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Abstract

Sénizergues proved that language equivalence is decidable for disjoint ε-deterministic PDA. Stirling showed that
strong bisimilarity is decidable for PDA. On the negative side Srba pointed out that the weak bisimilarity is undecid-
able for normed PDA. Jančar and Srba demonstrated the undecidability of the weak bisimilarity for disjoint ε-pushing
PDA and disjoint ε-popping PDA. In this paper it is proved that the branching bisimilarity of the normed ε-pushing
PDA is decidable and the branching bisimilarity of the ε-pushing PDA is Σ1

1-complete.
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1. Introduction

“Is it recursively unsolvable to determine if L1 = L2 for arbitrary deterministic languages L1 and L2”? The
question was raised in Ginsburg and Greibach’s 1966 paper [7] titled Deterministic Context Free Languages. The
equality referred to in the quotation is the language equivalence between context free grammars. It is well known that
the context free languages are precisely those accepted by pushdown automata (PDA) [10]. A PDA extends a finite
state automaton with a memory stack. It accepts an input string whenever the memory stack is empty. The operational
semantics of a PDA is defined by a finite set of rules of the following form

pX
a
−→ qα or pX

ε
−→ qα.

The transition rule pX
a
−→ qα reads “If the PDA is in state p with X being the top symbol of the stack, then it can

accept an input letter a, pop off X, place the string α of stack symbols onto the top of the stack, and turn into state
q”. The rule pX

ε
−→ qα describes a silent transition that has nothing to do with any input letter. It was proved

early on that language equivalence between pushdown automata is undecidable [10]. A natural question asks what
restrictions one may impose on the PDA’s so that language equivalence becomes decidable. Ginsburg and Greibach
studied deterministic context free languages. These are the languages accepted by deterministic pushdown automata
(DPDA) [7].

A DPDA enjoys disjointness and determinism properties. These conditions are defined as follows:

Disjointness. For all state p and all stack symbol X, if pX can accept a letter then it cannot perform a
silent transition, and conversely if pX can do a silent transition then it cannot accept any letter.

A-Determinism. If pX
a
−→ qα and pX

a
−→ q′α′ then q = q′ and α = α′.

ε-Determinism. If pX
ε
−→ qα and pX

ε
−→ q′α′ then q = q′ and α = α′.

These are strong constraints from an algorithmic point of view. It turns out however that the language problem is still
difficult even for this simple class of PDA’s. One indication of the difficulty of the problem is that there is no size

∗Corresponding author
Email addresses: fu-yx@cs.sjtu.edu.cn (Yuxi Fu), yinqiang@buaa.edu.cn (Qiang Yin)

Preprint submitted to Elsevier September 20, 2017



bound for equivalent DPDA configurations. It is easy to design a DPDA such that two configurations pY and pXnY
accept the same language for all n.

It was Sénizergues who proved after 30 years that the problem is decidable [23, 25]. His original proof is very
long. Simplified proofs were soon discovered by Sénizergues [26] himself and by Stirlng [33]. After the positive
answer of Sénizergues, one wonders if the strong constraints (disjointness+A-determinism+ε-determinism) can be
relaxed. The first such relaxation was given by Sénizergues himself [24]. He showed that strong bisimilarity on the
collapsed graphs of the disjoint ε-deterministic pushdown automata is also decidable. In the collapsed graphs all
ε-transitions are absorbed. This result suggests that A-nondeterminism is harmless as far as decidability is concerned.
The silent transitions considered in [24] are ε-popping. A silent transition pX

ε
−→ qα is ε-popping if α = ε. In this

paper we shall use a slightly more liberal definition of this terminology.

A PDA is ε-popping if |α| ≤ 1 whenever pX
ε
−→ qα.

A PDA is ε-pushing if |α| ≥ 1 whenever pX
ε
−→ qα.

A disjoint ε-deterministic PDA can be converted to an equivalent disjoint ε-popping PDA in the following manner.
Without loss of generality we may assume that the disjoint ε-deterministic PDA does not admit any infinite sequence
of silent transitions. Suppose pX

ε
−→ . . .

ε
−→ qα and qα cannot do any silent transition. If α = ε then we can redefine

the semantics of pX by pX
ε
−→ qε; otherwise we can remove pX in favour of qZ with Z being the first symbol of α.

So under the disjointness condition ε-popping condition is weaker than ε-determinism.
A paradigm shift from a language viewpoint to a process algebraic viewpoint helps see the issue in a more produc-

tive way. Groote and Hüttel [8, 12] pointed out that as far as BPA and BPP are concerned the bisimulation equivalence
à la Milner [21] and Park [22] is more tractable than the language equivalence. The best way to understand Senizer-
gues’ result proved in [24] is to recast it in terms of bisimilarity. Disjointness and ε-determinism imply that all silent
transitions preserve equivalence. It follows that the branching bisimilarity [34] of the disjoint ε-deterministic PDA’s
coincides with the strong bisimilarity on the collapsed graphs of these PDA’s. So what Senizergues has proved in [24]
is that the branching bisimilarity on the disjoint ε-deterministic PDA’s is decidable.

The process algebraic approach allows one to use the apparatus from the process theory to study the equivalence
checking problem for PDA. Stirling’s proof of the decidability of the strong bisimilarity for normed PDA (nPDA) [29,
30] exploits the tableau method [13, 11]. Later he extended the tableau approach to the study of the unnormed PDA
in an unpublished paper [32]. Stirling also provided a simplified account of Senizergues’ proof [24] using the process
method [33]. The proofs in [24, 33] are interesting in that they turn the language equivalence of disjoint ε-deterministic
PDA to bisimilarity of correlated models. Another advantage of bisimulation equivalence is that it admits a nice game
theoretical interpretation. This has been exploited in the proofs of negative results using the technique of Defender’s
Forcing [18]. Srba proved that weak bisimilarity on nPDA’s is undecidable [27]. Jančar and Srba improved this result
by showing that the weak bisimilarity on the disjoint nPDA’s with only ε-popping transitions, respectively ε-pushing
transitions, is already undecidable [18]. In fact they proved that the problems are Π0

1-complete. Recently Yin, Fu,
He, Huang and Tao have proved that the branching bisimilarity for all the models above either the normed BPA or the
normed BPP in the hierarchy of process rewriting system [20] are undecidable [36]. This general result implies that
the branching bisimilarity on nPDA is undecidable. Defender’s Forcing can be used to study complexity bound. An
example is Benedikt, Göller, Kiefer and Murawski’s proof that the strong bisimilarity on PDA is non-elementary [2].
A summary of the (un)decidability results mentioned above is given in the following table, where ∼ stands for the
strong bisimilarity, ' the branching bisimilarity, and ≈ the weak bisimilarity.

PDA nPDA

∼
Decidable [24]

Non-Elementary [2]
Decidable [24]

Non-Elementary [2]
' Undecidable [36] Undecidable [36]

≈
Σ1

1-Complete [18]
Undecidable [27]

Σ1
1-Complete [18]

Undecidable [27]

The decidability of the strong bisimilarity and the undecidability of the weak bisimilarity still leaves a number
of questions unanswered. The prime motivation for this work is to establish a stronger result that would subsume
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both the decidability results in the language theme and the decidability results in the process algebraic line. This is
desirable since these two classes of results are incompatible, neither implies the other. A conservative extension of the
language equivalence for DPDA is not the strong bisimilarity because language equivalence ignores silent transitions.
It is not the weak bisimilarity since the whole point of introducing the disjointness and ε-determinism conditions is to
force all silent transitions to preserve equivalence. Our basic idea is to look at the decidability issue of the ε-pushing
and ε-popping PDA’s. Their decidability would subsume the two classes of incompatible decidability results.

The contributions of this paper are summarized as follows.
1. We prove that the branching bisimilarity on the normed ε-pushing PDA is decidable, and that the branching

bisimilarity on the ε-pushing PDA is Σ1
1-complete.

2. We propose a bisimulation decomposition approach, for decidability proof of bisimulation equivalence that
involves silent transitions, that could have applications in other models of process rewriting system.

There is a wide range of applications of pushdown automata/systems in the study of programming language theory.
Although the decidability result proved in this paper is for a class of PDA’s whose internal transitions are constrained,
it nonetheless points out a direction for system design. In practice the branching bisimilarity is more useful than the
weak bisimilarity. So the decidability result is not that restrictive.

The rest of the paper is organised as follows. Section 2 fixes the syntax and the semantics of PDA. Section 3
reviews the basic properties of the branching bisimilarity. Section 4 introduces two classes of stack constants that
will play an important role in describing the decidability algorithm. Section 5 discusses the finite branching property
for the normed ε-pushing PDA. Section 6 defines bisimulation trees. Section 7 studies techniques to decompose
bisimulation trees into finite trees. Section 8 explains how bisimulation trees can be recovered from finite trees,
the main decidability result then follows. Section 9 proves the high undecidability of the general ε-pushing PDA.
Section 10 concludes.

2. PDA

A pushdown automaton (PDA for short) P = (Q,V,L,R) consists of

• a state set Q = {p1, . . . , pq} ranged over by o, p, q, r, s, t,

• a symbol setV = {X1, . . . , Xn} ranged over by X,Y,Z,

• a letter set L = {a1, . . . , as} ranged over by a, b, c, d, and

• a finite set R of transition rules.

If we think of a PDA as a process we may interpret a letter in L as an action label. The set L∗ of words is ranged over
by u, v,w. Following the process algebraic convention a silent action will be denoted by τ. The set A = L ∪ {τ} of
actions is ranged over by `. The setA∗ of action sequence is ranged over by `∗. The setV∗ of finite strings of symbols
is ranged over by small Greek letters. The empty string is denoted by ε. We write αδ for the concatenation of α and δ.
Since concatenation is associative no parenthesis is necessary when we write αδγ. The length of α is denoted by |α|.

The syntax of a PDA process is pα, where p ∈ Q is a state and α ∈ V∗ is called a stack. The size of pα, denoted
by |pα|, is defined by |α|. We shall write L,M,N,O, P,Q for PDA processes. If P = pα then Pδ stands for the PDA

process pαδ. If δ = ε, then Pδ is nothing but P. The transition set R of a PDA contains rules of the form pX
`
−→ qα.

The semantics of the PDA processes is defined by the following rule.

pX
`
−→ qα ∈ R

pXδ
`
−→ qαδ

(1)

We shall write
`∗

−→ for
`1
−→ . . .

`k
−→ if `∗ = `1 . . . `k, =⇒ for the reflexive and transitive closure of

τ
−→, and

τ
=⇒ for the

transitive closure of
τ
−→. We say that P′ is a descendant of P if P

`∗

−→ P′ for some `∗. A process P is normed, or P

is an nPDA process, if P
`∗

−→ pε for some `∗, p. It is unnormed otherwise. A PDA P = (Q,V,L,R) is normed, or P
is an nPDA, if pX is normed for all p ∈ Q and all X ∈ V. The notation (n)PDAε+ will refer to the variant of (n)PDA
with ε-pushing transitions. Unless explicitly specified we shall focus exclusively on nPDAε+.
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3. Branching Bisimilarity

The definition of branching bisimilarity is due to van Glabbeek and Weijland [35]. For PDA’s care should be given
to processes of the form pε to guarantee that the bisimilarity is a congruence relation [29].

Definition 1. A binary relation R on nPDAε+ processes is a branching simulation if the following statements are valid
whenever PRQ:

1. If P
a
−→ P′ then there are some Q′,Q′′ such that Q =⇒ Q′′

a
−→ Q′ and PRQ′′ and P′RQ′.

2. If P
τ
−→ P′ then either Q =⇒ Q′ and PRQ′ and P′RQ′ for some Q′ or Q =⇒ Q′′

τ
−→ Q′ and PRQ′′ and

P′RQ′ for some Q′,Q′′.
3. If P = pε then Q =⇒ pε.

The relation R is a branching bisimulation if both R and R−1 = {(y, x) | (x, y) ∈ R} are branching simulations. The
branching bisimilarity ' is the largest branching bisimulation.

The branching bisimulations are closed under set theoretical union. LetR1,R2 be branching bisimulations. It is proved
in [1] that the composition R1;R2, defined by {(O,Q) | ∃P.(O, P) ∈ R1 ∧ (P,Q) ∈ R2}, is a branching bisimulation.
Consequently ' is an equivalence. Moreover ' is also a congruence.

A technical lemma that plays an important role in the study of branching bisimilarity is the following Computation
Lemma [35, 5].

Lemma 2. If P0
τ
−→ . . .

τ
−→ Pk ' P0, then P0 ' . . . ' Pk.

