
Bisimulation Decomposition for PDA Decidability
Yuxi Fu

BASICS, Shanghai Jiao Tong University
fu-yx@cs.sjtu.edu.cn

Qiang Yin
BDBC, Beihang University
yinqiang@buaa.edu.cn

Abstract—Sénizergues has proved that language equivalence is
decidable for disjoint ε-deterministic PDA. Stirling has showed
that strong bisimilarity is decidable for PDA. On the negative
side Srba demonstrated that the weak bisimilarity is undecidable
for normed PDA. Jančar and Srba showed the undecidability of
the weak bisimilarity for disjoint ε-pushing PDA and disjoint
ε-popping PDA. In this paper it is shown that the branching
bisimilarity of the normed ε-pushing PDA is decidable and the
branching bisimilarity of the ε-pushing PDA is Σ1

1-complete.

I. Introduction
“Is it recursively unsolvable to determine if L1 = L2 for

arbitrary deterministic languages L1 and L2”? The question
was raised in Ginsburg and Greibach’s 1966 paper [7] titled
Deterministic Context Free Languages. The equality referred
to in the quotation is the language equivalence between
context free grammars. It is well known that the context free
languages are precisely those accepted by pushdown automata
(PDA) [10]. A PDA extends a finite state automaton with a
memory stack. It accepts an input string whenever the memory
stack is empty. The operational semantics of a PDA is defined
by a finite set of rules of the following form

pX
a
−→ qα or pX

ε
−→ qα.

The transition rule pX
a
−→ qα reads “If the PDA is in state p

with X being the top symbol of the stack, then it can accept an
input letter a, pop off X, place the string α of stack symbols
onto the top of the stack, and turn into state q”. The rule
pX

ε
−→ qα describes a silent transition that has nothing to

do with any input letter. It was proved early on that language
equivalence between pushdown automata is undecidable [10].
A natural question asks what restrictions one may impose on
the PDA’s so that language equivalence becomes decidable.
Ginsburg and Greibach studied deterministic context free
languages. These are the languages accepted by deterministic
pushdown automata (DPDA) [7].

A deterministic pushdown automaton enjoys disjointness
and determinism properties. These conditions are defined as
follows:

Disjointness. For all state p and all stack symbol
X, if pX can accept a letter then it cannot perform a
silent transition, and conversely if pX can do a silent
transition then it cannot accept any letter.
A-Determinism. If pX

a
−→ qα and pX

a
−→ q′α′ then

q = q′ and α = α′.
ε-Determinism. If pX

ε
−→ qα and pX

ε
−→ q′α′ then

q = q′ and α = α′.

These are strong constraints from an algorithmic point of view.
It turns out however that the language problem is still difficult
even for this simple class of PDA’s. One indication of the
difficulty of the problem is that there is no size bound for
equivalent DPDA configurations. It is easy to design a DPDA
such that two configurations pY and pXnY accept the same
language for all n.

It was Sénizergues who proved after 30 years that
the problem is decidable [23], [25]. His original proof
is very long. Simplified proofs were soon discovered by
Sénizergues [26] himself and by Stirlng [33]. After the positive
answer of Sénizergues, one wonders if the strong constraints
(disjointness+A-determinism+ε-determinism) can be relaxed.
The first such relaxation was given by Sénizergues him-
self [24]. He showed that strong bisimilarity on the collapsed
graphs of the disjoint ε-deterministic pushdown automata is
also decidable. In the collapsed graphs all ε-transitions are
absorbed. This result suggests that A-nondeterminism is harm-
less as far as decidability is concerned. The silent transitions
considered in [24] are ε-popping. A silent transition pX

ε
−→ qα

is ε-popping if α = ε. In this paper we shall use a slightly more
liberal definition of this terminology.

A PDA is ε-popping if |α| ≤ 1 whenever pX
ε
−→ qα.

A PDA is ε-pushing if |α| ≥ 1 whenever pX
ε
−→ qα.

A disjoint ε-deterministic PDA can be converted to an equiv-
alent disjoint ε-popping PDA in the following manner: With-
out loss of generality we may assume that the disjoint ε-
deterministic PDA does not admit any infinite sequence of
silent transitions. Suppose pX

ε
−→ . . .

ε
−→ qα and qα cannot

do any silent transition. If α = ε then we can redefine the
semantics of pX by pX

ε
−→ qε; otherwise we can remove pX

in favour of qZ with Z being the first symbol of α. So under
the disjointness condition ε-popping condition is weaker than
ε-determinism.

A paradigm shift from a language viewpoint to a process
algebraic viewpoint helps see the issue in a more productive
way. Groote and Hüttel [8], [12] pointed out that as far as
BPA and BPP are concerned the bisimulation equivalence
à la Milner [21] and Park [22] is more tractable than the
language equivalence. The best way to understand Senizer-
gues’ result is to recast it in terms of bisimilarity. Disjointness
and ε-determinism imply that all silent transitions preserve
equivalence. It follows that the branching bisimilarity [34] of
the disjoint ε-deterministic PDA’s coincides with the strong
bisimilarity on the collapsed graphs of these PDA’s. So what

Senizergues has proved is that the branching bisimilarity on
the disjoint ε-deterministic PDA’s is decidable.

The process algebraic approach allows one to use the
apparatus from the process theory to study the equivalence
checking problem for PDA. Stirling’s proof of the decidability
of the strong bisimilarity for normed PDA (nPDA) [29], [30]
exploits the tableau method [13], [11]. Later he extended the
tableau approach to the study of the unnormed PDA [32].
Stirling also provided a simplified account of Senizergues’
proof [24] using the process method [33]. The proof in [33],
as well as the one in [24], is interesting in that it turns the
language equivalence of disjoint ε-deterministic PDA to the
strong bisimilarity of correlated models. Another advantage
of bisimulation equivalence is that it admits a nice game
theoretical interpretation. This has been exploited in the proofs
of negative results using the technique of Defender’s Forc-
ing [18]. Srba proved that weak bisimilarity on nPDA’s is
undecidable [27]. Jančar and Srba improved this result by
showing that the weak bisimilarity on the disjoint nPDA’s with
only ε-popping transitions, respectively ε-pushing transitions,
is already undecidable [18]. In fact they proved that the prob-
lems are Π0

1-complete. Recently Yin, Fu, He, Huang and Tao
have proved that the branching bisimilarity for all the models
above either the normed BPA or the normed BPP in the hier-
archy of process rewriting system [20] are undecidable [36].
This general result implies that the branching bisimilarity on
nPDA is undecidable. Defender’s Forcing can be used to study
complexity bound. An example is Benedikt, Moller, Kiefer
and Murawski’s proof that the strong bisimilarity on PDA is
non-elementary [2]. A summary of the (un)decidability results
mentioned above is given in the following table, where ∼
stands for the strong bisimilarity, ' the branching bisimilarity,
and ≈ the weak bisimilarity.

PDA nPDA

∼
Decidable [24], [32]
Non-Elementary [2]

Decidable [29], [30]
Non-Elementary [2]

' Undecidable [36] Undecidable [36]

≈
Σ1

1-Complete [18]
Undecidable [27]

Σ1
1-Complete [18]

Undecidable [27]

The decidability of the strong bisimilarity and the unde-
cidability of the weak bisimilarity still leaves a number of
questions unanswered. The prime motivation for this work
is to establish a stronger result that would subsume both
the decidability results in the language theme and the decid-
ability results in the process algebraic line. This is desirable
since these two classes of results are incompatible, neither
implies the other. A conservative extension of the language
equivalence for DPDA is not the strong bisimilarity because
language equivalence ignores silent transitions. It is not the
weak bisimilarity since the whole point of introducing the
disjointness and ε-determinism conditions is to force all silent
transitions to preserve equivalence. Our basic idea is to look
at the decidability issue of the ε-pushing and ε-popping
PDA’s. Their decidability would subsume the two classes of
incompatible decidability results.

The contributions of this paper are summarized as follows.
1) We prove that the branching bisimilarity on the normed

ε-pushing PDA is decidable, and that the branching
bisimilarity on the ε-pushing PDA is Σ1

1-complete.
2) We propose a bisimulation decomposition approach,

for decidability proof of bisimulation equivalence that
evolves silent transitions, that could have applications
in other models of process rewriting system.

The rest of the paper is organised as follows. Section II fixes
the syntax and the semantics of PDA. Section III reviews the
basic properties of the branching bisimilarity. Section IV dis-
cusses the finite branching property for the normed ε-pushing
PDA. Section V introduces bisimulation trees. Section VI and
Section VII discuss decomposition of bisimulation trees. Sec-
tion VIII studies bisimulation base. Section IX establishes the
decidability of the normed ε-pushing PDA by exploiting the
finite tree property. Section X proves the high undecidability
of the general ε-pushing PDA. Section XI concludes.

II. PDA

A pushdown automaton (PDA) Γ = (Q,V,L,R) consists of
• a state set Q = {p1, . . . , pq} ranged over by o, p, q, r, s, t,
• a symbol set V = {X1, . . . , Xn} ranged over by X,Y,Z,
• a letter set L = {a1, . . . , as} ranged over by a, b, c, d, and
• a finite set R of transition rules.

If we think of a PDA as a process we may interpret a letter
in L as an action label. The set L∗ of words is ranged over
by u, v,w. Following the process algebraic convention a silent
action will be denoted by τ. The set A = L∪ {τ} of actions is
ranged over by `. The setA∗ of action sequence is ranged over
by `∗. The set V∗ of finite strings of symbols is ranged over
by small Greek letters. The empty string is denoted by ε. We
write αβ for the concatenation of α and β. Since concatenation
is associative no parenthesis is necessary when we write αβγ.
The length of α is denoted by |α|.

The syntax of a PDA process is pα, where p ∈ Q is a state
and α ∈ V∗ is called a stack. We shall write L,M,N,O, P,Q
for PDA processes. If P = pα then Pβ stands for the PDA
process pαβ. The transition set R of a PDA contains rules of
the form pX

`
−→ qα. The semantics of the PDA processes is

defined by the following two structural rules.

pX
`
−→ qα ∈ R

pX
`
−→ qα

pX
`
−→ qα

pXβ
`
−→ qαβ

We shall use the standard notation
`∗

−→ and =⇒ and
`∗

=⇒. We
say that P′ is a descendant of P if P

`∗

−→ P′ for some `∗.
A process P accepts a word w if P

w
=⇒ pε for some p. A

process P is normed, or P is an nPDA process, if P
`∗

−→ pε
for some `∗, p. A PDA Γ = (Q,V,L,R) is normed, or Γ is
an nPDA, if pX is normed for all p ∈ Q and all X ∈ V. The
notation (n)PDAε+ will refer to the variant of (n)PDA with
ε-pushing transitions, and (n)PDAε− to the variant of (n)DPA
with ε-popping transitions.

III. Branching Bisimilarity
The definition of branching bisimilarity is due to van

Glebbeek and Weijland [35]. Care should be taken to processes
of the form pε since we want our bisimilarity to be a
congruence relation [29].

