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Abstract: In the context of process calculi, higher order π calculus (Λ calculus)

is prominent and popular due to its ability to transfer processes. Motivated by

the attempt to study the process theory in an integrated way, we give a system

study of Λ calculus with respect to the model independent framework. We show

the coincidence of the context bisimulation to the absolute equality. We also

build a subbisimilarity relation from Λ calculus to the π calculus.

Keywords: higher order pi-calculus, encoding, expressiveness,bisimulation

CLC number: TP 301.2 Document code: A

0 Introduction

The process passing calculus, also called higher order π calculus, is proposed

by Sangiorgi in Ref. [1] as an extension of the classic mobile calculus : π calculus.

Comparing to the other concurrency models, such as Calculus of Communicating

System (CCS)[2] and π calculus[3], higher order π calculus is characterized by its

ability to transfer processes, which makes it be an efficient mathematical tool for

describing and analyzing the mobile systems. Ever since its appearance, there

are lots of works about the semantics, algebraic property and expressiveness of

higher order π calculus. In Refs. [1, 4, 5] several different semantics have been

built, including induction semantics, labeled transition system, etc. Even more

bisimulation relations have been proposed, including the famous weak bisim-

ulation, trigger bisimulation, normal bisimulation, etc. At the same time, the
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relationship between the higher order π calculus and other classic calculi, such

as λ calculus and π calculus, has also been studied in Ref. [1].

However, a major problem of the previous works, as highlighted in Ref. [6], is

that they have all been done in concrete models. As a result it is hard to justify

the merits of different semantics and equivalence relations [7]. What is even worse

is about the expressiveness study: as the previous studies [8, 9] are proceeded in

different frameworks constantly with incomparable criteria, there is hardly any

way to judge the reasonableness among different results. In this paper, we amend

these problems by revisiting the higher order π calculus in a model independent

framework, where the model independent approach is proposed by Fu in Ref. [6]

as a consistent framework to study the concurrency theory.

We give a coincidence result of the external bisimulation and the so-called ab-

solute equality in higher order π calculus. The correctness of our characterization

is then guaranteed by the model independence of the absolute equality.

We restudy the relative expressiveness of π calculus and higher order π cal-

culus and show that the latter can be encoded into the former in a very strong

sense. That is, the encoding satisfies the subbisimilarity requirement.

In order to prove the subbisimilarity relation in the above encoding, we have

made use of the up-to expansion technique. This is the first time that such

technique is applied in the study of model independent framework.

1 Λ calculus

In this section we give the formal definition of the Λ calculus, that is, the

process passing calculus we shall work with. The following is the syntax for the

processes.

Definition 1 LetX,Y range over process variables, and a,b,. . . ,g,h denote names.

The set TΛ of Λ-terms is generated inductively by the following Backus Naur

Form (BNF):

T := 0
∣∣ X

∣∣ ∑
i∈I

αi.Ti
∣∣ T |T ′

∣∣ (c)T
∣∣ !α.T

where I is a finite nonempty indexing set, and the prefix αi := a(X)
∣∣ ā(T )

means input and output actions respectively.

In the above syntax, the inactive process 0 does nothing, αi.Ti is the sequen-

tial operation, and
∑
i∈I αi.Ti is the arbitrary choice within an finite index set



I. The concurrent composition is denoted by the commutative and associative

operator “|”. The restriction process (c)T creates a new fresh name c within

a scope T . The replication !α.T creates as many concurrent replicas of α.T as

needed. In (c)T the name c is bound. A name is free if it is not bound. In

a(X).P the variable X is bound. A variable is free if it is not bound. We also

use (c̃) to mean (c1, c2 . . . cI), i.e. a finite set of bound names. The α-conversion

applies to both bound names and bound variables. The set of the free names of

T is denoted by fn(T ), and the set of the free variables in T by fv(T ). Similarly

we use the notions of bn(T ) and bv(T ) for bound names and bound variables.

The set PΛ of Λ-processes consists of those Λ-terms in which all the term vari-

ables are bound. We abbreviate a(X).T as a.T when X in not in fv(P ); ā(0).T

as ā.T ; ā(T ).0 as ā(T ); a(X).0 as a(X).