A silent transition P
τ
−→ P′ is state-preserving, denoted by P

ε
−→ P′ or P→ P′, if P ' P′. It is a change-of-state,

notation P
ι
−→ P′, if P ; P′. This use of the notation ε is consistent with the fact that in DPDA all ε-transitions are

state-preserving. We write (→∗)→+ for the (reflexive and) transitive closure of
ε
−→. The notation P9 stands for the

fact that P ; P′ for all P′ such that P
τ
−→ P′. Let  range over L ∪ {ι}. We will find it necessary to use the notation


−→. The transition P


−→ P′ refers to either P

a
−→ P′ for some a ∈ L or P

ι
−→ P′. Lemma 2 implies that if P0


−→ P1

is bisimulated by Q0
τ
−→ Q1

τ
−→ . . .

τ
−→ Qk


−→ Qk+1, then Q0

ε
−→ Q1

ε
−→ . . .

ε
−→ Qk. This is a very useful property.

Another useful property of congruence is that Pα
ε
−→ P′α whenever P

ε
−→ P′.

Given a PDA process P, the norm of P over σ, denoted by ‖P‖σ, is a function from [q] = {1, . . . , q} to N ∪ {⊥},
where N is the set of natural numbers and ⊥ stands for undefinedness, such that the following hold for every h ∈ [q]:

• ‖P‖σ(h) = ⊥ if there is no `∗ such that Pσ
`∗

−→ phσ.

• ‖P‖σ(h) is the least number i such that Pσ→∗
1
−→ . . .→∗

i
−→→∗ phσ for some 1 . . . i.

It follows from the congruence property that ‖P‖σ(h) = ‖Q‖σ(h) whenever P ' Q. Let ker ‖P‖ be the finite set
{h | ‖P‖(h) , ⊥}. For nPDAε+ process P we introduce the following notations.

min ‖P‖σ = min{‖P‖σ(h) | h ∈ ker ‖P‖},
max ‖P‖σ = max{‖P‖σ(h) | h ∈ ker ‖P‖}.

We will omit the subscript σ if σ = ε, and we call ‖P‖ the norm of P. The strong norm ‖P‖s of P is defined as follows:

For each h ∈ ker ‖P‖ the value ‖P‖s(h) is the least k such that P
`1
−→ . . .

`k
−→ phε for some `1, . . . , `k. We shall use the

following convention in the rest of the paper.

r = max
{
|η|

∣∣∣∣∣ pX
`
−→ qη ∈ R for some p, q ∈ Q, X ∈ V

}
,

m = max {max{‖pX‖s(h) | h ∈ ker ‖P‖} | p ∈ Q, X ∈ V} + 1.

It follows from definition that ‖pX‖(i) < m for all p, X, all i ∈ ker ‖pX‖. It is obvious how to compute r. The value
‖pX‖s(h) for h ∈ [q], and the value m as well, can be effectively calculated using a dynamic programming algorithm.
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4. Constant

Following Stirling [30] we introduce two types of equationally defined stack symbols for a PDA. A simple constant
U is defined by a family of process equalities

p1U = o1η1, p2U = o2η2, . . . , pqU = oqηq. (2)

We think of the equalities in (2) as grammar equalities. In other words we regard piU and oiηi as the same syntactical
object for every i ∈ [q]. We write U(i) for oiηi, where i ∈ [q]. We shall write U and its decorated versions for simple
constants. In the rest of the paper we take simple constants as first class citizens. Accordingly a (simple) stack should
be understood as a finite string composed of stack symbols and/or simple constants. For example XUYU′ZV is a
stack. Simple constants should be defined in a hierarchical way. They should not be mutually dependent. With this
extension we should understand that in (2) the stacks η1 through ηq may contain simple constants.

We will insist throughout the paper that in a process of the form pαUβ the size of U(i) is greater than 0 for every
i ∈ ker(pα). In any case this can be checked algorithmically. From now on we will use the small Greek letters for
(simple) stacks. When calculating the length of a stack or the size of a process a simple constant counts as one symbol.

A recursive constant V is defined by a family of process equalities

p1V = L1V, p2V = L2V, . . . , pqV = LqV. (3)

Again we see the equalities in (3) as grammar equalities. We write V(i) for Li, where i ∈ [q]. We say that V is
undefined at i ∈ [q], notation V(i)↑, if V(i) = piε. We will identify a stack say αVβ with αV . In other words
we ignore all symbols after a recursive constant since operationally they are irrelevant. We shall write V and its
decorated versions for recursive constants. In (3) the stacks in L1 through Lq may contain simple constants but not
recursive constants. Unlike the simple constants, the recursive constants are auxiliary. Their sole role is to help define
characteristic trees in Section 7.1, Section 7.2 and Section ??. Recursive constants will not appear in any goals in the
decidability algorithm.

In the presence of the grammar equalities defined in (2) and (3) the operational semantics of pU and pV is well
defined by the rules given in (1). The bisimulation semantics need be enriched. In Definition 1 the following clause
must be incorporated.

4) If P = piV and V(i)↑ then Q = piV .

The equivalence and congruence properties are unaffected.

Suppose pXασ ' Mδσ such that |M| = m and |δ| > 0 and that pXασ→∗
1
−→ . . .→∗

‖pX‖ασ (i)
−→ piασ. Suppose further

that M does not contain any simple constants. By Lemma 6 to be established in next section, the length of a simulating

sequence Mδσ →∗
1
−→ . . . →∗

‖pX‖ασ (i)
−→ oiηiδσ is bounded by qnr(m + 1)qm < qnr(m + 1)(q+1) and the suffix δσ is kept

intact throughout the simulation. It follows easily that |ηi| < qnr
2(m+ 1)(q+1). Let the simple constant U be defined by

piU =

{
oiηi, if i ∈ ker ‖pX‖,
piε, if i < ker ‖pX‖. (4)

It should be clear that |oiηi| > 0 if i ∈ ker ‖pX‖ and that

pXUδσ ' pXασ ' Mδσ.

The use of the simple constant allows us to extend the common suffix σ of the bisimilar pair (pXασ,Mδσ) to the
common suffix δσ of the bisimilar pair (pXUδσ,Mδσ). This is essentially the only use of simple constants in this
paper. We therefore impose the following constraint on all simple constants: In (2) the inequality

|ηi| < qnr
2(m + 1)(q+1)

holds for every i ∈ [q]. The following lemma then follows.

Lemma 3. The number of simple constants admitted in a PDA is finite.
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5. Finite Branching Property

Generally bisimilarity is undecidable for models with infinite branching transitions. For 'nPDAε+ the finite branch-
ing property boils down to the following statement.

For each P there is a finite set of processes {Pi}i∈I such that P′ ' Pi for some i ∈ I whenever P→∗ P′.

We prove in this section that nPDAε+ enjoys the finite branching property. Before doing that we need be assured that
silent transition cycles of nPDAε+ processes do not render a problem. There is in fact an effective procedure to remove
such a silent transition cycle. A clique S is a subset of {pX | p ∈ Q, and X ∈ V} such that for every two distinct
members pX, qY of S there is a silent transition sequence from pX to qY . It follows from Lemma 2 that the members
of a clique are branching bisimilar. We can remove a maximal clique S in two steps.

1. Remove all rules of the form pX
τ
−→ qY such that pX, qY ∈ S.

2. For each pX ∈ S introduce the rule pX
λ
−→ P whenever there is some qY ∈ S that is distinct from pX and the

rule qY
λ
−→ P has not been removed in the first step.

In the new nPDAε+ there is no circular silent transition sequence involving any member of S due to the maximality of
S. The legitimacy of transformation is guaranteed by Lemma 2. In this way we can remove all cycles by repetition.
From now on we assume that such circularity does not occur in our nPDAε+. Consequently for an nPDAε+ with n
variables and q states the length of a silent transition sequence of the form qX

τ
−→ q1X1

τ
−→ . . .

τ
−→ qkXk is upper

bounded by nq.

Lemma 4. |P| ≤ min ‖P‖ holds for all P.

Proof. In nPDAε+ only external actions remove symbols from a stack. Silent actions never does that. �

Corollary 5. If P contains no simple constants and Q ' P, then |Q| ≤ m|P|.

Proof. By Lemma 4 the size of Q is bounded by min ‖Q‖ = min ‖P‖ ≤ m|P|. �

Using the above corollary it is easy to establish the finite branching property for nPDAε+. There is however a
stronger result stating that a constant bound exists for the length of the state-preserving transitions in an nPDAε+.

Lemma 6. Suppose qXσ
ε
−→ q1γ1σ

ε
−→ . . .

ε
−→ qkγkσ for an nPDAε+ process qXσ. Then k < qnr(m+ 1)q.

Proof. Suppose qXσ
ε
−→ q1Z1δ1σ. Let

q1Z1δ1σ→
∗

11
−→ . . .→∗

1j1
−→→∗ r1εσ→

∗
1j1+1
−→ . . .→∗

1jk1
−→→∗ ph1ε

be a transition sequence of minimal length that empties the stack, where k1 = min ‖q1Z1δ1σ‖. Clearly j1 ≤ rm.
Suppose q1Z1δ1σ→

∗ q2Z2δ2δ1σ such that rm < |Z2δ2δ1| ≤ r(m + 1). Let Q2 = q2Z2δ2δ1σ and k2 = min ‖Q2‖, and let

Q2 →
∗

21
−→ . . .→∗

2j2
−→→∗ r2εσ→

∗
2j2+1
−→ . . .→∗

2jk2
−→→∗ ph2ε

be a transition sequence of minimal length that empties the stack. One must have j2 > j1 according to the size bound
on Z2δ2δ1. By iterating the above argument one gets from

q1Z1δ1σ →∗ q2Z2δ2δ1σ

→∗ . . .

→∗ qi+1Zi+1δi+1δi . . . δ1σ

→∗ . . .

→∗ qq+1Zq+1δq+1δq . . . δ1σ
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with rm(m+ 1)i−1 < |Zi+1δi+1δi . . . δ1| ≤ r(m+ 1)i for all i ∈ [q], some states r1, . . . , rq+1, some numbers k1 < . . . < kq+1
and h1, . . . , hq+1. For each i ∈ [q + 1] there is some transition sequence

Qi →
∗

i1
−→ . . .→∗

iji
−→→∗ riεσ→

∗
iji+1
−→ . . .→∗

ijki
−→→∗ phiε

where Qi = qiZiδi . . . δ1σ and ki = min ‖Qi‖. Since there are only q states, there must be some t1, t2 such that
0 < t1 < t2 ≤ q + 1 and rt1 = rt2 . It follows from the minimality that jkt1

− jt1 = jkt2
− jt2 . But jt2 > jt1 .

Consequently jkt1
< jkt2

. This inequality contradicts to the fact that qt1 Zt1δt1 . . . δ1σ ' qt2 Zt2δt2 . . . δ1σ. We conclude
that if qXσ→∗ q′γσ then |γ| ≤ r(m + 1)q. Since there is no ε-loop the bound k < qnr(m + 1)q follows. �

Using the finite branching property guaranteed by Lemma 6 it is standard to prove the following.

Proposition 7. The relation ; on nPDAε+ processes is semidecidable.

Proof. Let '0 be the total relation. The symmetric relation 'k+1 is defined as follows: P 'k+1 Q if the following
statements are valid:

1. If Q
a
−→ Q′ then P

τ
−→ . . .

τ
−→ P j

a
−→ P′ 'k Q′ for some P1, . . . , P j, P′ such that Pi 'k Q for all i ∈ [ j].

2. If Q
τ
−→ Q′ then either P 'k Q′ or some P1, . . . , P j, P′ exist such that P

τ
−→ . . .

τ
−→ P j

τ
−→ P′ 'k Q′ and

Pi 'k Q for all i ∈ [ j].
3. If P = pε then Q = pε.

The approximation '0 ⊇ '1 ⊇ '2 ⊇ . . . approaches to '. By standard argument using Lemma 6 one shows that⋂
i≥0 'i is '. So P ; Q can be checked by checking P ;i Q for i > 0. �

6. Bisimulation Tree

Intuitively a bisimulation tree for (P,Q) is a stratified presentation of a branching bisimulation for (P,Q) in which
one ignores all intermediate state-preserving silent transitions. This reminds one of the collapsed graphs due to
Sénizergues. To see how the collapse is done semantically, let us define the ε-tree of a process P, denoted by Tε(P),
to be the tree consisting of all state-preserving transition sequences starting from P. Recall that our nPDAε+ does
not admit silent loop action sequence and according to Lemma 6 there is a bound, computable from the definition
of nPDAε+, on the length of state-preserving silent transition sequences, hence the finiteness of the ε-trees. We say
that the τ-tree Tε(P) is trivial if it contains only one node; otherwise it is nontrivial. In a collapsed presentation of a
bisimulation for (P,Q) the root P is related to the root Q, and every leaf of Tε(P) is related to every leaf of Tε(Q). The
internal nodes of the two trees are not explicitly included in the collapsed presentation. These nodes and the state-
preserving silent transitions related to them are implicit. However in order to recover a branching bisimulation from
the collapsed presentation, every external action or change-of-state silent action of any internal node, say P′, of Tε(P)
must be matched by every leaf of Tε(Q). We remark that since a leaf of Tε(Q) cannot perform any state-preserving
silent transition the action of P′ must be bisimulated by a single step action of the leaf.

