
The χ-Calculus∗

Yuxi Fu†‡§

Abstract

The paper proposes a new process algebra, called χ-
calculus. The language differs from π-calculus in sev-
eral aspects. First it takes a more uniform view on
input and output. Second, the closed names of the lan-
guage is homogeneous in the sense that there is only
one kind of bound names. Thirdly, the effects of com-
munications in χ-calculus are delimited by localization
operators, not by sequentiality combinator. Finally, the
language cherishes more freedom of parallelism than π-
calculus. The algebraic properties of χ-processes are
studied in terms of local bisimulation. It is shown
that local bisimilarity is a congruence equivalence on
χ-processes.

Key Words: Bisimulation, π-Calculus

1. Questions on π-calculus

Communication is exchange of information. Two
parties involved in a communication are in reciprocal
positions. Symmetry of communications is a conspicu-
ous feature of the basic CCS. When moving to value-
passing calculi, symmetry is lost. The π-calculus ([4])
is but one such a language. Consider the process

(a)(a(x).x(y)|(v)av.vw).

Operationally, (a)(a(x).x(y)|(v)av.vw) is no difference
to (a)((x)ax.x(y)|a(v).vw). Moreover, both processes
are equivalent to (a)(a(x).x(y)|(v)(av|vw)) and respec-
tively (a)((x)(ax|x(y))|a(v).vw). What do all these
equivalences suggest? Well, they seem to indicate that
there is little need to draw a clear-cut line between in-
put actions and output actions when the output names

∗Proceedings of the International Conference on Advances in
Parallel and Distributed Computing, March 19-21, 1997, Shang-
hai, China, IEEE Computer Society Press, 74–81.

†Supported by the National Nature Science Foundation of
China, grant number 69503006.

‡Department of Computer Science, Shanghai Jiao Tong Uni-
versity, 1954 Hua Shan Road, Shanghai 200030, China.

§E-mail: fu-yx@cs.sjtu.edu.cn.

are restricted. We might as well change the syntax of
a(x).P to (x)ax.P , where x is free in ax.P . With this
change, we would have

(x)(ax|(y)xy)|(v)(av|vw) τ−→ (u)((y)uy|uw).

This is an example of communication of local names.

How do we extend this communication mech-
anism to communications with free outputs?

It might well be that there are more than one answers
to the question.

What then is information? The simplest answer is
that information is the content of communication. It is
only through communication that a piece of informa-
tion asserts itself. In value-passing CCS, the contents
of communications are extralogical entities. Although
a translation into the basic CCS is possible, such an
enterprise relies on heavy mathematical assumptions.
The greatest achievement of the π-calculus is that it
presents itself, in a concise way, as a closed model for
concurrent computations. But is there any room for
improvement on π-calculus as far as the closedness is
concerned? This brings us to a somewhat unpleasant
feature of the π-calculus. In π there are two kinds of
closed names. There are local names like y in (y)P and
there are abstract names like x in m(x).P . For a basic
model of concurrent computations, two kinds of closed
names are probably too more.

Can we eliminate the abstract names from π-
calculus in favour of the local names?

A conceivable solution is to regard the abstract names
as special local names.

Often, information is used to control computations
whereas communications, or the lack of them, make the
control happen. When designing a process calculus,
there are two complementary issues. One is to intro-
duce a parallel mechanism so that events can happen
in parallel to full extent. The other is to have a control
mechanism to curb unwanted parallelism and to place
order on life. The π-calculus, as well as most other pro-
cess calculi, has a parallel mechanism that is beyond

1

question. The parallel combinator ‘|’ intends to per-
mit full-scale parallelism and to allow controls to have
their ways. But are there any situations in π-calculus
in which the orders of computations are always pre-
ordained? Suppose two processes P and Q share an
abstract name x. The situation can be described as
in m(x).(P |Q). What if we want P to evolve indepen-
dently from the instantiation of x through m? In π
there is no way to do that. For a language that deals
with concurrency, the requirement of this example is
not over-demanding. A good control mechanism ex-
erts controls, not unintended restrictions.

How do we eliminate the restriction imposed
by the control mechanism of the π-calculus?

Searching for an answer to the question is one of the
motivations for the study carried out in this paper.

The restriction mentioned above is to do with the
sequentiality operator1 of the π-calculus. Let’s take a
close look at the combinator. The process mn.P emits
n through medium m and then proceeds as P . The
sequentiality appeared here is nice and simple. On the
other hand, the behaviour of m(x).P is different. After
receiving a name n through m, the process continues to
evolve as P [n/x]. From a purely set theoretical point of
view, m(x).P is nothing but a function. The function-
ality of m(x).P has serious implication: the effect of
any communication m(x).P to participate is restricted
to the body of the function, that is to P . In other
words, the sequentiality operator also acts as an effect
delimiter. But if the operator is to prescribe orders of
actions, then why should it have anything to do with
the scope of the effect of a communication?

