposition 27, we have

nf(Q |Q′)≡ ∏
1≤i≤ j

ai(Xi).Ri | ∏
1≤i≤k

bi(Si) | ∏
1≤i≤l

Yi | ∏
1≤i≤g

Zi〈Ti〉 | ∏
1≤i≤h

Z′i〈ni〉

where the processes ai(Xi).Ri, bi(Si), Yi, Zi〈Ti〉, Z′i〈ni〉 are in normal form and prime. By Lemma 28,
a(x).P ∼ nf(Q |Q′). Then we have k = 0, l = 0, g = 0 and h = 0. For any i ∈ [1, j] (meaning that i
is an integer s.t. 1 ≤ i ≤ j), ai = a and Xi = X . We can summarize that a(X).P ∼ ∏1≤i≤ j a(X).Ri,
where j ≥ 2 as there are at least two processes that are not 0. Let i1, i2 ∈ [1, j] be two indices with

i1 6= i2. Transition ∏1≤i≤ j a(X).Ri
a(X)−−→Ri1 |∏1≤i≤ j, i 6=i1 a(X).Ri should be bisimulated by the following

transition: a(x).P
a(x)−−→P∼ Ri1 |∏1≤i≤ j, i6=i1 a(X).Ri. Similarly, we have

P ∼ Ri2 | ∏
1≤i≤ j, i 6=i2

a(X).Ri ∼ Ri1 | ∏
1≤i≤ j, i 6=i1

a(X).Ri

By Proposition 26, we know Ri2 |a(X).Ri1 ∼ Ri1 |a(X).Ri2 . Since a(X).Ri1 and a(X).Ri2 are prime,
depth(a(X).Ri1)> depth(Ri1), we have a(X).Ri1 � Ri1 . By Proposition 27, we infer a(X).Ri1 ∼ a(X).Ri2 .
As this holds for any i1 6= i2, we conclude that a(X).P ∼ ∏1≤i≤ j a(X).R1 with j ≥ 2 and a(X).R1 is in
normal form.
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