We need to turn the above semantic intuition into a definition in terms of the operational semantics. We shall
not introduce a formal treatment of rooted trees. For proof of decidability our level of formality should be sufficient.
Formally a bisimulation tree B for (P,Q) is a finite branching rooted tree such that each of its nodes is labeled by a
pair (M,N) of nPDAε+ processes and a directed edge is labeled by a member of L ∪ {τ} ∪ {ε}. The root is labeled by
(P,Q), and the following properties hold for every node labeled by say (M,N).

1. M is descendant of P and N is a descendant of Q.

2. If there is an edge labeled ε from the node labeled (M,N) to a node labeled (M′,N′) then either M
τ

=⇒ M′ and
N =⇒ N′ or M =⇒ M′ and N

τ
=⇒ N′, and the following are valid.

(a) There is no edge labeled ε from the node labeled (M,N) to a node labeled by (M′′,N′′) such that either
(M =⇒ M′′

τ
=⇒ M′) ∨ (M′

τ
=⇒ M′′) or (N =⇒ N′′

τ
=⇒ N′) ∨ (N′

τ
=⇒ N′′).
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(b) If there are ε labeled edges from the node labeled (M,N) to nodes labeled by (M′,N′) and (M′′,N′′)
respectively, then there are ε labeled edges from the node labeled (M,N) to nodes labeled by (M′,N′′) and
(M′′,N′) respectively.

(c) Every edge from the node labeled (M,N) is labeled by ε.
(d) There is no ε labeled edge from the node labeled (M′,N′).

3. Suppose there is an ε labeled edge from the node labeled (L,O) to a node labeled (M,N). A silent transition
P0

τ
−→ P1, respectively Q0

τ
−→ Q1, is implicit with regards to (L,O) if there is an ε labeled edge from the node

labeled (L,O) to a node labeled by some (M′,N′) such that P0
τ
−→ P1, respectively Q0

τ
−→ Q1, appears in a

silent transition sequence from L to M′, respectively from O to N′. The third requirement states that for the ε
labeled edge from the node labeled (L,O) to the node labeled (M,N) the following are valid.

(a) If L =⇒ L′ =⇒ M and L′
λ
−→ L′′ is not implicit with regards to (L,O), then some N′ exists such that

N
λ
−→ N′ and there is a λ labeled edge from the node labeled (M,N) to a node labeled (L′′,N′).

(b) If O =⇒ O′ =⇒ N and O′
λ
−→ O′′ is not implicit with regards to (L,O), then some M′ exists such that

M
λ
−→ M′ and there is a λ labeled edge from the node labeled (M,N) to a node labeled (M′,O′′).

We write B(P,Q) for a bisimulation tree for (P,Q).
Condition (2c) and condition (2d) of the above definition reminds one of the disjointness condition. It is easy to

see that if one reverses the order of the labels of a bisimulation tree B(P,Q) for (P,Q) one obtains a bisimulation
tree for (Q, P), denoted by B−1(P,Q). In what follows we often refer to a node by its label. Accordingly we write
(M,N)

τ
−→ (M′,N′) for example for a τ-edge from a node labeled (M,N) to a node labeled (M′,N′).

Let’s see some bisimulation trees. Suppose an nPDAε+ has the following semantic rules.

pX
τ
−→ p′X, p′X

a
−→ rε, pX

a
−→ rε;

qX
τ
−→ q′X, q′X

a
−→ rε, qX

a
−→ rε.

The following are two distinct bisimulation trees, T1 and T2, for the process pair (pX, qX).

(T1). (T2).
(pX, qX)

(rε, rε)

(rε, rε)

(p′X, q′X)

a τ

a

(pX, qX)

(rε, rε)

(p′X, q′X)

a

ε

In this example pX ' p′X and qX ' q′X. So the ε edge in T2 is justified. We can construct a different bisimulation
tree T1 without making use of the fact pX → p′X and qX → q′X.

Given a bisimulation tree B for (P,Q). Define B inductively as follows.

1. If (M,N) is a label in B then (M,N) ∈ B.
2. If (M,N)

ε
−→ (M′,N′), then (M′′,N′′) ∈ B for each pair (M′′,N′′) such that M =⇒ M′′ =⇒ M′ and N =⇒

N′′ =⇒ N′.

In the above example, T1 = {(pX, qX), (p′X, q′X), (rε, rε)} and T2 = {(pX, qX), (p′X, q′X), (p′X, qX), (pX, q′X), (rε, rε)}
are two bisimulations.

A branching bisimulation rooted at (M,N) is a branching bisimulation R such that (M,N) ∈ R and if (M′,N′) ∈ R
then M′ is a descendant of M and N′ is a descendant of N. The trivial proof of the property stated next justifies the
slightly complicated definition of bisimulation tree.

Lemma 8. B is a branching bisimulation rooted at (P,Q).
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It follows immediately from Lemma 8 that (M,N)
ε
−→ (M′,N′) implies either M →+ M′ and N →∗ N′ or M →∗ M′

and N →+ N′.
We assign a level number to every node of a bisimulation tree. The level number of the root is 0. Suppose the level

number of (M,N) is k. Then the level number of (M′,N′) is k if (M,N)
ε
−→ (M′,N′), it is k + 1 if (M,N)

τ
−→ (M′,N′)

or (M,N)
a
−→ (M′,N′). We say that a bisimulation tree is generated or grown level by level if for each k ≥ 0 none of

its nodes at the (k+1)-th level is generated before all nodes at the k-th level have been generated. The k-subtree of a
tree consists of all the nodes of the latter whose level number is no more than k.

From a proof perspective we think of a pair (P,Q) as a goal. The bisimulation tree for (P,Q) is a proof that the goal
can be established in the sense that P ' Q. If P ' Q there is a canonical bisimulation tree for (P,Q) in which every
τ-edge represents a change-of-state silent transition. However there could be bisimulation trees for (P,Q) in which a
τ-edge is actually a state-preserving silent transition; see the T1 in the above example. We will refer to a bisimulation
for a pair (P,Q) satisfying P ' Q a bisimulation tree of P ' Q. In this case we also say that P ' Q is a goal.

In the rest of the paper we assume that simple constants will not appear in the right process of any goal.

7. Decomposing Bisimulation Trees to Finite Trees

Bisimulation trees of bisimilar nPDAε+ processes are in general infinite. The proof of decidability looks for peri-
odic properties among the infinite trees. In this section we look for bisimulation trees of bisimilar nPDAε+ processes
that share common suffix. The idea is that every goal can be turned into such a goal together with a set of reduced sub-
goals, where by a reduced subgoal we mean that either the size of the subgoal has been strictly decreased or the size
of the prefixes is computationally bounded. The general proof framework of this section follows that of Stirling [31].
Our presentation is in terms of trees for branching bisimulation rather than tableaux systems for strong bisimulation.

7.1. Recursive Subgoal

Suppose Pσ ' Qσ with |P| > 0 and |Q| > 0. A bisimulation tree of Pσ ' Qσ over σ is grown like a bisimulation
tree of Pσ ' Qσ. The major difference is that the suffix σ should remain intact throughout the construction of the
tree. A transition Oσ

a
−→ O′′ for example is admitted in the buildup of the bisimulation tree only if |O| > 0, in which

case O′′ must be of the form O′σ. In the following construction we maintain three parameters modified dynamically.

• The first is a set G = {Gi}i∈[q] of processes such that

p1σ ' G1σ, p2σ ' G2σ, . . . , pqσ ' Gqσ (5)

Initially Gi = piε for all i ∈ [q].

• The second is an equivalence relation E on [q]. We write i ∈ E if 〈i, i〉 ∈ E. Initially E = {〈i, i〉 | i ∈ [q]}.

• The third is a recursive constant V defined by the grammar equalities

p1V = L1V, p2V = L2V, . . . , pqV = LqV, (6)

where L1, . . . , Lq are processes defined by

Li =

{
Gi, if i < E,
p jε, if i ∈ E and j = min{ j | (i, j) ∈ E}.

Initially Li = piε for all i ∈ [q].

We shall update G and E dynamically while we build up the tree level by level. The definition of the recursive constant
V is updated accordingly. The correlation between (5) and (6) has important consequence.

Lemma 9. Suppose V is defined by {piV = LiV}i∈[q] and piσ ' Liσ for all i ∈ [q]. If |P|, |Q| > 0 then PV ' QV
implies Pσ ' Qσ.
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Proof. Let R be the relation {(Pσ,Qσ) | PV ' QV ∧ |P| > 0 ∧ |Q| > 0} ∪ '. We prove that (';R;')∪ ' is a branch-
ing bisimulation. Suppose M ' PσRQσ ' N and M

a
−→ M′. Then Pσ

ε
−→ P1σ

ε
−→ . . .

ε
−→ Piσ

a
−→

P′σ bisimulates M
a
−→ M′ for some P1, . . . , Pi, P′. By the ε-pushing property |P1| > 0, . . . , |Pi| > 0. Thus

PV
τ
−→ P1V

τ
−→ . . .

τ
−→ PiV

a
−→ P′V . Since PV ' QV this action sequence must be bisimulated by some

QV
τ
−→ Q1V

τ
−→ . . .

τ
−→ Q jV

a
−→ Q′V for some Q1, . . . ,Q j,Q′. Also Qσ

τ
−→ Q1σ

τ
−→ . . .

τ
−→ Q jσ

a
−→ Q′σ must

be bisimulated by N
τ
−→ N1

τ
−→ . . .

τ
−→ Nk

a
−→ N′ for some N1, . . . ,Nk,N′. It is easy to see that (M,Ng) ∈ ';R;'

for all g ∈ [k]. To finish the proof we carry out a case analysis.

• |P′| > 0 and |Q′| > 0. Clearly (M′,N′) ∈ ';R;'

• P′ = phε. If phV = LhV such that |Lh| > 0 then LhV ' phV ' Q′V . Thus M′ ' phσ ' LhσRQ′σ ' N′. If
V(h) = piε such that V(i)↑, then by the definition of bisimulation Q′ = ph′ε for some h′ such that V(h′) = piε.
Then M′ ' phσ ' piσR piσ ' ph′σ ' N′.

The third case is symmetric to the second one. �

Let’s define how to grow a bisimulation tree of Pσ ' Qσ over σ level by level with the initial G,E,V . Two things
are worth spelling out. Firstly we will consider all bisimilar pairs between the descendants of Pσ and the descendants
of Qσ with intact σ. Secondly since all transitions are ε-pushing, the following construction never gets stuck along
ε-edges. The growth of a node labeled by (piσ,Nσ), for N , piε, is defined as follows.

1. i < E. Relabel the node by (Giσ,Nσ).
2. i ∈ E, and |N | > 0 or N = p jε for some j < E. Update G by letting Gh = N, respectively Gh = G j, for

every h in the equivalence class of i. Remove the equivalence class of i from E. Relabel the node by (Nσ,Nσ),
respectively (G jσ,G jσ).

3. i ∈ E and N = p jε for some j ∈ E. Update E by joining the equivalence class of i with that of j, relabel the
node by (pmin{i, j}σ, pmin{i, j}σ).

The growth of a node labeled (Nσ, piσ) is symmetric. Each time G or E has been modified, we check if the semantic
equivalence PV ' QV holds. If PV ; QV then there must be a least i such that the construction of the bisimulation
tree for (PV,QV) gets stuck at the i-th level. When this happens further update of G and/or E can be carried out. After
a finite number of levels both G and E must stabilize and PV ' QV must hold.

We call the final G = {riγi}i∈[q] a recursive guard, and

riγiσ ' piσ (7)

with γi , ε a recursive subgoal. Notice that the right process in (7) does not contain any simple constants if Qσ
does not contain any simple constants. We say that the goal Pσ ' Qσ over σ has the recursive guard G and that it is
decomposed into the subgoals r1γ1σ ' p1σ, . . . , rqγqσ ' pqσ. Let k be the minimal number such that the recursive
guard G of (P,Q) over σ is generated by the k-subtree of the bisimulation tree of Pσ ' Qσ over σ. We call this
subtree the generating subtree for G.

The recursive constant V is normed in the sense that for every state p there is a finite sequence of actions of pV
that terminates on some undefined qV .

Lemma 10. For every pi there is some `∗ such that piV
`∗

−→ phV for some undefined phV.

Proof. Assume that the statement of the lemma is false for some pi. Then V(pi) = riγi for some riγi such that |γi| > 0.