What if we, and how do we, free the sequen-
tiality combinator from the duty of delimiting
the effects of communications?

It would be a bad idea to introduce a completely new
combinator to fulfill the role of effect delimiter. We
already have in π-calculus a combinator that defines
the scope of a name. It appears more sensible to let
the localization operator play the role because that is
what it is meant to be—a scope delimiter.

There is however a more dramatic question about
the sequentiality combinator:

Is sequentiality operator necessary for a con-
current computation model?

The answer depends to a large extent on how we see the
relationship between sequential and concurrent compu-
tations. One view is that the notion of concurrency is

1We call the dot in α.P a sequentiality combinator.

based upon that of sequentiality. Without sequential
computations, there is no way to talk about concurrent
computations. This is the background against which
the sequentiality operator is introduced. An alterna-
tive view is that sequential computations are special
concurrent computations. For those of us who take this
second attitude, we need a process calculus to back up
our viewpoint.

In this paper, we propose a new process algebra, χ-
calculus, that gives our answers to the first four ques-
tions. By omitting the sequentiality operator of the
calculus, question 5 can also be investigated.

2. Communication via information ex-
change

This section introduces a new process calculus. Syn-
tactically, the language differs from the π-calculus by
unifying input and output prefixes. Semantically, it
represents a more drastic departure. The value-passing
communication mechanism of the π-calculus is replaced
by an information exchange communication mecha-
nism. The language will be called χ-calculus, where
χ stands for exchange of information.

Let N be a set of names ranged over by lower case
letters, Pχ the set of χ-processes defined as follows:

P := 0 | mi[x].P | P |P | (x)P | [x=y]P |!P,

where i ∈ {−1, 1}. Here m−1 and m1 are the two
ends of channel m. As usual 0 is the inactive process.
A trailing inactive process will be omitted. mi[x].P
is a process that must first perform a communication
through channel m and then enacts P [y/x], where y
is the name received in the communication. P |Q is a
process of parasition form. Here P and Q can evolve
independently and may communicate during the course
of their evolution. (x)P is a process where x is local to
P , meaning that (x)P is not allowed to communicate
with another process through channel x. The condi-
tional process [x=y]P behaves the same as P if x=y,
or it is the same as the inactive process 0. The repli-
cation process !P provides potentially infinite copies of
P . The set of local names appeared in P is denoted by
ln(P). The set of global names, or nonlocal names, in
P is designated by gn(P). The set n(P) is the union
of ln(P) and gn(P). We adopt the α-convention say-
ing that a local name in a process can be replaced by a
fresh name without changing the syntax of the process.

The following rules define the operational semantics
of χ-calculus. Notice that we have left out all the sym-

2

metric rules.

Sequention

mi[x].P
mi〈y/x〉−→ P [y/x] S0

Parasition

Q
τ−→ Q′

P |Q τ−→ P |Q′ P0

Q
mi〈y/x〉−→ Q′

P |Q mi〈y/x〉−→ P [y/x]|Q′ P1

Q
mi〈x〉−→ Q′

P |Q mi〈x〉−→ P |Q′ P2

Q
〈y/x〉−→ Q′

P |Q 〈y/x〉−→ P [y/x]|Q′ P3

Communication

P
mi〈x/x〉−→ P ′ Q

m−i〈x〉−→ Q′

P |Q τ−→ P ′|Q′ C0

P
mi〈y/y〉−→ P ′ Q

m−i〈y/x〉−→ Q′

P |Q 〈y/x〉−→ P ′[y/x]|Q′ C1

P
mi〈x〉−→ P ′ Q

m−i〈x〉−→ Q′ x 6∈ gn(P,Q)
P |Q τ−→ (x)(P ′|Q′) C2

Localization

P
α−→ P ′ x 6∈ n(α)

(x)P α−→ (x)P ′ L0

P
〈y/x〉−→ P ′ x 6= y

(x)P τ−→ P ′ L1

P
mi〈y/x〉−→ P ′ x 6= m

(x)P
mi〈y〉−→ P ′ L2

P
〈x/x〉−→ P ′

(x)P τ−→ (x)P ′ L3

Replication Condition

P
α−→ P ′

!P α−→ P ′|!P R
P

α−→ P ′

[x=x]P α−→ P ′ C

In the above rules, α ranges over the set {τ} ∪
{mi〈y/x〉,mi〈x〉, 〈y/x〉 | m,x, y ∈ N}. The notation
[y/x] stands for an atomic substitution. The result of
substituting y for x throughout P is denoted by P [y/x].
Local names in P need be renamed to avoid y being
captured. A substitution [y1/x1] . . . [yn/xn] is a con-
catenation of atomic substitutions. The effect of ap-
plying a substitution to a process is defined as follows:

P [] def= P

P [y1/x1] . . . [yn/xn] def= (. . . P [y1/x1] . . .)[yn/xn],

where [] is the empty substitution. Substitutions will
be ranged over by σ. The reflexive and transitive clo-
sure of τ−→ is denoted by =⇒. For α 6= τ , the notation

α=⇒ stands for =⇒ α−→=⇒.