Definition 1. A binary relation R on PDA processes is a
branching simulation if the following statements are valid
whenever PRQ:

1) If P
a
−→ P′ then there are some Q′,Q′′ such that Q =⇒

Q′′
a
−→ Q′ and PRQ′′ and P′RQ′.

2) If P
τ
−→ P′ then either Q =⇒ Q′ and PRQ′ and P′RQ′

for some Q′ or Q =⇒ Q′′
τ
−→ Q′ and PRQ′′ and P′RQ′

for some Q′,Q′′.
3) If P = pε then Q′ =⇒ pε whenever Q =⇒ Q′.

The relation is a branching bisimulation if both R and its
inverse R−1 are branching simulation. The branching bisimi-
larity ' is the largest branching bisimulation.

We write 'nPDAε+ , or simply ', for the branching bisimilarity
on nPDAε+ processes. The proof of the following is easy.

Lemma 2. P 'nPDAε+ pε if and only if P = pε.

Let R1,R2 be two branching bisimulations. The composition
R1;R2 = {(O,Q) | ∃P.(O, P) ∈ R1∧ (P,Q) ∈ R2} is a branching
bisimulation. This is proved in [1]. Branching bisimulations
are also closed under set theoretical union. Consequently ' is
an equivalence. Moreover it is also a congruence. Therefore
Pα

ε
−→ P′α whenever P

ε
−→ P′. A technical lemma that plays

an important role in the study of branching bisimilarity is the
Computation Lemma [35], [5].

Lemma 3. If P0
τ
−→ . . .

τ
−→ Pk ' P0, then P0 ' . . . ' Pk.

A silent transition P
τ
−→ P′ is state-preserving, notation

P
ε
−→ P′, if P ' P′. It is a change-of-state, notation P

ι
−→ P′,

if P ; P′. We write (→∗) →+ for the (reflexive and) transitive
closure of P

ε
−→ P′. The notation P 9 stands for the fact

that P ; P′ for all P′ such that P
τ
−→ P′. Let  range over

L ∪ {ι}. We will find it necessary to use the notation

−→.

The transition P

−→ P′ refers to either P

a
−→ P′ for some

a ∈ L or P
ι
−→ P′. Lemma 3 implies that if P0


−→ P1 is

bisimulated by Q0
τ
−→ Q1

τ
−→ . . .

τ
−→ Qk


−→ Qk+1, then

Q0
ε
−→ Q1

ε
−→ . . .

ε
−→ Qk. This is a very useful property.

Given a PDA process P, the norm of P over σ, denoted by
‖P‖σ, is a function from [q] to N∪ {⊥}, where [q] = {1, . . . , q}
and ⊥ stands for undefinedness, such that the following holds:

• ‖P‖σ(h) = ⊥ if there is no `∗ such that Pσ
`∗

−→ phσ.
• ‖P‖σ(h) is the least number i such that Pσ →∗

1
−→

. . .→∗
i
−→→∗ phσ for some 1 . . . i.

By definition ‖P‖σ(h) = ‖Q‖σ(h) if P ' Q. Let ker ‖P‖σ be
the finite set {h | ‖P‖σ(h) , ⊥}. For nPDAε+ process P we
introduce the following notations.

min ‖P‖σ = min{‖P‖σ(h) | h ∈ ker ‖P‖},
max ‖P‖σ = max{‖P‖σ(h) | h ∈ ker ‖P‖}.

We will omit the subscript σ if σ = ε. A process P is said to
be normed if ker ‖P‖ , ∅. It is unnormed otherwise. We shall
use the following convention in the rest of the paper.

r = max
{
|η|

∣∣∣∣∣ pX
`
−→ qη ∈ R for some p, q ∈ Q, X ∈ V

}
,

m = max {max ‖pX‖ | p ∈ Q, X ∈ V} .

The values r and m can be effectively calculated using a
dynamic programming algorithm. By definition ‖pX‖(i) ≤ m
for all p, X and all i ∈ ker ‖pX‖.

IV. Finite Branching Property

Generally bisimilarity is undecidable for models with infi-
nite branching transitions. For the branching bisimilarity the
finite branching property is defined by the following statement:

For each P and ` there is a finite set of processes
{Pi}i∈I such that P′ ' Pi for some i ∈ I whenever
P→∗

`
−→ P′.

We prove in this section that nPDAε+ enjoys the finite branch-
ing property. Before doing that we need be assured that
silent transition cycles of nPDAε+ processes do not render a
problem. There is in fact an effective procedure to remove
such a silent transition cycle. A clique S is a subset of
{pX | p ∈ Q, and X ∈ V} such that for every two distinct
members pX, qY of S there is a silent transition sequence
from pX to qY . It follows from Lemma 3 that the members
of a clique are branching bisimilar. We can remove a maximal
clique S in two steps.

1) Remove all rules of the form pX
τ
−→ qY such that

pX, qY ∈ S.
2) For each pX ∈ S introduce the rule pX

λ
−→ P whenever

there is some qY ∈ S that is distinct from pX and the
rule qY

λ
−→ P has not been removed in the first step.

In the new nPDAε+ there is no circular silent transition se-
quence involving any member of S due to the maximality of S.
The legitimacy of transformation is guaranteed by Lemma 3.
From now on we assume that such circularity does not occur
in our nPDAε+. Consequently for an nPDAε+ with n variables
and q states the length of a silent transition sequence of the
form qX

τ
−→ q1X1

τ
−→ . . .

τ
−→ qkXk is upper bounded by nq.

Lemma 4. In nPDAε+, |α| ≤ min ‖pα‖ holds for all pα.

Proof. In nPDAε+ only external actions remove symbols from
a stack. Silent actions never decrease the size of a stack. �

Using the simple property stated in Lemma 4, one can show
that there is a constant bound for the length of the state-
preserving transitions in nPDAε+.

Lemma 5. Suppose qXσ
ε
−→ q1β1σ

ε
−→ . . .

ε
−→ qkβkσ for an

nPDAε+ process qXσ. Then k < qnr(m+ 1)q.

Proof. Suppose qXσ
ε
−→ q1Z1δ1σ. Let

q1Z1δ1σ→
∗

11
−→ . . .→∗

1j1
−→→∗ r1εσ→

∗
1j1+1
−→ . . .→∗

1jk1
−→→∗ ph1ε

be a transition sequence of minimal length that empties the
stack, where k1 = min ‖q1Z1δ1σ‖. Clearly j1 ≤ rm. Suppose
q1Z1δ1σ →

∗ q2Z2δ2δ1σ such that rm < |Z2δ2δ1| ≤ r(m + 1).
Let Q2 = q2Z2δ2δ1σ and k2 = min ‖Q2‖, and let

Q2 →
∗

21
−→ . . .→∗

2j2
−→→∗ r2εσ→

∗
2j2+1
−→ . . .→∗

2jk2
−→→∗ ph2ε

be a transition sequence of minimal length that empties the
stack. One must have j2 > j1 according to the size bound on
Z2δ2δ1. By iterating the above argument one gets from

q1Z1δ1σ →∗ q2Z2δ2δ1σ

→∗ . . .

→∗ qi+1Zi+1δi+1δi . . . δ1σ

→∗ . . .

→∗ qq+1Zq+1δq+1δq . . . δ1σ

with rm(m + 1)i−1 < |Zi+1δi+1δi . . . δ1| ≤ r(m + 1)i for all i ∈
[q], some states r1, . . . , rq+1, some numbers k1 < . . . < kq+1
and h1, . . . , hq+1. For each i ∈ [q + 1] there is some transition
sequence

Qi →
∗

i1
−→ . . .→∗

iji
−→→∗ riεσ→

∗
iji+1
−→ . . .→∗

ijki
−→→∗ phiε

where Qi = qiZiδi . . . δ1σ and ki = min ‖Qi‖. Since there are
only q states, there must be some t1, t2 such that 0 < t1 < t2 ≤
q+1 and rt1 = rt2 . It follows from the minimality that jkt1

− jt1 =

jkt2
− jt2 . But jt2 > jt1 . Consequently jkt1

< jkt2
. This inequality

contradicts to the fact that qt1 Zt1δt1 . . . δ1σ ' qt2 Zt2δt2 . . . δ1σ.
We conclude that if qXσ→∗ q′γσ then |γ| < r(m + 1)q. Since
there is no ε-loop the bound k < qnr(m + 1)q follows. �

Corollary 6. Suppose P is an nPDAε+ process. There is a
computable bound on the size of any nPDAε+ process Q such
that Q ' P.

Proof. The norm of Q is bounded by m|Q|. It follows that |P
is bounded by (qnr(m + 1)q)m|Q|. �

Using the finite branching property guaranteed by Lemma 5
it is standard to prove the following.

Proposition 7. The relation ;nPDAε+ is semidecidable.

Proof. Let '0 be the total relation. The symmetric relation
'k+1 is defined as follows: P 'k+1 Q if the following state-
ments are valid:

1) If Q
a
−→ Q′ then P

τ
−→ . . .

τ
−→ P j

a
−→ P′ 'k Q′ for

some P1, . . . , P j, P′ such that Pi 'k Q for all i ∈ [j].
2) If Q

ε
−→ Q′ then either P 'k Q′ or some P1, . . . , P j, P′

exist such that P
τ
−→ . . .

τ
−→ P j

ε
−→ P′ 'k Q′ and

Pi 'k Q for all i ∈ [j].
3) If P = pε then Q = pε.

The approximation '0 ⊇ '1 ⊇ '2 ⊇ . . . approaches to '. By
standard argument using Lemma 5 one shows that

⋂
i≥0 'i is

'. So P ; Q can be checked by checking P 'i Q for i > 0. �

V. Bisimulation Tree
Intuitively a bisimulation tree for (P,Q) is a stratified pre-

sentation of a branching bisimulation for (P,Q) in which one
tries to collapse all state-preserving silent transitions from a
pair of bisimilar processes as one mega node. This reminds one
of the collapsed graphs introduced by Sénizergues. Formally
a bisimulation tree B for (P,Q) is a finite branching rooted
tree such that each of its nodes is labeled by a pair (M,N) of
PDAε+ processes and a directed edge is labeled by a member
of L∪{τ}∪{ε}. The root is labeled by (P,Q), and the following
properties hold for every node labeled by say (M,N).

1) M is descendant of P and N is a descendant of Q.
2) If there is an edge labeled ε from the node labeled (M,N)

to a node labeled (M′,N′) then either M
τ

=⇒ M′ and
N =⇒ N′ or M =⇒ M′ and N

τ
=⇒ N′, and the following

are valid.
a) There is no edge labeled ε from the node labeled

(M,N) to a node labeled by (M′′,N′′) such that
both (M =⇒ M′′

τ
=⇒ M′) ∨ (M′

τ
=⇒ M′′) and

(N =⇒ N′′
τ

=⇒ N′) ∨ (N′
τ

=⇒ N′′).
b) If there are ε labeled edges from the node labeled

(M,N) to nodes labeled by (M′,N′) and (M′′,N′′)
respectively, then there are ε labeled edges from the
node labeled (M,N) to nodes labeled by (M′,N′′)
and (M′′,N′) respectively.

c) There is no ε labeled edge from the node labeled
(M′,N′).