Now p jV is defined whenever piV
`∗1
−→ p jV . That is V(p j) = r jγ j for some r jγ j such that |γ j| > 0. It follows that

piσ ' riγiσ
`∗1
−→ p jσ ' r jγ jσ. Similarly pkV is defined whenever p jV

`∗2
−→ pkV . So V(pk) = rkγk for some rkγk such

that |γk | > 0. By definition p jσ ' r jγ jσ
`∗2
−→ pkσ ' rkγkσ. It should now be clear by the definition of bisimulation

that piσ cannot do any finite sequence of actions to reach any phε, contradicting to the fact that piσ is normed. �
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• p1X
a−→ p1, p1X

τ−→ p3X;

• p2X
a−→ p1, p2X

τ−→ p3X;

• p1Y
a−→ p3, p2Y

a−→ p3;

• p3X
a−→ p2.

• V = (p1ε, p2ε, p3ε).

(p1XY, p2XY )

a τ

(p3ε, p3ε)

a

(p3XY, p3XY )

(p2Y, p2Y )

a

(p1Y, p1Y )

(p3ε, p3ε)

a

(T2). (T3).

(T1).
(p1XV, p2XV )

(p1V, p1V )

a τ

aa

(p1XY, p2XY )

(p3XY, p3XY )

ε

(p3ε, p3ε)

(p1Y, p2Y )

a

(p3ε, p3ε)

(p2Y, p2Y )

a

a

(p3XV, p3XV )

(p2V, p2V )

Figure 1: Construction of Bisimulation Tree

A recursive guard for P,Q is a recursive guard of Pσ ' Qσ over some σ. The following observation is crucial to
the decidability argument.

Lemma 11. The number of recursive guards for P,Q is finite.

Proof. The initial V does not depend on any suffix σ. Suppose at a particular stage there is a minimal i such that the
construction of the bisimulation tree for (PV,QV) gets stuck at level i. Due to Lemma 6 there are only finitely many
ways to update V and the maximal number of ways to do that is dependent of P and Q and is independent of any
suffix. We are done by induction. �

7.1.1. Horizontal Composition
Now construct a bisimulation tree B(PV,QV) of PV ' QV . We should not get stuck in the construction for

otherwise V could be further updated. Using the grammar equalities in (6) one realizes that this is also a bisimulation
tree of PV ' QV over V . By Lemma 9 one gets from the latter tree a bisimulation tree of Pσ ' Qσ over σ if V is
replaced by σ. This tree is in general finer than any bisimulation tree of Pσ ' Qσ over σ in the sense that two nodes
in the former may be collapsed into one node in the latter. For the PDA defined in Fig 1, T2 and T3 are bisimulation
trees of p1XY ' p2XY (over ε), while T1 is the bisimulation tree of p1XV ' p2XV .

The recursive constant V defined in the above construction is not unique since in the middle of the construction
any effort to build up the bisimulation tree of PV ' QV over V may get stuck at the i-level for different pairs. Suppose
a different set of choices produces a different recursive constant V ′. Since we have considered all bisimilar pairs
between the descendants of Pσ and the descendants of Qσ with intact σ, it must be the case that riγiV ′ ' piV ′ for
all i ∈ [q]. We derive from Lemma 9 that LV ′ ' NV ′ implies LV ' NV whenever |L|, |N | > 0. Using symmetric
argument we derive that LV ' NV implies LV ′ ' NV ′ whenever |L|, |N | > 0. In other words (PV,QV) and (PV ′,QV ′)
have essentially the same bisimulation tree. This observation allows us to introduce the following definition. The
characteristic tree of Pσ ' Qσ over σ, denoted by χσ(P,Q), is the bisimulation tree of Pσ ' Qσ over σ obtained
from the bisimulation tree of PV ' QV by substituting σ for V . We assume that every characteristic tree is presented
with the associated subgoals.

We now explain how to make use of the characteristic tree χσ(P,Q). Suppose {Giσ ' piσ}i∈[q] are the set of
subgoals generated in the construction of χσ(P,Q) and for each i ∈ [q] let B(Giσ, piσ) be a branching bisimulation
rooted at (Giσ, piσ). Let B =

⋃
k∈ω Bk, where Bk is defined as follows:

1. B0 =
⋃

i∈[q] B(Giσ, piσ).

11



(Pσ,Qσ)

(pjσ, ojγjσ)(ojγjσ, ) ( , ohγhσ)(ohγhσ, phσ)

(piσ, oiγiσ)(oiγiσ,Mσ) (Nσ, ogγgσ)(ogγgσ, pgσ)

Figure 2: Horizontal Composition

2. Bk+1 = Bk ∪ B0;Bk.

Since bisimulations are closed under union and composition [1], the relations Bk for k ≥ 0 and the relation B are
branching bisimulations. Define B(Pσ,Qσ) by

B(Pσ,Qσ) = (B−1 ∪ I); χσ(P,Q); (B ∪ I),

where I is the identity relation on the nPDAε+ processes.

Lemma 12. B(Pσ,Qσ) is a branching bisimulation.

Proof. The relation χσ(P,Q) is not a branching bisimulation of nPDAε+ for the following reason: It may contain a
pair (riγiσ,Mσ) obtained from (piσ,Mσ) or a pair (Nσ, riγiσ) obtained from (Nσ, piσ). But notice that for each
i ∈ [q] the relation B−1 contains a branching bisimulation for piσ ' riγiσ and the relation B contains a branching
bisimulation for riγiσ ' piσ. Therefore the pairs of the form (piσ,Mσ) and of the form (Nσ, piσ) for i ∈ [q] enjoy
the bisimulation property by composition. A diagrammatic illustration of the composition is given in Figure 2. The
middle part is χσ(P,Q). The left and right parts are contained in B−1 and B respectively. We will call this type of
composition horizontal composition. �

We conclude that to prove Pσ ' Qσwe only need to construct the characteristic tree χσ(P,Q) and the bisimulation
trees for the subgoals.

7.2. Simple Subgoal
In this subsection we take a look at decomposition of large goals. Recall that according to Corollary 5 the size of

the left side of a goal is constrained by the size of the right side of the goal. Two bisimilar processes with large enough
size is of the form

pXασ ' Mδσ (8)

such that |M| = m and |δσ| > 0. In Section 4 we have introduced a simple constant, defined in (4), that turns the goal
pXασ ' Mδσ into the goal

pXUδσ ' Mδσ. (9)

We get for every i ∈ ker ‖pX‖ the subgoal
piασ ' siηiδσ. (10)

We call (10) a simple subgoal and the family {siηi}i∈ker ‖pX‖ a simple guard. Notice that since Mδσ does not contain
any simple constants, siηiδσ does not contain any simple constants.

For further simplification we firstly decompose a goal of the form (8) satisfying |M| = m to a goal of the form (9)
and simple subgoals of the form (10). We then apply the decomposition described in Section 7.1 to (9). Now let V be
the recursive constant generated in the construction of χδσ(pXU,M). We remark that the recursive subgoals are of the
type

riγiδσ ' piδσ. (11)
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By Lemma 3 there are only finitely many simple constants. For each such constant there are finitely many recursive
constants by Lemma 11. Hence the following.

Lemma 13. Suppose |M| = m. There are only finitely many recursive guards for fixed pX and M.

To avoid having to spell out the simple constant, we shall write χα,δσ(pX,M) for χδσ(pXU,M). We say that
χα,δσ(pX,M) and χα′,δ′σ′ (pX,M) are of same type if they are obtained from the same bisimulation tree B(pXUV,MV)
of pXUV ' MV; in other words they have the same characteristic tree. In this case we also say that χα,δσ(pX,M) and
χα′,δ′σ′ (pX,M) are duplicates of each other.

For each h ∈ ker ‖pX‖ let Ch
s be a branching bisimulation rooted at the pair in (10). For i ∈ [q] let Ci

r be a branching
bisimulation rooted at the pair in (11). Let Cs =

⋃
h∈ker ‖pX‖ C

h
s and C =

⋃
k∈ω Ck, where Ck is defined inductively by

the following two clauses.

1. C0 =
⋃

i∈[q] C
i
r.

2. Ck+1 = Ck ∪ C0;Ck.

Define C(pXασ,Mδσ) by
(
Cs ∪ C

−1 ∪ I
)

; χα,δσ(pX,M); (C−1
s ∪ C ∪ I). Using again the fact that bisimulations are

closed under composition and union one sees that Ck for all k ≥ 0 and C are branching bisimulations.

Lemma 14. C(pXασ,Mδσ) is a branching bisimulation.

Proof. The argument is similar to the one for Lemma 12. The treatment of a pair of the form (siηiδσ,N) obtained
from the pair (piασ,N) is by straightforward composition. �

7.3. Generic Tree

In this subsection we complete the process of cutting down the size of bisimulation trees by introducing conditions
for nodes not to grow. Here are two obvious conditions.

1. If the label of a node is the same label as an ancestor, the node stops to grow.
2. If the label of a node is a pair of identical processes, the node stops to grow. For example (pε, pε) is such a

label.

The lemmas of Section 7.1 and Section 7.2 imply that there is a bound c such that the following property holds:

For every goal pXασ ' Mδσ satisfying |M| = m and |δσ| ≥ c, there is a goal pXα′σ′ ' Mδ′σ′ such that
0 < |δ′σ′| < c and that χα′,δ′σ′ (pX,M) is of the same type as χα,δσ(pX,M).

Recall that the construction of χα,δσ(pX,M) generates both simple subgoals and recursive subgoals. The situation is
simpler when we construct the characteristic tree for a recursive subgoal because no more simple subgoals need be
generated. Suppose rγσ ' pσ is a recursive subgoal. If |σ| > m we can write σ as µσ′ such that |µ| = m. The
recursive subgoal becomes rγµσ′ ' pµσ′. Since there is a bound on γ, there is only a finite set of pairs (rγµ, pµ). If
we construct the characteristic tree of rγµσ′ ' pµσ′ over σ′, we get recursive subgoals of the form r′γ′σ′ ' p′σ′.
Continue to construct the characteristic tree of r′γ′σ′ ' p′σ′. We get new recursive subgoals whose right hand sides
are of even smaller size. From an algorithmic viewpoint this provides a termination condition. So we distinguish the
case |δ| = 0 from the case |δ| > 0. Consequently we consider three types of goals.

1. The goals L ' M are such that |M| ≤ m. In this case grow a bisimulation tree of L ' M as is defined in
Section 6. When a node labeled (L′,M′) is generated such that |M′| ≥ m + c, the node stops growing. We call
such trees type-I generic trees.

2. The goals pXασ ' Mδσ are such that |M| = m and |δ| > 0 and |δσ| < c. Grow the characteristic tree of
pXασ ' Mδσ over δσ with the following additional constraint: If a node labeled (L′,M′) is generated such
that |M′| ≥ m + c, the node stops growing. These are type-II generic trees.

3. The goals pXασ ' Mσ are such that |M| = m and |pXα| < c + m and |σ| < c. Grow the characteristic tree of
pXασ ' Mσ over σ with the following additional constraint: If a node labeled (L′,M′) is generated such that
|M′| ≥ m + c, the node stops growing. These are type-III generic trees.
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In a generic tree we will call a leaf (L,M) such that |M| ≥ m + c a large leaf. The other leaves are small leaves. For
the above construction to make sense, we should choose the bound c such that

1. it is larger than the size of all the simple and recursive guards generated in the constructions, and
2. it is larger than the height of all the generating subtrees.

We call the label of the root of a generic tree a generic goal. We assume that every generic tree is presented with the
associated subgoals, and we sometimes confuse a generic goal with the generic tree. By definition and Corollary 5
the set of generic goals as well as the set of generic trees is finite. Moreover we have the following important fact.

Lemma 15. Every generic tree is finite.

Proof. The generic trees of the first type is obviously finite. In the light of Corollary 5 if in a path no large leaf is ever
generated, the path end with a small leaf that is labeled either by a pair of identical processes or by a pair that appears
twice in the path. We are done by applying König Lemma. �

7.3.1. Vertical Composition
Suppose q1X1α1σ1 ' M1δ1σ1, . . . , qgXgαgσg ' Mgδgσg are the generic goals and let the corresponding generic

trees be denoted by Tq1X1α1σ1'M1δ1σ1 , . . . , TqgXgαgσg'Mgδgσg . We say that a goal qiXiασ ' Miδσ with |δσ| ≥ c is of type
i if |δi| > 0 and χα,δσ(qiXi,Mi) and χαi,δiσi (qiXi,Mi) are of the same type, and that a goal qiXiασ ' Miσ with |σ| ≥ c is
of type i if χσ(qiXiαi,Mi) and χσi (qiXiαi,Mi) are of the same type. For each i ∈ [g] let

Bi =
⋃

qiXiασ'Miδσ is of type i

TqiXiαiσi'Miδiσi {α/αi, δ/δi, σ/σi},

where the relation TqiXiαiσi'Miδiσi {α/αi, δ/δi, σ/σi} is obtained from TqiXiαiσi'Miδiσi by substituting α for αi, δ for δi and
σ for σi. Notice that if δi = ε then TqiXiαiσi'Miδiσi {α/αi, δ/δi, σ/σi} is TqiXiαiσi'Miδiσi {σ/σi}. Let

BB =
⋃
i∈[g]

Bi.