The operational rules are simpler than they ap-
pear to be. To help understand the communication
rules, we now give some examples. In the process
(x)(R|(m−1[n].P |m1[x].Q)), a communication via m is
possible. The effect of the communication is to replace
the local name x by the global name n throughout the
term over which the localization operator (x) applies.
The global name n in P however remains unchanged.
In other words, global information overwrites. The re-
duction

(x)(R|(m−1[n].P |m1[x].Q)) τ−→ (R|(P |Q))[n/x]

is not derivable by a single rule. The only communica-
tion rule applicable here is C1. But C1 does only part of
the job. The result is a labeled reduction representing
an incomplete action:

m−1[n].P |m1[x].Q
〈n/x〉−→ P [n/x]|Q[n/x].

To continue, we use the rule P3 to get

R|(m−1[n].P |m1[x].Q)
〈n/x〉−→ R[n/x]|(P |Q)[n/x].

An application of L1 then finishes the job. An-
other situation arises if we modify the example to
m−1[n].P |(x)(R|m1[x].Q). The difference is that here
the term m−1[n].P lies outside the scope of the local-
ization operator (x). This time we need to use C0. But
before that an application of rule L2 is necessary. Next
consider the following reduction:

(x)m−1[x].P |(y)m1[y].Q τ−→ (z)(P [z/x]|Q[z/y]).

It is an example of communications between local
names. The communication rule applied is C2. A rule
that also calls for explanation is L3. It is necessary
when two processes exchange a same local name. For
example the reduction

(x)(m−1[x].P |m1[x].Q) τ−→ (x)(P |Q)

is obtained from m−1[x].P |m1[x].Q
〈x/x〉−→ P |Q by ap-

plying L3.
We will denote by ~x a sequence x1, . . . , xn of names.

We will also abbreviate (x1) . . . (xn)P to (~x)P . When
the length of the sequence ~x is zero, (~x)P is just P .

Let SC be the set of contexts of the form

(~xn)(. . . (~x1)(|R1) . . . |Rn),

where n ≥ 1 and R1, . . . , Rn ∈ Pχ. Notice that the
length of ~xi, for i ≤ n, could be zero. An element of
SC is called a static context. One useful property of a
static context C[] is that any derivative of C[P] is of
the form C ′[P ′], where C ′[] is static and P ′ is what P
has turned into.

3

3. Bisimulation congruence

A difficulty with the bisimulation equivalence for χ-
processes is to do with the incomplete actions. Sup-

pose P and Q are bisimilar, should we require P
〈y/x〉−→

be matched by Q
〈y/x〉−→ ? If incomplete actions are com-

pletely ignored, the bisimilarity would not be closed
under localization. But if we treat them the same as
the other actions, the resulting equivalence would be
difficult to analyze. We propose to use local bisim-
ulation as a tool to study the algebraic properties of
χ-processes. Throughout this paper, we concentrate
on weak equivalences.

Definition 3.1 Suppose R ⊂ Pχ×Pχ. The relation
R is a local simulation if whenever PRQ, then for any
χ-process R and any sequence ~x of names it holds that

if (~x)(P |R)
mi〈x〉=⇒ P ′, then Q′ exists such that

(~x)(Q|R)
mi〈x〉=⇒ Q′ and P ′RQ′.

R is a local bisimulation if both R and R−1 are local
simulations. P is locally bisimilar to Q, notation P ≈
Q, if PRQ for some local bisimulation R.

Theorem 3.2 ≈ is an equivalence relation.

Definition 3.3 Suppose R ⊂ Pχ×Pχ. The relation R
is a local simulation up to ≈ if PRQ implies that for
any process R and sequence ~x of names it holds that

if (~x)(P |R)
mi〈x〉=⇒ (~y)P ′, then Q′ exists such

that (~x)(Q|R)
mi〈x〉=⇒ (~y)Q′ and P ′≈R≈Q′.

R is a local bisimulation up to ≈ if both R and R−1

are local simulations up to ≈.

Theorem 3.4 If R is a local bisimulation up to ≈,
then R ⊂≈.

The proof of this theorem uses the next result.

Proposition 3.5 If P ≈ Q, then
(i) for any χ-process R and any sequence ~x of names, if
(~x)(P |R) =⇒ P ′ then Q′ exists such that (~x)(Q|R) =⇒
Q′ and P ′ ≈ Q′;
(ii) if P =⇒ P ′ then Q =⇒ Q′ for some Q′ such that
P ′ ≈ Q′;

(iii) if P
mi〈x〉=⇒ P ′ then Q

mi〈x〉=⇒ Q′ for some Q′ such
that P ′ ≈ Q′.