3) Suppose there is an ε labeled edge from the node labeled
(L,O) to a node labeled (M,N). A silent transition
P0

τ
−→ P1, respectively Q0

τ
−→ Q1, is implicit with

regards to (L,O) if there is an ε labeled edge from the
node labeled (L,O) to a node labeled by some (M′,N′)
such that P0

τ
−→ P1, respectively Q0

τ
−→ Q1, appears in

a silent transition sequence from L to M′, respectively
from O to N′. The third requirement states that for the
ε labeled edge from the node labeled (L,O) to the node
labeled (M,N) the following are valid.

a) If L =⇒ L′ =⇒ M and L′
λ
−→ L′′ is not implicit

with regards to (L,O), then some N′ exists such
that N

λ
−→ N′ and there is a λ labeled edge from

the node labeled (M,N) to a node labeled (L′′,N′).
b) If O =⇒ O′ =⇒ N and O′

λ
−→ O′′ is not implicit

with regards to (L,O), then some M′ exists such
that M

λ
−→ M′ and there is a λ labeled edge from

the node labeled (M,N) to a node labeled (M′,O′′).
We write B(P,Q) for a bisimulation tree for (P,Q).

Recall that our PDAε+ does not admit silent loop action
sequence and that by Lemma 5 there is a computable bound
on the length of all state-preserving silent transition sequences,
hence the well-definedness of the ε-labeled edges. We shall
not introduce a formal treatment of rooted trees. For proof of
decidability this level of formality should be sufficient.

It is easy to see that if one reverses the order of the
labels of a bisimulation tree B(P,Q) for (P,Q) one obtains

a bisimulation tree for (Q, P), denoted by B−1(P,Q). In what
follows we often refer to a node by its label. Accordingly we
call an edge (M,N)

τ
−→ (M′,N′) for example a τ-edge.

Let’s see some bisimulation trees. Suppose a PDA has the
following semantic rules.

pX
τ
−→ p′X, p′X

a
−→ rε, pX

a
−→ rε;

qX
τ
−→ q′X, q′X

a
−→ rε, qX

a
−→ rε.

The following are two distinct bisimulation trees, T1 and T2,
for the process pair (pX, qX).

(T1). (T2).
(pX, qX)

(rε, rε)

(rε, rε)

(p′X, q′X)

a τ

a

(pX, qX)

(rε, rε)

(p′X, q′X)

a

ε

In this example pX ' p′X and qX ' q′X. So the ε edge in
T2 is justified. We can construct a different bisimulation tree
without making use of the fact pX → p′X and qX → q′X.

Given a bisimulation tree B for (P,Q). Define B inductively
as follows.

1) If (M,N) is a label in B then (M,N) ∈ B.
2) If (M,N)

ε
−→ (M′,N′), then (M′′,N′′) ∈ B for each

pair (M′′,N′′) such that M =⇒ M′′ =⇒ M′ and N =⇒

N′′ =⇒ N′.
In the above example, T1 = {(pX, qX), (p′X, q′X), (rε, rε)} and
T2 = {(pX, qX), (p′X, q′X), (p′X, qX), (pX, q′X), (rε, rε)}.

The almost trivial proof of the property stated next justifies
the slightly complicated definition of bisimulation tree.

Lemma 8. B is a branching bisimulation.

It follows immediately from Lemma 8 that (M,N)
ε
−→

(M′,N′) implies either M →+ M′ and N →∗ N′ or M →∗ M′

and N →+ N′.
From a proof perspective we think of a pair (P,Q) as a goal.

The bisimulation tree for (P,Q) is a proof that the goal can
be established in the sense that P ' Q. If P ' Q there is a
canonical bisimulation tree for (P,Q) in which every τ-edge
represents a change-of-state silent transition. However there
could be bisimulation trees for (P,Q) in which a τ-edge is
actually a state-preserving silent transition; see the T1 in the
above example. We will refer to a bisimulation for a pair (P,Q)
satisfying P ' Q a bisimulation tree of P ' Q. In this case we
also say that P ' Q is a goal.

We assign a level number to every node of the tree. The level
number of the root is 0. Suppose the level number of (M,N)
is k. Then the level number of (M′,N′) is k if (M,N)

ε
−→

(M′,N′), it is k + 1 if (M,N)
τ
−→ (M′,N′) or (M,N)

a
−→

(M′,N′). We say that a bisimulation tree is generated or grown
level by level if for each k ≥ 0 none of its nodes at the (k+1)-th
level is generated before all nodes at the k-th level have been
generated. The k-subtree of a tree consists of all the nodes of
the latter whose level number is no more than k.

VI. Bisimulation Trees of Bisimilar Processes

Bisimulation trees of bisimilar nPDAε+ processes are in
general infinite. Our task is to decompose every such tree to a
finite number of finite trees such that a new bisimulation tree of
the root label of the tree can be composed by piecing together
the finite trees in an inductive manner. The first step to achieve
that is to transform a goal to another goal such that the two
processes in the latter share a common suffix. This is done by
increasing the size of common suffix and controlling the size
of prefixes. Bisimulation trees of a pair of bisimilar processes
with shared suffix can be decomposed by introducing a finite
number of subgoals. In other words we can start with a goal
that has an empty common suffix and carry out decomposition
inductively. These will be explored in this section. Most results
and proof ideas of this section are due to Stirling [31]. Our
presentation is in terms of branching bisimulation rather than
tableaux systems for strong bisimilarity. The simple syntax of
PDA will be respected as much as possible.

A. Decomposing Bisimulation Tree over Common Suffix

Suppose Pσ ' Qσ with |P| > 0 and |Q| > 0. A bisimulation
tree of Pσ ' Qσ over σ is grown like a bisimulation tree
for (Pσ,Qσ). The major difference is that the suffix σ should
remain intact throughout the construction. A transition Oσ

a
−→

O′σ for example is admitted in the buildup of the bisimulation
tree only if |O| > 0. In the following construction we maintain
three parameters modified dynamically.
• The first is a set G = {Gi}i∈[q] of processes such that

p1σ ' G1σ, p2σ ' G2σ, . . . , pqσ ' Gqσ (1)

Initially Gi = i for all i ∈ [q].
• The second is an equivalence relation E on [q]. We write

i ∈ E if 〈i, i〉 ∈ E. Initially E = {〈i, i〉 | i ∈ [q]}.
• The third is a recursive stack V à la Stirling [31]. The

generalized stack V is defined by q grammar equalities

p1V = L1V, p2V = L2V, . . . , pqV = LqV (2)

where L1, . . . , Lq are PDA processes defined by

Li =

{
Gi, if i < E,
min{ j | (i, j) ∈ E}, if i ∈ E.

Initially Li = i for all i ∈ [q].
We shall update G and E dynamically while we build up the
tree level by level. The definition of the recursive stack V
is updated accordingly. The correlation between (1) and (2)
renders true the fundamental property stated next.

Lemma 9. PV ' QV implies Pσ ' Qσ whenever |P|, |Q| > 0.

Proof. Let R be {(Pσ,Qσ) | PV ' QV ∧ |P| > 0 ∧ |Q| > 0}.
We prove that (';R;')∪ ' is a branching bisimulation.
Suppose M ' PσRQσ ' N and M

a
−→ M′. Then Pσ

ε
−→

P1σ
ε
−→ . . .

ε
−→ Piσ

a
−→ P′σ bisimulates M

a
−→ M′ for

some P1, . . . , Pi, P′. By the ε-pushing property |P1| > 0, . . . ,
|Pi| > 0. Thus PV

τ
−→ P1V

τ
−→ . . .

τ
−→ PiV

a
−→ P′V .

Since PV ' QV this action sequence must be bisimulated

by some QV
τ
−→ Q1V

τ
−→ . . .

τ
−→ Q jV

a
−→ Q′V for some

Q1, . . . ,Q j,Q′. Also Qσ
τ
−→ Q1σ

τ
−→ . . .

τ
−→ Q jσ

a
−→ Q′σ

must be bisimulated by N
τ
−→ N1

τ
−→ . . .

τ
−→ Nk

a
−→ N′ for

some N1, . . . ,N j,N′. It is easy to see that (M,N1) ∈ ';R;',
. . . , (M,Nk), (M′,N′) ∈ ';R;'. Finally observe that P′ = pε
if and only if Q′ = pε. �

Let’s define how to grow a bisimulation tree of Pσ ' Qσ
over σ level by level with the initial G,E,V . Two things are
worth spelling out. Firstly we will consider all bisimilar pairs
between the descendants of Pσ and the descendants of Qσ
with intact σ. Secondly since all transitions are ε-pushing, the
following construction never gets stuck along ε-edges. The
growth of a node labeled by (piσ,Nσ), for N , pi, is defined
as follows.

1) i < E. Relabel the node by (Giσ,Nσ) and grow the node.
2) i ∈ E, and |N | > 0 or N = p jε for some j < E. Update G

by letting Gh = N, respectively Gh = G j, for every h in
the equivalence class of i, remove the equivalence class
of i from E, relabel the node by (Nσ,Nσ), respectively
(G jσ,G jσ), and stop growing the node.

3) i ∈ E and N = p jε for some j ∈ E. Update E by joining
the equivalence class of i with that of j, relabel the node
by (pmin{i, j}σ, pmin{i, j}σ), and stop growing the node.

The growth of a node labeled (Nσ, piσ) is symmetric. Each
time G or E has been modified, we check if the semantic
equivalence PV ' QV holds. If PV ; QV then there must
be a least i such that the construction of the bisimulation tree
for (PV,QV) gets stuck at the i-th level. When this happens
further update of G and/or E can be carried out. After a finite
number of levels both G and E must stabilize and PV ' QV
must hold.

We call the final G = {oiγi}i∈[q] a recursive guard, and

piσ ' oiγiσ (3)

a recursive subgoal. We say that the goal Pσ ' Qσ over
σ has the recursive guard G and that it is decomposed into
the subgoals p1σ ' oiγ1σ, . . . , pqσ ' oiγqσ. Let k be the
minimal number such that the recursive guard G of (P,Q)
over σ is generated by the k-subtree of the bisimulation tree
of Pσ ' Qσ over σ. We call this subtree the generating tree
for G.

A recursive guard for P,Q is a recursive guard of Pσ '
Qσ over some σ. The following observation is crucial to the
decidability argument.

Lemma 10. The number of recursive guards for P,Q is finite.

Proof. The initial V does not depend on any suffix. Suppose at
a particular stage there is a minimal i such that the construction
of the bisimulation tree for (PV,QV) gets stuck at level i. Due
to Lemma 5 there are only finitely many ways to update V
and the maximal number of ways to do that is dependent of
P and Q and is independent of any suffix. We are done by
induction. �

Now construct a bisimulation tree B(PV,QV) of PV ' QV .
Using the grammar equalities in (2) one realizes that this is

also a bisimulation tree of PV ' QV over V . By Lemma 9
one gets from the latter tree a bisimulation tree of Pσ ' Qσ
over σ if V is replaced by σ. This tree is in general finer than
any bisimulation tree of Pσ ' Qσ over σ in the sense that
two nodes in the former may be collapsed into one node in the
former. An example is described in the following diagram. For
the PDA defined in the diagram T1 and T3 are bisimulation
trees of p1XY ' p2XY (over ε), while T1 is the bisimulation
tree of p1V ' p2V .