Finally let BB∗ =
(
I ∪ BB ∪ BB−1

)∗
.

Proposition 16. BB∗ is a branching bisimulation.

Proof. In general the generic tree TqiXiαiσi'Miδiσi does not give rise to a bisimulation of (qiXiαiσi,Miδiσi). For one
thing the large leafs of the tree are not taken care of. This problem can be addressed by vertical composition. Suppose
(q jX jασ,M jδσ) is a large leaf of TqiXiαiσi'Miδiσi of type j. We can graft the duplicate Tq jX jα jσ j'M jδ jσ j {α/α j, δ/δ j, σ/σ j}

of Tq jX jα jσ j'M jδ jσ j to the large leaf. This vertical composition can be carried out ad infinitum. What we get eventually
is a decomposable versionD of the characteristic tree χαi,δiσi (qiXi,Mi). Notice thatD is a subset of BB∗.

To turn the relationD into a branching bisimulation of nPDAε+, we need to compose it with bisimulations gener-
ated from the subgoals. This is the horizontal composition described in the proof of Lemma 12. Now to construct a
bisimulation for a subgoal we need to do further vertical and horizontal compositions. So in essence all the vertical
compositions are carried out simultaneously and level by level, and the horizontal compositions are interleaved with
the vertical compositions.

Every pair in BB ∪ BB−1 appears in a branching bisimulation contained in BB∗. Consequently BB∗ must be a
branching bisimulation. �

7.4. Decomposition via Generic Tree

Let A = {T(q1Y1α1σ1,M1δ1σ1), . . . ,T(qhYhαhσh,Mhδhσh)} be a set of generic trees. Given a goal (P,Q) we would like to
check if (P,Q) can be decomposed in terms of the generic trees in A. The algorithm DecompositionA is described
in Figure 3. If the input satisfies |Q| < m + c, it simply checks if T(P,Q) ∈ A. Otherwise it checks if the input has a
characteristic tree that is a duplicate of some element of A. The checks have to be carried out in an inductive fashion.

14



The input is A = {T(q1Y1α1σ1,M1δ1σ1), . . . ,T(qhYhαhσh,Mhδhσh)}.

1. If |Q| < m + c, return true and halt whenever T(P,Q) ∈ A, and return f alse and halt whenever T(P,Q) < A.
2. If |Q| ≥ m + c, let (P,Q) be (pXασ,Mδσ) such that |M| = m, and do the following.

(a) If |δ| > 0 and either pX , qiYi for all i ∈ [h] or M , Mi for all i ∈ [h], return f alse and halt. Otherwise
guess some j ∈ [h] such that pX = q jY j and M = M j, and do the following.

i. For each simple subgoal (piα jσ j, siηiδ jσ j) of the tree T(q jY jα jσ j,M jδ jσ j) ∈ A, continue if
DecompositionA (piασ, siηiδσ) = true.

ii. For each recursive subgoal (riγiδ jσ j, piδ jσ j) of the tree T(q jY jα jσ j,M jδ jσ j) ∈ A, continue if
DecompositionA (riγiδσ, piδσ) = true.

(b) If |δ| = 0 and either pXα , qiYiαi for all i ∈ [h] or M , Mi for all i ∈ [h] such that δi = ε, return f alse and
halt. Otherwise guess some j ∈ [h] such that pXα = q jY jα j and M = M j, and do the following.

i. For each recursive subgoal (riγiσ j, piσ j) of the tree T(q jY jα jσ j,M jδ jσ j) ∈ A with δ j = ε, continue if
DecompositionA (riγiσ, piσ) = true.

(c) Return true.

Figure 3: DecompositionA (P,Q)

1. Guess a set A of generic trees bounded by c.
2. For every T(L,N) ∈ A with |N | ≤ m, if it fails the bisimulation property, report a failure and halt.
3. For every T(pXασ,Mδσ) ∈ A such that |M| = m and 0 < |δσ| < c, do the following.

(a) If T(pXασ,Mδσ) fails the bisimulation property, report a failure and halt.
(b) For every recursive subgoal (L,N) generated by T(pXασ,Mδσ), continue if DecompositionA (L,N) = true.
(c) For every simple subgoal (L,N) generated by T(pXασ,Mδσ), continue if DecompositionA (L,N) = true.
(d) For every large leaf (L,N) of T(pXασ,Mδσ), continue if DecompositionA (L,N) = true.

4. Output A.

Figure 4: PreBase (c)

All the subgoals should also be decomposed in terms of the elements of A. We say that a goal (P,Q) is decomposable
with regards to A if DecompositionA (P,Q) returns true.

The algorithm must terminate. In the recursive call in Step (2(a)i) the size of pασ is strictly smaller than the size of
pXασ. The induction ends with processes of the form qε. So Step (2(a)i) can only be executed for a finite number of
times, and only finitely many recursive subgoals can be introduced by Step (2(a)i). In the recursive call in Step (2(a)ii)
the size of piδσ is strictly smaller than the size of Mδσ. So Step (2(a)ii) cannot be executed infinitely often. For the
same reason Step (2(b)i) cannot be executed infinitely often. It is important to notice that the decomposition of the
recursive subgoals does not introduce any new simple subgoals.

7.5. Generation of Generic Tree
We shall show that the generic trees are the building blocks for the bisimulation trees. Every bisimulation can

be seen as composed of generic trees in an inductive fashion. This should provide a semidecidable procedure for
checking branching bisimilarity for nPDAε+ by enumeration. It should be emphasized that it is insufficient to know
the existence of the set of generic trees. We need to be able to enumerate size increasing sets of generic trees that
approach to the set of all generic trees. Given a bound cwe can guess a set A = {T(q1Y1α1σ1,M1δ1σ1), . . . ,T(qhYhαhσh,Mhδhσh)}

and check if they are all generic trees bounded by c. More explicitly we need to check the following.

1. All members of A satisfy the bisimulation property.
2. All large leaves can be decomposed in terms of the trees in A.
3. All subgoals generated inductively can be decomposed in terms of the trees in A.

We call A a prebase if it satisfies the above three conditions. The nondeterministic algorithm PreBase(c) is defined
in Figure 4. Since the size of the right hand side of every internal node of every member of A is bounded by m + c,
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The input A = {T(q1Y1α1σ1,M1δ1σ1), . . . ,T(qhYhαhσh,Mhδhσh)} is a prebase.

1. Let P = ∅.
2. For i = 1 to h, do the following.

(a) Let T = T(qiYiαiσi,Miδiσi). Mark all the large leaves of T as unsuccessful. Repeat the following for every
unsuccessful large leaf.

i. If there is a large leaf of T of type say j, grow a duplicate of T(q jY jα jσ j,M jδ jσ j) at this large leaf; and if
moreover there is a node in the path to the root that is also a large leaf of type j, mark all the large
leaves of the duplicate as successful.

ii. Check if every subgoal generated in Step (2(a)i) is decomposable with regards to A. If any of the
subgoals is not decomposable, report failure and halt.

(b) Let P = P ∪ {T }.
3. Output P.

Figure 5: Base (A)

and consequently the size of the right hand sides of the leaves are bounded by m + c + r. Lemma 6 and Corollary 5
imply that there is a bound on the size of A if the algorithm does not report any failure. Thus the termination of
PreBase(c) follows from the termination of DecompositionA and the fact that the decomposition of a recursive subgoal
does not generate any simple subgoal. We remark that even if PreBase(c) terminates successfully, it does not mean
that PreBase(c) has found out all generic trees. What it has found is a set of generic trees enjoying some closure
property.

8. Composing Bisimulation Trees from Finite Trees

We now show how to compose an infinite bisimulation tree from generic trees. Suppose T is a generic tree in
a prebase. If we can grow T into a bisimulation tree we can grow every tree that is of the same type as T into a
bisimulation tree. It is tempting to think that every generic tree in a prebase can be grown into a bisimulaiton tree. As
it turns out we need additional periodic structures to recover the bisimulation property of the composed tree from the
bisimulation property of the component trees.

8.1. Bisimulation Base

Let A = {T(q1Y1α1σ1,M1δ1σ1), . . . ,T(qhYhαhσh,Mhδhσh)} be a prebase. For i ∈ [h] we can try to grow T = T(qiYiαiσi,Miδiσi)
in the following manner: For every large leaf of T if it is of the same type as some T(qi′Yi′αi′σi′ ,Mi′ δi′σi′ ), graft a du-
plicate of T(qi′Yi′αi′σi′ ,Mi′ δi′σi′ ) on the large leaf. If the duplicate of any subgoal generated by T(qi′Yi′αi′σi′ ,Mi′ δi′σi′ ) is not
decomposable with regards to A, report a failure. If every large leaf of T can be grown in this way, then due to the
finite branching property and König Lemma every path of T reaches to either a node with identical processes or a leaf
whose label repeats the label of one of its ancestors or a large leaf that is of the same type as some duplicate along
the path to the root of T . In the first and the second cases the path ends with a small node. In the last case we graft a
duplicate on the large leaf, and no leaf of the duplicate will ever be grown. It is easy to see that there is a computable
bound, parameterised over c, on the height of the final tree. Consequently the size of subgoals generated during the
generation of the final tree is controlled, and there is a computable bound, again parameterised over c, on the number
of such subgoals. Using DecompositionA we can check if the subgoals are decomposable with regards to A. If all
paths end successfully in this way we get a finite tree to be called a production tree of (qiYiαiσi,Miδiσi). If every
element of A can be extended to a production tree, the set A is a bisimulation base. The algorithm Base (A) defined in
Figure 6 reports a failure if A is not a bisimulation base and outputs the set of production trees otherwise.

Let’s explain the idea using the left diagram in Figure 6. The two shaded duplicates are of type j for some j ∈ [h],
and there is no other duplicate of type j along the path to the root. Moreover there are no other two duplicates of any
other type along the path to the root. Under these conditions none of the leaf of the bottom shaded duplicate will be
grown any more. One may image that a duplicate, with all its subgoals, is a mega node. A path in a production tree
ends with a mega node that has appeared in the above and the two mega nodes are of the same type as it were.
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. . .. . .

(Lσ0,Mσ0)

(Lσ1,Mσ1) = (Lδ′πσ0,Mδ′πσ0)

(Lσ2,Mσ2) = (Lδ′πσ1,Mδ′πσ1)

. . . . . .

...

...(qiYiαiσi,Miδiσi)

(qjYjασ,Mjδσ)

(qjYjα
′σ′,Mjδ

′σ′)

Figure 6: A Production Tree and its Unfolding

8.2. Soundness

LetP be the set of production trees defined from a set of generic trees A = {T(q1Y1α1σ1,M1δ1σ1), . . . ,T(qhYhαhσh,Mhδhσh)}.
We refer to the production trees as P1, . . . ,Ph. The soundness of P means that every tree in P, and every tree in A as
well, can be extended to a bisimulation tree.

Proposition 17. qiYiαiσi ' Miδiσi for every i ∈ [h].

Proof. The basic idea is of course to grow the production tree Pi to a bisimulation tree of qiYiαiσi ' Miδiσi. This is
more complicated than the constructions we have seen before because we need to grow all the subgoals simultaneously
in order to carry out horizontal composition. The definition of production tree allows one to do vertical composition.
But unlike the situation in the proof of Lemma 15, vertical composition depends on the horizontal compositions
carried out at previous level. We must explain, starting from the production tree Pi, how bisimulation rooted at a leaf
is constructed. What is tricky in the present situation is that bisimulation of a node must be constructed level by level.

• If the leaf is labeled by a pair of identical processes, the construction is obvious.

• If the leaf has the same label as one of its ancestors, the construction has already been done.

• In the path from the leaf to the root there are two nodes (q jY jασ,M jδσ) and (q jY jα
′σ′,M jδ

′σ′) that are of
the same type, say j, and are the large leaves of two different duplicates of some T(qkYkαkσk ,Mkδkσk). Suppose
(q jY jασ,M jδσ) is the ancestor and (q jY jα

′σ′,M jδ
′σ′) is the descendant. This is the situation described by the

left diagram of Figure 6. Let σ0 = δσ. The nodes in the upper shaded duplicate are of the form (Lσ0,Mσ0).
In the bottom shaded duplicate the suffix σ′ must be πσ0 for some π. Let σ1 = δ′σ′ = δ′πσ0. A node
(Lσ0,Mσ0) in the upper shaded duplicate corresponds to the node (Lσ1,Mσ1) in the bottom shaded duplicate
in the corresponding position. The key to our construction is to use the fact that the subgoals generated in the
two shaded duplicates are in one-one correspondence in the sense that a subgoal

(riγiσ0, piσ0)

corresponds to the subgoal
(riγiσ1, piσ1).

