
Bisimulation Lattice of Chi Processes?

Yuxi Fu??

Department of Computer Science
Shanghai Jiaotong University, Shanghai 200030, China

Abstract. Chi calculus was proposed as a process algebra that has a
uniform treatment of names. The paper carries out a systematic study
of bisimilarities for chi processes. The notion of L-bisimilarity is intro-
duced to give a possible classification of bisimilarities on chi processes.
It is shown that the set of L-bisimilarities forms a four element lattice
and that well-known bisimilarities for chi processes fit into the lattice
hierarchy. The four distinct L-bisimilarities give rise to four congruence
relations. Complete axiomatization system is given for each of the four
relations. The bisimulation lattice of asynchronous chi processes and that
of asymmetric chi processes are also investigated. It turns out that the
former consists of two elements while the latter twelve elements. Finally
it is pointed out that the asynchronous asymmetric chi calculus has a
bisimulation lattice of eight elements.

The χ-calculus ([4]) was introduced with two motivations in mind. One is to
remove the ad hoc nature of prefix operation in π-calculus ([11]) by having a uni-
form treatment of names ([3]), thus arriving at a conceptually simpler language.
The second is to materialize a communication-as-cut-elimination viewpoint ([5]),
therefore taking up a proof theoretical approach to concurrency theory, an ap-
proach that has been proved very fruitful in the functional world. Independently
Parrow and Victor have come up with essentially the same language, Update
Calculus as they term it ([13]). They share, we believe, the first motivation but
have quite a different second one originated from concurrent constraint program-
ming. The difference between π and χ lies mainly in the way communications
happen. The former adopts the familiar value-passing mechanism whereas the
latter takes an information exchange or information update viewpoint. The al-
gebraic theory of the language has been investigated in the above mentioned pa-
pers. Parrow and Victor have looked into strong bisimilarity and axiomatization
of it for Update Calculus, while Fu has examined an observational bisimilarity
for χ-processes. More recently, Parrow and Victor have proposed Fusion Calculus
([14, 17]), which is a polyadic version of χ-calculus. The authors have also stud-
ied an observational equivalence called weak hyperbisimilarity. What we know
about the language, albeit little, tells us that it can practically do everything π
can do and its algebraic properties are just as satisfactory. The studies carried
out so far are however preliminary.
? ASIAN ’98 , Lecture Notes in Computer Science 1538, 245-262, 1998.

?? Supported by the National Nature Science Foundation of China.

The objective of this paper is to continue our examination of the algebraic
theory of χ-calculus. Section 1 reviews the operational semantics of χ. Section 2
defines L-bisimilarities and investigates their relationship. Section 3 gives alter-
native characterizations of L-bisimilarities. Section 4 presents a complete ax-
iomatization system for each of the congruence relations induced by the four
L-bisimilarities. The next three sections look into the L-bisimilarities of asyn-
chronous, asymmetric, asynchronous asymmetric χ-calculi respectively.

1 Operational Semantics

In π-calculus there are two kinds of closed names, one has dummy names as x
in m(x).P and local names as x in (x)mx.P . In simple words, the χ-calculus
is obtained from π-calculus by unifying these names. This identification forces
a unification of input and output prefix operations. The two π-processes just
mentioned then turn into (x)m[x].P and (x)m[x].P respectively. In the result-
ing calculus communications are completely symmetric as exemplified by the
following reductions:

m[x].P |m[x].Q τ−→ P |Q
(x)(R|(m[y].P |m[x].Q)) τ−→ R[y/x]|(P [y/x]|Q[y/x]), where y 6= x

(x)m[x].P |(y)m[y].Q τ−→ (z)(P [z/x]|Q[z/y]), where z is fresh

The reader is referred to [3–6, 13, 14, 17] for more explanations and examples.
Let N be a set of names, ranged over by lower case letters. N , the set of

conames, denotes {x | x ∈ N}. The following conventions will be used: α ranges
over N ∪N , µ over {τ} ∪ {α[x], αx | x ∈ N}, and δ over {τ} ∪ {α[x], αx, [y/x] |
x, y ∈ N}. The set C of χ-processes are defined by BNF as follows:

P := 0 | α[x].P | P |P | (x)P | [x=y]P | P+P

The process α[x].P is in prefix form. Here α or α is the subject name, and x
the object name, of the prefix. The composition operator “|” is standard. In
(x)P the name x is declared local; it cannot be seen from outside. The set of
global names, or nonlocal names, in P is denoted by gn(P). We will adopt the
α-convention saying that a local name in a process can be replaced by a fresh
name without changing the syntax of the process. The choice combinator ‘+’
is well-known. The process P+Q acts either as P or as Q exclusively. In this
paper we leave out the replication operator. The result of this paper would not
be affected had it been included.

The operational semantics can be defined either by reduction semantics ([4])
or in terms of a labeled transition system ([3]). Here we opt for a pure transition
semantics as it helps to present our results with clear-cut proofs. The labeled
transition system given below defines an early semantics. The reason to use an
early semantics is that the definition of weak bisimulation is more succinct in

early semantics than in late semantics. In the following formulation, symmetric
rules are systematically omitted:

α[x].P
α[x]−→ P

Sqn
P

δ−→ P ′

[x=x]P δ−→ P ′Cnd
P

δ−→ P ′

P+Q
δ−→ P ′ Sum

P
µ−→ P ′

P |Q µ−→ P ′|QCmp0

P
[y/x]−→ P ′

P |Q [y/x]−→ P ′|Q[y/x]
Cmp1

P
αx−→ P ′ Q

α[x]−→ Q′

P |Q τ−→ P ′|Q′ Cmm0

P
αx−→ P ′ Q

αx−→ Q′ x 6∈ gn(P |Q)
P |Q τ−→ (x)(P ′|Q′) Cmm1

P
α[x]−→ P ′ Q

α[x]−→ Q′

P |Q τ−→ P ′|Q′ Cmm2

P
α[x]−→ P ′ Q

α[y]−→ Q′ x 6= y

P |Q [y/x]−→ P ′[y/x]|Q′[y/x] Cmm3

P
δ−→ P ′ x 6∈ n(δ)

(x)P δ−→ (x)P ′ Loc0

P
α[x]−→ P ′ x 6∈ {α, α}
(x)P

αy−→ P ′[y/x] Loc1

P
[y/x]−→ P ′

(x)P τ−→ P ′ Loc2

Labeled transitions of the form
[y/x]−→, called update transitions, are first intro-

duced in [3, 13] to help define communications in a transition semantics. In ap-
plying Loc1 local names need be renamed if necessary to prevent y from being
captured. In Loc0, n(δ) denotes the set of names appeared in δ. The notation
[y/x] occurred in P [y/x] for example is an atomic substitution of y for x. A
general substitution σ is the composition of atomic substitutions, whose effect is
defined by P [y1/x1] . . . [yn/xn] def= (P [y1/x1] . . . [yn−1/xn−1])[yn/xn]. The com-
position of zero atomic substitution is an empty substitution [] whose effect is
vacuous.