• p1X
a−→ p1, p1X

τ−→ p3X;

• p2X
a−→ p1, p2X

τ−→ p3X;

• p1Y
a−→ p3, p2Y

a−→ p3;

• p3X
a−→ p2.

• V = (p1ε, p2ε, p3ε).

(p1XY, p2XY)

a τ

(p3ε, p3ε)

a

(p3XY, p3XY)

(p2Y, p2Y)

a

(p1Y, p1Y)

(p3ε, p3ε)

a

(T2). (T3).

(T1).
(p1XV, p2XV)

(p1V, p1V)

a τ

aa

(p1XY, p2XY)

(p3XY, p3XY)

ε

(p3ε, p3ε)

(p1Y, p2Y)

a

(p3ε, p3ε)

(p2Y, p2Y)

a

a

(p3XV, p3XV)

(p2V, p2V)

The recursive stack V defined in the above construction is not
unique since in the middle of the construction any effort to
build up the bisimulation tree of PV ' QV over V may get
stuck at the i-level for different pairs. Suppose a different set of
choices produces a different recursive stack V ′. Since we have
considered all bisimilar pairs between the descendants of Pσ
and the descendants of Qσ with intact σ, it must be the case
that piV ′ ' oiγiV ′ for all i ∈ [q]. We derive from Lemma 9
that LV ′ ' NV ′ implies LV ' NV whenever |L|, |N | > 0. Using
symmetric argument we derives that LV ' NV implies LV ′ '
NV ′ whenever |L|, |N| > 0. That brings us to an important
observation: For fixed P,Q, the bisimulation tree of PV '
QV is unique for all possible recursive stacks produced in the
construction of the tree. The characteristic tree of Pσ ' Qσ
over σ, denoted by χσ(P,Q), is the unique bisimulation tree
of Pσ ' Qσ over σ obtained from the unique B(PV,QV) by
substituting σ for V . We will focus on the characteristic trees
exclusively in algorithmic study.

We now explain how to make use of χσ(P,Q). Suppose
{piσ ' Piσ}i∈[q] are the set of subgoals generated in the
construction of χσ(P,Q). Let B =

⋃
k∈ω Bk, where Bk is

defined as follows:
1) B0 =

⋃
i∈[q]B(piσ, Piσ).

2) Bk+1 = Bk ∪ Bk;B0.
Since bisimulation is closed under union and composition the
relation B as well as the relations Bk for k ≥ 0 is a branching
bisimulations. Define B(Pσ,Qσ) by

B(Pσ,Qσ) = (B ∪ I); χσ(P,Q); (B−1 ∪ I),

where I is the identity relation on PDAε+ processes.

Lemma 11. B(Pσ,Qσ) is a branching bisimulation.

Proof. The relation χσ(P,Q) is not a branching bisimulation
for two reasons. Firstly it may contain pairs of the form
(piσ, piσ) which is a leaf in χσ(P,Q). This is taken care of by
I. Secondly χσ(P,Q) may contain a pair (oiγiσ,Nσ) obtained
from (piσ,Nσ) or a pair (Mσ, oiγiσ) obtained from (Mσ, piσ).
But notice that for each i ∈ [q] the relation B contains a
branching bisimulation for piσ ' oiγiσ and the relation B−1

contains a branching bisimulation for oiγiσ ' piσ. Therefore
the pairs of the form (piσ,Nσ) and of the form (Mσ, piσ)
for i ∈ [q] enjoy the bisimulation property by composition. A
diagrammatic illustration of the composition is given below.
The middle tree is χσ(P,Q). The left and right trees are part
of B and B−1 respectively. A dot rectangle indicates the point
a composition starts. �

(, olγlσ)

(oiγiσ,)

(, okγkσ)

(Pσ,Qσ)

(ojγjσ,)

(rXσ,)
λ

(, tY σ)
λ′

• rX λ−→ pjε

• tY λ′
−→ plε

. . .

. . . (piσ, oiγiσ)

(pjσ, ojγjσ)
(olγlσ, plσ)

(okγkσ, pkσ)

We conclude that to prove the goal Pσ ' Qσ we only have
to construct the characteristic tree of Pσ ' Qσ over σ and
the bisimulation trees for the subgoals generated therein.

B. Extending Common Suffix

Suppose pXασ ' Mδσ, |M| = m and |δ| > 0. If i ∈ ker ‖pX‖
we let pXασ →∗

1
−→→∗ . . . →∗

k
−→→∗ piασ be a sequence

reaching piασ with minimal k. Since ' is closed under compo-
sition, k cannot be greater than m. The above action sequence
must be bisimulated by Mδσ in the following manner:

Mδσ→∗
1
−→ M1δσ→

∗
2
−→ M2δσ . . .→

∗
k
−→ siκiδσ.

Since M is thick enough as it were, δσ remains intact in the
above transitions. We get for every i ∈ ker ‖pX‖ the subgoal

piασ ' siκiδσ. (4)

We call (4) a simple subgoal and the family {siκi}i∈ker ‖pX‖

a simple guard. By Lemma 5 the length of the simulating
sequence is bounded by qnr(m + 1)qm < qnr(m + 1)(q+1). It
follows easily that |κi| < qnr

2(m+1)(q+1). Here is a consequence
of the size bound on κi.

Lemma 12. There are only finitely many simple guards.

Stirling introduced a meta symbol U, called simple constant,
with the following grammar equalities

piU =

{
siκi, if i ∈ ker ‖pX‖,
piε, if i < ker ‖pX‖.

Using the simple constant and the equivalence (4) one can turn
the subgoal pXασ ' Mδσ into the subgoal pXUδσ ' Mδσ,

extending the size of the common suffix. The introduction of
U allows us to think of PXασ and pXUδσ as if they were
grammatically equal and that δσ were the common suffix of
PXασ and Mδσ.

Let V be the recursive stack generated in the definition of
χδσ(pXU,M). We remark that the subgoals generated in the
construction of χδσ(pXU,M) could be of two type. The first
is of the type

oiγiδσ ' piδσ, (5)

which is of the reversal shape of the one given in (3). The
second is of the type p jδσ ' r jλ jUδσ, which is equivalent to

r jλ jασ ' p jδσ. (6)

We will see that the order is reversed for algorithmic reason.
Let χα,δσ(pX,M) be obtained from χδσ(pXU,M) by replacing
Uδσ in the latter by ασ. Strictly speaking χα,δσ(pX,M) is not
unique because more than one simple guard may rendering
(4) true. We could introduce a canonical representation of
every simple constant. We shall however not do that in this
paper. We say that χα,δσ(pX,M) and χα′,δ′σ′ (pX,M) are of
same type if they are obtained from the same bisimulation
tree B(pXUV,MV) of pXUV ' MV . We also say that the
trees χα,δσ(pX,M), χα′,δ′σ′ (pX,M) are duplicate of each other.

A mixed recursive guard consists of q processes, each being
a process oiγi that appears in a subgoal of the shape (5) or a
process r jλ j that appears in a subgoal of the shape (6).

Lemma 13. There are only finitely many mixed recursive
guards for fixed pX and M.

Proof. By Lemma 12 there are only finitely many simple
constants. For each such constant there are finitely many mixed
recursive stacks by recycling the proof of Lemma 10. �

For each k ∈ ker ‖pX‖ let Bk be a bisimulation tree of
pkασ ' skκkδσ. Suppose q0, q1 are such that q0 ∪ q1 = q and
{oiγiδσ ' piδσ}i∈[q0] ∪ {r jλ jασ ' p jδσ} j∈[q1] are the recursive
subgoals. Let {Bi

0}i∈[q0] ∪ {B
j
1} j∈[q1] be the bisimulation trees

of these goals. Let E =
⋃

k∈ker ‖pX‖B
k ∪

⋃
k∈ω Ek, where Ek is

defined inductively by the following two clauses.

1) E0 =

(⋃
i∈[q0]B

i
0

)−1
∪

(⋃
j∈[q1]B

j
1

)−1
.

2) Ek+1 = Ek ∪ Ek;E0.
Define E(pXασ,Mδσ) as follows:

E(pXασ,Mδσ) = (E ∪ I); χα,δσ(pX,M); (E−1 ∪ I).

Using again the fact that bisimulations are closed under
composition and union one sees that E and Ei for all i ≥ 0 are
branching bisimulations.

Lemma 14. E(pXασ,Mδσ) is a branching bisimulation.

Proof. The argument is similar to the one for Lemma 11. The
treatment of a pair of the form (siκiδσ,N) obtained from the
pair (piασ,N) is by simple composition. �

Every nontrivial goal is of the form pXασ ' Mδσ with
|Mδσ| > 0. What we have shown is that a bisimulation tree

of a nontrivial goal can be decomposed to a finite number of
bisimulation trees of subgoals and a characteristic tree.

Stirling also pointed out in [30] a special case of Lemma 13.

Lemma 15. For fixed pX and M with |M| = m, there are a
finite number of recursive guards {o j

iγ
j
i }i∈[q], j∈[k] such that for

every pair α, σ satisfying pXασ ' Mσ there is some j ∈ [k]
rendering true the following.

o j
iγ

j
iσ ' piσ, (7)

pXαV j ' MV j, (8)

where V j is defined by piV j = o j
iγ

j
i V j for all i ∈ [q].

Proof. The number of pairs α, σ rendering pXασ ' Mσ could
be infinite. But there are finitely many simple constant U such
that pXUσ ' pXασ ' Mσ. For each such simple constant U
there are only a finite number of V such that pXUV ' MV .
If pXαV ' pXUV then pXαV ' MV . Otherwise we can use
the method in Section VI-A to extend V to some V ′ such that
piαV ′ ' piUV ′ for all i ∈ ker(pX) by exploiting the fact that
piασ ' piUσ for all i ∈ ker(pX). Now piαV ′ ' piUV ′ for
all i ∈ ker(pX) implies pXαV ′ ' pXUV ′. And pXUV ' MV
implies pXUV ′ ' MV ′ by Lemma 9. Hence pXαV ′ ' MV ′.
There are only a finite number of ways to extend V to V ′. �

The algorithmic significance of Lemma 15 is that the goal
pXασ ' Mσ can be reduced to the characteristic tree of
pXασ ' Mσ and a number of recursive subgoals. We will
see that this will give rise to a self-reduction strategy since no
simple subgoal is generated.

VII. Generic Bisimulation Tree

In this section we complete the process of cutting down the
size of bisimulaiton trees by introducing conditions for nodes
not to grow. Here are two obvious conditions.

1) If the label of a node is the same label as an ancestor,
the node stops to grow.

2) If the label of a node is a pair of identical processes, the
node stops to grow.