Structure

T ≡ T1 T
λ−→S S ≡ S1

T1
λ−→S1

Prefix

a(X).T
a(E)−−−→ T{E/X} ā(T ).T ′

ā(T )−−−→ T ′

Composition

T
λ−→ T ′

S|T λ−→ S|T ′
S

a(E)−−−→ S′ T
(c̃)ā(E)−−−−−→ T ′

S|T τ−→ (c̃)(S′|T ′)

Localization

T
(c̃)ā(E)−−−−−→ T ′

(d)T
(c̃

⋃
d)ā(E)−−−−−−−→ T ′

d ∈ (fn(E)− c̃) T
λ−→ T ′

(d)T
λ−→ (d)T ′

d 6∈ n(λ)

Replication α.T
l−→T ′

!α.T
l−→T ′|!α.T

Sum
αk.Tk

l−→T ′∑
i∈I αi.Ti

l−→T ′

Fig.1 The labeled transition system of Λ

In the semantics we require that a term released in an output action must be

a process. The operational semantics is given by the labeled transition system in



Fig. 1. Symmetric rules are omitted. The set L of labels for Λ-terms, ranges over

by l, is {a(E), ā(E), (c̃)ā(E) | E ∈ PΛ}, and λ ranges over the set L∪{τ}, where

τ is the silent action standing for interaction. We write =⇒ for the reflexive,

transitive closure of
τ−→, and

λ
=⇒ for =⇒ λ−→=⇒. The notation “≡” is used to

indicate structure congruence.

2 Observational Theory

As we have mentioned in the introduction part, there has been a long history

about the arguments over different semantics [7, 10]. In this section we introduce

the model independent framework for the study of interactive model, especially

the so called absolute equality relation, as a unique criterion for judging seman-

tics. Then we show that the context bisimulation of the Λ calculus coincides with

the absolute equality relation.

For an interactive model M, let PM and NM be process set and name set

respectively; PM is ranged over by P,Q,M and N ; NM is ranged over by a, b, c

and d. We say R is a binary relation on PM if R ⊆ PM × PM. We use PRQ
to denote that (P,Q) ∈ R. We say R is symmetric if PRQ implies QRP , and

reflexive if ∀P ∈ PM, (P, P ) ∈ R. We use “R1;R2” to denote the composition

of two binary relation R1 and R2. The next two definitions are from Ref. [6].

Definition 2 A binary symmetric relation R on PM is a bisimulation if it vali-

dates the following bisimulation property:

If QR−1P
τ−→ P ′, then one of the following statements is valid:

(1) Q⇒ Q′ for some Q′, such that Q′R−1P and Q′R−1P ′;

(2) Q⇒ Q′′R−1P for some Q′′, such that Q′′
τ−→ Q′R−1P ′.

It is codivergent if the following codivergent property is satisfied:

If QRP τ−→P1
τ−→· · · τ−→Pi · · · is an infinite τ action sequence, then there

exist some Q′ and i ≥ 1 such that Q
τ

=⇒Q′RPi.

It is extensional if the following extensionality property holds:

(1) If MRN and PRQ, then (M |P )R(N |Q);

(2) If PRQ, then (a)PR(a)Q for every a ∈ NM.

Definition 3 The absolute equality “=M” on PM is the largest relation validat-

ing the following statements:



(1) The relation is reflexive;

(2) The relation is equipollent, extensional, codivergent and bisimilar.

The following two lemmas will be used in the sequel.

Lemma 1 (Ref. [6]) If P=⇒; =MQ and Q=⇒; =MP , then P =M Q.

Lemma 2 Suppose P =M Q and P
τ−→P1

τ−→P2
τ−→· · · τ−→Pn · · · is infinite τ

action sequence of P , then there is an infinite action sequence of Q

Q
τ−→Q1

τ−→Q2
τ−→· · · τ−→Qn · · · ,

and an increasing function f of N such that Pf(i) =M Qi (i ≥ 1).

All the properties introduced in Definition 2 are independent of concrete

models. For any interaction model M, we can define the absolute equality =M

as above. From another point of view, the absolute equality can be seen as a

collection of minimal requirement for a good observational equivalent relation.

Let =Λ be the largest reflexive equipollent extensional codivergent bisimilar re-

lation on PΛ. In the rest of this section we will show that =Λ can be established

in a more tractable way in terms of a branching version of context bisimulation

defined in Ref. [1].

Definition 4 A symmetric relation R on PΛ is a context bisimulation if it

validates the following property:

(1) R is codivergent and bisimilar;

(2) If QR−1P
a(E)−−−→ P ′, then Q ⇒ Q′′

a(E)−−−→ Q′R−1P ′ and PRQ′′ for some

Q′,Q′′;

(3) If P
(b̃)ā(E)−→ P ′, then ∀G with fn(G)∩{b̃}=∅, there exists some c̃,F ,Q′ and Q′′,

such that Q=⇒Q′′(c̃)ā(F )−→ Q′, and it holds that fn(G)∩{c̃}=∅, PRQ′′ and

(b̃)(G[E]|P ′)R (c̃)(G[F ]|Q′).