Clearly we can construct the bisimulation rooted at (q jY jα
′σ′,M jδ

′σ′) in precisely the same way as we con-
struct the bisimulation rooted at (q jY jασ,M jδσ) by composing with bsimulations for respective subgoals hor-
izontally. The bisimulation of (q jY jα

′σ′,M jδ
′σ′) is grown by horizontal composition. During the growth of

the bisimulation tree we will reach to the third duplicate (q jY jα
′′σ′′,M jδ

′σ′′) of T(qkYkαkσk ,Mkδkσk). The nodes in
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1. Check if P ; Q, and at the same time run in parallel PreBase(m + 1), PreBase(m + 2), . . . .
2. If P ; Q then answer ‘no’ and halt.
3. If for some c > m, PreBase(c) terminates successfully with a prebase A of generic trees, run Base(A). If Base(A)

outputs a bisimulation base then answer ‘yes’ and halt if DecompositionA (P,Q) returns true.

Figure 7: EqCheck (P,Q)

this duplicate are of the form (Lσ2,Mσ2) with σ2 = δ′σ′′ = δ′πσ1. See the right diagram of Figure 6. We now
grow the bisimulation tree of the node (Lσ2,Mσ2), which is

(Lδ′πσ1,Mδ′πσ1), (12)

by simulating the growth of the bisimulation tree of the node (Lσ1,Mσ1), which is

(Lδ′πσ0,Mδ′πσ0). (13)

Notice that the node (Lδ′πσ0,Mδ′πσ0) is at a level higher than the level of the node (Lδ′πσ1,Mδ′πσ1). We
only have to define how the growth of a node of the form (piσ0,M′σ0) in the bisimulation of (Lδ′πσ0,Mδ′πσ0)
is simulated by the growth of the node (piσ1,M′σ1) in the bisimulation of (Lδ′πσ1,Mδ′πσ1). The following
account provides the intuition although it is precise since bisimulation must take care of intermediate states.
Suppose (piσ0,M′σ0)

ε
−→ (P′,M′′σ0). Then for any (riγiσ0, piσ0)

ε
−→ (L′σ0, P′) we have (riγiσ0,M′σ0)

ε
−→

(L′σ0,M′′σ0) by composition. Since the characteristic trees of (q jY jασ,M jδσ) and (q jY jα
′σ′,M jδ

′σ′) are
duplicate of each other, (riγiσ1,M′σ1)

ε
−→ (L′σ1,M′′σ1). Thus for any (piσ1, riγiσ1)

ε
−→ (Q′, L′σ1) we

have (piσ1,M′σ1)
ε
−→ (Q′,M′′σ1) by composition. Similarly if (piσ0,M′σ0) has a τ-edge/a-edge, we can

grow the τ-edge/a-edge of (piσ1,M′σ1) in the same fashion. The point here is that the simulation must be
carried out level by level. The pair (12) in the bisimulation rooted at (q jY jα

′σ′,M jδ
′σ′) will be seen as the pair

(Lδ′πδ′πσ0,Mδ′πδ′πσ0) in the bisimulation rooted at (q jY jασ,M jδσ), which will be further simulated by the
corresponding pair down in the former bisimulation.

What we have described in the above is the vertical composition. This part of the tree satisfies the bisimulation
property by composition and duplication. To construct the whole tree Ti we need to carry out horizontal composition
with the bisimulation trees of the subgoals. Since every subgoal is decomposable, it is either a generic goal, whose
bisimulation tree is described in the above, or is of the same type as some generic goal. In the latter case a bisimulation
tree of the subgoal can be constructed by simulating the bisimulation tree of the generic goal in precisely the same
manner described in the above. We are in a situation similar to the one in the proof of Proposition 16. We can grow
all the relevant trees simultaneously by vertical composition and at the meantime do the horizontal composition level
by level. The mutual dependence is inductive. �

The above proof implies immediately the following.

Corollary 18. If a goal (P,Q) is decomposable with regards to a bisimulation base, then P ' Q.

8.3. Decidability
We are ready to give a decision algorithm. The algorithm EqCheck is defined in Figure 7. The termination of the

algorithm is clear in the light of Proposition 7. We have effectively proved the main result of the paper.

Theorem 19. The relation 'nPDAε+ is decidable.

9. High Undecidability of ε-Nondeterminism

In this section we show that branching bisimilarity is highly undecidable on PDAε+ and on nPDA. The branching
bisimilarity introduced in this paper requires that two bisimilar processes must agree on the states when they terminate
(the third item of Definition 1). As we will see later, this is not a substantial requirement from the point of view of
decidability. Let us first recall the definition of the van-Glabbeek-Weijland branching bisimulation [35] .
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Definition 20. A binary relation R on PDA processes is a van-Glabbeek-Weijland branching simulation if the follow-
ing statements are valid whenever PRQ:

1. If P
a
−→ P′ then there are some Q′,Q′′ such that Q =⇒ Q′′

a
−→ Q′ and PRQ′′ and P′RQ′.

2. If P
τ
−→ P′ then either Q =⇒ Q′ and PRQ′ and P′RQ′ for some Q′ or Q =⇒ Q′′

τ
−→ Q′ and PRQ′′ and

P′RQ′ for some Q′,Q′′.

The relation R is a van-Glabbeek-Weijland branching bisimulation if both R and R−1 = {(y, x) | (x, y) ∈ R} are
van-Glabbeek-Weijland branching simulations. The van-Glabbeek-Weijland branching bisimilarity u is the largest
branching bisimulation on PDA processes. The relation u is an equivalence. Compared with ', the relation u dose
not distinguish processes like pε and qε where p , q. Consequently u is not a congruence. Note that Computation
Lemma is also valid for u. We denote by uPDAε+ , unPDA and unPDAε+ the largest van-Glabbeek-Weijland branching
bisimilarity on PDAε+, nPDA and nPDAε+processes.

The following proposition shows that u and ' on PDA are equivalent under many-one reduction.

Proposition 21. Given a PDA system P = (Q,V,L,R) and two processes P and Q, we can construct in polynomial
time a new PDA system Pi = (Qi,Vi,Li,Ri) along with a pair of processes Pi, Qi for 1 ≤ i ≤ 4 such that the following
conditions hold.

1. If P is a PDAε+ system, then both P1 and P2 are PDAε+ systems.
2. P u Q iff P1 ' Q1; and P ' Q iff P2 u Q2.
3. If P is a nPDA (resp. nPDAε+) system, then both P3 and P4 are nPDA (resp. nPDAε+) systems.
4. P u Q iff P3 ' Q3; and P ' Q iff P4 u Q4.

Proof. For 1 ≤ i ≤ 4, the PDA system Pi = (Qi,Vi,Li,Ri) and the processes Pi and Qi are defined as follows.

1. Q1 = Q, V1 = V ] {Z1}, L1 = L and R1 = R ] R′1, where R′1 contains a rule pZ1
τ
−→ pZ1 for each p ∈ Q.

P1 = PZ1 and Q1 = QZ1.

2. Q2 = Q,V2 = V ] {Z2}, L2 = L ] {d1, d2, . . . , d|Q|} and R2 = R ] R′2, where R′2 contains a rule piZ2
di
−→ piZ2

for each pi ∈ Q. P2 = PZ2 and Q2 = QZ2.
3. Q3 = Q, V3 = V ] {Z3}, L3 = L ] {d} and R3 = R ] R′3. Let p1 be a specific state in Q. R′3 contains a rule

pZ1
d
−→ p1 for each p ∈ Q. P3 = PZ3 and Q3 = QZ3.

4. Q4 = Q,V4 = V ] {Z4}, L4 = L ] {d1, d2, . . . , d|Q|} and R4 = R ] R′4, where R′4 contains a rule piZ4
di
−→ pi for

each pi ∈ Q. P4 = PZ4 and Q4 = QZ4.

It is easy to verify that the above systems and processes satisfy the requirements.

Corollary 22. The relation unPDAε+ is decidable.

By Proposition 21 in order to show the high undecidability of 'PDAε+ and 'nPDA, it is sufficient to show the high
undecidability of uPDAε+ and unPDA. As a result we will focus on uPDAε+ and unPDA in the rest of this section. We
prefer to working on the van-Glabbeek-Weijland branching bisimilarity for its clean game characterization. We will
first introduce this game characterization along with a technique we called semantic forcing. We then construct a
reduction from a Σ1

1-complete problem to uPDAε+ . We also show the reduction can be adapted for unPDA. For any
PDAε+ processes P and Q, P u Q if and only if there exists a set of pairs that contains (P,Q) and satisfies the first
order arithmetic definable conditions prescribed in Definition 20. Thus the relation uPDAε+ is in Σ1

1. The relation unPDA
is also in Σ1

1 for the same reason. The main result of the section is stated as follows.

Theorem 23. The relations uPDAε+ , 'PDAε+ , unPDA and 'nPDA are Σ1
1-complete.
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9.1. Branching Bisimulation Game and Semantic Forcing
A branching bisimulation game [31, 18] for a pair of processes (P0, P1), called a configuration, is played between

Attacker and Defender in rounds. Each round has 3 steps: Attacker chooses a move; Defender then responds to match
Attacker’s move; and last Attacker set the configuration of the next round according to Defender’s response. A round
of branching bisimulation game is defined as follows, assuming (P0, P1) is the current configuration.

1. Attacker picks up i ∈ {0, 1}, `, and P′i to play Pi
`
−→ P′i .

2. Defender responds with P1−i =⇒ P′′1−i
`
−→ P′1−i for some P′′1−i and and P′1−i. Defender can also play an empty

response when ` = τ and we stipulate P′1−i = P1−i if Defender plays an empty response.
3. If Defender plays an empty response, then Attacker set (P′i , P

′
1−i) as the configuration of the next round; other-

wise Attacker chooses either (P′i , P
′
1−i) or (Pi, P′′1−i) as the configuration of the next round.

Attacker wins a branching bisimulation game if Defender gets stuck in the game. Defender wins a branching
bisimulation game if Attacker cannot win the game. Attacker/Defender has a winning strategy if Attacker/Defender
can win no matter how the other one plays. The following result is standard.

Lemma 24. P u Q if and only if Defender has a winning strategy in the branching bisimulation game of (P,Q).

It’s critical to the correctness of branching bisimulation game that Attacker is able to challenge the pair (P′i , P
′′
1−i)

when necessary. But this introduces an extra burden when one design or justify a branching bisimulation game. To
deal with this we use a technique called semantic forcing which was first used implicitly in [36]. The idea is that

if Defender response with a transition sequence P1−i =⇒ P′′1−i
`
−→ P′1−i and it holds that P1−i u P′′1−i then it should

be safe to disable the Attacker’s option to challenge the pair (Pi, P′′1−i). More specifically, we assume that there is a
predefined set of configurations E such that E ⊆ u and we refine the third step by the following one.

3. The next round configuration is (P′i , P
′
1−i) automatically if either P1−i u P′′1−i or Defender plays an empty

response. Otherwise Attacker chooses either (P′i , P
′
1−i) or (Pi, P′′1−i) as the next round configuration.

A game defined in this way is referred to as a branching bisimulation game with semantic forcing of E. The effective-
ness of semantic forcing is justified by the following lemma.

Lemma 25. P u Q if and only if there is some E ⊆ u such that Defender has a winning strategy in the branching
bisimulation game of (P,Q) with semantic forcing of E.

Proof. By Lemma 24, P u Q implies Defender has a winning strategy in the branching bisimulation game with
semantic forcing of ∅. We now prove that if Defender has a winning strategy in the branching bisimulation game of
(P,Q) with semantic forcing of some E ⊆u, then P u Q. It is sufficient to show that the relation u;B;u is a branching
bisimulation, where B is the set of configurations that Defender has a winning strategy in a branching bisimulation

game with semantic forcing E. Suppose P u P0BQ0 u Q and P
`
−→ P′. There are three cases to consider.

1. ` = τ and P′ u P0. We have P′ u;B;u Q.

2. ` , τ and there are P′′0 and P′0 such that P0 =⇒ P′′0
`
−→ P′0 with P u P′′0 and P′ u P′0. We show that

Q =⇒ Q1
`
−→ Q2 for some Q1 and Q2 with P u P′′0B;u Q1 and P′ u P′0B; Q2. As (P0,Q0) ∈ B and P0 =⇒ P′′0 ,

by the definition of branching bisimulation game there is some Q′′0 such that Q =⇒ Q′′0 and (P′′0 ,Q
′′
0 ) ∈ B. It

follows that Q =⇒ Q′′ and Q′′0 u Q′′. Now consider Defender’s winning strategy in the case that Attacker plays

P′′0
`
−→ P′0 at configuration (P′′0 ,Q

′′
0 ). We have three subcases.

(a) Defender plays Q′′0
`
−→ Q′0 for some Q′0. We have (P′0,Q

′
0) ∈ B. The transition Q′′0

`
−→ Q′0 must be

matched by Q′′ via Q′′ =⇒ Q1
`
−→ Q2 for some Q1, Q2. And we have Q′′0 u Q1 and Q′0 u Q2.

