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Abstract. The paper carries out a systematic investigation into the
axiomatization problem of the asymmetric chi calculus. As a crucial step
in attacking the problem, an open style bisimilarity is defined for each of
the eighteen L-bisimilarities and the two are proved to be equal. On top of
the open bisimilarities, explicit definitions of the eighteen L-congruences
are given, which suggest immediately possible axioms for the congruence
relations. In addition to the axioms for strong bisimilarity, the paper
proposes altogether twenty one additional axioms, three of which being
the well-known tau laws and the other eighteen being new. These axioms
help to lift a complete system for the strong bisimilarity to complete
systems for the eighteen L-congruences.

1 Introduction

The χ-calculus ([1, 2, 5]) is a recent addition to the family of calculi of mobile
process ([8]). It is a process algebraic formalization of reaction graph ([4]). The
latter is proposed to emphasize the graphical aspect of concurrent computational
objects. The language is a further step towards a more abstract model of con-
current computation. One of its novel features is a uniform treatment of names.
Uniformity supports the idea that there should be no difference between input
and output prefixes. The followings are examples of communication in χ:

(x)(a[x].P |a[y].Q|R) τ−→ P [y/x]|Q[y/x]|R[y/x] (1)

(x)(a[x].P |a[y].Q|R) τ−→ P [y/x]|Q[y/x]|R[y/x] (2)

(x)a[x].P |a[y].Q τ−→ P [y/x]|Q (3)

(x)a[x].P |a[y].Q τ−→ P [y/x]|Q (4)

Here a[x].P and a[y].Q are processes in prefix form, in which x and y are global.
In (x)(a[x].P |a[y].Q|R) the name x is local as it is restricted by a localization
operator (x). In (1) and (2) the interactions between a[x].P and a[y].Q cause the
local name x to be replaced by y throughout the term over which the localization
operator (x) applies. In (3) and (4) the interactions do not affect Q as it is
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not restricted by (x). The four reductions should demonstrate the symmetry of
communications in χ-calculus.

If one insists that there should be a difference between positive prefix op-
eration a[x] and negative prefix operation a[x] then one obtains an asymmetric
version of χ-calculus. In asymmetric χ-calculus, reductions (1) and (3) are ad-
missible whereas reductions (2) and (4) are illegal. Asymmetric and polyadic
versions of χ-calculus have been studied by Parrow and Victor in [10, 11].

The equational theory of mobile processes has attracted a lot of attention. Lin
has axiomatized successfully some weak congruences on mobile processes ([7]).
He concluded that Milner’s three tau laws are enough to lift system for strong
congruences to system for weak congruences in calculus of mobile processes. So
far all complete systems for weak congruences on mobile processes are essentially
of symbolic nature. An alternative is used by Sangiorgi in his study of open
bisimulation ([12]). Compared to symbolic approach, the open approach has the
virtue of simplicity. Strong open bisimilarity on finite mobile processes can be
easily axiomatized. Axiomatization of weak open congruence however has not
been seriously considered.

In this paper we answer some of the open problems in the theory of mobile
processes. Our main contributions are as follows:

– The paper improves our understanding of the asymmetric χ-calculus by
studying open bisimilarities. For each of the eighteen distinct L-bisimilarities,
we introduce an open bisimilarity that coincides with the L-bisimilarity.

– Axiomatization for L-congruences on asymmetric χ-processes has not been
considered before. We give in this paper complete systems for all the eighteen
distinct L-congruences. Our result brings out the importance of the open
counterparts of L-congruences.

– In [11, 3] attempts have been made to give complete systems for weak con-
gruence on polyadic χ-processes, and respectively, four L-congruences on
symmetric χ-processes. In this paper it is pointed out that all the proofs es-
tablishing the claimed completeness are wrong. A way to correct the mistake
is proposed.

– As a byproduct, the paper provides a complete system for barbed congruence
([9]) on asymmetric χ-processes. It is demonstrated that bisimulation lattice
is of great help in obtaining such a system.

– Axiomatization for weak open congruence on π-processes has not been paid
enough attention. The approach used in this paper can be applied to give
immediately a complete system for weak open congruence on π-processes.

– The paper refutes the general belief that Milner’s three tau-laws are suffi-
cient, in calculi of mobile processes, to lift a complete system for a strong
congruence to a complete system for the corresponding weak congruence.
This is related to the failure of Hennessy Lemma in such calculi.

Due to space restriction, most of the proofs are omitted in this extended abstract.
The proofs given are sketchy. Some of the intermediate lemmas are excluded. A
much more detailed account can be found in the full paper [6]. In the rest of the
paper we will leave out the adjective in “asymmetric χ”.



2 Background

Let N be the set of names ranged over by small case letters and N the set
{x | x ∈ N} of conames. The Greek letter α ranges over N ∪N . For α ∈ N ∪N ,
α is defined as a if α = a and as a if α = a. The χ-processes are defined by
the following abstract grammar: P := 0 | α[x].P | P |P | (x)P | [x=y]P | P+P .
Most of the combinators have completely the same reading as those of the π-
calculus. The name x in (x)P is local. A name is global in P if it is not local in
P . For instance the name x in both a[x].P and a[x].P is global. We will write
gn(P ) for the set of global names in P . As this paper is mainly concerned with
axiomatization of finite χ-processes, we have omitted the replication operator.
The set of χ-processes will be denoted by C. The well-known α-convention will
be adopted.