The context bisimilarity, denoted as ≈Λ, is the largest context bisimulation

on PΛ. We say that P ,Q are context bisimilar, written as P ≈Λ Q, if PRQ for

some context bisimulation R.

The following proposition shows that ≈Λ is a congruence. More specifically,

it is closed under the operation of composition and localization.



Proposition 1 ∀P,Q ∈ PΛ, if P ≈Λ Q, then

(1) ∀M ∈ PΛ, P |M ≈Λ Q |M ;

(2) (a)P ≈Λ (a)Q.

Proof We only prove the first item. Define a binary relation R as follows and

we can prove that R is a context bisimulation up-to ≡ and up-to restriction[1].

R def
= {(P |M,Q|M) | P ≈Λ Q}

This can almost be done by an analogous argument as mentioned in Ref. [1], so

we omit the detail. Here we only discuss the codivergent property.

Suppose P |M=P0
τ−→P1

τ−→P2
τ−→· · · τ−→Pi

τ−→· · · is an infinite τ sequence,

we label all these τ actions by τP , τM and τP,M to indicate that these τ actions

are caused by only P , only M , and both P,M respectively. If there is no τP,M

then by codivergent and bisimilar property it is easy to see that Q|M τ
=⇒Q′ and

PiRQ′ for some i ≥ 1. Otherwise let Pi be the first process that can perform

an τP,M , then Pi ≡ P ′|M ′τP,M−→Pi+1 and by bisimilar we have Q|M=⇒Q′|M ′

and P ′ ≈Λ Q′. Use the simple diagram-chasing we can get some Q′′ such that

Q′|M ′ τ
=⇒Q′′ and Pi+1RQ′′.

By Definition 4, ≈Λ is reflexive, bisimilar and equipollent. By Proposition 1,

≈Λ is extensional. Then by Definition 3, the following lemma holds.

Lemma 3 ≈Λ⊆=Λ .

Lemma 3 shows the soundness of the context bisimulation and we are able to

prove that, the other direction of the inclusion, =Λ⊆≈Λ also holds. As a result

we have the following theorem.

Theorem 1 ≈Λ coincides with =Λ.

Proof By Lemma 3 it is sufficient to prove =Λ⊆≈Λ. Let

R def
= {(P,Q) | P =Λ Q}

and we now prove that R is a context bisimulation. By the definition of =Λ,

we only need consider the following two cases:

(1) If P
a(E)−−−→ P1. Let C be ā(E).0 + f̄ for some fresh name f . By equivalence

and extensionality, P | C τ−→P1 must be matched by Q|C=⇒Q2|C
τ−→Q1



and Q2
a(E)−→Q1 for some Q1,Q2. Since Q2|C

τ−→Q1 must be a change of state,

it must be the case that P |C =Λ Q2|C and P1=ΛQ1. Use the same argument,

P |C|f τ−→P must be matched by Q2|C|f=⇒Q3|C|f
τ−→Q4 and

P=ΛQ =⇒Q2=⇒ Q4=ΛP.

It follows from Lemma 1 that P =Λ Q2. In conclusion, we haveQ=⇒Q2
a(E)−→Q

with PRQ2 and P1RQ1.

(2) If P
(c̃)ā(E)−−−−−→ P1. Let C be a(X).G[X]+f̄ for an arbitrary context G with

fn(G)∩{c̃}=∅, and f is a fresh names. By equipollence and extensionality,

P |C τ−→(c̃)(P1|G[E]) must be matched byQ|C=⇒Q2|C
τ−→(d̃)(Q1|G[F ]) and

Q2
(d̃)ā(F )−→ Q1 for some d̃ and F . Since Q2|C

τ−→(d̃)(Q1|G[F ]) must be a change

of state, then it must be the case that P |C =Λ Q2|C and (c̃)(P1|G[E]) =Λ

(d̃)(Q1|G[F ]). By α-conversion[2] we can always require fn(G) ∩{d̃}=∅ and

use the same argument in Case (1) we have P =Λ Q2. In conclusion, we

have ∀G with fn(G)∩{c̃}=∅, there is c̃,Q2,Q1 with fn(G)∩{d̃}=∅ such that

Q=⇒Q2
(c̃)ā(F )−→ Q1 and PRQ2 and

(c̃)(P1|G[E]) R (d̃)(Q1|G[F ]).

This finishes the proof.