The next lemma collects some technical results whose proofs are simple in-
ductions on derivation.

Lemma 1. (i) If P
µ−→ P ′ then Pσ

µσ−→ P ′σ.

(ii) If P
[y/x]−→ P ′ and xσ 6= yσ then Pσ

[yσ/xσ]−→ P ′σ[yσ/xσ].

(iii) If P
[y/x]−→ P ′ and xσ = yσ then Pσ

τ−→ P ′σ.

(iv) If P
[y/x]
=⇒ P ′ then P

[x/y]
=⇒ P ′[x/y].

(v) P
αx−→ P ′ if and only if P

αz−→ P1 for some fresh z such that P ′ ≡ P1[x/z].
(vi) Suppose a 6∈ gn(P). If (x)(P |a[x]) τ−→ ay−→ P ′ then (x)(P |a[x])

ay−→ τ−→ P ′.

(vii) Suppose a 6∈ gn(P). If (x)(P |a[x]) τ−→ P ′|a[y] then P
[y/x]−→ P ′.

Let =⇒ be the reflexive and transitive closure of τ−→. We will write
µ

=⇒
(δ=⇒) for =⇒ µ−→=⇒ (=⇒ δ−→=⇒). We will also write

µ̂
=⇒ (δ̂=⇒) for

µ
=⇒ (δ=⇒)

if µ 6= τ (δ 6= τ) and for =⇒ otherwise. A sequence of names x1, . . . , xn will be
abbreviated to x; and consequently (x1) . . . (xn)P will be abbreviated to (x)P .
When the length of x is zero, (x)P is just P .

2 Bisimulation Lattice

We introduce in this section L-bisimilarities, which are refinement of the local
bisimilarity of [4]. The reason to study L-bisimilarities is that they provide a
framework to understand bisimilarity relations of interest.

In a symmetric calculus such as χ, it does not make much sense to say that an
action with positive, respectively negative, subject name is an input, respectively
output, action. An action is an input or output, depending on if the object name
is being received or being sent out. Let o denote the set {a[x] | a, x ∈ N} of
output actions, o the set {a[x] | a, x ∈ N} of co-output actions, i the set {ax |
a, x ∈ N} of input actions, i the set {ax | a, x ∈ N} of co-input actions and u the
set {[y/x] | x, y ∈ N} of updates. Let L stand for {∪S | S ⊆ {o, o, i, i, u}∧S 6= ∅}.

Definition 2. Let R be a binary symmetric relation on C and let L be an ele-
ment of L. The relation R is an L-bisimulation if whenever PRQ then for any
process R and any sequence x of names it holds that if (x)(P |R)

φ−→ P ′ for

φ ∈ L ∪ {τ} then there exists some Q′ such that (x)(Q|R)
φ̂

=⇒ Q′ and P ′RQ′.
The L-bisimilarity ≈L is the largest L-bisimulation.

This is a uniform definition of 31 L-bisimilarities. The intuition behind is that
≈L is what an observer recognizes if he/she is capable of observing actions in
L and only in L. We will show that the L-bisimilarities collapse to four distinct
relations. In the rest of this section let L be an arbitrarily fixed element of L.
First we establish a few technical lemmas. The next one follows directly from
definition.

Lemma 3. If P =⇒ P1 ≈L Q and Q =⇒ Q1 ≈L P then P ≈L Q.

For φ ∈ L, let 〈φ〉 be a process such that (i) 〈φ〉 φ−→ 0 and (ii) if 〈φ〉 φ−→ A then
A ≡ 0.

Lemma 4. Suppose a 6∈ gn(P |Q). Then (i) (x)(P |a[x]) ≈L (x)(Q|a[x]) implies
P ≈L Q; and (ii) P |a[x] ≈L Q|a[x] implies P ≈L Q.

Proof. (i) Suppose φ ∈ L and n(φ) ∩ gn(P |Q) = ∅. As (x)(P |a[x])|a[x].〈φ〉 φ
=⇒

(P |0)|0, Q1 exists such that (x)(Q|a[x])|a[x].〈φ〉 φ
=⇒ (Q1|0)|0 ≈L (P |0)|0, which

implies (x)(Q|a[x]) ax=⇒ Q1|0 ≈L P |0, which in turn implies Q =⇒ Q1. Similarly
P1 exists such that P =⇒ P1 ≈L Q. By Lemma 3, P ≈L Q. (ii) can be proved
similarly. ut

Lemma 5. If P ≈L Q then Pσ ≈L Qσ for an arbitrary substitution σ.

Proof. Suppose P ≈L Q. We only have to show that for x ∈ gn(P |Q) and y 6= x
one has that P [y/x] ≈L Q[y/x]. Let b be a distinct fresh name. Suppose φ ∈ L

and n(φ) ∩ gn(P |Q) = ∅. By definition the actions (x)(P |(b[y]|b[x].〈φ〉)) φ
=⇒

P [y/x]|(0|0) must be matched up by

(x)(Q|(b[y]|b[x].〈φ〉)) φ
=⇒ Q1|(0|0). (1)

If (x)(Q|(b[y]|b[x].〈φ〉)) τ−→ (x′)(Q2|(b[y]|b[x′].〈φ〉)) then by symmetry and α-
convention the reduction is the same as

(x)(Q|(b[y]|b[x].〈φ〉)) τ−→ (x)(Q3|(b[y]|b[x].〈φ〉))

such that Q
τ−→ Q3. It follows that (1) can be factorized as follows

(x)(Q|(b[y]|b[x].〈φ〉)) =⇒ (x)(Q′|(b[y]|b[x].〈φ〉))
τ−→ Q′[y/x]|(0|〈φ〉)
φ

=⇒ Q1|(0|0)

for some Q′ and Q1 such that Q =⇒ Q′ and Q′[y/x] =⇒ Q1 ≈L P [y/x]. By
Lemma 1, Q[y/x] =⇒ Q′[y/x]. Similarly P1 exists such that P [y/x] =⇒ P1 ≈L

Q[y/x]. By Lemma 3, P [y/x] ≈L Q[y/x]. ut

By definition the L-bisimilarity is closed under localization and composition.
Using Lemma 5 it can be easily seen that ≈L is closed under prefix operation.

Theorem 6. If P ≈L Q and O ∈ C then (i) α[x].P ≈L α[x].Q; (ii) P |O ≈L

Q|O; (iii) (x)P ≈L (x)Q; and (iv) [x=y]P ≈L [x=y]Q.

We investigate next the order structure of L-bisimilarities.