The result of Section VI-B implies that there is a bound c
such that the following property holds of all nontrivial goals
of the form pXασ ' Mδσ such that |M| = m and |δσ| ≥ c:
There is a goal pXα′σ′ ' Mδ′σ′ with 0 < |δ′σ′| < c such that
χα,δσ(pX,M) and χα′,δ′σ′ (pX,M) are of same type. It follows
that we only have to consider two types of goals.

1) The goals L ' M are such that |M| ≤ m. Grow a
bisimulation tree of L ' M as is defined in Section V.
When a node labeled (L′,M′) is generated such that
|M′| ≥ m + c, the node stops growing.

2) The goals pXασ ' Mδσ are such that |M| = m and 0 <
|δσ| < c. Grow the characteristic tree of pXασ ' Mδσ
over δσ with the following additional constraints: If a
node labeled (L′,M′) is generated such that |M′| ≥ m+c,
the node stops growing. We call the leaf a large leaf.

For the above construction to make sense, we should choose
the bound c such that

1) it is larger than the size of all simple and recursive
guards, and

2) it is larger than the height of all the generating trees for
the recursive guards.

We call the goals of the two types generic goals and the
characteristic trees of these goals generic bisimulation trees.
By definition and Corollary 6 the set of generic goals as well
as the set of generic bisimulation trees is finite. Moreover we
have the following important fact.

Lemma 16. Every generic bisimulation tree is finite.

Proof. The generic bisimulation trees of the first type is
obviously finite. In the light of Corollary 6 if in a path no
large leaf is ever generated, repeat must occur. We are done
by applying König Lemma. �

Suppose q1X1α1σ1 ' M1δ1σ1, . . . , qgXgαgσg ' Mgδgσg

are the generic goals and Tq1X1α1σ1'M1δ1σ1 , . . . , TqgXgαgσg'Mgδgσg

are the corresponding generic bisimulation trees. We say that a
goal qiXiασ ' Miδσ with |δσ| ≥ c is of type i if χα,δσ(qiXi,Mi)
and χαi,δiσi (qiXi,Mi) are of same type. For each i ∈ [g] let

Bi =
⋃

qiXiασ'Miδσ is of type i

TqiXiαiσi'Miδiσi {α/αi, δ/δi, σ/σi},

where the relation TqiXiαiσi'Miδiσi {α/αi, δ/δi, σ/σi} is obtained
from TqiXiαiσi'Miδiσi by substituting α for αi, δ for δi and σi

for σ. Let
BB =

⋃
i∈[g]

Bi.

Finally let BB∗ =
(
I ∪ BB ∪ BB−1

)∗
.

Proposition 17. BB∗ is a branching bisimulation.

Proof. TqiXiαiσi'Miδiσi and TqiXiαiσi'Miδiσi {α/αi, δ/δi, σ/σi} for
i ∈ [g] are in general not branching bisimulations. We can
piece these finite trees in two ways. Vertically we can graft a
duplicate of a generic bisimulation tree on a large leaf of a
generic bisimulation tree. This procedure can be carried out
ad infinitum. What we get eventually are bisimulation trees of
generic goals over suffix. Now horizontally we can compose
the bisimulation trees of generic goals over suffix to form
bisimulation trees. �

VIII. Bisimulation Base

From an algorithmic point of view it is insufficient to know
the existence of the set of generic bisimulation trees defined
in Section VII. More useful is a set of generic bisimulation
trees, not necessarily complete, that enjoys certain closure
property with regards to decomposition. Suppose r1Y1α1σ1 '

M1δ1σ1, . . . , rhYhαhσh ' Mhδhσh are the generic goals and
Tr1Y1α1σ1'M1δ1σ1 , . . . , TrhYhαhσh'Mhδhσh are the corresponding
generic bisimulation trees. We require that the following
closure property hold of these generic bisimulation trees.

1) For every i ∈ [h] and every large leaf of TriYiαiσi'Miδiσi

is of some type j ∈ [h].

1) Guess a set G of generic goals L ' N with |N | < m + c.
2) For every guessed generic goal L ' N with |N | ≤ m,

guess a generic bisimulation tree. If an internal node of
the tree fails the bisimulation property, report a failure.

3) For every guessed generic goal pXασ ' Mδσ such that
|M| = m and |δ| > 0, do the following.

a) Guess the characteristic tree of the goal with a
simple guard and a recursive guard. The size of
the simple and recursive guards and the height of
the generating tree are bounded by c.
i) Check if every internal node of the guessed

bisimulation/chararcteristic tree satisfies the
bisimulation property. If not, report failure.

ii) For every guessed simple subgoal, if the size
of the right hand side is less than m + c, then
check if it is in G, otherwise goto Step 3a.

iii) For every guessed recursive subgoal Lσ ' pσ,
if |σ| < m + c, then check if it is in G,
otherwise let σ′σ′′ = σ and |σ′| = m and do
the following.
A) Guess the characteristic tree of Lσ′σ′′ '

pσ′σ′′ together with a recursive guard. The
size of the recursive guard and the height
of the generating tree are bounded by c.

B) Check if every internal node of the guessed
chararcteristic tree satisfies the bisimulation
property. If not, report failure.

C) Goto Step 3(a)iii to check the recursive
subgoals generated in Step 3(a)iiiA.

4) For every leaf (L,O) of a guessed generic bisimulation
tree do the following.

a) If |O| < m+ c, pass if L = O or if (L,O) is the label
of an ancestor, otherwise report a failure.

b) If |O| ≥ m + c, guess that L ' N is of the same
type as some guessed generic goal pXασ ' Mδσ.
Generate new subgoals by using the simple guard
and recursive guard of the characteristic tree of
pXασ ' Mδσ. Apply the checks defined in
Step 3(a)ii and Step 3(a)iii to the new simple sub-
goals and the new recursive subgoals respectively.

5) If there is no report of failure, output G.

Fig. 1. ClosedSet (c)

2) Every subgoal generated in the construction of any
generic bisimulation tree TrkYkαkσk'Mkδkσk , where k ∈ [h],
is of some type j ∈ [h].

3) Every subgoal generated in the construction of the
characteristic tree of any of the subgoals generated in (2)
is of some type j ∈ [h].

4) Every subgoal generated in the construction of the
characteristic tree of any of the subgoals generated in (3)
is of some type j ∈ [h].

5) So on and so forth.

1) If |Q| < m + c, check if P ' Q ∈ G.
2) If |Q| ≥ m + c, then guess the type of the goal P ' Q

and apply DecomposableG to each of the subgoals.

Fig. 2. DecomposableG (P,Q)

In the above process the construction of a recursive subgoal of
the form oiγiδσ ' piδσ no simple guard need be introduced.
This is because the subgoal is of the form oiX′α′σ′ ' M′σ′

such that X′α′σ′ = γiδσ, M′σ′ = piδσ and |M′| = m. So
Lemma 15 applies. The common suffix σ′ satisfies |σ′| < |δσ|.
This leads to two observations. Firstly there are only a finite
number of simple subgoals generated in the above procedure.
Every time a new simple subgoal is produced the size of its
left hand side is smaller than the size of the left hand side
of the simple subgoals already produced. Secondly recursive
treatment of the recursive goals does not introduce any simple
subgoals. Every time a new recursive subgoal is produced the
size of its right hand side is smaller than the size of the right
hand side of one recursive subgoal already produced. It follows
easily from these observations that the procedure defined in
the above terminates in finite steps. If the procedure ends in
success, we say that the set of the generic goals and the set
of the generic bisimulation trees are closed.

We shall describe an algorithm that can check if within a
given size bound a closed set of generic subgoals, as well
as the corresponding closed set of the generic bisimulation
trees, exists; and if they exist, output them. This is the
nondeterministic algorithm ClosedSet(c) defined in Fig. 1.
By Corollary 6 the guess in Step 1 is a bounded guess.
Since the size of the right hand side of every node of every
guessed generic bisimulation tree is bounded by m + c + r, by
Lemma 5 and Corollary 6 there is a bound on the size of the
guessed generic bisimulation trees, which is computable from
the definition of PDA and the bound c. Thus ClosedSet(c)
terminates for every set of guesses. Since all the guesses are
computationally bounded, ClosedSet(c) can be turned to a
deterministic algorithm. We remark that even if ClosedSet(c)
terminates successfully, it does not mean that ClosedSet(c)
has found out every generic goal. If the bound c is not large
enough the algorithm cannot discover all the generic goals.

Next we design a nondeterministic algorithm, defined in
Fig. 2 that checks if a goal can be decomposed in terms of
the elements of a given closed set C of generic subgoals. The
description of Step 2 is greatly simplified. Had we written
down all the details it would look very much the same as the
main body of ClosedSet (c). An input pair (P,Q) with |Q| ≥
m + c is processed in the same way a large leaf is processed
in ClosedSet (c). This algorithm certainly terminates since the
size of every subgoal is controlled. We say that a goal P ' Q
is decomposable with regards to C if DecomposableC (P,Q)
returns true.

Closed sets of generic goals (bisimulation trees) are still
insufficient. We need an even stronger closure property that
requires a generic bisimulation tree to be extensible. Let G =

1) Let BB = ∅.
2) For i = 1 to h, do the following.

a) Let T = TriYiαiσi'Miδiσi .
b) If there is a large leaf of T of type say j that is a

large leaf of a duplicate of say type k, and there
is no node in the path to the root that is also a
large leaf of type j of a duplicate of type k, grow a
duplicate of Tr jY jα jσ j'M jδ jσ j at this large leaf, check
if every subgoal generated therein is decomposable
with regards to T. If any of the subgoals is not
decomposable, report failure and exit.

c) Let BB = BB ∪ {T }.
3) Output BB.

Fig. 3. BisimulationBase (T)

{r1Y1α1σ1 ' M1δ1σ1, . . . , rhYhαhσh ' Mhδhσh} be a closed
set of goals, and let T = {Tr1Y1α1σ1'M1δ1σ1 , . . . ,TrhYhαhσh'Mhδhσh }

be the set of the generic bisimulation trees. We say that T
is a bisimulation base if the algorithm BisimulationBase (T)
terminates without reporting any failure. Notice that since
there are finitely many generic bisimulation trees, the termi-
nation condition must be met on every path. It is easy to
see that there is a computable bound on the height of the
final tree. Consequently the size of subgoals generated during
the generation of the final tree is controlled. In other words
there is a computable bound on the number of subgoals one
has to check. We conclude that BisimulationBase (T) must
terminate. The algorithm either reports a failure or or confirms
that the input is a bisimulation base. If BisimulationBase (T)
terminates with an output set BB, we call an element of the
set a productive tree. An illustration of a productive tree is
given by the diagram in Fig. 4. In the diagram each triangle
is a duplicate of a generic bisimulation tree. The two shaded
triangles are duplicates of a same generic bisimulation tree.
The two bullets are nodes in the same position of the respective
duplicates and are of same type.