Let δ range over the set {τ} ∪ {m[x],m[x],mx,m(x), [y/x], (y/x] | m,x, y ∈
N} of transition labels and µ over {τ} ∪ {m[x],m[x],mx,m(x) | m,x ∈ N}. In
(y/x], x and y must be different. A name in δ is local if it appears as x in m(x)
or (x/y]; it is global otherwise. Let ln(δ), respectively gn(δ), denote the set of
local, respectively global, names appearing in δ; and let n(δ) denote the set of
names in δ. The sets ln(µ), gn(µ) and n(µ) are defined accordingly.

The following rules define the operational semantics of χ-calculus:

α[x].P
α[x]−→ P

P
δ−→ P ′

[x=x].P δ−→ P ′
P

δ−→ P ′

P+Q
δ−→ P ′

P
µ−→ P ′ ln(µ) ∩ gn(Q) = ∅

P |Q µ−→ P ′|Q

P
[y/x]−→ P ′

P |Q [y/x]−→ P ′|Q[y/x]

P
(y/x]−→ P ′ y 6∈ gn(Q)

P |Q (y/x]−→ P ′|Q[y/x]

P
mx−→ P ′ Q

m[x]−→ Q′

P |Q τ−→ P ′|Q′
P

mx−→ P ′ Q
m(x)−→ Q′ x 6∈ gn(P )

P |Q τ−→ (x)(P ′|Q′)

P
m[x]−→ P ′ Q

m[y]−→ Q′

P |Q [y/x]−→ P ′[y/x]|Q′[y/x]

P
m[x]−→ P ′ Q

m(y)−→ Q′ y 6∈ gn(P )

P |Q (y/x]−→ P ′[y/x]|Q′[y/x]

P
δ−→ P ′ x 6∈ n(δ)

(x)P δ−→ (x)P ′
P

m[x]−→ P ′ x 6= m

(x)P
my−→ P ′[y/x]

P
m[x]−→ P ′ x 6= m

(x)P
m(x)−→ P ′

P
[y/x]−→ P ′ x 6= y

(x)P τ−→ P ′

P
[y/x]−→ P ′ x 6= y

(y)P
(y/x]−→ P ′

P
(y/x]−→ P ′

(x)P τ−→ (y)P ′
P

[x/x]−→ P ′

(x)P τ−→ (x)P ′

The semantics is different from the one in [10, 3]. Here m[x].P |m[x].Q
[x/x]−→ P |Q

but not m[x].P |m[x].Q τ−→ P |Q. In [10, 3], [x/x] is identified with τ ; here they
are different.



Some notations need be fixed before we proceed to next section. Let =⇒ be
the reflexive and transitive closure of τ−→. We will write δ=⇒ for =⇒ δ−→=⇒. We

will also write δ̂=⇒ for δ=⇒ if δ 6= τ and for =⇒ otherwise. The notation =⇒x

will stand for =⇒[x/x]−→=⇒[x/x]−→ . . . =⇒[x/x]−→=⇒, where the transition
[x/x]−→ occurs

zero or a finite number of times. It follows from definition that =⇒⊆=⇒x. For
simplification δ=⇒=⇒x will be abbreviated to δ=⇒x. An atomic substitution of y
for x is denoted by [y/x]. A general substitution σ is the composition of atomic
substitutions, whose effect on a process P is defined by P [y1/x1] . . . [yn/xn] def=
(P [y1/x1] . . . [yn−1/xn−1])[yn/xn]. The composition of zero atomic substitution
is an empty substitution [] whose effect on a process is vacuous. A sequence of
names x1, . . . , xn will be abbreviated as x; and consequently (x1) . . . (xn)P will
be abbreviated to (x)P . When the length of x is zero, (x)P is just P .

In the rest of the paper M and N , and their indexed forms, denote fi-
nite lists of equalities x=y. Let M be x1=y1, . . . , xn=yn. Then [M ]P denotes
[x1=y1] . . . [xn=yn]P . If M logically implies N , we write M ⇒ N ; and if both
M ⇒ N and N ⇒ M we write M ⇔ N . If M is an empty list, it plays the
role of logical truth, in which case [M ]P is just P . Clearly a list M of match
equalities defines an equivalence relation on the set n(M) of names appearing
in M . We use σM to denote an arbitrary substitution that sends all members
of an equivalence class to a representative of that class and sends a name not
in n(M) to itself. For a finite number of processes Pi, i ∈ I, we write

∑
i∈I Pi

for P1 + . . . + Pn. We have leave out the parentheses in P1 + . . . + Pn as + is
associative both semantically and proof theoretically.

In order to axiomatize the congruence relations of this paper, we need to
internalize, as it were, the labels of the transition system. In the following def-
inition a is fresh: α(x).P def= (x)α[x].P , where x 6∈ {α, α}; τ.P

def= (a)[a/a].P ;
[y/x].P def= (a)(a[y]|a[x].P ); (y/x].P def= (y)[y/x].P , where x 6= y. The prefix
[y/x], first introduced in [1, 10], is called an update. It is clear from definition
that both x and y in [y/x].P are global. On the other hand the y in the restricted
update (y/x].P is local.

We state below some technical results to be used in the rest of the paper.
The proofs of which are simple inductions on derivation.

Lemma 1. Let n(σ) denote the names appearing in the substitution σ.
(i) If n(σ) ∩ ln(µ) = ∅ and P

µ−→ P ′ then Pσ
µσ−→ P ′σ.