Theorem 7. The following properties hold of the L-bisimilarities:
(i) ≈o 6⊆≈o; ≈o 6⊆≈o. (ii) ≈L⊆≈u. (iii) ≈L⊆≈i=≈i.

Proof. (i) It is obvious that (x)a[x].(b)(b[x]|b[z]) 6≈o a[z]+(x)a[x].(b)(b[x]|b[z]).
It takes a while to see that (x)a[x].(b)(b[x]|b[z]) ≈o a[z]+(x)a[x].(b)(b[x]|b[z]).

(ii) To prove ≈L⊆≈u, one only has to show that if P ≈L Q and P
[y/x]−→ P ′

then Q′ exists such that Q
[y/x]
=⇒ Q′ and P ′ ≈L Q′. Now P

[y/x]−→ P ′ implies that
(x)(P |a[x]) τ−→ P ′|a[y] for a fresh a. So (x)(Q|a[x]) =⇒ Q′|a[y] for some Q′

such that P ′|a[y] ≈L Q′|a[y]. It follows from Lemma 4 that P ′ ≈L Q′. Clearly
(x)(Q|a[x]) =⇒ Q′|a[y] can be factorized as

(x)(Q|a[x]) =⇒ (x)(Q1|a[x]) τ−→ Q2|a[y] =⇒ Q′|a[y],

where Q =⇒ Q1. By (vii) of Lemma 1, (x)(Q1|a[x]) τ−→ Q2|a[y] implies Q1
[y/x]−→

Q2. Hence Q
[y/x]
=⇒ Q′.

(iii) Assume P ≈L Q and P
αx−→ P ′. Suppose φ ∈ L and n(φ)∩gn(P |Q) = ∅.

Now P |(α[z]+〈φ〉) τ−→ P1|0 for some fresh z such that P ′ ≡ P1[x/z]. There has
to be some Q1 such that Q|(α[z]+〈φ〉) =⇒ Q1|0 ≈L P1|0. So Q

αz=⇒ Q1 ≈L P1.
Therefore Q

αx=⇒ Q1[x/z] ≈L P1[x/z] ≡ P ′ by Lemma 1 and Lemma 5. Hence
≈L⊆≈i=≈i. ut

≈i,≈i,≈u

≈o∪o

≈o≈o

H
HHHY

�
���*

H
HHHY

�
���*

Fig. 1. The Bisimulation Lattice of Chi Processes

In the proof of (iii) of the above theorem, we need to use a fresh name z

because we cannot conclude R
αx−→ R′ from R|α[x] τ−→ R′|0. It may well be that

R participates in the communication by performing R
α[x]−→ R′.

Let L(χ) be {≈L| L ∈ L}, the set of all L-bisimilarities. L(χ) is a partial
order when equipped with ⊆. For ≈L1 ,≈L2∈ L(χ), ≈L1∪L2 is the infimum. Theo-
rem 7 says that L(χ) is a four element lattice. The diagram in Fig. 1 is a pictorial
representation of the lattice. In the diagram each node is the principal repre-
sentative of a number of L-bisimilarities that boil down to a same relation. An
arrow indicates a strict inclusion. The bottom element is represented by ≈o∪o

while the top element is by ≈i=≈i=≈u. We will call (L(χ),⊆) the bisimulation
lattice of χ-processes. The lattice structure suggests that the ability to observe
output actions is stronger than that to observe input actions. One way to un-
derstand this is that the effect of an output action is unknown whereas that of
an input action has already been delimited.

3 Alternative Characterization

The definition of L-bisimilarity is natural but intractable. It contains universal
quantifications over both processes and names. In this section alternative char-
acterizations of the four distinct L-bisimilarities are presented. For each of the
relations, an open style bisimilarity is shown to coincide with it. In the alterna-
tive definitions, one still has a universal quantification over substitutions. But it
is clear that one only has to consider a finite number of them at each step. First
we will see how barbed bisimilarity fits into the lattice hierarchy.

3.1 Barbed Bisimilarity

Barbed bisimilarity ([12]) seems to be the weakest bisimulation equivalence pro-
posed so far. It applies to a whole range of process calculi and therefore acts as
a convenient tool to study relationships between different calculi. The relation-
ship of barbed bisimilarity to other bisimilarities is itself an interesting question.
Usually it is easy to show that a given bisimilarity is included in the barbed one.
The difficulty is in deciding if the inclusion is strict. This section answers the
question for χ-processes.

Definition 8. A process P is strongly barbed at a, notation P↓a, if P
αx−→ P ′

or P
α[x]−→ P ′ for some P ′ such that a ∈ {α, α}. P is barbed at a, notation

P⇓a, if some P ′ exists such that P =⇒ P ′↓a. A binary relation R is barbed if
∀a ∈ N .P⇓a ⇔ Q⇓a whenever PRQ.

Definition 9. Let R be a barbed symmetric relation on C. It is called a barbed
bisimulation if whenever PRQ then for any R and any sequence x of names it
holds that if (x)(P |R) τ−→ P ′ then Q′ exists such that (x)(Q|R) =⇒ Q′ and
P ′RQ′. The barbed bisimilarity ≈b is the largest barbed bisimulation.

The next result locates ≈b in the bisimulation lattice.

Theorem 10. ≈b is the same as ≈i.

Proof. As ≈i is clearly barbed, ≈i⊆≈b. To prove the reverse inclusion, first
notice that ≈b is closed under substitution, the proof of which is similar to
that of Lemma 5. Now suppose P ≈b Q and P

αx−→ P ′. By (v) of Lemma 1
P

αz−→ P1 for some fresh z such that P ′ ≡ P1[x/z]. Let a be fresh. Now
P |(α[z].a[a]|a[a]) τ−→ τ−→ P1|(0|0). This sequence of reductions must be matched
up by Q|(α[z].a[a]|a[a]) =⇒ Q1|(0|0) ≈b P1|(0|0). There are only two ways for

Q to evolve into Q1: either Q
α[z]
=⇒ Q1 or Q

αz=⇒ Q1. The former is impossi-
ble because z is fresh. Hence Q

αz=⇒ Q1 ≈b P1. It follows from Lemma 1 that
Q

αx=⇒ Q1[x/z] ≈b P1[x/z] ≡ P ′. Conclude that ≈b⊆≈i. ut

3.2 Open Bisimilarity

Open bisimilarity is proposed by Sangiorgi in [16] for π-processes as a “correction
of late bisimulation”. This section defines open bisimilarity for χ-processes and
relates it to one of the L-bisimilarities.

Definition 11. Let R be a binary symmetric relation on C. It is called an open
bisimulation if whenever PRQ then for any substitution σ it holds that if Pσ

δ−→

P ′ then Q′ exists such that Qσ
δ̂=⇒ Q′ and P ′RQ′. The open bisimilarity ≈open

is the largest open bisimulation.