Proof: (i) Suppose (~x)(P |R) =⇒ P ′′. Then P ′′ must
be of the form (~x′)(P ′|R′). If a 6∈ {~x} ∪ n(P,Q), then

(~x)(P |(R|(y)a1[y]))
a1〈z〉=⇒ (~x′)(P ′|(R′|0)). In order to

match this action, we must have

(~x)(Q|(R|(y)a1[y]))
a1〈z〉=⇒ (~x′′)(Q′|(R′′|0))

such that (~x′)(P ′|(R′|0)) ≈ (~x′′)(Q′|(R′′|0)). It fol-
lows easily that (~x′)(P ′|R′) ≈ (~x′′)(Q′|R′′). But then
(~x)(Q|R) =⇒ (~x′′)(Q′|R′′). Done. (ii) is a special case
of (i) and (iii) can be proved similarly. 2

Theorem 3.6 The following properties hold:
(i) (m)mi[x].P ≈ 0;
(ii) (x)mi[y].P ≈ mi[y].(x)P, where x 6∈ {m, y};
(iii) (x)0 ≈ 0;
(iv) (x)(y)P ≈ (y)(x)P ;
(v) (x)(P |Q) ≈ P |(x)Q, where x 6∈ gn(P);
(vi) P |0 ≈ P ;
(vii) P1|P2 ≈ P2|P1;
(viii) P1|(P2|P3) ≈ (P1|P2)|P3;
(ix) [x=x]P ≈ P ;
(x) (x)[y=z]P ≈ [y=z](x)P, where x 6∈ {y, z};
(xi) (x)[y=z]P ≈ 0, where x ∈ {y, z} and y 6= z;
(xii) [x=y][v=w]P ≈ [v=w][x=y]P .

The proof of the theorem is standard. Notice that in
general (x)(R|[x=a]P) is not locally bisimilar to (x)R.
This is one of the differences between χ-calculus and
π-calculus. The next lemma is crucial to showing that
≈ is a congruence relation.

Lemma 3.7 If P ≈ Q, then P [y/x] ≈ Q[y/x].

Proof: Let R be the union of ≈ and the following(C[Pσ], C[Qσ])

∣∣∣∣∣∣
P ≈ Q, C[] ∈ SC,
σ ≡ [y1/x1] . . . [yn/xn],
~x pairwise distinct

 .

Suppose P ≈ Q and C[Pσ]
mi〈a〉=⇒ S. Two cases:

• Pσ does not participate in the sequence of ac-

tions C[Pσ]
mi〈a〉=⇒ S. Then S must be of the

form C ′[Pσσ′], where σ′ is some substitution
[y′1/x′

1] . . . [y
′
n′/x′

n′]. Notice that x′
1, . . . , x

′
n′ were

local names. So by α-convention we can assume
that x1, . . . , xn, x′

1, . . . , x
′
n′ are pairwise distinct.

But then we have C[Qσ]
mi〈a〉=⇒ C ′[Qσσ′] with

SRC ′[Qσσ′].

• Pσ does participate in the sequence of actions

C[Pσ]
mi〈a〉=⇒ S. As the process C[Pσ|(0|0)] is lo-

cally bisimilar to C[Pσ], some S′ exists such that

C[Pσ|(0|0)]
mi〈a〉=⇒ S′ and S ≈ S′. Suppose σ is

the substitution [y1/x1] . . . [yn/xn] and o is not in

4

n(C[P], C[Q]) ∪ {x1, . . . , xn} ∪ {y1, . . . , yn}. Let
D[] be the static context C[(~x)(|A)] where A is
o−1[x1]. · · · .o−1[xn]|o1[y1]. · · · .o1[yn]. Now

D[P] τ=⇒ C[Pσ|(0|0)]
mi〈a〉=⇒ S′.(1)

By assumption, P ≈ Q. So T ′ exists such that

D[Q]
mi〈a〉=⇒ T ′(2)

and S′ ≈ T ′. For (2) to match (1), all actions of
o−1[x1]. · · · .o−1[xn] must have reacted upon the
corresponding actions of o1[y1]. · · · .o1[yn] when
D[Q] has evolved to T ′, or S′ ≈ T ′ would not
hold. Next we show that (2) can be factorized as

D[Q] τ=⇒ C[Qσ|(0|0)]
mi〈a〉=⇒ T ′.(3)

For simplicity, we assume that (2) is

C[(x1)(Q|(o−1[x1]|o1[y1]))]
mi〈a〉−→ C ′[(x1)(Q′|(o−1[x1]|o1[y′1]))](4)

τ−→ T ′,

and we need to prove that

C[(x1)(Q|(o−1[x1]|o1[y1]))]
τ−→ C[Q[y1/x1]|(0|0)](5)

mi〈a〉−→ T ′.