(ii) If P
[y/x]−→ P ′ then Pσ

[yσ/xσ]−→ P ′σ[yσ/xσ].

(iii) If y 6∈ n(σ) and P
(y/x]−→ P ′ then Pσ

(y/xσ]−→ P ′σ[y/xσ].

Lemma 2. If (x)P =⇒ (y)P ′, then either P =⇒x P ′ and x = y, or P =⇒x
(y/x]
=⇒y

P ′, or, for y1, . . . , yn, n ≥ 1, P =⇒x
(y1/x]
=⇒y1

(y2/y1]=⇒y2 · · ·
(yn/yn−1]=⇒yn

(y/yn]
=⇒y P ′.

We refer the reader to [2, 3] for more on the semantics of χ-calculus.



3 Bisimulation Lattice

Bisimulation equalities are the finest equivalence relation on processes. For a
particular process calculus, there is not just one weak bisimulation equality but
a whole range of them. These equalities differ in the extent actions are admitted.
In practice one uses one bisimulation equality in preference to others because
the processes one is interested in are capable of performing only certain kinds of
actions.

We will define a class of bisimulation equalities on χ-processes induced by
different sets of admissible actions. For that purpose, we introduce the following
notations. Let fo denote the set {a[x] | a, x ∈ N} of free outputs, fi the set
{a[x] | x ∈ N} of free inputs, i the set {ax | x ∈ N} of inputs, ro the set
{a(x) | a, x ∈ N} of restricted outputs, u the set {[y/x] | x, y ∈ N} of updates
and ru the set {(y/x] | x, y ∈ N} of restricted updates. Define L as {∪S | S ⊆
{fo, fi, i, ro, u, ru} ∧ S 6= ∅}.

Contexts are certain processes with a hole. They are inductively defined as
follows: (i) [] is a context; (ii) if C[] is a context then C[]|P , P |C[], (x)C[] and
α[x].C[] are contexts. A binary relation R on C is closed under context if PRQ
implies C[P ]RC[Q] for every context C[]. It is closed under substitution if PRQ
implies PσRQσ for every substitution σ.

Definition 3. Let R be a binary symmetric relation on C and L be an element
of L. The relation R is an L-relation if whenever PRQ and P

φ−→ P ′, for

φ ∈ L ∪ {τ}, then some Q′ exists such that Q
φ̂

=⇒ Q′RP ′. An open L-relation
is an L-relation that is closed under substitution. An L-bisimulation is an L-
relation that is closed under context. The L-bisimilarity, notation ≈L, is the
largest L-bisimulation.

According to Definition 3, P is L-bisimilar to Q if an admissible action φ of P ,
that is φ ∈ L, can be simulated by the same action from Q up to tau actions
and vice versa. Closedness under context guarantees that L-bisimilarity is stable
with respect to all but the summation operation.

Theorem 4. If σ is a substitution, L ∈ L, P ≈L Q and O ∈ C then (i)
α[x].P ≈L α[x].Q; (ii) P |O ≈L Q|O; (iii) (x)P ≈L (x)Q; (iv) [x=y]P ≈L

[x=y]Q; (v) Pσ ≈L Qσ.

There are altogether 63 L-bisimilarities. Not all of them are distinct. The
next theorem reveals the full picture of the order relationship among them.

Theorem 5. Suppose L,L1, L2 ∈ L. Then the following properties hold:
(i) ≈L⊆≈i and if L 6= i then the inclusion is strict.
(ii) ≈L1 6⊆≈L2 if either (fi∩L1 = ∅)∧ (fi ⊆ L2) or (ru∩L1 = ∅)∧ (ru ⊆ L2) or
((ru ∪ ro) ∩ L1 = ∅) ∧ (ro ⊆ L2) or (u ∩ L1 = ∅) ∧ (u ⊆ L2) or ((u ∪ fo) ∩ L1 =
∅) ∧ (fo ⊆ L2).
(iii) ≈ru⊂≈ro and ≈u⊂≈fo. Both inclusions are strict.
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Fig. 1. The Bisimulation Lattice of Chi Calculus

It follows from Theorem 5 that there are altogether 18 distinct L-bisimilarities.
These are described in Figure 1. In the diagram an arrow indicates a strict
inclusion. Each labeled node is the principal representative of a number of L-
bisimilarities that coincide. For instance, the node labeled by ≈ro∪ru∪i∪fi is
the principal representative of the equivalence class {≈L| ru ∪ fi ⊆ L ⊆ ro ∪
ru ∪ i ∪ fi and L ∈ L}. The order structure induced by the arrow relation is
called the bisimulation lattice of χ-calculus. Due to space limitation we will be
concentrating on ≈ro∪ru∪i∪fi∪fo∪u and ≈ro∪ru∪i∪fi∪fo in this paper. Extensive
studies of the other sixteen can be found in the full paper.

The proof of Theorem 5 is sketched in [3]. In this paper we give some examples
to support the inequality claimed in the theorem. These examples are far more
general than the ones in [3] in the sense that they are axiom generating.

Suppose x 6= y and L ∩ fi = ∅. Then

m(y).(P + [y/x].Q) 6≈fi m(y).(P + [y/x].Q) + m[x].Q[x/y] (5)
m(y).(P + [y/x].Q) ≈L m(y).(P + [y/x].Q) + m[x].Q[x/y] (6)

Now (5) is obvious whereas (6) is slightly more subtle. None of the actions con-
fined in L can tell the two processes apart. The reduction (m(y).(P +[y/x].Q)+

m[x].Q[x/y])|m[z]
[z/x]−→ Q[z/y][z/x], for instance, is matched up by m(y).(P +

[y/x].Q)|m[z] τ−→ [z/x].Q[z/y]
[z/x]−→ Q[z/y][z/x].