It is clear from the definition that ≈open is closed under substitution.

Lemma 12. ≈open is closed under localization and composition.

This easy lemma can be proved by constructing appropriate bisimulations.

Theorem 13. ≈open coincides with ≈o∪o.

Proof. By Lemma 5 and the proof of Theorem 7, (o ∪ o)-bisimilarity is an open
bisimulation. By Lemma 12, open bisimilarity is an (o ∪ o)-bisimulation. ut

The definition of open bisimilarity makes it easy to give axiomatization sys-
tem for finite χ-processes. Theorem 13 enables us to axiomatize the bottom
element of the bisimulation lattice L(χ). In order to do the same for the other
three elements of the bisimulation lattice, one would like to characterize these
three L-bisimilarities in an ‘open’ style, so to speak. This is precisely what we
are going to do next. The intuition for the following definition comes from the
example given in the proof of (i) of Theorem 7.

Definition 14. Let R be a binary symmetric relation on C. It is called an open
i-bisimulation (open o-bisimulation, open o-bisimulation) if whenever PRQ then
for any substitution σ it holds that
(i) if Pσ

φ−→ P ′ for φ ∈ i∪i∪u∪{τ} (φ ∈ o∪i∪i∪u∪{τ}, φ ∈ o∪i∪i∪u∪{τ})

then Q′ exists such that Qσ
φ̂

=⇒ Q′ and P ′RQ′; and

(ii) if Pσ
α[x]−→ P ′ (Pσ

a[x]−→ P ′, Pσ
a[x]−→ P ′) then some Q′ exists such that

P ′RQ′ and either Qσ
α[x]
=⇒ Q′ (Qσ

a[x]
=⇒ Q′, Qσ

a[x]
=⇒ Q′) or Qσ

αz=⇒[x/z]
=⇒ Q′

(Qσ
az=⇒[x/z]

=⇒ Q′, Qσ
az=⇒[x/z]

=⇒ Q′) for some fresh z.
The open i-bisimilarity (open o-bisimilarity, open o-bisimilarity), denoted by
≈i

open (≈o
open, ≈o

open), is the largest open i-bisimulation (open o-bisimulation,
open o-bisimulation).

The next theorem explains the reason to have Definition 14.

Theorem 15. (i) ≈o
open=≈o; (ii) ≈o

open=≈o; (iii) ≈i
open=≈i.

Proof. It is enough to see how to establish (iii). Suppose P ≈i Q and P
α[x]−→ P ′.

For a fresh name z one has P |α[z]
[x/z]−→ P ′|0. As ≈i=≈u, Q′ exists such that

Q|α[z]
[x/z]
=⇒ Q′|0 ≈i P ′|0. There are only two possibilities: either Q

α[x]
=⇒ Q′ ≈i P ′

or Q
αz=⇒[x/z]

=⇒ Q′ ≈i P ′. Hence ≈i⊆≈i
open by Lemma 5.

To prove the reverse inclusion we use the fact that≈i
open is by definition closed

under substitution. We only have to show that the composition and localization
operators preserve the relation ≈i

open. To prove that {((v)(P |R), (v)(Q|R)) |
P ≈i

open Q} is an open i-bisimulation, it is sufficient to examine the cases where
P performs an output action. We consider only one case:

– Suppose that (v)(P |R) αz−→ (u)(P ′[z/y]|R[z/y]), where y ∈ {v}, is derived

from P
α[y]−→ P ′ by applying rule Loc1. Suppose P

α[y]−→ P ′ is matched up

by Q
αw=⇒ Q1

[y/w]
=⇒ Q′ for some Q1, Q′ and fresh w. By Lemma 1, Q

αz=⇒
Q1[z/w]

[y/z]
=⇒ Q′[z/w][y/z] ≡ Q′[y/z] as w 6∈ gn(Q′). By (iv) of Lemma 1,

Q
αz=⇒ Q1[z/w]

[z/y]
=⇒ Q′[y/z][z/y] ≡ Q′[z/y]. It follows that

(v)(Q|R) αz=⇒ (v)(Q1[z/w]|R) =⇒ (u)(Q′[z/y]|R[z/y])

matches up (v)(P |R) αz−→ (u)(P ′[z/y]|R[z/y]).

The closure property enables us to conclude that ≈i
open is an i-bisimulation. ut

The open style bisimilarities are particularly suitable for χ-like process calculi
in which names are uniform.

4 Axiomatization

The L-bisimilarities are not congruence relations. To get a congruence relation
from ≈L we use the standard approach.

Definition 16. P =L Q if and only if P ≈L Q and whenever P
τ−→ P ′ (Q τ−→

Q′) then Q′ (P ′) exists such that Q
τ=⇒ Q′ (P τ=⇒ P ′) and P ′ ≈L Q′.

We will call =L the L-congruence on χ-processes. According to the bisimula-
tion lattice, there are only four distinct L-congruence relations. The aim of this
section is to give complete axiomatization systems for all the four distinct L-
congruence relations. In this section we omit most of the proofs since they are
very much similar to the corresponding proofs in [7, 10]. In the axiomatization we
need a prefix operation that generalizes the standard τ -operation. It is defined
as follows:

[y|x].P def= (a)(a[y]|a[x].P) where a is fresh.

The next result is known as Hennessy Lemma. It is very useful in the study of
axiomatization systems.

Lemma 17. P ≈L Q if and only if either [x|x].P =L Q or P =L Q or P =L

[x|x].Q.

For purpose of axiomatization, let π and γ range over {α[x], [y|x] | x, y ∈ N}.
In the rest of this section M and N denote finite lists of match equalities x=y.
Suppose M is x1=y1, . . . , xn=yn. Then [M]P denotes [x1=y1] . . . [xn=yn]P . If
M logically implies N , we write M ⇒ N ; and if both M ⇒ N and N ⇒ M we
write M ⇔ N . If M is an empty list, it plays the role of logical truth, in which
case [M]P is just P . Clearly a list M of match equalities defines an equivalence
relation on the set n(M) of names appeared in M . We use σM to denote an
arbitrary substitution that replaces all members of an equivalence class by a
representative of that class.