(b) Defender plays Q′′0 =⇒ Q1
0

`
−→ Q2

0 and it holds that (Q′′0 ,Q
1
0) ∈ E. In this case we have (P′0,Q

2
0) ∈ B and

Q′′0 u Q1
0. By transitivity of u we have Q1

0 u Q′′. Then there are Q1 and Q2 such that Q′′ =⇒ Q1
`
−→ Q2,

Q1
0 u Q1 and Q2

0 u Q2.
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(c) Defender plays Q′′0 =⇒ Q1
0

`
−→ Q2

0. We must have (P′′0 ,Q
1
0) ∈ B and (P′0,Q

2
0) ∈ B. By definition of

branching bisimulation we have Q1 and Q2 such that Q′′ =⇒ Q1
`
−→ Q2, Q1

0 u Q1 and Q2
0 u Q2.

3. ` = τ and there are P′′0 and P′0 such that P0 =⇒ P′′0
`
−→ P′0 with P u P′′0 and P′ u P′0. The argument is similar.

By the proof of Lemma 25, any relation E such that E ⊆u is effective for semantic forcing. This implies that as

long as we can demonstrate P1−i u P′′1−i in Defender’s response sequence P1−i =⇒ P′′1−i
`
−→ P′1−i, it is safe to apply

semantic forcing. In the sequel we shall use semantic forcing without referring to a specific E.

9.2. The Reduction

A nondeterministic Minsky counter machineM with two counters c1, c2 is a program “1 : I1; 2 : I2; . . . ; n−1 :
In−1; n : halt”, where for each i ∈ {1, . . . , n − 1} the instruction Ii is of one of the three types. Assuming 1 ≤ j, k ≤ n
and e ∈ {1, 2}, the first type is an increment instruction, which is of the from “ce := ce+1 and then goto j”; the
second type is a decrement instruction, which is of the form “if ce = 0 then goto j, otherwise ce := ce−1 and
then goto k”; the third type is a nondeterministic jump instruction, which is of the form “goto j or goto k”. The
problem rec-NMCM asks ifM has an infinite computation on (c1, c2) = (0, 0) such that I1 is executed infinitely often.
We shall construct a reduction from rec-NMCM to uPDAε+ and use the following fact [9].

Proposition 26. rec-NMCM is Σ1
1-complete.

Following [18] we first transform a nondeterministic Minsky counter machineM with two counters c1, c2 into a
machineM′ with three counters c1, c2, c3. The machineM′ makes use of a new nondeterministic instruction of the
form: “c3 := ∗ and then goto j”. The effect of this instruction is to set c3 by a nondeterministically chosen number
and then go to I j. The transformation fromM toM′ is done in two steps. We first replace every instruction “i : Ii” of
M by two instructions inM′, with respective labels 2i−1 and 2i. The instruction “1 : I1” is replaced by “1 : c3 := ∗
and then goto 2; 2 : I1”; and for i ∈ {2, . . . , n}, the instruction “i : Ii” is replaced by “2i − 1 : if c3 = 0 then goto
2n, otherwise c3 := c3−1 and then goto 2i; 2i : Ii”. We then replace every occurrence of “goto j” by “goto
2 j−1” inside each Ii, where i ∈ {1, . . . , n}. Let M′ be the resulting program “1 : I′1; 2 : I′2; . . . ; (2n−1) : I′2n−1; 2n :
halt”. It is easy to see thatM′ has an infinite computation on (c1, c2, c3) = (0, 0, 0) if and only ifM has an infinite
computation on (c1, c2) = (0, 0) that executes the instruction I1 infinitely often.

Our goal is to construct a PDAε+ system P = (Q,V,L,R) in which we can define two processes P and Q that
render true the following equivalence.

P u Q ⇐⇒ M′ has an infinite computation. (14)

In order to get (14), we will use the game interpretation of branching bisimulation. The basic idea of the construction
resembles the one used in [18, 19]. The computation of M′ is encoded into the branching bisimulation game G of
(P,Q). A computation step ofM′ is emulated by a finite number of rounds of branching bisimulation games. M′ has
an infinite run if and only if Defender has a winning strategy in G. To smooth the analysis of G, semantic forcing is
employed in our construction. The key elements of the PDAε+ system P = (Q,V,L,R) are defined as follows.

• Q = QI ] QT ] QU ] QF . QI is used to encode the labels of instructions. For each instruction “i : I′i ” fromM′,
we introduce a pair of states pi, qi. We have QI = {pi, qi | 1 ≤ i ≤ 2n}. QT is used to implement counter test
in branching bisimulation games and is defined to be the set {t, t′, te, ze, z′e, z̄e, z̄′e | 1 ≤ e ≤ 3}. QU and QF are
used to implement counter update operation and the control flow ofM′. The definitions of these two sets will
be clear later.

• V = {C1,C2,C3,⊥, X, X1, X2, X3}. The stack symbols C1, C2 and C3 are introduced for the three counters c1, c2
and c3 respectively. The stack symbol “⊥” is introduced to indicate stack bottom. The rule set R defined later
will guarantee pγ⊥σ u pγ⊥ for all p ∈ Q and γ, σ ∈ V∗.

• L = {a, b, c, c1, c2, c3, f , f ′}.
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The two PDAε+ processes P and Q for (14) are defined by

P = p1X⊥, Q = q1X⊥. (15)

Notation. In the rest of this section we write 11, 12 and 13 for (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively; and we
use ~(n1, n2, n3)� to represent a stack symbol sequence of the form Cn1

1 Cn2
2 Cn3

2 ⊥σ, where n1, n2, n3 ≥ 0 and σ ∈ V∗.
A configuration ofM′ is represented by a tuple of the form (i, n1, n2, n3), where i is the label of the instruction and
n1, n2 and n3 are the values of the counters c1, c2 and c3 respectively. The construction will keep the following
correspondence between the configurations ofM′ and G. IfM′ reaches a configuration (i, n1, n2, n3), then G reaches
a configuration of the form (piX~(n1, n2, n3)�, qiX~(n1, n2, n3)�). Clearly (P,Q) corresponds to (1, 0, 0, 0), which is the
initial configuration ofM′.

In the rest of this section we will complete the definition of P and explain its working mechanism. We first
introduce rules for QT and show how to test the value of a counter. We then design branching bisimulation games to
mimic the counter update operations. We finish our construction by assembling the counter test and counter update
construction according to the control flow ofM′.
(I) Counter Test. We need to carry out equality test, successor test, and zero test on the counters. The rules to
implement these operations are given in Figure 8, assuming i, e ∈ {1, 2, 3}. The correctness requirement of these rules
are summarized in the following lemma. Its routine proof is omitted.

Lemma 27. Let e ∈ {1, 2, 3}. The following statements are valid.

1. t~(n1, n2, n3)� u t~(m1,m2,m3)� if and only if (n1, n2, n3) = (m1,m2,m3).
2. t′~(n1, n2, n3)� u t′~(m1,m2,m3)� if and only if (n1, n2) = (m1,m2).
3. t~(n1, n2, n3)� u te~(m1,m2,m3)� if and only if (n1, n2, n3) + 1e = (m1,m2,m3).
4. ze~(n1, n2, n3)� u z′e~(m1,m2,m3)� if and only if (n1, n2, n3) = (m1,m2,m3) and ne = 0.
5. z̄e~(n1, n2, n3)� u z̄′e~(m1,m2,m3)� if and only if (n1, n2, n3) = (m1,m2,m3) and ne > 0.
6. pγ⊥σ u pγ⊥ for all p ∈ Q and γ, σ ∈ V∗.

1. tC1
c1
−→ t, tC2

c2
−→ t, tC3

c3
−→ t, t⊥

b
−→ t⊥;

2. t′C1
c1
−→ t′, t′C2

c2
−→ t′, t′C3

b
−→ t⊥, t′⊥

b
−→ t⊥;

3. teCi
ci
−→ te (i < e), teCi

ce
−→ tCe (i ≥ e), te⊥

ce
−→ t⊥;

4. zeCi
ci
−→ ze (i < e), zeCi

ci
−→ t (i > e), zeCe

f
−→ t ze⊥

b
−→ t⊥;

5. z′eCi
ci
−→ z′e (i < e), z′eCi

ci
−→ t (i > e), z′eCe

f ′
−→ t z′e⊥

b
−→ t⊥;

6. z̄eCi
ci
−→ ze (i < e), z̄eCi

f
−→ tCi (i > e), z̄eCe

ce
−→ t z̄e⊥

f
−→ t⊥;

7. z̄′eCi
ci
−→ z′e (i < e), z̄′eCi

f ′
−→ tCi (i > e), z̄′eCe

ce
−→ t z̄′e⊥

f ′
−→ t⊥;

8. For each p ∈ Q\QT we have p⊥
b
−→ t⊥.

Figure 8: Rules for Counter Test

(II) Counter Update. There are three basic operations on counters, the increment operation, the decrement operation
and the nondeterministic assignment operation. We encode each such operation into a branching bisimulation game.
Let O be the set of triples defined by

O = {(e,+, j), (e,−, j), (3, ∗, j) | 1 ≤ e ≤ 3 ∧ 1 ≤ j ≤ 2n}.

For each triple õ ∈ O, we add the elements ofU(õ) to QU , where

U(õ) = {u(õ), u′(õ), u1(õ), u′1(õ), u2(õ), u′2(õ), u3(õ), u′3(õ), g(õ), g′(õ)}.

Rules forU(õ) are given in Figure 9. In Figure 9, s1, s2, s3 and s4 are four placeholders. For each triple õ = (e, o, j),
they are defined as follows.
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(L1). u(õ)X
a
−→ u1(õ)X, u(õ)X

τ
−→ g′(õ)X3⊥; (R1). u′2(õ)X

a
−→ u′3(õ)X, u′2(õ)X

τ
−→ g(õ)X⊥;

u′(õ)X
τ
−→ g′(õ)X3⊥; u2(õ)X

τ
−→ g(õ)X3⊥;

(L2). g′(õ)X3
τ
−→ g′(õ)X3C3, g′(õ)X3

τ
−→ g′(õ)X2; (R2). g(õ)X3

τ
−→ g(õ)X3C3, g(õ)X3

τ
−→ g(õ)X2;

g′(õ)X2
τ
−→ g′(õ)X2C2, g′(õ)X2

τ
−→ g′(õ)X1; g(õ)X2

τ
−→ g(õ)X2C2, g(õ)X2

τ
−→ g(õ)X1;

g′(õ)X1
τ
−→ g′(õ)X1C1, g′(õ)X1

τ
−→ g′(õ)X3⊥, g(õ)X1

τ
−→ g(õ)X1C1, g(õ)X1

τ
−→ g(õ)X3⊥;

g′(õ)X1
a
−→ u′1(õ)X; g(õ)X1

a
−→ u3(õ)X;

(L3). u1(õ)X
a
−→ u2(õ)X, u1(õ)X

c
−→ s1; (R3). u3(õ)X

a
−→ s3X, u3(õ)

c
−→ t;

u′1(õ)X
a
−→ u′2(õ)X, u′1(õ)X

c
−→ s2; u3(õ)X

a
−→ s4X, u′3(õ)

c
−→ t;

Figure 9: Rule Template for Counter Update

• If o =“+”, then s1 = te and s2 = t; if o =“−”, then s1 = t and s2 = te; if o =“∗”, then s1 = s2 = t′.

• s3 = p j and s4 = q j.

The correctness of the counter update operation is justified by the next lemma.

Lemma 28. In the branching bisimulation game of (u(õ)X~(m1,m2,m3)�, u′(õ)X~(m1,m2,m3)�)

1. if õ = (e,+, j), then Defender, respectively Attacker, has a strategy to win or at least push the game to a
configuration of the form (p jX~(m1,m2,m3) + 1e�, q jX~(m1,m2,m3) + 1e�);

2. if õ = (e,−, j) and me > 0, then Defender, respectively Attacker, has a strategy to win or at least push the game
to a configuration of the form (p jX~(m1,m2,m3) − 1e�, q jX~(m1,m2,m3) − 1e�);

3. if õ = (3, ∗, j) and m ≥ 0, then Defender has a strategy to win or at least push the game to a configuration of
the form (p jX~(m1,m2,m)�, q jX~(m1,m2,m)�).

Proof. We prove the first statement. The proof for the other two is similar. In what follows we describe Defender and
Attacker’s step-by-step optimal strategy in the branching bisimulation game of (u(õ)Xγ, u′(õ)Xγ′), where õ = (e,+, j),
γ = Cm1

1 Cm2
2 Cm3

3 ⊥σ, γ′ = Cm1
1 Cm2

2 Cm3
3 ⊥σ

′, and σ,σ′ ∈ V∗.