Theorem 1 is the main theorem about the algebraic property of the Λ calculus

under the model independent framework. The significance of it is that it shows

an exact correspondence between the observational theory of concrete model,

i.e., the Λ calculus, and the model independent theory. This makes the result

important in itself, and it is also very helpful to pursue the following research.

3 Relative Expressiveness

In the section 2 we have revisited the semantics and algebraic property of the Λ

calculus under the model independent framework. In this section we will focus

on the expressiveness issue of Λ calculus, especially the relative expressiveness

with respect to the first order π calculus.

There have been several previous works about the expressiveness issue of the

process passing calculus [11–13]. It is well-known that Λ calculus is at most as

expressiveness as the π calculus. This fact is formally established by Sangiorgi in



Refs. [1, 14]. Rather than taking the Sangiorgi’s result for granted, here we adopt

the theory of expressiveness developed in Refs. [6, 15] and reformulate this result

by showing that there is a subbisimilarity from Λ calculus to the π calculus. The

π calculus we used is presented in Ref. [16] and the following Definition is from

Ref. [6].

Definition 5 A relation R from M0 to M1 is a subbisimilarity, notation R :

M0 →M1, if it validates the following statements.

(1) R is reflexive in the following sense:

(i) R is total, meaning that for all P ∈ PM0
there exists Q ∈ PM1

such

that PRQ.

(ii) R is sound, meaning that Q1R
−1P1 =M0

P2RQ2 implies Q1 =M1
Q2.

(2) R is equipollent, extensional, codivergent and bisimilar.

The following proposition is an easy deduction of the definition of subbisim-

ilarity.

Proposition 2 (Ref. [6]) Subbsimilarities are fully abstract.

We say that M0 is subbisimilar to M1, notation M0 v M1, if there is a

subbisimilarity from M0 to M1. We write M0 @ M1 if M0 v M1 but M1 6v M0.

It is routine to show that both v and @ are transitive. To show that a relation

is a subbisimilarity, the most tricky part is to establish the soundness property.

However, in our case, by utilizing Theorem 1 and the following theorem, the

workload of soundness proof can be greatly decreased .

Definition 6 (Ref. [16]) A codivergent bisimulation on Pπ is an external

bisimulation if the following statements are valid for every l ∈ L.

(1) If QR−1P
l−→P ′ then Q=⇒Q′′ l−→Q′R−1P ′ and PRQ′′ for some Q′, Q′′;

(2) If PRQ l−→Q′ then P=⇒P ′′ l−→P ′RQ′ and P ′′RQ for some P ′, P ′′.

The π-bisimilarity, donated as ≈π, is the largest external bisimulation on Pπ.

We say that P ,Q are external bisimilar, written as P ≈π Q, if PRQ for some

external bisimulation R.

Theorem 2 (Ref. [16]) The π-bisimilarity ≈π coincides with the absolute

equality =π.



From Definition 6 we can see that ≈π dose not require the extensionality

property, while Theorem 2 tells us that it has been implicitly included in ≈π.

This makes ≈π more tractable than =π. As we have just mentioned, Theorem 2

will be a powerful tool for us to get the fully abstract result, i.e. Theorem 3.

Now we are ready to present our main result about the relative expressiveness

issue of Λ calculus under the model independent framework.

3.1 Interpret Λ into π

J0K def
= 0

JXK def
= (d)(x̄d|!d)

Ja(X).T K def
= a(x).JT K

Jā(T1).T2K
def
= (c)(āc.(JT2K |!c.JT1K))

J(c)T K def
= (c)JT K

JT1|T2K
def
= JT1K|JT2K

J!α.T K def
=!Jα.T K

Fig. 2 Translation from Λ into π

The interpretation J·K from Λ calculus to π calculus in Ref. [1] is given in Fig. 2.

Intuitively, the encoding scheme says that transferring a process in Λ calculus can

be simulated by transferring a pointer which will be used to call the process in π

calculus. From the above interpretation it is clear that the following proposition

holds.

Proposition 3 (Syntactical correctness) ∀P ∈ PΛ JP K ∈ Pπ.

We shall use “Trn” as an abbreviation for (d)(n̄d|!d). The utility of Trn is

to activate a copy of JEK from a process with a sub-term as !n.JEK. In the later,

n can be replaced by any names or variables.

The following example shows how the interpretation work does.

Example 1 Let P = a(X).b̄(E).X , Q = ā(F ).D, then



P |Q = a(X).b̄(E).X|ā(F ).D
τ−→b̄(E).F |D,

JP |QK = a(x).(c)(b̄c.(Trx|!c.JEK)) | (d)(ād.(JDK|!d.JF K))
τ−→(d)((c)(b̄c.T rd|!c.JEK)|JDK|!d.JF K),

Jb̄(E).F |DK = (c)(b̄c.JF K|!c.JEK)|JDK

In the π calculus, we will need the following concept.