Suppose Q cannot perform any restricted updates up to tau actions. Then

(y/x].Q + τ.Q[x/y] 6≈ru τ.Q[x/y] (7)
(y/x].(P + (z/y].Q) 6≈ru (y/x].(P + (z/y].Q) + (z/x].Q[z/y] (8)
(y/x].Q + τ.Q[x/y] ≈L τ.Q[x/y] (9)
(y/x].(P + (z/y].Q) ≈L (y/x].(P + (z/y].Q) + (z/x].Q[z/y] (10)



when L ∩ ru = ∅. Both (7) and (8) are obvious. Intuitively (9) holds because if
the admissible actions are confined in L then the first action of (y/x].Q is not
fireable. For it to be activated the global name x must be localized in a context.
But then the action invoked by (y/x] amounts to substituting the local y for the
local x, the side effect being the same as that of applying the α-conversion. For
similar reason (10) holds because replacing x by the local z in Q[z/y] results in
the same process as the one obtained by first substituting the local y for x in Q
and then substituting the local z for y.

If Q can perform a restricted output action not matched up by P then

a(x).(P + (y/x].Q) 6≈ro a(x).(P + (y/x].Q) + a(y).Q[y/x] (11)
a(x).(P + (y/x].Q) ≈L a(x).(P + (y/x].Q) + a(y).Q[y/x] (12)

when L∩(ru∪ro) = ∅. The inequality (11) holds because a(y).Q[y/x] can perform
two consecutive restricted output actions not matchable by a(x).(P + (y/x].Q).
The equality (12) holds as a(y).Q[y/x] can only be involved in a communication
when restricted output and restricted update actions are banned.

Suppose L ∩ u = ∅ and x 6= y. Let A be [x/x].(P1 + [y/x].Q) and B be
[y/y].(P2 + [y/x].Q). Then

A + B 6≈u A + B + [y/x].Q (13)
A + B ≈L A + B + [y/x].Q (14)

The inequality (13) is obvious. To understand (14) notice that if updates are
banned then the component [y/x].Q can be initiated when at least one of x and
y is localized. If x is localized then [x/x].(P1 +[y/x].Q) can simulate [y/x].Q and
if y is localized then it is for [y/y].(P2 + [y/x].Q) to do the job.

Suppose C is [x/x].(P1 + a[x].Q[x/y]) and D is [y/y].(P2 + [x/y].Q). Then

C + a(y).(P + D) 6≈fo C + a(y).(P + D) + a[x].Q[x/y] (15)
C + a(y).(P + D) ≈L C + a(y).(P + D) + a[x].Q[x/y] (16)

when L ∩ (u ∪ fo) = ∅. Now (15) is clear. Justification of (16) is as follows:
If the component a[x].Q[x/y] induces a restricted output (update) action, then
[x/x].(P1 +a[x].Q[x/y]) can simulate the action by performing first a tau action
and then a restricted output (update). For example

a[z]|(x)(C + a(y).(P + D) + a[x].Q[x/y])
(x/z]−→ 0|Q[x/y][x/z]

is simulated by a[z]|(x)(C + a(y).(P + D)) τ−→ a[z]|(x)(P1 + a[x].Q[x/y])
(x/z]−→

0|Q[x/y][x/z]. If the component a[x].Q[x/y] is involved in a communication as
in (z)a[z].R|(C+a(y).(P +D)+a[x].Q[x/y]) τ−→ R[x/z]|Q[x/y]. Then a(y).(P +
[y/y].(P2 + [x/y].Q)) will put itself into action. The simulating sequence is:

(z)a[z].R|(C + a(y).(P + D)) τ−→ (y)(R[y/z]|(P + [y/y].(P2 + [x/y].Q)))
τ−→ (y)(R[y/z]|(P2 + [x/y].Q))
τ−→ R[x/z]|Q[x/y].

The reader is advised to play with these examples before moving on.



4 Open Bisimilarities

The idea of open bisimilarity ([12]) is this: In order to show P and Q to be
bisimilar, all one needs to consider are substitution instances of the pair. As a
process contains only a finite number of names, it is usually enough to consider
only a finite number of substitution instances. This is the basic reason for the
effectiveness of open bisimilarity. The adjective “open” refers to the fact that in
this approach the global names appearing in a process are treated very much
like the free variables in, say, an open λ-term.

In this section we will define, for each L ∈ L, an open bisimilarity that
coincides with the L-bisimilarity. The proofs of coincidence not only support our
definitions of open bisimulations for χ-processes but also reveals much deeper
properties of L-bisimilarities from the technical point of view.

Definition 6. (i) An open ro ∪ ru ∪ i ∪ fi ∪ fo ∪ u-bisimulation is the same as
an open ro ∪ ru ∪ i ∪ fi ∪ fo ∪ u-relation.

(ii) An open ro∪ ru∪ i∪ fi∪ fo-relation R is an open ro∪ ru∪ i∪ fi∪ fo-
bisimulation if the following properties hold for P and Q whenever PRQ:

– If P
[x/x]−→ P ′ then Q′ exists such that either Q=⇒xQ′RP ′ or some y1, . . . , yn,

n ≥ 1, exist such that Q =⇒x
(y1/x]
=⇒y1

(y2/y1]=⇒y2 · · ·
(yn/yn−1]=⇒yn

Q′ and Q′[x/yn]RP ′.