1. By rules of (L1) if Attacker chooses to perform an τ action, then Defender responds with an τ transition and the
game reaches (g′(õ)X3⊥γ, g′(õ)X3⊥γ

′). By Lemma 27, Defender has a winning strategy afterward.
2. Attacker’s optimal choice is to play u(õ)Xγ

a
−→ u1(õ)Xγ. By rules of (L2), Defender can respond with

u′(õ)Xγ′
τ
−→ g′(õ)X3⊥γ

′ =⇒ g′(õ)X1Cn1
1 Cn2

2 Cn3
3 ⊥γ

′ a
−→ u′1(õ)XCn1

1 Cn2
2 Cn3

3 ⊥γ
′ (16)

for some n1, n2, n3. Defender has to choose n1, n2, n3 such that (n1, n2, n3) = (m1,m2,m3) + 1e. The rea-
son is that Attacker can continue the game from (u1(õ)Xγ, u′1(õ)XCn1

1 Cn2
2 Cn3

3 ⊥γ
′) and then initiate counter

test by rules of (L3) via an action c. By Lemma 27, teγ u tCn1
1 Cn2Cn3⊥γ′ iff (n1, n2, n3) = (m1,m2,m3) +

1e. Observe that u′(õ)Xγ′ u g′(õ)X3⊥γ
′ as the τ transition is the only action of u′(õ)Xγ′. By Lemma 27,

g′(õ)XCn1
1 Cn2

2 Cn3
3 ⊥γ

′
τ
−→ g′(õ)X3⊥Cn1

1 Cn2
2 Cn3

3 ⊥γ
′ u g′(õ)X3⊥γ

′. By (16) and Computation Lemma we have
g′(õ)X3⊥γ

′ u g′(õ)X1Cn1
1 Cn2

2 Cn3
3 ⊥γ

′. As a result u′(õ)Xγ′ u g′(õ)X1Cn1
1 Cn2

2 Cn3
3 ⊥γ

′. By semantic forcing,
Attacker has to continue the game from (u1(õ)Xγ, u′1(õ)Xγ1), where γ1 = Cn1

1 Cn2
2 Cn2

3 ⊥γ
′.

3. Attacker would not play an action c as teγ u tγ1. Attacker’s optimal choice is to play an action a and the game
continues from (u2(õ)Xγ, u′2(õ)Xγ1).

4. The argument of the rest part is symmetric. The optimal strategy for Attacker and Defender is as follows. By
rules of (R1) Attacker first plays u′2(õ)Xγ1

a
−→ u′3(õ)Xγ1, then by rules of (R2) Defender has to respond with

u2(õ)Xγ
τ
−→ g(õ)X3⊥γ =⇒ g(õ)X1Cn1

1 Cn2
2 Cn3

3 ⊥γ
a
−→ u3(õ)XCn1

1 Cn2
2 Cn3

3 ⊥γ.
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As u2(õ)X u g(õ)X1Cn1
1 Cn2

2 Cn3
3 ⊥γ, by semantic forcing again the game continues from (u3(õ)Xγ2, u′3(õ)Xγ1),

where γ2 = Cn1
1 Cn2

2 Cn3
3 ⊥γ. By Lemma 27, tγ1 u tγ2. By rules of (R3) Attacker better plays an action a and the

game reaches (p jXγ2, q jXγ1). Note that γ1, γ2 are of the form ~(m1,m2,m3) + 1e�.

We are done. �

(III) Control Flow. We now encode the control flow ofM′ by the rules of the branching bisimulation game. We will
introduce a number of rules for each instruction inM′.

1. For an instruction of the form “i : ce := ce + 1 and then goto j” the following rules are added to R.

piX
a
−→ u(e,+, j)X, qiX

a
−→ u′(e,+, j)X.

These rules implement the counter update operation that increases the counter ce by 1.
2. For an instruction of the form “i : c3 := ∗ and then goto j” the following two rules are added to R.

piX
a
−→ u(3, ∗, j)X, qiX

a
−→ u′(3, ∗, j)X.

These rules implement the counter update operation that resets c3 with a nondeterministically chosen number.
3. For an instruction of the form “i : goto j or goto k”, we add p1

i , q1
i and q2

i to QF and the following rules to R.

piX
a
−→ p1

i X, piX
a
−→ q1

i X, piX
a
−→ q2

i X;
qiX

a
−→ q1

i X, qiX
a
−→ q2

i X;

p1
i X

a
−→ p jX, q1

i X
a
−→ q′jX, q2

i X
a
−→ p jX;

p1
i X

a
−→ pkX, q1

i X
a
−→ pkX, q2

i X
a
−→ q′kX.

These rules embody precisely the idea of Defender’s Forcing [18]. It is Defender who makes the choice. From
configuration (piXγ, qiXγ), Defender can force the game to reach either the configuration (p jXγ, q jXγ) or the
configuration (pkXγ, qkXγ).

4. For an instruction of the form

“i : if ce = 0 then goto j, otherwise ce = ce − 1 and then goto k”

The states p(e, 0, j), q(e, 0, j), p(e, 1, j), q(e, 1, j), v1(e, 0, j), v2(e, 0, j), v3(e, 0, j), v1(e, 1, j), v2(e, 1, j), v3(e, 1, j)
are added to QF . The following rules are added to R.

(C). piX
a
−→ p(e, 0, j)X, piX

c
−→ p(e, 1, k)X;

qiX
a
−→ q(e, 0, j)X, qiX

c
−→ q(e, 1, k)X;

(F0). p(e, 0, j)X
a
−→ v1(e, 0, j)X, p(e, 0, j)X

a
−→ v2(e, 0, j)X, p(e, 0, j)X

a
−→ v3(e, 0, j)X;

q(e, 0, j)X
a
−→ v2(e, 0, j)X, q(e, 0, j)X

a
−→ v3(e, 0, j)X;

v1(e, 0, j)X
c
−→ z̄(e), v2(e, 0, j)X

c
−→ z̄′(e), v3(e, 0, j)X

c
−→ z̄(e);

v1(e, 0, j)X
a
−→ p jX, v2(e, 0, j)X

a
−→ p jX, v3(e, 0, j)X

a
−→ q jX;

(F1). p(e, 1, j)X
a
−→ v1(e, 1, j)X, p(e, 1, j)X

a
−→ v2(e, 1, j)X, p(e, 1, j)X

a
−→ v3(e, 1, j)X;

q(e, 1, j)X
a
−→ v2(e, 1, j)X, q(e, 1, j)X

a
−→ v3(e, 1, j)X;

v1(e, 1, j)X
c
−→ z(e), v2(e, 1, j)X

c
−→ z′(e), v3(e, 1, j)X

c
−→ z(e);

v1(e, 1, j)X
a
−→ u(e,−, j)X, v2(e, 1, j)X

a
−→ u(e,−, k)X, v3(e, 1, j)X

a
−→ u′(e,−, k)X;
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Suppose G reaches a configuration (piXγ, qiXγ′), where γ and γ′ are of the form ~(n1, n2, n3)�. By rules of (C)
Attacker claims either “ne = 0” via an action a or “ne > 0”via an action c. Defender then responds with the
same action and G reaches (p(e, 0, j)Xγ, q(e, 0, j)Xγ′) or (p(e, 1, j)Xγ, q(e, 1, j)Xγ′) respectively. Rules of (F0)
and rules of (F1) compose two Defender’s Forcing gadget. Defender can use them to punish Attacker if he lied
about ne; or to mimic the run ofM′ if Attacker is honest about ne. When ne > 0, there are two cases. If Attacker
lied that “ne = 0” and G reaches (p(e, 0, j)Xγ, q(e, 0, j)Xγ′), then by rules of (F0) Defender can force the game
to reach the configuration (z̄eγ, z̄′eγ

′). By Lemma 27 and the fact that “ne > 0”, we have z̄eγ u z̄′eγ
′. Defender

wins afterward. If Attacker claim “ne > 0” and G reaches (p(e, 1, j)Xγ, q(e, 1, j)Xγ′), then Defender shall not
force the configuration (zeγ, z′eγ

′) as by Lemma 27 we have zeγ 6u z′eγ
′. By rules of (F1) Defender’s optimal

choice is to do a counter decrement operation by forcing the configuration (u(e,−, j)Xγ, u′(e,−, j)Xγ′). When
ne = 0 the argument is similar.

5. For “2n : halt”, we add the following two rules to R.

p2nX
f
−→ p2n⊥, q2nX

f ′
−→ q2n⊥.

So ifM′ halts, then G reaches (p2nXγ, q2nXγ′) for some γ, γ′ and Attacker wins immediately.

With the help of Lemma 27 and Lemma 28, we can show the correctness of our reduciton.

Proposition 29. M′ has an infinite computation if and only if p1X⊥ u q1X⊥.

A consequence of Proposition 29 is that the relation uPDAε+ is Σ1
1-complete. The relation unPDA has been shown

to be undecidable in [36]. We can show unPDA is also Σ1
1-complete by a slight modification to the system P =

(Q,V,L,R) as follows.

(M1). Introduce a new state r and for each q ∈ Q and Z ∈ V add a new rule pZ
b
−→ r to R.

(M2). For each Z ∈ V add a rule rZ
τ
−→ r to R.

(M3). Remove all rules of the from p⊥
b
−→ t⊥ from R.

(M1) and (M2) make sure the new PDA system is normed. (M1) (M2) and (M3) together keep the equivalence
pγ⊥σ u pγ⊥ intact for all p ∈ Q and γ, σ ∈ V∗. Moreover one can verify that Lemma 27, Lemma 28 and
Proposition 29 are still valid under this new setting. The details are omitted.

10. Conclusion

The results of the paper and the results of Jančar and Srba [18] are summarized in the table given below. The new
decidability result is significant compared to the fact that the corresponding problem for the ε-pushing PDA remains
in the analytic hierarchy.

ε-Pushing nPDA ε-Pushing PDA
' Decidable Σ1

1-Complete
≈ Π0

1-Complete Σ1
1-Complete

Stirling’s proof of the decidability of the strong bisimilarity of nPDA has strong influence on the present work. We
have attempted to prove the present result by using tableau system as is done in Stirling’s work, see [6] for a report
It turned out that due to the presence of the silent transitions, proof based on a tableau system is not easy to handle.
The difficulty is two fold. Firstly in the presence of silent actions the k-bisimilarity, as introduced in the proof of
Proposition 7, is very subtle. It is a powerful tool to establish negative results. It is however a little tricky to use it
to construct bisimulations. The reason is that transitivity can easily fail if one is not careful about the definition of
'k. If transitivity fails, the proof of the backward soundness of tableau rules suffers. Without backward soundness
of the tableau rules, Stirling’s proof cannot be repeated. Secondly an alternative would be to construct branching
bisimulations from a tableau, bypassing the use of k-bisimilarity. This cannot be done by generalizing the similar
idea for the strong bisimilarity in a simple minded way. Every goal appearing in a tableau is the root of a branching
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bisimulation. Branching bisimulation of a goal in the conclusion of a tableau rule and that of a goal in the premises
have different structure. That makes composition of these bisimulations difficult to define. The way out of the problem
is Lemma 9. Using this idea one soon realizes that it would be simpler to work directly with the bisimulation trees. In
this paper we have developed decomposition approach to branching bisimulations that in our opinion is better suited
to deal with the branching structure in the presence of silent transitions.

The bisimulation decomposition approach can be applied to study the branching bisimilarity of the ε-popping
PDA. The finite branching property is obviously valid for this model. The definition of the bisimulation and that
of recursive constant have to be modified in the ε-popping setting. We hope to come back to the issue in another
occasion. That would complete the picture this paper sets out to reveal.

In addition to the relationship to the tableau approach, the technique used in this paper can also be seen as a
generalization of the bisimulation base method [4]. In Caucal’s approach every process has a prime decomposition
such that two processes are equivalent if their prime decompositions are equivalent according to a set of axioms. For
PDA processes rewriting of processes is insufficient. We have to take into account of the tree structures induced by
states. The tree structure carries additional proof information that can be verified on-the-fly. It would be interesting to
see if the additional information is helpful in deriving better complexity bounds for similar problems.

Jančar introduced the notion of first order grammar [14] and provided a quite different proof for the decidability
of the strong bisimilarity of nPDA [16]. In the full paper he also outlined an idea of how to extend his proof to take
care of silent transitions. The extended PDA model introduced in [6] is similar to the first order grammar of Jančar. It
is fair to say that the first order grammar offers a generalization of PDA that appears just right.

Stirling proved that the language equivalence of DPDA is primitive recursive [28]. Benedikt, Goller, Kiefer and
Murawski showed that the strong bisimilarity on nPDA is non-elementary [2]. More recently Jančar observed that
the strong bisimilarity of first-order grammar is Ackermann-hard [15], a consequence of which is that the strong
bisimilarity proved decidable by Sénizergues in [24] is Ackermann-hard. It would be interesting to look for tighter
upper and lower bounds on the branching bisimilarity of nPDAε+.
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