Now suppose T = {Tr1Y1α1σ1'M1δ1σ1 , . . . , TrhYhαhσh'Mhδhσh }

is a bisimulation base and P1, . . . ,Ph are the productive
trees. For each i ∈ [h] we can unfold the productive tree
Pi to a bisimulation tree of riYiαiσi ' Miδiσi. This is
done as follows. The initial part of the bisimulation tree
is obtained by composing Pi with bisimulation trees of the
subgoals generated in the definition of the characteristic tree
of riYiαiσi ' Miδiσi. For each large leaf (L,N) of Pi, there
is by definition an ancestor (L′,N′) of (L,N) such that the
latter node is the root of a duplicate of some P j and the
goals L ' N and L′ ' N′ are of same type. We can grow a
bisimulation tree of L ' N as a duplicate of a bisimulation tree
of L′ ' N′. The initial part of the bisimulation tree of L′ ' N′

is grown by composing the shaded tree with bisimulation trees
of the relevant subgoals. To continue we need to grow the large
leaf (L,N) again, which can be done in completely the same
manner as in the above. In conclusion we can turn all the
productive trees to bisimulation trees of the respective generic

(rjYjασ,Mjδσ)

(rjYjα
′σ′σ,Mjδ

′σ′σ)

(riYiαiσi,Miδiσi)

· · · · · ·

Fig. 4. Productive Tree

1) Check if P ; Q, and at the same time run in parallel
ClosedSet(m), ClosedSet(m + 1),

2) If P ; Q then answer ‘no’.
3) If for some c ≥ m, ClosedSet(c) terminates successfully

with a closed set C of generic bisimulation trees and
if moreover BisimulationBase (C) is successful, then let
BB = BisimulationBase (C). If DecomposableC (P,Q) is
successful with regards to BB, answer ‘yes’ and halt.

Fig. 5. Equivalence (P,Q)

goals r1Y1α1σ1 ' M1δ1σ1, . . . , rhYhαhσh ' Mhδhσh.
In the above account the constructions of bisimulation trees

of the subgoals is missing. We now remedy this. By definition
every such subgoal is decomposable with regards to BB.
We can grow a bisimulation tree of the subgoal in the way
described in Section VI-A. During the construction we need
to grow bisimulation trees of further subgoals in the same
manner. Eventually the growth of the tree rely on the unfolding
of the productive trees.

Proposition 18. Suppose P,Q are nPDAε+ processes. If a goal
(P,Q) is decomposable with regards to a bisimulation base,
then P ' Q.

Proof. The above argument is sufficient. �

IX. Decision Algorithm

We are ready to give a decision algorithm. The algorithm
Equivalence is defined in Fig. 5. The termination of the
algorithm is clear in the light of Proposition 7. We have
effectively proved the main result of the paper.

Theorem 19. The relation 'nPDAε+ is decidable.

Proof. Since the goal P ' Q is decomposable, we can
construct a bisimulation in the same manner we have done
for Proposition 18. �

X. High Undecidability of ε-Nondeterminism

In the proofs of this section we need to use the game theoret-
ical interpretation of bisimulation. A bisimulation game [31],
[18] for a pair of processes (P0, P1), called a configuration,
is played between Attacker and Defender in an alternating
fashion. It is played according to the following rules: Suppose
(P0, P1) is the current configuration.
• |Pi| > 0 or Pi = 0 for each i ∈ {0, 1}.

1) Attacker picks up some Pi, where i ∈ {0, 1}, to start
with and chooses some Pi

`
−→ P′i .

2) Defender must respond in the following manner:
a) Do nothing. This option is available if ` = ε.
b) Choose a transition sequence P1−i

ε
−→ P1

1−i
ε
−→

. . .
ε
−→ Pk−1

1−i
`
−→ Pk

1−i.
3) If case 2(a) happens the new configuration is

(P′i , P1−i). If case 2(b) happens Attacker chooses one
of

{(Pi, P1
1−i), . . . , (Pi, Pk−1

1−i), (P′i , P
k
1−i)}

as the new configuration.
4) The game continues with the new configuration.

• Pi = pε.
1) Attacker chooses some Pi−1 =⇒ P′i−1 for some P′i−1.
2) Defender must respond with P′i−1 =⇒ Pi.

Attacker wins a bisimulation game if Defender gets stuck in
the game. Defender wins a bisimulation game if Attacker can-
not win the game. Attacker/Defender has a winning strategy if
it can win no matter how its opponent plays. The effectiveness
of the bisimulation game is enforced by the following lemma.

Lemma 20. P ' Q if and only if Defender has a winning
strategy for the bisimulation game starting with the configu-
ration (P,Q).

The above lemma is the basis for game theoretical proofs
of process equality. It is also the basis for game constructions
using Defender’s Forcing.

We will show that the branching bisimilarity is highly
undecidable on PDAε+. This is done by a reduction from
a Σ1

1-complete problem. A nondeterministic Minsky counter
machine M with two counters c1, c2 is a program of the form
1 : I1; 2 : I2; . . . ; n−1 : In−1; n : halt, where for each
i ∈ {1, . . . , n − 1} the instruction Ii is in one of the following
forms, assuming 1 ≤ j, k ≤ n and e ∈ {1, 2}.
• ce := ce + 1 and then goto j.
• if ce = 0 then goto j; otherwise ce := ce−1 and then goto

k.
• goto j or goto k.

The problem rec-NMCM asks if M has an infinite computa-
tion on (c1, c2) = (0, 0) such that I1 is executed infinitely often.
We shall use the following fact from [9].

Proposition 21. rec-NMCM is Σ1
1-complete.

Following [18] we transform a nondeterministic Minsky
counter machine M with two counters c1, c2 into a machine

M′ with three counters c1, c2, c3. The machine M′ makes use
of a new nondeterministic instruction of the following form.
• i : ce := ∗ and then goto j.

The effect of this instruction is to set ce by a nondetermin-
istically chosen number and then go to I j. Every instruction
“i : Ii” of M is then replaced by two instructions in M′, with
respective labels 2i−1 and 2i.
• 1 : I1 is replaced by

1 : c3 := ∗ and goto 2;
2 : I1.

• i : Ii, where i ∈ {2, . . . , n}, is replaced by
2i− 1 : if c3 = 0 then goto 2n; otherwise c3 := c3 − 1
and goto 2i;
2i : Ii

• Inside each Ii, where i ∈ {1, . . . , n}, every occurrence of
“goto j” is replaced by “goto 2 j − 1”.

It is easy to see that M′ has an infinite computation if
and only if M has an infinite computation that executes the
instruction I1 infinitely often. Our goal is to construct a PDAε+

system G = {Q,L,V,R} in which we can define two processes
p1X⊥ and q1X⊥ that render true the following equivalence.

p1X⊥ ' q1X⊥ if and only if M′ has an infinite computation.

The system G = {Q,L,V,R} contains the following key
elements:
• Two states pi, qi ∈ Q are introduced for each instruction

Ii.
• L = {a, b, c, c1, c2, c3, f , f ′}.
• Three stack symbols C1,C2,C3 ∈ V are introduced for

the three counters respectively. A bottom symbol ⊥ ∈ V
is also introduced.

Our construction borrows ideas from [19], [18], [36], mak-
ing use of the game characterization of branching bisimu-
lation and Defender’s Forcing technique. A configuration of
M′ that consists of instruction label i and counter values
(c1, c2, c3) = (n1, n2, n3) is represented by the game config-
uration (piXCn1

1 Cn2
2 Cn3

3 ⊥, qiXCn1
1 Cn2

2 Cn3
3 ⊥). In the rest of the

section we shall complete the definition of G and explain its
working mechanism.

A. Test on Counter

We need some rules to carry out testing on the counters. In
the rules given in Fig. 6, j and e range over the set {1, 2, 3}.
These rules are straightforward. The following proposition
summarizes the correctness requirement on the equality test,
the successor and predecessor tests, and the zero test. Its
routine proof is omitted.

Proposition 22. Let α = Cn1
1 Cn2

2 Cn3
3 and β = Cm1

1 Cm2
2 Cm3

3 . The
following statements are valid.

1) tα⊥ ' tβ⊥ if and only if ne = me for e = 1, 2, 3.
2) t(3, ∗)α⊥ ' t′(3, ∗)β⊥ if and only if ne = me for e = 1, 2.
3) t(e,+)α⊥ ' t′(e,+)β⊥ if and only if ne + 1 = me and

n j = m j for j , e.

• tC1
c1
−→ t, tC2

c2
−→ t, tC3

c3
−→ t;

• t(e,+)C j
c j
−→ t(e,+) if j < e, t(e,+)C j

ce
−→ tC j if j ≥ e,

t(e,+)⊥
ce
−→ t⊥;

t′(e,+)C j
c j
−→ t;

• t(e, ∗)C1
c1
−→ t(e, ∗), t(e, ∗)C2

c2
−→ t(e, ∗), t(e, ∗)C3

b
−→ t⊥;

t′(e, ∗)C1
c1
−→ t(e, ∗), t′(e, ∗)C2

c2
−→ t(e, ∗), t′(e, ∗)C3

b
−→

t⊥;

• t(e,−)C j
c j
−→ t;

t′(e,−)C j
c j
−→ t′(e,−) if j < e, t′(e,−)C j

ce
−→ tC j if j ≥ e,

t′(e,−)⊥
ce
−→ t⊥;

• t(e, 0)C j
c j
−→ t(e, 0) if j , e, t(e, 0)Ce

f
−→ t(e, 0);

t′(e, 0)C j
c j
−→ t′(e, 0) if j , e, t′(e, 0)Ce

f ′
−→ t(e, 0);

• t(e, 1)C j
c j
−→ t(e, 1) if j < e, t(e, 1)Ce

ce
−→ t, t(e, 1)C j

f
−→

t if j > e; t(e, 1)⊥
f
−→ t⊥;

t′(e, 1)C j
c j
−→ t′(e, 1) if j < e, t′(e, 1)Ce

ce
−→ t,

t′(e, 1)C j
f ′
−→ t if j > e; t′(e, 1)⊥

f ′
−→ t⊥;

• p⊥
b
−→ t⊥ for every p ∈

{t, t′, t(e,+), t′(e,+), t(e,−), t′(e,−), t(e, 0), t′(e, 0), t(e, 1), t′(e, 1)}.

Fig. 6. Test on Counter

4) t(e,−)α⊥ ' t′(e,−)β⊥ if and only if ne = me + 1 and
n j = m j for j , e.

5) t(e, 0)α⊥ ' t′(e, 0)β⊥ if and only if n j = m j for j =

1, 2, 3 and ne = 0.
6) t(e, 1)α⊥ ' t′(e, 1)β⊥ if and only if n j = m j for j =

1, 2, 3 and ne > 0.
7) pα⊥ ' pα⊥β for all p ∈ Q and all α, β ∈ V∗.

B. Operation on Counter

There are three basic operations on counters, the increment
operation, the decrement operation and the nondeterministic
assignment operation. Our task is to encode these operations
in the branching bisimulation game G. To do that we use
a technique from [36], which is a refinement of Defender’s
Forcing technique [18], taking into account of the subtlety of
the branching bisimulation. The idea can be explained using
the following system.