The general case can be proved by induction. (4)
can be rewritten as

C[(x1)(Q|(o−1[x1]|o1[y1]))]
mi〈a〉−→ C ′[(x1)(Qσ|(o−1[x1]|o1[y1σ]))]

τ−→ C ′[Qσ[y1σ/x1]|(0|0)]
≡ C ′[Q[y1/x1]σ|(0|0)].

If the first action doesn’t have any effect on
(x1)(Q|(o−1[x1]|o1[y1])), then σ is []. If it does
affect the process (x1)(Q|(o−1[x1]|o1[y1])), then σ
must be [a/z] such that x1, a and z are pairwise
distinct. In either case, the syntactical equality
holds. On the other hand, (5) is

C[(x1)(Q|(o−1[x1]|o1[y1]))]
τ−→ C[Q[y1/x1]|(0|0)]

mi〈a〉−→ C ′[Q[y1/x1]σ|(0|0)].

So we have proved that (2) can be rearranged

as (3). Now C[Qσ|(0|0)]
mi〈a〉=⇒ T ′ implies that

some T exists such that C[Qσ]
mi〈a〉=⇒ T with

T ′ ≈ T . So S ≈ T . This closes up the bisimu-
lation game.

So R is a local bisimulation. 2

It is worth remarking that the lemma does not hold for
π-calculus. Therefore local bisimilarity for π-processes
is not closed under input prefixing operation.

Theorem 3.8 ≈ is a congruence equivalence:
(i) mi[x].P ≈ mi[x].Q whenever P ≈ Q;
(ii) P |O ≈ Q|O whenever P ≈ Q;
(iii) (x)P ≈ (x)Q whenever P ≈ Q;
(iv) [x=y]P ≈ [x=y]Q whenever P ≈ Q;
(v) !P ≈!Q whenever P ≈ Q.

Proof: (i) The proof is easy.
(ii) It suffices to show that {(P |O,Q|O) | P ≈ Q∧O ∈
Pχ}∪ ≈ is a local bisimulation up to ≈. Suppose
R ∈ Pχ and ~x is a sequence of names. It is rather
easy to show that (~x)((P |O)|R) ≈ (~x)(P |(O|R)) and

(~x)((Q|O)|R) ≈ (~x)(Q|(O|R)). If (~x)((P |O)|R)
mi〈y〉=⇒

P ′, then by (ii) of proposition 3.5 P ′′ exists such that

(~x)(P |(O|R))
mi〈y〉=⇒ P ′′ and P ′ ≈ P ′′. So by definition,

Q′′ exists with (~x)(Q|(O|R))
mi〈y〉=⇒ Q′′ and P ′′ ≈ Q′′.

Using proposition 3.5 again, one has Q′ such that

(~x)((Q|O)|R)
mi〈y〉=⇒ Q′ and Q′′ ≈ Q′.

(iii) The proof is similar to that of (ii).
(iv) {(C[[x=y]P], C[[x=y]Q]) | P ≈ Q ∧C[] ∈ SC} is a
local bisimulation. If x=y, then the result follows from
(ix) of theorem 3.6, (ii) and (iii). So assume x 6= y and

C[[x=y]P]
mi〈z〉=⇒ P ′. Consider only one case. Suppose

C[[x=y]P]
mi〈z〉=⇒ C ′[([x=y]P)σ] for some static context

C ′[] and some substitution σ such that xσ = yσ. Cor-

respondingly we have C[[x=y]Q]
mi〈z〉=⇒ C ′[([x=y]Q)σ].

By lemma 3.7, Pσ ≈ Qσ. The rest of the argument is
similar to that when x = y.
(v) R def= {(C[!P], C[!Q]) | P ≈ Q ∧ C[] ∈ SC} is a
local bisimulation up to ≈. Consider only one case. If

C[!P]
mi〈x〉=⇒ C[P ′|!P] is induced by P

mi〈x〉=⇒ P ′, then

Q
mi〈x〉=⇒ Q′ with P ′ ≈ Q′ by proposition 3.5. So

C[!Q]
mi〈x〉=⇒ C[Q′|!Q]. Now by (vii) of theorem 3.6, (ii)

and (iii), C[P ′|!P] ≈ C[Q′|!P] ≈ C[!P |Q′]RC[!Q|Q′] ≈
C[Q′|!Q]. 2

In [5] barbed bisimulation is proposed as a universal
tool applicable to a variety of process calculi. Let ≈b

be the barbed bisimilarity on χ-processes.

Theorem 3.9 ≈b is the same as ≈.

The proof of the theorem consists of two parts. In one
direction, one shows that ≈b is a local bisimulation.
In the other direction, one proves that ≈ is a barbed
bisimulation. Both are straightforward.

5

4. Higher order χ-calculus

There are two typical kinds of recursion mechanisms
employed in process algebras. In CCS the recursion
mechanism consists of the fix-expressions and the rule

E[fix(E)/X] α−→ E′

fix(E) α−→ E′ rec.