In [16] Sangiorgi presents a complete system for strong open congruence on
π-processes. Parrow and Victor consider in their paper ([13]) two axiomatization
systems for strong hyperbisimilarity, one with match operator and one without
match operator. In Fig. 2 a conditional equational system AS is defined together
with some derived rules and their justifications. The expansion law is the follow-
ing equation:

P |Q =

∑
i[Mi](x)πi.(Pi|Q) +

∑πi=ai[xi]

γj=bj [yj]
[Mi][Nj](x)(y)[ai=bj][xi|yj].(Pi|Qj)+∑

j [Nj](y)γj .(P |Qj) +
∑πi=ai[xi]

γj=bj [yj]
[Mi][Nj](x)(y)[ai=bj][xi|yj].(Pi|Qj)

L1 (x)0 = 0
L2 (x)α[y].P = 0 x ∈ {α, α}
L3 (x)α[y].P = α[y].(x)P x 6∈ {y, α, α}
L4 (x)(y)P = (y)(x)P
L5 (x)[y=z]P = [y=z](x)P x 6∈ {y, z}
L6 (x)(P+Q) = (x)P+(x)Q
L7 (x)[x=y]P = 0
L8 (x)[y|x].P = [y|y].P [y/x] x 6= y
L9 (x)[y|z].P = [y|z].(x)P x 6∈ {y, z}
M1 [M]P = [N]P if M ⇔ N
M2 [x=y]P = [x=y]P [y/x]
M3 [x=y](P+Q) = [x=y]P+[x=y]Q
S1 P+0 = P
S2 P+Q = Q+P
S3 P+(Q+R) = (P+Q)+R
S4 [x=y]P+P = P
U1 [y|x].P = [x|y].P
U2 [x|x].P = [y|y].P
U3 [y|x].P = [y|x].[x=y]P

Expansion Law

LD1 (x)[x|x].P = [y|y].(x)P U2 and L9
MD1 [x=y].0 = 0 S1 and S4
MD2 [x=x].P = P M1
MD3 [M]P = [M](PσM) M2
SD1 P+P = P MD2 and S4
SD2 [M]P+P = P S-rules
UD1 [y|x].P = [y|x].P [y/x] U3 and M2

Fig. 2. Axiom System AS and its Derived Rules

where P is
∑

i[Mi](x)πi.Pi and Q is
∑

j [Nj](y)γj .Qj . Rules concerning equiva-
lence and congruence relations have been omitted. This is Victor and Parrow’s
system without mismatch. The only difference is that we use a symmetric update
prefix operator.

We will write AS ∪ {R1, . . . , Rn} ` P = Q to mean that the equality P = Q
is derivable from the rules and axioms of AS together with rules R1, . . . , Rn.
When no confusion arises, we simply write P = Q. We will also write P

R= Q to
indicate that R is the major axiom applied to derive P = Q.

Definition 18. A process P is in normal form if P ≡
∑

i∈I1
[Mi]αi[xi].Pi +∑

i∈I2
[Mi](x)αi[x].Pi +

∑
i∈I3

[Mi][zi|yi].Pi such that x does not appear in P and
Pi is in normal form for each i ∈ I1 ∪ I2 ∪ I3. Here I1, I2 and I3 are pairwise
disjoint finite indexing sets.

Notice that if P is in normal form and σ is a substitution then Pσ is in nor-
mal form. The depth of a process measures the maximal length of nested pre-
fixes in the process. The structural definition goes as follows: (i) d(0) = 0;

T1 α[x].[y|y].P = α[x].P
T2 P + [y|y].P = [y|y].P
T3 α[x].(P + [y|y].Q) = α[x].(P + [y|y].Q) + α[x].Q

TD1 [x|z].[y|y].P = [x|z].P
TD2 [x|z].(P + [y|y].Q) = [x|z].(P + [y|y].Q) + [x|z].Q

O1 (z)m[z].(P + [x|z].Q) = (z)m[z].(P + [x|z].Q) + m[x].Q x 6= z
O2 (z)m[z].(P + [x|z].Q) = (z)m[z].(P + [x|z].Q) + m[x].Q x 6= z
O3 (z)α[z].(P + [x|z].Q) = (z)α[z].(P + [x|z].Q) + α[x].Q x 6= z

Fig. 3. The Tau Laws and the Output Laws

(ii) d(α[x].P) = 1 + d(P); (iii) d(P |Q) = d(P) + d(Q); (iv) d((x)P) = d(P); (v)
d([x=y]P) = d(P); (vi) d(P+Q) = max{d(P), d(Q)}; (vii) d([x|y].P) = 1+d(P).

Lemma 19. In AS each process P is provably equal to some P ′ in normal form
such that d(P ′) ≤ d(P).

We need the χ-version of the well-known tau laws as given in Fig. 3. TD1 and
TD2 are derivable from T1 and T3 respectively.

The tau laws are enough to characterize =o∪o. To get complete systems for
the other three L-congruence relations, we need what we call output laws O1,
O2 and O3 given in Fig. 3.

The following lemma is crucial to the proof of the completeness theorem.

Lemma 20. Suppose Q is in normal form. Then
(i) if QσM

τ=⇒ Q′ then AS ∪ {T1, T2, T3} ` Q = Q + [M][x|x].Q′ for each x;

(ii) if QσM
α[x]
=⇒ Q′ then AS ∪ {T1, T2, T3} ` Q = Q + [M]α[x].Q′;

(iii) if z 6∈ gn(Q) ∪ n(M) and QσM
αz=⇒ Q′ then AS ∪ {T1, T2, T3} ` Q =

Q + [M](z)α[z].Q′;

(iv) if QσM
[x/y]
=⇒ Q′ then AS ∪ {T1, T2, T3} ` Q = Q + [M][x|y].Q′;

(v) if z 6∈ gn(Q)∪ n(M) and QσM
mz=⇒[x/z]

=⇒ Q′ then AS ∪ {T1, T2, T3} ∪ {O1} `
Q = Q + [M]m[x].Q′;

(vi) if z 6∈ gn(Q)∪n(M) and QσM
mz=⇒[x/z]

=⇒ Q′ then AS ∪{T1, T2, T3}∪{O2} `
Q = Q + [M]m[x].Q′;

(vii) if z 6∈ gn(Q)∪n(M) and QσM
αz=⇒[x/z]

=⇒ Q′ then AS∪{T1, T2, T3}∪{O3} `
Q = Q + [M]α[x].Q′.

Proof. (i) through (iv) are proved by inductions on derivation. (v) through (vii)
are proved using (iii) and (iv). ut

Theorem 21. We have the following completeness results:
(i) AS ∪ {T1, T2, T3} is sound and complete for =o∪o;
(ii) AS ∪ {T1, T2, T3} ∪ {O1} is sound and complete for =o;
(iii) AS ∪ {T1, T2, T3} ∪ {O2} is sound and complete for =o;
(iv) AS ∪ {T1, T2, T3} ∪ {O3} is sound and complete for =i.