1) P
a
−→ P′, P

ε
−→ Q0. The latter is the only silent

transition of P.
2) Q

ε
−→ Q0. This is the only transition Q may perform.

Hence Q ' Q0.
3) Q0 ' Q whenever Q0 =⇒ Q.

Condition 1 and condition 2 guarantee that P ' Q if and only
if P ' Q0. So the effectiveness of the Defender’s Forcing
the copycat rules P

ε
−→ Q0, Q

ε
−→ Q0 intend to achieve

depends on how we define Q0. Condition 3 is forced upon us
by the previous two conditions. A standard approach to meet
the requirement 3 is to make sure that everything that has been

• u(e, o, j)X
a
−→ u1(e, o, j)X, u(e, o, j)X

ε
−→ r′(e, o, j)X;

u′(e, o, j)X
ε
−→ r′(e, o, j)X;

• r′(e, o, j)X
ε
−→ g′(e, o, j)X⊥;

g′(e, o, j)X
ε
−→ g′(e, o, j)X3;

g′(e, o, j)X3
ε
−→ g′(e, o, j)X3C3, g′(e, o, j)X3

ε
−→

g′(e, o, j)X2;
g′(e, o, j)X2

ε
−→ g′(e, o, j)X2C2, g′(e, o, j)X2

ε
−→

g′(e, o, j)X1;
g′(e, o, j)X1

ε
−→ g′(e, o, j)X1C1, g′(e, o, j)X1

ε
−→

r′(e, o, j)X;

• g′(e, o, j)X1
a
−→ u′1(e, o, j)X;

• u1(e, o, j)
a
−→ u2(e, o, j)X, u1(e, o, j)X

c
−→ t(e, o);

u′1(e, o, j)
a
−→ u′2(e, o, j)X, u′1(e, o, j)X

c
−→ t′(e, o);

• u2(e, o, j)X
ε
−→ r(e, o, j)X;

u′2(e, o, j)X
ε
−→ r(e, o, j)X, u′2(e, o, j)X

a
−→ u′3(e, o, j)X;

• r(e, o, j)X
ε
−→ g(e, o, j)X⊥; g(e, o, j)X

ε
−→ g(e, o, j)X3;

g(e, o, j)X3
ε
−→ g(e, o, j)X3C3, g(e, o, j)X3

ε
−→

g(e, o, j)X2;
g(e, o, j)X2

ε
−→ g(e, o, j)X2C2, g(e, o, j)X2

ε
−→

g(e, o, j)X1;
g(e, o, j)X1

ε
−→ g(e, o, j)X1C1, g(e, o, j)X1

ε
−→

r(e, o, j)X;

• g(e, o, j)X1
a
−→ u3(e, o, j)X;

• u3(e, o, j)X
a
−→ p jX, u3(e, o, j)X

c
−→ t;

u′3(e, o, j)X
a
−→ q jX, u′3(e, o, j)X

c
−→ t.

Fig. 7. Operation on Counter

done to derive Q0 =⇒ Q can be undone. In our setting this is
accomplished by starting all over again with the help of the
bottom symbol ⊥. Once we know that condition 3 is indeed
satisfied, the argument for the correctness of the bisimulation
game can be simplified in the following sense: In the game
of (P,Q) Attacker would play P

a
−→ P′. Defender’s optimal

response must be of the following form

Q
ε
−→ Q0

ε
−→ Q1

ε
−→ Q2

ε
−→ . . .

ε
−→ Qk

a
−→ Q′.

For both players only the configuration (P′,Q′) need be
checked.

With the above remark in mind we turn to the part of the
game that implements the basic operations. Let e range over
{1, 2, 3}, o over {+,−, ∗}, and j over {1, . . . , 2n}. For each triple
(e, o, j) we introduce the rules given in Fig. 7. The following
lemma identifies some useful state preserving silent transitions.

Lemma 23. P ' g(e, o, j)X⊥ for all P such that
g(e, o, j)X⊥ =⇒ P. Similarly Q ' g′(e, o, j)X⊥ for all Q such
that g′(e, o, j)X⊥ =⇒ Q.

Proof. Suppose g(e, o, j)X⊥ =⇒ P. Then P =⇒ g(e, o, j)X⊥α
for some α. By (7) of Proposition 22 one has g(e, o, j)X⊥ '
g(e, o, j)X⊥α. Consequently g(e, o, j)X⊥ ' P. �

The next lemma states the soundness property of the rules
defined in Fig. 7, in which we write 11, 12 and 13 respectively
for (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Lemma 24. Suppose α = Cm1
1 Cm2

2 Cm3
3 . The following state-

ments are valid.
1) In the bisimulation of (u(e,+, j)Xα⊥, u′(e,+, j)Xα⊥),

Defender, respectively Attacker, has a strategy to
win or at least push the game to (P,Q) such that
P ' p jXCn1

1 Cn2
2 Cn3

3 ⊥ and Q ' q jXCn1
1 Cn2

2 Cn3
3 ⊥ and

(n1, n2, n3) = (m1,m2,m3)+1e.

2) If me > 0 then in the bisimulation game of
(u(e,−, j)Xα⊥, u′(e,−, j)Xα⊥), Defender, respectively
Attacker, has a strategy to win or at least push the
game to (P,Q) such that P ' p jXCn1

1 Cn2
2 Cn3

3 ⊥ and
Q ' q jXCn1

1 Cn2
2 Cn3

3 ⊥ and (n1, n2, n3) = (m1,m2,m3)−1e.

3) Suppose n ≥ m3. In the bisimulation game of
(u(3, ∗, j)Xα⊥, u′(3, ∗, j)Xα⊥), Defender has a strategy
to win or at least push the game to (P,Q) such that
P ' p jXCn1

1 Cn2
2 Cn3

3 ⊥ and Q ' q jXCn1
1 Cn2

2 Cn3
3 ⊥ and

(n1, n2, n3) = (m1,m2,m3) + (n − m3) · 13.

Proof. We prove the first statement. The proof for the other
two is similar. Let β = Cn1

1 Cn2
2 Cn3

3 such that (n1, n2, n3) =

(m1,m2,m3)+1e. In what follows we describe Defender and
Attacker’s step-by-step optimal strategy in the bisimulation
game of (u(e,+, j)Xα⊥, u′(e,+, j)Xα⊥).

1) By Defender’s Forcing, Attacker plays
u(e,+, j)Xα⊥

a
−→ u1(e,+, j)Xα⊥. Defender responds

with

u′(e,+, j)Xα⊥
ε

=⇒ g′(e,+, j)X1β⊥α⊥
a
−→ u′1(e,+, j)Xβ⊥α⊥.

According to Lemma 23, Attacker’s optimal move is to
continue the game from

(u1(e,+, j)Xα⊥, u′1(e,+, j)Xβ⊥α⊥).

2) It follows from Proposition 22 that t(e,+)Xα⊥ '

t′(e,+)Xβ⊥α⊥. If Attacker plays an action la-
beled c, Defender wins. Attacker’s optimal move
is to play an action labeled a. Defender then fol-
lows suit, and the game reaches the configuration
(u2(e,+, j)Xα⊥, u′2(e,+, j)Xβ⊥α⊥).

3) Attacker’s next move is u′2(e,+, j)Xβ⊥α⊥
a
−→

u′3(e,+, j)Xβ⊥α⊥. This is optimal by Proposition 22.
Defender responds with

u2(e,+, j)Xα⊥
ε

=⇒ g(e,+, j)X1β⊥α⊥
a
−→u3(e,+, j)Xβ⊥α⊥.

By an argument similar to the one given in (i) Attacker
would choose

(u3(e,+, j)Xβ⊥α⊥, u′3(e,+, j)Xβ⊥α⊥)

as the next configuration.
4) If Attacker plays an action labeled c, Defender wins

by Proposition 22. So Attacker’s best bet is to play an

action labeled by a. The game reaches the configuration
(p jXβ⊥α⊥, q jXβ⊥α⊥).

The above argument shows that the configuration
(p jXβ⊥α⊥, q jXβ⊥α⊥) is optimal for both Attacker and
Defender. We are done. �

C. Control Flow

We now encode the control flow of M′ by the rules of the
bisimulation game. We will introduce a number of rules for
each instruction in M′.

1) The following rules are introduced in the game G for an
instruction of the form “i : ce := ce +1 and then goto j”.

piX
a
−→ u(e,+, j)X, qiX

a
−→ u′(e,+, j)X.

2) For each instruction of the form “i : ce := ∗ and then
goto j” the following two rules are added to R.

piX
a
−→ u(e, ∗, j)X, qiX

a
−→ u′(e, ∗, j)X.

3) For each instruction of the form “i : goto j or goto k”,
we have the following.

• piX
a
−→ p1

i X, piX
a
−→ q1

i X, piX
a
−→ q2

i X;
qiX

a
−→ q1

i X, qiX
a
−→ q2

i X;

• p1
i X

a
−→ p jX, p1

i X
a
−→ pkX;

q1
i X

a
−→ q jX, q1

i X
a
−→ pkX;

q2
i X

a
−→ p jX, q2

i X
a
−→ qkX.

These rules embody precisely the idea of Defender’s
Forcing [18]. It is Defender who makes the choice.

4) For each instruction of the form
“i : if ce = 0 then goto j; otherwise ce = ce − 1 and

then goto k”
we construct a system defined by the following rules.

• piX
a
−→ pi(e, 0, j)X, piX

c
−→ pi(e, 1, k)X;

qiX
a
−→ qi(e, 0, j)X, qiX

c
−→ qi(e, 1, k)X;

• pi(e, 0, j)X
a
−→ v1(e, 0, j)X, pi(e, 1, k)X

a
−→

v1(e, 1, k)X;
pi(e, 0, j)X

a
−→ v2(e, 0, j)X, pi(e, 1, k)X

a
−→

v2(e, 1, k)X;
pi(e, 0, j)X

a
−→ v3(e, 0, j)X, pi(e, 1, k)X

a
−→

v3(e, 1, k)X;

• qi(e, 0, j)X
a
−→ v2(e, 0, j)X, qi(e, 1, k)X

a
−→

v2(e, 1, k)X;
qi(e, 0, j)X

a
−→ v3(e, 0, j)X, qi(e, 1, k)X

a
−→

v3(e, 1, k)X;

• v1(e, 0, j)X
a
−→ t(e, 1)X, v1(e, 0, j)X

a
−→ p jX;

v2(e, 0, j)X
a
−→ t′(e, 1)X, v2(e, 0, j)X

a
−→ p jX;

v3(e, 0, j)X
a
−→ t(e, 1)X, v3(e, 0, j)X

a
−→ q jX;

• v1(e, 1, k)X
a
−→ t(e, 0)X, v1(e, 1, k)X

a
−→

u(e,−, k)X;
v2(e, 1, k)X

a
−→ t′(e, 0)X, v2(e, 1, k)X

a
−→

u(e,−, k)X;

ε-Pushing nPDA ε-Pushing PDA
' Decidable Σ1

1-Complete
≈ Π0

1-Complete Σ1
1-Complete

Fig. 8. Decidability and Degree of Undecidability of ε-Pushing PDA

v3(e, 1, k)X
a
−→ t(e, 0)X, v3(e, 1, k)X

a
−→

u′(e,−, k)X.