Definition 7 (Context) A first-order context G is defined inductively as fol-

lows:

G := 0
∣∣ x ∣∣ [·]

∣∣ G1|G2

∣∣ (a)(G)
∣∣ ∑
i∈I

πi.Gi
∣∣ !π.G,

where I is a finite index set and π := n(x)
∣∣ n̄m.

Here, G is a context if all the variables in G are bound. Let F be a π-process,

and G[F ] be the process that can use F to replace all occurrence of [·] in G.

Also, [·] is left-associative and we require that [·] has the highest priority for

convenience.

One may notice the difference between (d)((c)(b̄c.T rd|!c.JEK)|JDK|!d.JF K) and

(c)(b̄c.JF K|!c.JEK)|JDK in Example 1. If G = (c)(b̄c.[·]|!c.JEK)|JDK, then these two

processes become (d)(G[Trd]|!d.JF K) and G[JF K] respectively, which reminds us

the trigger agents in Ref. [1]. Proposition 4 given below follows the same idea in

Ref. [1] and shows how to factorize JF K from G[JF K]. Furthermore we will see

that this kind of process pair has the expansion property that can give rise to

a up-to technique for ≈π, and this is useful to prove the soundness property of

the interpretation. In order to prove Proposition 4 we need the following two

auxiliary lemmas.

Lemma 4 Suppose bn(G)∩ fn(F ) = ∅, and G[F ]
l−→P , then there is a G′ such

that one of the following statements holds:

(1) P ≡ G′[F ] and ∀E with fn(E) ∩ bn(G) = ∅, G[E]
l−→G′[E];

(2) P ≡ G′[F ]|F ′, F l−→F ′ and ∀E with fn(E) ∩ bn(G) = ∅, G[E] ≡ G′[E]|E.

Proof By induction on the depth of the derivation tree of G[F ]
l−→P , consider

the different structure G. Intuitively, statement (1) is the case that l is caused

by G, and statement (2) is the case that l is caused by F .

Lemma 5 Suppose bn(G)∩ fn(F ) = ∅, and G[F ]
τ−→P , then there is a G′ such

that ∀E with bn(G) ∩ fn(E) = ∅ one of the following statements holds:



(1) G[E]
τ−→G′[E] and P ≡ G′[F ];

(2) G[E] ≡ G′[E]|E , F
τ−→F ′ and P ≡ G′[F ]|F ′;

(3) G[E] ≡ G′[E]|E, and there is a G′′ such that G′[E]|F τ−→G′′[E]|F ′ and

P ≡ G′′[F ]|F ′;
(4) G[E] ≡ G′[E]|E|E , G′[E]|F |F τ−→G′[E]|F1|F2 and P ≡ G′[F ]|F1|F2.

Proof By induction on the depth of the derivation tree of G[F ]
τ−→P .

In the following proposition, Trc has the same meaning as in Proposition 3.

Proposition 4 LetR def
= {( (d̃)G[F ], (c∪d̃)(G[Trc]|!c.F ) ) | bn(G)∩fn(F )=∅ and c is fresh}

and T def
=≡;R;≡ then whenever (P,Q) ∈ T , we have the following statements.

(1) If P
τ−→P1, then one of the following items holds:

(a) Q
τ−→Q1 with P1T Q1;

(b) Q
τ−→Q2

τ−→Q1 with PT Q2 and P1T Q1;

(c) Q
τ−→;

τ−→Q2
τ−→Q1 with PT Q2 and P1T Q1;

(2) If Q
τ−→Q1, then either PT Q1 or P

τ−→P1 with P1T Q1;

(3) If P
l−→P1, then either Q

l−→Q1 with P1T Q1 or Q
τ−→Q2

l−→Q1 with PT Q2

and P1T Q1;

(4) If Q
l−→Q1, then P

l−→P1 with P1T Q1;

(5) T is codivergent.

Proof From Lemma 4 and Lemma 5.

Corollary 1 T ⊆≈π.

Let P ∈ PΛ, with the help of relation T and by an induction on the structure

of P , we can get the following semantic correspondence between the original

process and its encoding.

Proposition 5 (Operational correspondance)

1. (a) If P
a(b̄(0))−→ P ′, then JP K ab−→ ≡ JP ′K;

(b) If P
(c̃)ā(E)−→ P ′, then JP K

ā(b)−→≡(c̃)(JP ′K|!b.JEK);
(c) If P

τ−→P ′, then JP K τ−→T −1JP ′K.