– If P
[y/x]−→ P ′, where x 6= y, then Q′ exists such that either Q

[y/x]
=⇒ Q′RP ′ or

both of the following properties hold:
• either Q

[x/x]
=⇒x

[y/x]
=⇒ Q′RP ′ or some y1, . . . , yn, for n ≥ 1, exist such that

Q =⇒x
(y1/x]
=⇒y1

(y2/y1]=⇒y2 · · ·
(yn/yn−1]=⇒yn

[y/yn]
=⇒ Q′RP ′;

• either Q
[y/y]
=⇒y

[y/x]
=⇒ Q′RP ′ or some Q′′, z1, . . . , zm, for m ≥ 1, exist such

that Q′′[y/zm]RP ′ and Q =⇒y
(z1/y]
=⇒z1

(z2/z1]=⇒z2 · · ·
(zm/zm−1]=⇒zm

[zm/x]
=⇒ Q′′.

For each L ∈ L, the open L-bisimilarity ≈L
open is the largest open L-bisimulation.

The above definition is not easy to digest. For motivations, the reader should
check up the examples given in the previous section against the definition.

Theorem 7. Suppose L ∈ L. Then ≈L
open coincides with ≈L.

Proof. First we show that ≈L⊆≈L
open. Let a be fresh throughout the proof.

(i) It follows from Definition 6 and Theorem 4 that ≈ro∪ru∪i∪fi∪fo∪u is an
open ro ∪ ru ∪ i ∪ fi ∪ fo ∪ u-bisimulation.

(ii) Suppose P ≈ro∪ru∪i∪fi∪fo Q and P
[x/x]−→ P ′. Then (x)(P |a[x]) τ−→ ax−→

P ′|0 must be matched up by (x)(Q|a[x]) ax=⇒ Q′|0 for some Q′ such that
P ′ ≈ro∪ru∪i∪fi∪fo Q′. Using Lemma 2, one derives that either Qσ =⇒x Q′RP ′

or some y1, . . . , yn, for n ≥ 1, exist such that Qσ =⇒x
(y1/x]
=⇒y1

(y2/y1]=⇒y2 · · ·
(yn/yn−1]=⇒yn

Q′

and Q′[x/yn]RP ′.

If P
[y/x]−→ P ′ and x 6= y, then (x)(P |a[x]) τ−→ P ′|a[y]. To match up the

reduction, there must exist some Q′ such that (x)(Q|a[x]) τ=⇒ Q′|a[y]. According



to Lemma 2, there are only three possibilities: either Q
[y/x]
=⇒ Q′ ≈ro∪ru∪i∪fi∪fo

P ′, or Q
[x/x]
=⇒x

[y/x]
=⇒ Q′ ≈ro∪ru∪i∪fi∪fo P ′, or Q =⇒x

(y1/x]
=⇒y1

(y2/y1]=⇒y2 · · ·
(yn/yn−1]=⇒yn

[y/yn]
=⇒

Q′ ≈ro∪ru∪i∪fi∪fo P ′ for some y1, . . . , yn, n ≥ 1. If the first case is not possible,

there must also exist some Q′′ such that (y)(Q|a[x])
(y/x]
=⇒ Q′′|a[y] matches up

(y)(P |a[x])
(y/x]−→ P ′|a[y]. Clearly (y)(Q|a[x])

(y/x]
=⇒ Q′′|a[y] can be factorized as

(y)(Q|a[x]) =⇒ (z)(Q1|a[x]) ≡ (y)(Q1[y/z]|a[x])
(y/x]−→ Q2|a[y] =⇒ Q′′|a[y]. By

Lemma 2, either Qσ
[y/y]
=⇒y

[y/x]
=⇒ Q′RP ′ or some Q′′, z1, . . . , zm, for m ≥ 1, exist

such that Q′′[y/zm]RP ′ and Qσ =⇒y
(z1/y]
=⇒z1

(z2/z1]=⇒z2 · · ·
(zm/zm−1]=⇒zm

[zm/x]
=⇒ Q′′. Notice

that Qσ
[y/x]
=⇒ Q′RP ′ is impossible by assumption.

The inclusion ≈L
open⊆≈L amounts to showing that, for each L ∈ L, ≈L

open is
an L-bisimulation. ut

With the help of the above theorem we can now define L-congruences by
exploiting the explicit requirement in the definition of open L-bisimilarities.

Definition 8. Two processes P and Q are L-congruent, written P =L Q, if
P ≈L

open Q and, for every substitution σ and every φ ∈ ru∪ u∪ {τ}, Pσ
φ−→ P ′

must be matched up by a nonempty sequence of actions from Q and vice versa.

So for instance, if P =ro∪ru∪i∪fi∪fo Q then it should not be the case that the

only way Q can simulate P
[x/x]−→ P ′ is by the vacuous action Q =⇒ Q.