What one should notice about the rule is that it adds
nothing to the communication mechanism. What the
rule really says is that E[fix(E)/X] and fix(E) can be
regarded as syntactically the same. The same can be
said about the recursion mechanism via the duplicator
in π-calculus. So the first order approach essentially
admits infinite long expressions that can be coded up
by finite number of symbols. In a first order calcu-
lus, the recursion power is achieved syntactically. The
other approach is the higher order one which allows a
process to be the content of a communication. In a
higher order process calculus, unlike in the first order
case, the recursion and the communication mechanisms
are intertwined; the former is part of the latter. That
is to say that the recursion power is achieved semanti-
cally. The two methods are not unrelated. The higher
order one can code up the first order one, whereas the
first order one, in case of the higher order polyadic π-
calculus ([6]) and the (Plain) CHOCS ([7, 8]), is able
to imitate the higher order one.

We now take a look at χω, the higher order χ-
calculus. Part of the agenda in this section is to
demonstrate that local bisimulation is the right tech-
nical tool for proving equivalence of higher order pro-
cesses. Let V be the set of process variables, ranged
over by X, Y, Z, The set E of process expressions
is the least set consisting of the expressions defined by
the following abstract syntax:

E := 0 | X | mi[n].E | E|E | (x)E
| mi(X).E | mi[E].E,

where i ∈ {−1, 1}. For a subset V of V, let E [V] de-
note the set of process expressions whose free variables
are all in V . When V is a finite set {X1, . . . , Xn},
we write E [X1, . . . , Xn] for E [{X1, . . . , Xn}]. A higher
order χ-process is a process expression that does not
contain any variables. The set of all higher order χ-
processes is denoted by Pχω , which will be ranged
over by P,Q,R, The operational semantics for the
higher order χ-calculus is defined by the operational
rules of the first order χ-calculus together with the fol-
lowing rules, noticing that we have again left out all
the symmetric rules:

Sequention

mi[A].P
mi[A]−→ P

S1

gn(A) ∩ ln(P) = ∅
mi(X).P

mi〈A〉−→ P [A/X] S2

Parasition
Q

mi〈A〉−→ Q′

P |Q mi〈A〉−→ P |Q′ P4

Q
(~x)mi[A]−→ Q′ {~x} ∩ gn(P) = ∅

P |Q (~x)mi[A]−→ P |Q′ P5

Communication

P
(~x)mi[A]−→ P ′ Q

m−i〈A〉−→ Q′ {~x} ∩ gn(Q) = ∅
P |Q τ−→ (~x)(P ′|Q′) C3

Localization

P
mi〈A〉−→ P ′ x 6∈ gn(A)

(x)P
mi〈A〉−→ (x)P ′ L4

P
(~x)mi[A]−→ P ′ y ∈ gn(A) \ {~x}

(y)P
(y)(~x)mi[A]−→ P ′ L5

P
(~x)mi[A]−→ P ′ y 6∈ gn(A) \ {~x}

(y)P
(~x)mi[A]−→ (y)P ′ L6

In the rules, α ranges over all actions. Notice that in
this language, the replicator is unnecessary, a fact to
be justified below. Algebraic equivalences for higher
order processes are more interesting than those in the
first order case. Again the difficulty is to do with the
treatment of output actions. When comparing for ex-
ample ai[A].P and ai[B].Q, it is much too strong to
require A and B be syntactically the same in order
for ai[A].P and ai[B].Q to be equivalent. A refined
treatment allows us to regard the processes as equiva-
lent whenever A and B, P and Q are equivalent. The
higher order bisimilarities used in [7, 8] are precisely
equivalences of this kind. But still, these equivalences
are too strong. The reason is that when comparing
ai[A].P and ai[B].Q in this approach, the processes A
and P , respectively B and Q, are considered separately.
This overlooks any possible localization operators that
might surround ai[A].P . To take this into account,
context bisimilarity is proposed in [6]. It is shown in
the paper that context bisimilarity coincides with the
barbed bisimilarity on higher order π-processes.

Our approach to the equivalence of higher order χ-
processes is similar to that based on context bisimula-
tions. The definition of local bisimulation for higher or-
der χ-processes is completely the same as definition 3.1;

6

and the notion of local bisimulation up to ≈ can be
similarly defined as in 3.3. It follows that the results in
theorem 3.2, theorem 3.4, proposition 3.5, theorem 3.6,
and lemma 3.7 all hold for higher order χ-processes.
The proofs of them are just as simple.

Theorem 4.1 ≈ is preserved by all combinators:
(i) mi[x].P ≈ mi[x].Q whenever P ≈ Q;
(ii) P |O ≈ Q|O whenever P ≈ Q;
(iii) (x)P ≈ (x)Q whenever P ≈ Q;
(iv) [x=y]P ≈ [x=y]Q whenever P ≈ Q;
(v) !P ≈!Q whenever P ≈ Q;
(vi) mi[A].P ≈ mi[A].Q whenever P ≈ Q;
(vii) mi[A].P ≈ mi[B].P whenever A ≈ B.