2. (a) If JP K ab−→P1 , then exists P ′ such that P
ā(b̄(0))−→ P ′ and P1 ≡ JP ′K;

(b) If JP K
ā(b)−→P1,then exist c̃, E, and P ′ such that P

(c̃)ā(E)−→ P ′ and P1 ≡
(c̃)(JP ′K|!b̄.JEK);

(c) If JP K τ−→P1, then P
τ−→P ′ and P1T −1JP ′K.



From Proposition 4 and Proposition 5 we can get the following corollary

which is useful to get the upper bound of simulation steps.

Corollary 2 (1) For all n ≥ 1 and P
τn−→P ′, there exist m(n ≤ m ≤ 3n−1

2 ) and

P1 such that JP K τ
m

=⇒P1 and P1T nJP ′K;
(2) For all n ≥ 1 and JP K τ

n

−→P ′, there exists m(1 ≤ m ≤ n) and P ′ such that

P
τm−→P1 and JP1KT mP ′.

3.2 Up-to Expansion and the Fully Abstract Result

Bisimulation up-to is a widely used technique. It can effectively reduce the

size of the relation needed to get a bisimulation. It works smoothly in the strong

case, as it has been first introduced in Ref. [2]. However, generally this technique

cannot be directly implemented in the weak case. This is the key reason we

introduce a “up-to” technique for ≈π based on expansion. We will use it to

establish the soundness property of J·K.

Definition 8 A binary relation R is an expansion on Pπ if PRQ implies that

(1) R is codivergent;

(2) If P
τ−→P ′, then P ′RQ or Q′ exists such that Q

τ−→Q′ with P ′RQ′;
(3) If Q

τ−→Q′, then P ′ and P ′′ exists such that P=⇒P ′′ τ−→P ′ with PRQ′′ and

P ′RQ′;
(4) If P

l−→P ′, then Q′ exists such that Q
l−→Q′ with P ′RQ′;

(5) If Q
l−→Q′ then P ′ and P ′′ exist such that P=⇒P ′′ l−→P ′ with P ′′RQ and

P ′RQ′.

We say P expands Q, written as P≈.πQ, if PRQ for some expansion R. From

the Definition 8 we can see that the expansion relation is an asymmetric version

of ≈π. Intuitively, if P≈.πQ holds, then Q computes at least as fast as P . It

should be clear that T −1 is an expansion.

Corollary 3 For any expansion relation ≈.π
i, we have

⋃
i≈.π

i ⊆≈π.

In the following we will use ≈.π
∗ as an abbreviation of

⋃
i≈.π

i, and ≈/π
∗ as

the reverse of ≈.π
∗.

Lemma 6 If a symmetric binary relation R on P satisfies the following prop-

erties, then R ⊆≈π:



(1) If P
l−→P1, then exist Q1 and Q2 such that Q=⇒Q2

l−→Q1, P1 ≈π;R;≈π Q2,

and P1 ≈π;R;≈π Q1;

(2) If P
τ−→P1 , then one of the following holds

(a) there exist Q1, Q2 such that Q=⇒Q2
τ−→Q1, P1 ≈π;R;≈π Q2, and

P1≈.π;R;≈π Q1;

(b) there exists Q1 such that Q=⇒Q1, P1≈.π;R;≈π Q1 , and P1R;≈π Q1;

(3) If P
τ−→P1

τ−→· · · τ−→Pn
τ−→· · · is an infinite internal action sequence, then

there exist some Q′ and i ≥ 1 such that Q
τ

=⇒Q′ and Pi ≈π;R;≈/π
∗Q′.

We call such R an external bisimulation up-to ≈/π.

P

l

��

R

≈
π ;R;≈

π

Q

��
Q2

l

��
P1 ≈π ;R;≈π Q1

P

τ

��

R

≈
π ;R;≈

π

Q

��
Q2

τ

��
P1 ≈.π ;R;≈π Q1

(1) (2-a)

P

τ

��

R

≈
π ;R

;≈
π

Q

��
P1 ≈.π ;R;≈π Q1

P

τ

��

R Q

τ

��
τ

��
Pi ≈π ;R;≈/π

∗ Q′

(2-b) (3)

Fig. 3 Up-to expansion on Pπ

Proof It is sufficient to show that ≈π;R;≈π is an external bisimulation on Pπ.