5 Prefix Laws

Let AS be the system given in Figure 2 plus the equivalence rules, the con-
gruence rules and the following expansion law, in which π and γ range over
{τ} ∪ {α[x], [y/x] | x, y ∈ N}:

P |Q =
∑
i∈I

[Mi](x)πi.(Pi|Q) +
πi=ai[xi]∑
γj=bj [yj ]

[Mi][Nj ](x)(y)[ai=bj ][yj/xi].(Pi|Qj)

+
∑
j∈J

[Nj ](y)γj .(P |Qj) +
πi=ai[xi]∑
γj=bj [yj ]

[Mi][Nj ](x)(y)[ai=bj ][xi/yj ].(Pi|Qj)

where P is
∑

i∈I [Mi](x)πi.Pi, Q is
∑

j∈J [Nj ](y)γj .Qj and {x} ∩ {y} = ∅. The
second component in the right hand of the above equality captures the idea that
whenever πi is of the form ai[xi] for some i ∈ I and γj is of the form bj [yj ] for
some j ∈ J then there is a summand [Mi][Nj ](x)(y)[ai=bj ][yj/xi].(Pi|Qj).

We will write AS ∪ {R1, . . . , Rn} ` P = Q to mean that the equality P = Q
is derivable from the axioms and rules of AS together with axioms and rules
R1, . . . , Rn. When no confusion arises, we simply write P = Q. We will also
write P

R= Q to indicate that R is the major axiom applied to derive P = Q.



L1 (x)0 = 0
L2 (x)α[y].P = 0 x ∈ {α, α}
L3 (x)α[y].P = α[y].(x)P x 6∈ {y, α, α}
L4 (x)(y)P = (y)(x)P
L5 (x)[y=z]P = [y=z](x)P x 6∈ {y, z}
L6 (x)(P+Q) = (x)P+(x)Q
L7 (x)[x=y]P = 0
L8 (x)[y/x].P = τ.P [y/x]
L9 (x)[y/z].P = [y/z].(x)P x 6∈ {y, z}
L10 (x)τ.P = τ.(x)P
M1 [M ]P = [N ]P if M ⇔ N
M2 [x=y]P = [x=y]P [y/x]
M3 [x=y](P+Q) = [x=y]P+[x=y]Q
S1 P+0 = P
S2 P+Q = Q+P
S3 P+(Q+R) = (P+Q)+R
S4 [x=y]P+P = P
U1 [y/x].P = [y/x].[x=y]P

MD1 [x=y].0 = 0 derivable from S1 and S4
MD2 [x=x].P = P derivable from M1
MD3 [M ]P = [M ](PσM ) derivable from M2
SD1 P+P = P derivable from MD2 and S4
SD2 [M ]P+P = P derivable from S-rules
UD1 [y/x].P = [y/x].P [y/x] derivable from U1 and M2

Fig. 2. Axioms for Strong Bisimilarity on Chi Processes

In AS every process P can be converted to a normal form process of the
following shape:

∑
i∈I1

[Mi]αi[xi].Pi+
∑

i∈I2
[Mi]αi(x).Pi+

∑
i∈I3

[Mi][yi/xi].Pi+∑
i∈I4

[Mi](y/xi].Pi +
∑

i∈I5
[Mi]τ.Pi, in which neither x nor y appears global in

P and Pi is in normal form for each i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5. Here I1, I2, I3, I4

and I5 are pairwise disjoint finite indexing sets.
AS is sound and complete for strong bisimilarity whose definition we omit,

but see [10]. In order to lift AS to complete systems for L-congruences, we
propose 17 axioms as given in Figure 3. We call them prefix laws as they are
mainly dealing with prefix combinators. The first three are the well-known tau
laws. We have seen axioms P4 and P14 in [3]. The other twelve axioms are new.
In what follows, ASτ denotes AS ∪ {P1, P2, P3}.

6 Saturation Property

In the standard proof of completeness theorem for weak congruence on finite CCS
processes, one verifies first that every normal form process is provably equal to
a saturated normal form process using the three tau laws. Recall that a process
P is saturated if , for every α, P

α−→ P ′ whenever P
α=⇒ P ′. Now if P and

Q are weakly congruent saturated normal form processes and P
α−→ P ′ then



P1 δ.τ.P = δ.P
P2 P + τ.P = τ.P
P3 δ.(P + τ.Q) = δ.(P + τ.Q) + δ.Q
P4 a(y).(P + [y/x].Q) = a(y).(P + [y/x].Q) + a[x].Q[x/y]
P5 (y/x].P + τ.P [x/y] = τ.P [x/y]
P6 (y/x].(P + (z/y].Q) = (y/x].(P + (z/y].Q) + (z/x].Q[z/y]
P7 a(x).(P + (y/x].Q) = a(x).(P + (y/x].Q) + a(y).Q[y/x]
P8 A + B = A + B + [y/x].Q
P9 C + a(y).(P + D) = C + a(y).(P + D) + a[x].Q[x/y]
P10 E + a(y).(P + F ) = E + a(y).(P + F ) + a[x].Q[x/y]
P11 G + a(y).(P + F ) = G + a(y).(P + F ) + a[x].Q[x/y]
P12 (y/x].(P + [z/y].Q) = (y/x].(P + [z/y].Q) + [z/x].Q[z/y]
P13 (y/x].(P + a[y].Q) = (y/x].(P + a[y].Q) + a[x].Q[x/y]
P14 a(x).(P + [y/x].Q) = a(x).(P + [y/x].Q) + a[y].Q[y/x]
P15 (y/x].P + [x/x].P [x/y] = [x/x].P [x/y]
P16 (y/x].P + [x/x].P [x/y] = (y/x].P
P17 [x/x].P + τ.P = τ.P

In P8, A ≡ [x/x].(P1 + [y/x].Q) and B ≡ [y/y].(P2 + [y/x].Q).
In P9, C ≡ [x/x].(P1 + a[x].Q[x/y]) and D ≡ [y/y].(P2 + [x/y].Q).
In P10, E ≡ [x/x].(P1 + a[x].Q[x/y]) and F ≡ [y/y].(P2 + [y/x].Q).
In P11, G ≡ [x/x].(P1 + a(y).(Q1 + [x/x].(Q2 + [y/x].Q))) and
F ≡ [y/y].(P2 + [y/x].Q).