Proof: We only prove (vii). For the sake of this proof,
let’s define Eo[X] to be the set of all process expressions
E in E [X] such that each occurrence of X is within
ai[F] for some a ∈ N and some process expression F .
We first prove an auxiliary fact: Suppose E ∈ E0[X].
Then

• if E[A/X]
mi〈x〉−→ P , then E[B/X]

mi〈x〉−→ Q such
that P ≡ F [A/X] and Q ≡ F [B/X] for some F
in Eo[X];

• if E[A/X] τ−→ P , then E[B/X] τ−→ Q such that
P ≡ F [A/X] and Q ≈ F [B/X] for some F in
Eo[X].

The proof of the fact goes as follows:

• If E[A/X]
mi〈x〉−→ P , then clearly P ≡ F [A/X] for

some F ∈ Eo[X] and E[B/X]
mi〈x〉−→ F [B/X].

• If E[A/X] τ−→ P is a first order communica-
tion, then P ≡ F [A/X] for some F ∈ Eo[X] and
E[B/X] τ−→ F [B/X].

• If E[A/X] τ−→ P is a higher order communica-
tion, then P ≡ F [A/X] for some F ∈ Eo[X]. Now
E[B/X] τ−→ Q by carrying out the ‘same’ commu-
nication. If we replace by A all the occurrences of
B in Q that do not appear in an output expression,
we get F [B/X]. By (i) through (vi), F [B/X] ≈ Q.

This concludes the proof of the auxiliary fact. Let R
be {(E[A/X], E[B/X]) | A ≈ B ∧ E ∈ Eo[X]}. Now

suppose E[A/X]RE[B/X] and E[A/X]
mi〈x〉=⇒ P . Then

P ≡ F [A/X] for some F ∈ Eo[X]. By the above fact,
we can find, by repeatedly using (ii) of proposition 3.5,

some Q such that E[B/X]
mi〈x〉=⇒ Q and F [B/X] ≈ Q.

This should be enough of an evidence that R is a local

bisimulation up to ≈. The result follows by observing
that (mi[A].P)R(mi[B].P). 2

Let E,F ∈ E [X1, . . . , Xn]. Define E ≈ F if for any
processes P1, . . . , Pn ∈ Pχω , it holds that E[~P/ ~X] ≈
F [~P/ ~X].

Corollary 4.2 Suppose E ∈ E [X]. If A ≈ B, then
E[A/X] ≈ E[B/X].

5. General recursion in χω

In [7], the general recursion recX.E is defined as
follows:

recX.E
def= (a)(a?X.(E|a!X)|a!(a?X.(E|a!X))).

One has

recX.E
τ−→ (a)(E[a?X.(E|a!X)]|a!(a?X.(E|a!X))).

This reduction looks like an operational simulation of
the recursion equation recX.E = E[recX.E/X]. Un-
fortunately the equation is not verified by the higher or-
der bisimilarity. This is because the higher order bisim-
ilarity has too strong a distinguishing power. However,
the encoding per se is good, a fact we are going to
prove.

Suppose E ∈ E [X] and a does not occur in E. The
following abbreviations will be used:

Wa(E) def= a1(X).(E|a−1[X]),

recX.E
def= (a)(Wa(E)|a−1[Wa(E)]).

Before proving the property concerning recX.E, we
first establish a useful result. Let F [ΩE] denote the
expression (a)(F [Wa(E)/X]|a−1[Wa(E)]) where a is
fresh.

Lemma 5.1 Suppose E,F ∈ E [X], b is fresh and F ′

is obtained from F [Wa(E)/X] by replacing some oc-
currences of Wa(E) by Wb(E). Then F [ΩE] is locally
bisimilar to (a)(b)(F ′|(a−1[Wa(E)]|b−1[Wb(E)])).

Proof: Suppose (a)(F [Wa(E)/X]|a−1[Wa(E)]) τ−→
P is caused by a higher order communication between
F [Wa(E)/X] and a−1[Wa(E)]. Then clearly

P ≈ (a)(H[Wa(E)/X]|a−1[Wa(E)])

for some H ∈ E [X]. By carrying out essentially the
same higher order communication between either F ′

and a−1[Wa(E)] or F ′ and b−1[Wb(E)], we get, for
some Q ∈ Pχω ,

(a)(b)(F ′|(a−1[Wa(E)]|b−1[Wb(E)]))
τ−→≈ (a)(b)(H ′|(a−1[Wa(E)]|b−1[Wb(E)]))

7

where H ′ is obtained from H[Wa(E)/X] by replacing
some occurrences of a−1[Wa(E)] by b−1[Wb(E)]. From
this example, it is easy to see that{

((~x)(a)(F [Wa(E)/X]|a−1[Wa(E)]),
(~x)(a)(F ′|(a−1[Wa(E)]|b−1[Wb(E)])))

∣∣∣∣ φ

}
is a local bisimulation up to ≈, where φ is

E,F ∈ E [X], a, b 6∈ n(E,F), x1, . . . , xn ∈ N ,
and F ′ is obtained from F [Wa(E)/X] by re-
placing some occurrences of a−1[Wa(E)] by
b−1[Wb(E)].