Proof. The soundness part is clear.
(i) Suppose P and Q are in normal form and P =o∪o Q. We prove the com-

pleteness by induction on the sum of the depths of P and Q. Let [Mi](x)αi[x].Pi

be a summand of P . Now ([Mi](x)αi[x].Pi)σMi

αiσMi
x

−→ PiσMi
must be matched

up by QσMi

αiσMi
x

=⇒ Q′ such that PiσMi
≈o∪o Q′. By Lemma 17, we know that

either [y|y].PiσMi
=o∪o Q′ or PiσMi

=o∪o Q′ or PiσMi
=o∪o [x|x].Q′. Sup-

pose PiσMi =o∪o [y|y].Q′ is the case. Both PiσMi and [y|y].Q′ are in normal
form and d(PiσMi) + d([y|y].Q′) < d(P) + d(Q). So by induction hypothesis
PiσMi

= [y|y].Q′. It follows that

[Mi](x)αi[x].Pi
MD3= [Mi](x)αiσMi

[x].PiσMi

I.H.= [Mi](x)αiσMi
[x].[y|y].Q′

T1= [Mi](x)αiσMi
[x].Q′.

Hence [Mi](x)αi[x].Pi + Q = [Mi](x)αiσMi [x].Q′ + Q = Q by (iii) of Lemma 20.
The situation is the same when P ′ =o∪o Q′ or P ′ =o∪o [x|x].Q′. It can be
similarly proved that [Mi]αi[xi].Pi +Q = Q, respectively [Mi][xi|yi].Pi +Q = Q,
whenever [Mi]αi[xi].Pi, respectively [Mi][xi|yi].Pi, is a summand of P . Conclude
that P + Q = Q. Symmetrically P + Q = P . Hence P = Q.

(iv) Let P and Q be in normal form and P =i Q. Suppose

([Mi]αi[xi].Pi)σMi

αiσMi
[xiσMi

]
−→ PiσMi

is matched up by QσMi

αiσMi
z

=⇒ Q1

[xiσMi
/z]

=⇒ Q′ such that PiσMi ≈i Q′. By Theo-
rem 13 this is the only situation not covered by the proof of (i). By Lemma 17,
either [x|x].PiσMi

=i Q′ or PiσMi
=i Q′ or PiσMi

=i [x|x].Q′. Now suppose
[x|x].PiσMi

=i Q′ is the case. Both [x|x].PiσMi
and Q′ are in normal form. So

by induction hypothesis [x|x].PiσMi
= Q′. Therefore

[Mi]αi[xi].Pi = [Mi]αiσMi [xiσMi].PiσMi

= [Mi]αiσMi [xiσMi].Q
′.

Thus [Mi]αi[xi].Pi + Q = [Mi]αiσMi
[xiσMi

].Q′ + Q = Q by (vii) of Lemma 20.
The rest of the proof can be safely omitted. ut

5 Asynchronous Chi Calculus

In the world of π-calculus, attention has been paid to an asynchronous version
of the language ([8, 2, 1]). It has been argued that it has the same expressive
power as the synchronous one. There is also a case for asynchronous χ-calculus.
Merro has recently given a fully abstract translation from the asynchronous χ
to the asynchronous π ([9]). One hopes to establish that χ and π have the same
expressive power by relating χ to its asynchronous cosine. As one would expect
the asynchronous χ is defined as follows:

P := 0 | a[x].P | a[x] | P |P | (x)P | [x=y]P | P+P

The operational semantics remains unchanged. So does the definition of L-
bisimilarity. Lemma 5 and Theorem 6 still hold. But the bisimulation lattice
shrinks.

Theorem 22. ≈o⊂≈o=≈u=≈i=≈i. The inclusion is strict.

Proof. The proofs of the equivalence ≈u=≈i=≈i and the strictness of the in-
clusion are as before. It remains to show that ≈L⊆≈o for all L-bisimilarities

≈L. Now suppose P ≈L Q and P
a[x]−→ P ′. Let R be a[x]+〈φ〉 such that φ ∈ L

and n(φ) ∩ gn(P |Q) = ∅. Then P |R τ−→ P ′|0. It follows that Q′ exists such

that Q|R τ−→ Q|0 and P ′ ≈L Q′. There are two cases: Either Q
a[x]
=⇒ Q′ or

Q
az=⇒ Q2

[x/z]
=⇒ Q′ for some fresh z. In the latter case, notice that no action

is causally dependent on the action az. So all the rest of the actions can be
performed before the action at that particular a happens. But then the update
[x/z]−→ becomes a communication in which a local name is substantiated by x.
It follows that the delayed action at that particular a must be a[x]. That is

Q
az=⇒ Q2

[x/z]
=⇒ Q′ can be rearranged as Q

a[x]
=⇒ Q′. So in either case P

a[x]−→ P ′ is

matchable by Q
a[x]
=⇒ Q′. ut

Consequently the bisimulation lattice of the asynchronous χ contains only
two elements.

6 Asymmetric Chi Calculus

The simplicity of the lattice L(χ) is due essentially to the symmetry of the
language. If we insist that there is a difference between an action with a positive
subject name and an action with a negative subject name then an asymmetric
version of χ-calculus results. This is the Update Calculus of Parrow and Victor.

The operational semantics of the asymmetric χ-calculus is defined similarly
as is for symmetric χ. The rule Sqn, Cnd and Sum remain unchanged. Other
rules are given below:

P
µ−→ P ′ if µ = m(x) then x 6∈ gn(Q)

P |Q µ−→ P ′|Q Cmp0

P
[y/x]−→ P ′

P |Q [y/x]−→ P ′|Q[y/x]
Cmp1

P
(y/x]−→ P ′ y 6∈ gn(Q)

P |Q (y/x]−→ P ′|Q[y/x]
Cmp2

P
mx−→ P ′ Q

m[x]−→ Q′

P |Q τ−→ P ′|Q′ Cmm0

P
mx−→ P ′ Q

m(x)−→ Q′ x 6∈ gn(P)
P |Q τ−→ (x)(P ′|Q′) Cmm1

P
m[x]−→ P ′ Q

m[x]−→ Q′

P |Q τ−→ P ′|Q′ Cmm2

P
m[x]−→ P ′ Q

m[y]−→ Q′ x 6= y

P |Q [y/x]−→ P ′[y/x]|Q′[y/x] Cmm3

P
m[x]−→ P ′ Q

m(y)−→ Q′ y 6∈ gn(P)

P |Q (y/x]−→ P ′[y/x]|Q′[y/x] Cmm4

P
δ−→ P ′ x 6∈ n(δ)

(x)P δ−→ (x)P ′ Loc0

P
m[x]−→ P ′ x 6= m

(x)P
my−→ P ′[y/x] Loc1

P
m[x]−→ P ′ x 6= m

(x)P
m(x)−→ P ′ Loc2

P
[y/x]−→ P ′

(x)P τ−→ P ′ Loc3

P
[y/x]−→ P ′

(y)P
(y/x]−→ P ′ Loc4

P
(y/x]−→ P ′

(x)P τ−→ (y)P ′ Loc5

In the rules, µ ranges over {τ}∪{m[x],m[x],mx,m(x) | m,x ∈ N} and δ ranges
over {τ} ∪ {m[x],m[x],mx,m(x), [y/x], (y/x] | m,x, y ∈ N}.