Suppose M ≈π PRQ ≈π N , there are three cases to be considered:

(1) M
l−→M ′. There exist P ′ and P ′′ such that P=⇒P ′′ l−→P ′, M ≈π P ′′, and

M ′ ≈π P ′. The expansion property of ≈.π makes sure that if P
τn−→P ′′(n ≥ 0),

then exist 0 ≤ m ≤ n,Q′′, s.t. Q=⇒Q′′ and P ′′≈.π
mR;≈π Q′′. Then using

simple diagram-chasing, we can get N ′′, N ′ such that N=⇒N ′′ l−→N ′, M ≈π
;≈.π

m;≈π;R;≈π N ′′, and M ′ ≈π;≈.π
m;≈π;R;≈π N ′. Thus by Corollary 3,

M ≈π;R;≈π N ′′ and M ′ ≈π;R;≈π N ′.



(2) M
τ−→M ′. This case is similar as (1) but a little more annoying, so we omit

it here.

(3) M
τ−→M1

τ−→· · · τ−→Mn · · · is an infinite internal action sequence. By Lemma

2 there exists an infinite τ action sequence of P

P
τ−→P1

τ−→P2
τ−→· · · τ−→Pn · · · , (*)

and some increasing function f on N s.t. Mf(i) = Pi. By above mentioned

Case (3), there exist some i1 ≥ 1 s.t. Q
τ

=⇒Q1 for some Q1 and Pii ≈π
;R;Q′1≈/π

∗Q1. Since the τ action sequence starting from Pi1 is still infinite,

we can use the same argument again and we can get some i2 > i1 and Q′′1

s.t. Q′1
τ

=⇒Q′′1 and Pi2 ≈π;R;≈/π
∗Q′′1 . By Definition 8, Q1

τ
=⇒Q2 for some

Q2 and Q′′1≈/π
∗Q2, thus we have Pi2 ≈π;R;≈/π

∗Q2. Reapeatly doing this we

can get an infinite τ action sequence of Q

Q
τ

=⇒Q1
τ

=⇒Q2
τ

=⇒· · · τ
=⇒Qk

τ
=⇒· · ·

and an increasing index sequence i1 < i2 < · · · < ik < · · · s.t.

Pik ≈π;R;≈/π
∗Qk (∀k ≥ 1)

Then by codivergent there exist some k̂ and N ′ s.t. N
τ

=⇒N ′ and Qk̂ ≈π N
′.

As a result we have the following relation:

Mf(ik̂) ≈π Pik̂ ≈π;R;≈/π
∗;≈π Qk̂ ≈π N

′

Now we are ready to prove the soundness of the interpretation.

Proposition 6 (Soundness) If P =Λ Q, then JP K =π JQK.

Proof Let R be defined as follows, then by Lemma 6 we only need to prove

that R is external bisimulation up-to ≈.π:

R = {(JP K, JQK) | P =Λ Q}

Suppose (JP K, JQK) ∈ R and JP K α−→P1, there are four cases:

(1) α = ab. By Proposition 5, P
a((̄b)(0))−→ P ′. This and P =Λ Q imply that there

exists Q′ and Q′′ such that Q=⇒Q′′a(b̄(0))−→ Q′ with P =Λ Q′′ and P ′ =Λ

Q′. By Corollary 2, there exists Q3 such that JQK=⇒Q3 =π JQ′′K. Use



Proposition 5 again, we have JQ′′K ab−→Q4 ≡ JQ′K, thus there exist Q1 and

Q2 s.t. Q3=⇒Q2
ab−→Q1 with Q2 =π JQ′′K and Q1 =π Q4. In conclusion there

exist Q1 and Q2 such that

JQK=⇒Q2
ab−→Q1, JP KR; =π Q2, and P1 ≡;R; =π Q1

(2) α = ā(b). By Proposition 5, there exist c̃, E, and P ′ such that P
(c̃)ā(E)−→ P ′ and

P1 ≡ (c̃)(JP ′K|!b.JEK). By Theorem 1, ∀G with fn(G)∩{c̃} = ∅ there exist d̃,

F , Q′′, and Q′ with fn(G)∩{d̃} = ∅ such that Q=⇒Q′′(d̃)ā(F )−→ Q′, P =Λ Q
′′,

and (c̃)(P ′|G[E]) =Λ (d̃)(Q′|G[F ]). By Corollary 2, there exists Q3 such

that JQK=⇒Q3 =π JQ′′K. Use Proposition 5 again, there exists Q4 such that

JQ′′K
ā(b)−→Q4 ≡ (d̃)(JQ′K|!b.JF K). Let G be !b.[·], then P1 ≡ J(c̃)(P ′|G[E])K and