Details are omitted. 2

Theorem 5.2 recX.E ≈ E[recX.E/X] provided that
E ∈ E [X].

Proof: We show that the following relation{
(F [ΩE], F [recX.E])

∣∣∣∣ gn(E) ∩ ln(F) = ∅,
E ∈ E [X], F ∈ E [X]

}
is a local bisimulation up to ≈. Let R be a process and
~x a sequence of names. Suppose

(~x)((a)(F [Wa(E)/X]|a−1[Wa(E)])|R) τ−→ P.

The most interesting case is when a higher order
communication between F [Wa(E)/X] and a−1[Wa(E)]
happen. Without loss of generality, let F be X|F1.
Then

P ≡ (~x)((a)(((E[Wa(E)/X]|a−1[Wa(E)])
|F1[Wa(E)/X])|0)|R)

≈ (~x)((a)(b)(((E[Wb(E)/X]|b−1[Wb(E)])
|F1[Wa(E)/X])|a−1[Wa(E)])|R)

≈ (~x)(a)((((b)(E[Wb(E)/X]|b−1[Wb(E)])
|R)|F1[Wa(E)/X])|a−1[Wa(E)])

≡ (~x)H[ΩE],

where H≡((b)(E[Wb(E)/X]|b−1[Wb(E)])|R)|F1∈E [X].
Correspondingly, we have

(~x)(F [recX.E/X]|R)
≡ (~x)((recX.E|F1[recX.E/X])|R)
τ−→ (~x)(((a)(E[Wa(E)/X]|a−1[Wa(E)])

|F1[recX.E/X])|R)
≈ (~x)(H[recX.E/X])

to match the previous reduction. The details of the
proof are omitted. So

recX.E ≈ (a)(E[Wa(E)/X]|a−1[Wa(E)])
≈ E[recX.E/X],

which completes the proof. 2

6. Conclusion

There are several questions one usually asks about a
mathematical model for concurrent computations. One
is concerned with the primitivity of the model. Does
it capture the essence of concurrent computations in
a simple yet elegant way? The χ-calculus is gram-
matically simple and conceptually coherent. Another
question is to do with concurrency degree. To what
extent does the model permit parallelism? There is
little doubt that the χ-calculus allows more freedom
than the π-calculus in this respect. A manifestation of
this fact is that the operational semantics of the call-
by-name λ-calculus can be imitated in χ-calculus in a
straightforward manner.

The paper has just begun the study of χ-like process
algebras. Quite a lot of interesting questions await to
be answered. It is hoped that further research will tell
us more about what χ really differs from π and will
eventually lead us to a canonical process calculus that
encapsulates concurrent computations, object-oriented
programming ([9]), full λ-calculus ([1, 3]) and proofs of
linear logic ([2]).

References

[1] H. Barendregt, 1984. The Lambda Calculus: Its Syntax
and Semantics. Studies in Logic and Foundations of
Mathematics, North-Holland.

[2] G. Bellin and P. Scott, 1992. On the π-Calculus and
Linear Logic. Technical Report, LFCS, Department of
Computer Science, University of Edinburgh.

[3] R. Milner, 1992. Functions as Processes. Journal of
Mathematical Structures in Computer Science, 2, 119–
141, Cambridge University Press.

[4] R. Milner, J. Parrow and D. Walker, 1992. A Calculus
of Mobile Processes. Information and Computation,
100, Part I:1–40, Part II:41–77, Academic Press.

[5] R. Milner and D. Sangiorgi, 1992. Barbed Bisimula-
tion, 19th ICALP, LNCS 623, W. Knich ed. 685–695,
Springer Verlag.

[6] D. Sangiorgi, 1993. Expressing Mobility in Process
Algebras: First-Order and Higher-Order Paradigms.
PhD thesis, Department of Computer Science, Uni-
versity of Edinburgh.

[7] B. Thomsen, 1993. Plain CHOCS—A Second Genera-
tion Calculus for Higher Order Processes. Acta Infor-
matica, 30, 1–59, Springer Verlag.

[8] B. Thomsen, 1995. A Theory of Higher Order Commu-
nicating Systems. Information and Computation, 116,
38–57, Academic Press.

[9] D. Walker, 1995. Objects in the π-Calculus. Informa-
tion and Computation, 116, 253–271, Academic Press.

8