The localization operator in asymmetric χ-calculus is fundamentally differ-
ent from the restriction combinator in π-calculus. The next example is quite il-
luminating: (x)([x=y]a[a]|b[x]) ≈ (x)b[x] in π-calculus but (x)([x=y]a[a]|b[x]) 6≈
(x)b[x] in the asymmetric χ-calculus. In asymmetric χ-calculus the effect of the
consecutive communications

(z)(a[z].(b)(b[z]|b[y]))|(x)a[x].Q τ=⇒ (b)(0|0)|Q[y/x] ≈ Q[y/x]

is the same as the χ-communication

a[y]|(x)a[x].Q τ−→ 0|Q[y/x] ≈ Q[y/x].

The asymmetric χ-calculus can be investigated in completely the same way as
the χ-calculus has been. The proofs of the corresponding results are more or less
the same. In this language, we think of an action with positive subject name as
an input action whereas that with a negative subject name as an output action.
Let fo denote the set {a[x] | a, x ∈ N} of free output, fi the set {a[x] | x ∈ N}
of free input, i the set {ax | x ∈ N} of input, ro the set {a(x) | a, x ∈ N}
of restricted output, u the set {[y/x] | x, y ∈ N} of updates and ru the set
{(y/x] | x, y ∈ N} of restricted updates. We can define L-bisimilarities ≈L,
open bisimilarity and barbed bisimilarity for asymmetric χ-processes as we have
for χ-processes. There are altogether 63 L-bisimilarities for the asymmetric χ-
processes. The next theorem conveys all the necessary information to construct
the bisimulation lattice of the asymmetric χ-calculus.

Theorem 23. The following properties hold for asymmetric χ-calculus:
(i) ≈ru∪fi∪u and ≈i coincide respectively with open and barbed bisimilarities.
(ii) ≈L⊆≈i.
(iii) ≈L⊆≈fo.
(iv) ≈L1 6⊆≈L2 if fi ∩ L1 = ∅ and fi ⊆ L2.
(v) ≈L1 6⊆≈L2 if ru ∩ L1 = ∅ and ru ⊆ L2.
(vi) ≈L1 6⊆≈L2 if (ru ∪ ro) ∩ L1 = ∅ and ro ⊆ L2.
(vii) ≈L1 6⊆≈L2 if u ∩ L1 = ∅ and u ⊆ L2.
(viii) If L ∩ i = ∅ then the inclusion ≈L⊂≈i is strict.
(ix) ≈ru⊂≈ro. The inclusion is strict.

≈ro

≈i,≈fo

��
��*

≈ru∪u

≈ro∪u≈ru

HH
HHY

��
��*

HH
HHY

HH
HHY

��
��*

≈u

≈ro∪fi

≈fi

��
��*

≈ru∪fi∪u

≈ro∪fi∪u

H
HHHY

�
���*

�
���*

H
HHHY

�
���*

≈ru∪fi

≈fi∪u

6

6

6

66

6
��

��*

HH
HHY

Fig. 4. The Bisimulation Lattice of Asymmetric Chi Processes

Proof. (i,ii) The proofs are similar to those in χ-calculus.

(iii) Suppose P ≈L Q and P
a[x]−→ P ′. Let R be a[x]+〈φ〉 such that φ ∈ L

and n(φ) ∩ gn(P |Q) = ∅. Then P |R τ−→ P ′|0. It follows that Q′ exists such
that Q|R =⇒ Q′|0 and P ′ ≈L Q′. Due to asymmetry, it must be the case that

Q
a[x]
=⇒ Q′.
(iv) Assume fi ∩ L1 = ∅ and fi ⊆ L2. Then (x)a[x].(b)(b[z]|b[x]) ≈L1 a[z] +

(x)a[x].(b)(b[z]|b[x]) but (x)a[x].(b)(b[z]|b[x]) 6≈L2 a[z] + (x)a[x].(b)(b[z]|b[x]).
(v) One has (a)((x)a[x]|a[y])) 6≈ru 0 but (a)((x)a[x]|a[y])) ≈L1 0 whenever

ru ∩ L1 = ∅.
(vi) Let R be (x)a[x].(b)(b[x]|(y)b[y].(w)c[w]). Suppose (ru∪ro)∩L1 = ∅ and

ro ⊆ L2. Then R ≈L1 (x)a[x].(w)c[w] + R but R 6≈L2 (x)a[x].(w)c[w] + R.
(vii) Let R be (b)(z)(b[z]|b[x].(a)(a[z]|a[y] + a[y]|a[z])). Suppose u ∩ L1 = ∅

and u ⊆ L2. Then R ≈L1 (a)(a[x]|a[y]) + R but R 6≈L2 (a)(a[x]|a[y]) + R.
(viii) By (ii) through (vii) the inclusion ≈L⊂≈i is strict whenever L∩ i = ∅.
(ix) Suppose P ≈ru Q and P

a(x)−→ P ′. Then P |a[z]
(x/z]−→ P ′|0 for fresh z.

So Q|a[z]
(x/z]
=⇒ Q′|0 for some Q′. Hence Q

a(x)
=⇒ Q′. Therefore ≈ru⊆≈ro. The

strictness follows from (v). ut

According to Theorem 23 the L-bisimilarities ≈fi, ≈i, ≈ro, ≈u and ≈ru

are all pairwise distinct. Using these five relations, the bisimulation lattice of
asymmetric χ-processes can be generated. The pictorial description of the lattice
is given by the diagram in Fig. 4. There are altogether 12 elements in the lattice.
The bottom element is ≈ru∪fi∪u, which characterizes the open bisimilarity. The
top element is ≈i, which coincides with the barbed bisimilarity.

7 The Asynchronous Asymmetric Chi

It seems reasonable to remove the symmetry of communications in asynchronous
χ-calculus. The resulting language has the same grammar as the asynchronous χ

≈ro,≈i,≈fo

≈ru∪u

≈u≈ru

≈ru∪fi∪u

≈fi∪u≈ru∪fi

≈fi

�
���*

H
HHHY

H
HHHY

�
���*

H
HHHY

�
���*

6

6

6

H
HHHY

�
���*

6

Fig. 5. The Bisimulation Lattice of Asynchronous Asymmetric Chi Processes

and the same operational semantics as the asymmetric χ. Without further ado,
we come to describe the bisimulation lattice of the language.

Theorem 24. In the asynchronous asymmetric χ-calculus, one has:
(i) ≈fi,≈ru,≈u⊆≈ro=≈i=≈fo;
(ii) ≈fi,≈ru,≈u are pairwise distinct.

Proof. Apart from the part to establish (vi), the proof of Theorem 23 works
fine. The only extra work is to prove that ≈L⊆≈ro for all L-bisimilarities ≈L.