Q4 ≡ J(d̃)(Q′|G[F ])K, thus there exist Q1 and Q2 s.t. Q3=⇒Q2
ā(b)−→Q1 with

Q2 =π JQ′′K and Q1 =π Q4. In conclusion, there exist Q1 and Q2 such that

JQK=⇒Q2
ā(b)−→Q1, JP KR; =π Q2, and P1 ≡;R;≡; =π Q1

(3) α = τ . By Proposition 5, P
τ−→P ′ and P1≈.πJP ′K. If P

τ−→P ′ is matched

by Q=⇒Q′′ τ−→Q′ for some Q′ and Q′′ with P =Λ Q′′ and P =Λ Q′. By

Corollary 2, there exists Q3 such that JQK=⇒Q3 =π JQ′′K. Use Proposition

5 again, we have JQ′′K τ−→Q4≈.πJQ′K for some Q4.

(a) If JQ′′K τ−→Q4 is matched by Q3=⇒Q2
τ−→Q1 for some Q2 and Q1 with

Q2 =π JQ′′K and Q1 =π Q4. Then we find Q1 and Q2, such that

JQK=⇒Q2
τ−→Q1, JP KR; =π Q2, and P1≈.π;R; =π Q1

(b) If JQ′′K τ−→Q4 is matched Q3=⇒Q1 for some Q1 with JQ′′K =π Q1 and

Q4 =π Q1. Then we find Q1 such that

JQK=⇒Q1, JP KR; =π;Q1, and P1≈.π;R; =π;Q1

If P
τ−→P ′ is matched Q=⇒Q′ for some Q′ with P =Λ Q′ and P ′ =Λ Q′,

using the similar argument we can get some Q1 such that

JQK=⇒Q1, JP KR; =π Q1, and P1R; =π Q1

(4) Suppose JP K τ−→M1
τ−→M2

τ−→· · · τ−→Mn
τ−→· · · is infinite internal action se-

quence, then by Corollary 2 there are P
τ−→P1 and M1 =π JP1K. By codi-



vergence there exist i1 ≥ 1 and P ′ such that JP1K
τ

=⇒P ′ and Mi1 =π P
′. By

Corollary 2 , we have there exists P2 such that P1
τ

=⇒P2 and Mi1 =π P
′ =π

JP2K. Repeatedly doing this, we get an infinite subset indexes {i1, i2, . . . , in, . . . , }
and P1, P2, . . . , Pn, . . . s.t. P

τ−→P1
τ

=⇒P2
τ

=⇒ · · · τ
=⇒Pn

τ
=⇒· · · and Mij =π

JPjK(j ≥ 1). By codivergence again , there exist k ≥ 1 and Q1 such that

Q
τ

=⇒Q1 and Pk =Λ Q1. Use Corollary 2 again, there exists Q′ such that

JQK τ
=⇒Q′ and JQ1K≈/π

∗Q′. In conclusion we find some ik ≥ 1 and Q′ such

that JQK τ
=⇒Q1 and Mik =π JPkKRJQ1K≈/π

∗Q′.

At last we get the main result of this section.

Theorem 3 Given P,Q ∈ PΛ, then P =Λ Q if and only if JP K =π JQK

Proof We define a relation F

F
def
= {(P,Q) | (P ∈ PΛ) ∧ (Q ∈ Pπ) ∧ (JP K =π Q)}

and show that F is a subbisimilarity from Λ to π. It is clear that F is total and

extensional. By Proposition 5, F is equipollent and bisimilar. By Proposition 6,

F is sound. By Corollary 2 F is codivergent.

4 Conclusion

In this paper, we have restudied the algebraic and expressiveness aspects of

the Λ calculus in the model independent framework. We show that there is a

concrete characterization of the absolute equality inside the Λ calculus. The

coincidence result gives us enough reason to regard ≈Λ as a valid relation to the

study of Λ calculus. At the same time, we show that π calculus can encode Λ

calculus faithfully by proving the subbisimilarity relation. These results deepen

our knowledge about Λ calculus and can be seen as one step further about the

study and application of the model independent framework.

Compared to the previous work, our results have the following advantages:

First we make use of the model independent framework, which is a convinc-

ing criterion and guarantees the sustainable development of the following work.

Compared to the results in Ref. [6], our work is an important case study of the

interaction theory. The up-to technique developed in this paper is actually a

rather powerful one, especially when we want to prove the soundness property.

We have found that it could be utilized in the study of encoding theory in process



calculus as long as the encoding scheme satisfies some natural properties. We be-

lieve that this technique could bring us more light on the general expressiveness

study. One of our future work will focus on popularizing this new technique.
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