Fig. 3. The Prefix Laws

Q
α=⇒ Q′ for some Q′ such that Q′ ≈ P ′, where ≈ denotes weak bisimilarity.

By saturation, Q
α−→ Q′ and therefore α.Q′ is a summand of Q. If, and this is a

nontrivial if, we can deduce by induction hypothesis that α.P ′ is provably equal
to α.Q′, then we can conclude that every summand of P is provably equal to a
summand of Q, and vice versa. This gives us the required completeness.

If one is focusing only on completeness proof, then the notion of saturated
process is a distraction. All one really needs is the following saturation property:

If P
α=⇒ P ′ for normal form P , then P and P +α.P ′ are provably equal.

This is the first of the two crucial properties a completeness proof rests upon. An-
other one is to be discussed in next section. These properties suffice to establish
the following absorption property:

If two normal form processes P and Q are congruent then P + Q is
provably equal to P .

Of course, under the same assumption, P +Q is also provably equal to Q. Hence
the completeness.

In χ-calculus, a basic saturation lemma would say that P and P + δ.P ′ are
provably equal whenever P

δ=⇒ P ′ for normal form process P . But this is far
from sufficient. Suppose P =ro∪ru∪i∪fi∪fo Q for normal form processes P and Q.



Suppose further that [x/x].P ′ is a summand of P . Then some Q′ must exist such
that either P ′ ≈ro∪ru∪i∪fi∪fo Q′ and Q =⇒x Q′ or P ′ ≈ro∪ru∪i∪fi∪fo Q′[x/yn]

and some y1, . . . , yn, for n ≥ 1, exist such that Q =⇒x
(y1/x]
=⇒y1

(y2/y1]=⇒y2 · · ·
(yn/yn−1]=⇒yn

Q′. In the former case we have, by the basic saturation lemma, that Q is provably
equal to Q + [x/x].Q′. In the latter case we would also like to say the same. But
it no longer follows from the basic saturation lemma. Extra axiom are necessary
to derive the equality Q = Q + [x/x].Q′.

Lemma 9. Suppose Q is in normal form. Then the following properties hold:
(1) If QσM

τ=⇒ Q′ then ASτ ` Q = Q + [M ]τ.Q′.

(2) If QσM
α[x]
=⇒ Q′ then ASτ ` Q = Q + [M ]α[x].Q′.

(3) If z 6∈ gn(Q) ∪ n(M) and QσM
az=⇒ Q′ then ASτ ` Q = Q + [M ]a(z).Q′.

(4) If z 6∈ gn(Q) ∪ n(M) and QσM
a(z)
=⇒ Q′ then ASτ ` Q = Q + [M ]a(z).Q′.

(5) If QσM
[y/x]
=⇒ Q′ then ASτ ` Q = Q + [M ][y/x].Q′.

(6) If y 6∈ gn(Q) ∪ n(M) and QσM
(y/x]
=⇒ Q′ then ASτ ` Q = Q + [M ](y/x].Q′.

(7) If QσM
τ=⇒x Q′ or QσM

[x/x]
=⇒x Q′ then ASτ ∪ {P8, P17} ` Q = Q +

[M ][x/x].Q′.

(8) If QσM =⇒x
(y1/x]
=⇒y1

(y2/y1]=⇒y2 · · ·
(yn/yn−1]=⇒yn Q′ then Q = Q + [M ][x/x].Q′[x/yn] is

provable in the system ASτ ∪ {P8, P16, P17}.

Proof. (8) Suppose QσM =⇒x Q1
(y1/x]
=⇒ Q2 · · ·Q2n−1

(yn/yn−1]=⇒ Q2n =⇒yn
Q′.

Now x 6∈ Q2, x 6∈ Q3; x, y1 6∈ Q4, x, y1 6∈ Q5; . . .; x, y1, . . . , yn−2 6∈ Q2n−2,
x, y1, . . . , yn−2 6∈ Q2n−1; x, y1, . . . , yn−1 6∈ Q2n, x, y1, . . . , yn−1 6∈ Q′. Therefore

Q2i−2[x/yi−1] =⇒x Q2i−1[x/yi−1]
(yi/x]
=⇒ Q2i, for 2 ≤ i ≤ n, and Q2n[x/yn] =⇒x

Q′[x/yn] by Lemma 1. With these observations one obtains the following infer-
ence, assuming QσM =⇒x Q1 is not vacuous:

Q = Q + [M ][x/x].(Q1 + (y1/x].Q2)
P16= Q + [M ][x/x].(Q1 + (y1/x].Q2 + [x/x].Q2[x/y1])
= Q + [M ]([x/x].(Q1 + (y1/x].Q2 + [x/x].Q2[x/y1]) + [x/x].Q2[x/y1])
= Q + [M ][x/x].Q2[x/y1]
...
= Q + [M ][x/x].Q′[x/yn]

where the first equality holds by (6) and (7) of this lemma; the third equality is
a consequence of P8. If QσM =⇒x Q1 is vacuous then

Q = Q + [M ](y1/x].Q2

P16= Q + [M ]((y1/x].Q2 + [x/x].Q2[x/y1])
= Q + [M ][x/x].Q2[x/y1].