Suppose P ≈L Q and P
a(x)−→ P ′. Let R be (y)a[y].b[y] for some fresh b. Then

P |R bx=⇒ P ′|0. It follows that Q′ exists such that Q|R bx=⇒ Q′|0 and P ′ ≈L Q′.
The rest of the argument is similar to that given in the proof of Theorem 22. In
Q|R bx=⇒ Q′|0 only the reduction bx−→ causally depends on the communication
involving R. So this particular communication can be delayed to happen just

before the action involving b. It can then be easily seen that Q
a(x)
=⇒ Q′. To help

understand the idea. Let’s see an example. Suppose Q is (x)(a[x]|Q1). Then

(x)(a[x]|Q1)|(y)a[y].b[y] =⇒ (x)(a[x]|Q2)|(y)a[y].b[y]
−→ (x)((0|Q2)|b[x])
bx=⇒ (0|Q3)|0 ≡ Q′|0.

Clearly (x)(a[x]|Q1) =⇒ (x)(a[x]|Q3)
a(x)−→ 0|Q3 ≡ Q′. ut

The bisimulation lattice of the asynchronous asymmetric χ-calculus is pic-
tured by the diagram in Fig. 5.

8 Final Remark

The χ-calculus is meant to be a concurrent generalization of λ-calculus. In the
latter the variables are uniform in the sense that both free and closed variables
can be instantiated by any term. Free and closed variables become global and

local names in our model. In this way the names in χ-calculus behave very much
like logical variables. This is not at all surprising as the calculus is designed with
proof theory in mind. At the level of operational semantics, the computation-
as-cut-elimination is a well accepted approach in the world of λ-calculus and
its descendants but has attracted far less attention in process algebra. The χ-
calculus advocates this approach and invites further study of it.

The L-bisimilarities are introduced as possible classification of bisimilarities
on χ-processes. In both χ and its asymmetric version, open bisimilarity and
barbed bisimilarity are respectively the bottom and the top elements of the
bisimulation lattices. Other well-known bisimilarities also fit into the lattice hi-
erarchy. For instance, ground bisimilarity coincides with ≈o∪o.

The fact that the barbed bisimilarity on χ-processes is different from the
obvious bisimilarity called open bisimilarity in this paper was first discovered
in [6]. In present paper the difference is recast in the framework of L-bisimilarity.
The barbed bisimilarity on χ-processes has some very interesting and unusual
properties unknown from the study of π-processes. Our result implies that weak
barbed congruence and weak hyperequivalence on Fusion processes are different.

The operational semantics of χ defined in this paper is slightly different from
that given in [4]. In that paper the reduction

a[x].P |a[x].Q τ−→ P |Q

is not admissible although

(x)(a[x].P |a[x].Q) τ−→ (x)(P |Q)

is legal. It should be pointed out that if this restricted communication mechanism
is adopted, the elements of the bisimulation lattices discussed in this paper would
proliferate. For instance the bisimulation lattice of asymmetric χ-processes would
have eighteen elements, the reason being that ≈fo is different from ≈i in this
variant for the same reason that ≈fi is different from ≈i.

In our definition of L-bisimilarities, an update transition P
[y/x]−→ P ′ is required

to be matched up by Q
[y/x]
=⇒ Q′ such that P ′ ≈L Q′. This is correct because

we use an early semantics. In late semantics we must replace P ′ ≈L Q′ by
P ′[y/x] ≈L Q′[y/x]. A simple example suffices to explain the situation. Let R be
[y|x].(x[x]|y[y].c[c]) where all names are assumed to be distinct. Then [y|x].c[c]+

R ≈L R. In late semantics there is no R′ such that R
[y/x]
=⇒ R′ ≈L c[c].

In a sense, axiomatization is internalization. Usually a meta-operation is
internalized as choice operator and a meta-judgement is internalized as match
combinator in calculi of mobile processes. The simplicity of the axiomatization
systems for χ-processes is due to the fact that, unlike in π-calculus, one does not
have the trouble of having to treat localization operator separately by resorting
to distinction. In χ-calculus, if a local name can be ‘opened up’ it is open for all
instantiations. The work reported in this paper was carried out independently
with [15]. As far as axiomatization is concerned, the novelty of our result is a
complete system for barbed congruence. We believe that by adding a modified

version of the output law O3 to Parrow and Victor’s axiom system for weak
hyperequivalence we get a complete system for the weak barbed congruence on
finite Fusion processes.

An interesting avenue for further investigation is axiomatization of asym-
metric χ-processes. We have already obtained complete systems for some of the
twelve L-congruence relations. The rest appears more subtle.

References

1. Amadio, R., Castellani, I., Sangiorgi, D.: On Bisimulation for the Asynchronous
π-Calculus. CONCUR’96, Lecture Notes in Computer Science 1119 (1996)

2. Boudol, G.: Asynchrony and the π-Calculus. Research Report 1702, INRIA,
Sophia-Antipolis (1992)

3. Fu, Y.: The χ-Calculus. Proceedings of the International Conference on Advances
in Parallel and Distributed Computing, March 19th-21th, Shanghai, IEEE Com-
puter Society Press (1997) 74-81

4. Fu, Y.: A Proof Theoretical Approach to Communications. ICALP’97, July 7th-
11th, Bologna, Italy, Lecture Notes in Computer Science 1256 (1997) 325–335

5. Fu, Y.: Reaction Graph. To appear in Journal of Computer Science and Technology
(1998)

6. Fu, Y.: Variations on Mobile Processes. To appear in Theoretical Computer Sci-
ence, Elsevier Science Publisher

7. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency.
Journal of ACM 67 (1985) 137–161

8. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication.
ECOOP ’91, Geneve, Lecture Notes in Computer Science (1991)

9. Merro, M.: On the Expressiveness of Chi, Update and Fusion Calculus. Express’98
(1998)

10. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
11. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Information

and Computation 100 (1992) Part I:1–40, Part II:41–77
12. Milner, R., Sangiorgi, D.: Barbed Bisimulation. ICALP’92, Lecture Notes in Com-

puter Science 623 (1992) 685–695
13. Parrow, J., Victor, B.: The Update Calculus. Proceedings of AMAST’97, Sydney,

December 13-17 (1997)
14. Parrow, J., Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mo-

bile Processes. To appear in LICS’98 (1998)
15. Parrow, J., Victor, B.: The Tau-Laws of Fusion. To appear in CONCUR’98 (1998)
16. Sangiorgi, D.: A Theory of Bisimulation for π-Calculus. CONCUR’93, Lecture

Notes in Computer Science 715 (1993)
17. Victor, B., Parrow, J.: Concurrent Constraints in the Fusion Calculus. To appear

in ICALP’98 (1998)