The idea of the above encoding is that Attacker must
claim either “ce = 0” or “ce > 0”. Defender can check
the claim and wins if Attacker lies. If Attacker has not
lied, Defender can force Attacker to do what Defender
wants.

5) For “2n : halt”, we add the rules

p2nX
f
−→ p2n⊥, q2nX

f ′
−→ q2n⊥.

So Attacker wins if the game ever terminates.
This completes the definition of G.

With the help of Proposition 22 and Lemma 24, it is a
routine to prove the next lemma.

Lemma 25. M′ has an infinite computation if and only if
p1X⊥ ' q1X⊥.

Branching bisimilarity on PDAε+ is in Σ1
1 for the following

reason: For any PDAε+ processes P and Q, P ' Q if
and only if there exists a set of pairs that contains (P,Q)
and satisfies the first order arithmetic definable conditions
prescribed in Definition 1. Together with the reduction justified
by Lemma 25 we derive the main result of the section.

Theorem 26. The relation 'PDAε+ is Σ1
1-complete.

It has been proved in [36] that the branching bisimilarity
is undecidable on normed PDA. The reduction defined in the
above can be constructed for nPDA too. This is because in
nPDA the stack can be reset by popping off all the symbols in
the stack using ε-popping transitions and creating new stack
content using ε-pushing transitions, achieving the same effect
as the bottom symbol ⊥ has achieved in PDAε+. The details
are omitted.

Theorem 27. The branching bisimilarity of normed PDA is
Σ1

1-complete.

XI. Conclusion
The results of this paper and the results of Jančar and

Srba [18] are summarized in Fig. 8. Stirling’s work on the
decidability of the strong bisimilarity of nPDA has strong
influence on the present work. We have attempted to prove
the result of this paper by using tableau system as is done
in Stirling’s work, see [6] for a report. It turned out that
due to the presence of the silent transitions, proof based on
a tableau system is not easy to handle. There are a number
of difficulties. Firstly in the presence of silent actions the k-
bisimilarity, as introduced in the proof of Proposition 7, is very
subtle. It is a powerful tool to establish negative results. It is

however a little tricky to use it to prove process equivalence.
The reason is that transitivity can easily fail if one is not
careful about the definition of 'k. If transitivity fails, the proof
of the backward soundness of tableau rules suffers. Secondly
an alternative would be to construct branching bisimulations
from a tableau, bypassing the use of k-bisimilarity. This
cannot be done by generalizing the similar idea for the strong
bisimilarity. Every goal appearing in a tableau is the root of
a branching bisimulation. Branching bisimulation of a goal
in the conclusion of a tableau rule and that of a goal in the
premises have different structure. That makes composition of
these bisimulations difficult to define. The way out of the
problem is Lemma 9. Using this idea one soon realizes that it
would be simpler to work directly with the bisimulation trees.
In this paper we have developed decomposition approach to
branching bisimulations that in our opinion is better suited
to deal with the branching structure in the presence of silent
transitions. We hope to say something about the ε-popping
PDA in another occasion. That would complete the picture
initiated here.

In addition to the relationship to the tableau approach,
the technique used in this paper can also be seen as a
generalization of the bisimulation base method [4]. In Caucal’s
approach every process has a prime decomposition such that
two processes are equivalent if their prime decompositions are
equivalent according to a set of axioms. For PDA processes
rewriting of processes is insufficient. We have to take into
account of the tree structures of these processes. The charac-
teristic trees of the generic goals of nPDAε+ capture the prime
structure of equivalent nPDAε+’s. The branching bisimilarity
of every pair of nPDAε+ processes can be accounted for in
terms of the characteristic trees in a structural way. It would
be interesting to see if our method can be applied to other
equivalence checking problems to derive new results.

Jančar introduced the notion of first order grammar [14]
and provided a quite different proof for the decidability of the
strong bisimilarity of nPDA [16]. In the full paper he also
outlined an idea of how to extend his proof to take care of
silent transitions. The extended PDA model introduced in [6]
is similar to the first order grammar of Jančar.

Stirling proved that the language equivalence of DPDA is
primitive recursive [28]. Benedikt, Goller, Kiefer and Mu-
rawski showed that the strong bisimilarity on nPDA is non-
elementary [2]. More recently Jančar observed that the strong
bisimilarity of first-order grammar is Ackermann-hard [15], a
consequence of which is that the strong bisimilarity proved
decidable by Sénizergues in [24] is Ackermann-hard. It is
an interesting research direction to look for tighter upper and
lower bounds on the branching bisimilarity of nPDAε+.

Acknowledgment

We thank the members of BASICS for their interest. We are
grateful to Prof. Jančar for his insightful discussion. The sup-
port from NSFC (61472239, ANR 61261130589, 91318301)
is gratefully acknowledged.

References

[1] J. Baeten. Branching bisimilarity is an equivalence indeed. Information
Processing Letters 58:141–147, 1996.

[2] M. Benedikt, S. Moller, S. Kiefer, and A. Murawski. Bisimilarity of
Pushdown Automata is Nonelementary. In LICS’13, pages 488–498, 2013.

[3] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on Infinite
Structures. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of
Process Algebra, pages 545–623. North-Holland, 2001.

[4] D. Caucal. Graphes canoniques de graphes algébriques. Informatique
théorique et Applications, 24:339–352, 1990.

[5] Y. Fu. Checking Equality and Regularity for Normed BPA with Silent
Moves. ICALP’13, Lecture Notes in Computer Science 7966, 238–249,
2013.

[6] Y. Fu and Q. Yin. Dividing Line between Decidable PDA’s and
Undecidable Ones. arXive, https://arxiv.org/abs/1404.7015, 2014.

[7] S. Ginsburg and S. Greibach. Deterministic Context Free Languages.
Information and Control, 9:620–648, 1966.

[8] J. Groote and H. Hüttel. Undecidable Equivalences for Basic Process
Algebra. Information and Computation, 115:354–371, 1994.

[9] D. Harel. Effective Transformations on Infinite Trees, with Applications
to High Undecidability, Dominoes, and Fairness. J. ACM, 33:224–248,
1986.

[10] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley Publishing Company, 1979.

[11] H. Hüttel. Silence is Golden: Branching Bisimilarity is Decidable
for Context Free Processes. In CAV’91, pages 2–12. Lecture Notes in
Computer Science 575, Springer, 1992.

[12] H. Hüttel. Undecidable Equivalences for Basic Parallel Processes. In
Theoretical Aspects of Computer Software, Lecture Notes in Computer
Science 789, pages 454–464, 1994.

[13] H. Hüttel and C. Stirling. Actions Speak Louder than Words: Proving
Bisimilarity for Context-Free Processes. In LICS’91, pages 376–386, 1991.

[14] P. Jančar. Decidability of DPDA Language Equivalence via First-Order
Grammars. In LICS’12, page 415–424. IEEE Computer Society, 2012.

[15] P. Jančar. Equivalences of Pushdown Systems are Hard. Foundations of
Software Science and Computation, pages 1–28, 2014.

[16] P. Jančar. Bisimulation Equivalence of First Order Grammars. In J. Es-
parza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, ICALP’14,
Lecture Notes in Computer Science 8573, pages 232–243, 2014.

[17] P. Jančar. Bisimulation Equivalence of First Order Grammars.
arXiv:1405.7923, 2014.

[18] P. Jančar and J. Srba. Undecidability of Bisimilarity by Defender’s
Forcing. Journal of ACM, 55(1), 2008.

[19] E. Mayr. Undecidability of Weak Bisimulation Equivalence for 1-
Counter Processes. In ICALP’03, Lecture Notes in Computer Science
2719, page 570–583. Springer, 2003.

[20] R. Mayr. Process Rewrite Systems. Information and Computation,
156:264–286, 2000.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[22] D. Park. Concurrency and Automata on Infinite Sequences. In TCS’81,

Lecture Notes in Computer Science 104, pages 167–183. Springer, 1981.
[23] G. Sénizergues. The Equivalence Problem for Deterministic Pushdown

Automata is Decidable. In ICALP’97, Lecture Notes in Computer Science
1256, pages 671–681. Springer-Verlag, 1997.

[24] G. Sénizergues. Decidability of Bisimulation Equivalence for Equational
Graphs of Finite Out-Degree. In FOCS’98, pages 120–129. IEEE, 1998.

[25] G. Sénizergues. L(a)=L(b)? Decidability Results from Complete Formal
Systems. Theoretical Computer Science, 251(1-2):1–166, 2001.

[26] G. Sénizergues. L(a)=L(b)? A Simplified Decidability Proof. Theoretical
Computer Science, 281(1):555–608, 2002.

[27] J. Srba. Undecidability of Weak Bisimilarity for Pushdown Processes. In
CONCUR’02, Lecture Notes in Computer Science 2421, pages 579–593.
Springer-Verlag, 2002.

[28] Stirling. Deciding DPDA Equivalence is Primitive Recursive. In
ICALP’02, Lecture Notes in Computer Science 2380, pages 821–832.
Springer, 2002.

[29] C. Stirling. Decidability of Bisimulation Equivalence for Normed
Pushdown Processes. In CONCUR’96, Lecture Notes in Computer Science,
pages 217–232. Springer-Verlag, 1996.

[30] C. Stirling. Decidability of Bisimulation Equivalence for Normed
Pushdown Processes. Theoretical Computer Science, 195(2):113–131,
1998.

[31] C. Stirling. The Joy of Bisimulation. In MFCS’98, Lecture Notes in
Computer Science 1450, pages 142–151. Springer, 1998.

[32] C. Stirling. Decidability of Bisimulation Equivalence for Pushdown
Processes. 2000.

[33] C. Stirling. Decidability of DPDA Equivalence. Theoretical Computer
Science, 255(1-2):1–31, 2001.

[34] R. van Glabbeek and W. Weijland. Branching Time and Abstraction
in Bisimulation Semantics. In Information Processing’89, pages 613–618.
North-Holland, 1989.

[35] R. van Glabbeek and W. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. Journal of ACM, 3:555–600, 1996.

[36] Q. Yin, Y. Fu, C. He, M. Huang, and X. Tao. Branching Bisimilarity
Checking for PRS. In J. Esparza, P. Fraigniaud, T. Husfeldt, and
E. Koutsoupias, editors, ICALP’14, Lecture Notes in Computer Science
8573, pages 363–374, 2014.

	Introduction
	PDA
	Branching Bisimilarity
	Finite Branching Property
	Bisimulation Tree
	Bisimulation Trees of Bisimilar Processes
	Decomposing Bisimulation Tree over Common Suffix
	Extending Common Suffix

	Generic Bisimulation Tree
	Bisimulation Base
	Decision Algorithm
	High Undecidability of -Nondeterminism
	Test on Counter
	Operation on Counter
	Control Flow

	Conclusion
	Acknowledgment
	References