So the previous inference is valid anyway. ut



Pr1 τ.P = τ.(P +
∑

i∈I
[Mi]τ.P )

Pr2 τ.P = τ.(P +
∑

i∈I1
[Mi]τ.P +

∑
i∈I2

[Mi](w/xi].P )

Pr3 τ.P = τ.(P +
∑

i∈I1
[Mi]τ.P +

∑
i∈I2

[Mi][xi/xi].P )

Pr4 τ.P = τ.(P +
∑

i∈I1
[Mi]τ.P +

∑
i∈I2

[Mi](w/xi].P +
∑

i∈I3
[Mi][xi/xi].P )

In the above axioms, w is fresh, I, I1, I2, I3 are finite indexing sets.

Fig. 4. The Promotion Axioms

7 Promotion Property

In the proof of completeness theorem for weak congruence in CCS, the following
result, due to Hennessy, plays a crucial role:

If P ≈ Q then either τ.P = Q or P = Q or P = τ.Q.

Here ≈ is the weak bisimilarity and = is the congruence induced by ≈. In the
proof of the completeness theorem by induction, Hennessy Lemma helps to lift
P ≈ Q to either τ.P = Q or P = Q or P = τ.Q, thus allowing the induction
hypothesis to apply. In π-calculus however Hennessy Lemma does not hold! For
a counter example, consider the following three propositions

τ.(ax + [x=y]τ.ay) = ax

ax + [x=y]τ.ay = ax

ax + [x=y]τ.ay = τ.ax

None of them holds although ax+[x=y]τ.ay ≈ ax is true. This example explains
the reason why nobody has given a proof that Sangiorgi’s system ([12]) together
with Milner’s tau laws constitute a complete system for weak open congruence.
We believe that the resulting system is not capable of establishing the equality
τ.(ax + [x=y]τ.ay) = τ.ax.

The purpose of this section is to present our solution. The motivation comes
from a careful examination of the role of Hennessy Lemma in CCS. What it
really comes down to is the following promotion property:

If P ≈ Q for normal form processes P and Q then τ.P = τ.Q is provable.

Motivated by this observation, we introduce four additional axioms as given in
Figure 4. In the presence of a suitable set of prefix laws, these four axioms are
capable of lifting AS to a complete system for an L-congruence. For this reason
we call them promotion axioms. Clearly both Pr2 and Pr3 subsume Pr1 and are
subsumed by Pr4.

Theorem 10. Suppose P and Q are in normal form.
(i) If P ≈ro∪ru∪i∪fi∪fo∪u Q then ASτ ∪ {Pr1} ` τ.P = τ.Q.
(ii) If P ≈ro∪ru∪i∪fi∪fo Q then ASτ ∪ {P8, P16, P17, P r3} ` τ.P = τ.Q.



Proof. We prove (ii) only. Suppose P ≈ro∪ru∪i∪fi∪fo Q for normal form pro-
cesses P and Q. The proof is carried out by induction on the sum of the depths
of P and Q. Let P be of the form

∑
i∈I1

[Mi]αi[xi].Pi +
∑

i∈I2
[Mi]αi(x).Pi +∑

i∈I3
[Mi][yi/xi].Pi +

∑
i∈I4

[Mi](y/xi].Pi +
∑

i∈I5
[Mi]τ.Pi and Q be of the form∑

j∈J1
[Nj ]αj [xj ].Qj+

∑
j∈J2

[Nj ]αj(x).Qj+
∑

j∈J3
[Nj ][yj/xj ].Qj+

∑
j∈J4

[Nj ](y/
xj ].Qj +

∑
j∈J5

[Nj ]τ.Qj .

Suppose, for i ∈ I3, yiσMi = xiσMi and ([Mi][yi/xi].Pi)σMi

[yiσMi
/xiσMi

]
−→

PiσMi
can only be matched up vacuously by QσMi

. Then ASτ∪{P8, P16, P17} `
τ.PiσMi

= τ.QσMi
by induction hypothesis. It follows that

ASτ ∪ {P8, P16, P17} ` [Mi][yi/xi].Pi = [Mi][xi/xi].Q.

Suppose, for some i ∈ I3, yiσMi 6= xiσMi . Using Lemma 9 and axiom P8,
one can show that ASτ ∪ {P8, P16, P17} ` [Mi][yi/xi].Pi + Q = Q.

Similarly one shows that some I ′ ⊆ I5 exists such that the equality [Mi]τ.Pi =
[Mi]τ.Q is provable in ASτ ∪ {P8, P16, P17} for each i ∈ I ′ and that ASτ ∪
{P8, P16, P17} ` [Mi]τ.Pi + Q = Q for each i ∈ I5 \ I ′.

It is also clear that ASτ ∪ {P8, P16, P17} ` [Mi]αi[xi].Pi + Q = Q, respec-
tively ASτ ∪ {P8, P16, P17} ` [Mi]αi(x).Pi + Q = Q, ASτ ∪ {P8, P16, P17} `
[Mi](y/xi].Pi +Q = Q, if [Mi]αi[xi].Pi, respectively [Mi]αi(x).Pi, [Mi](y/xi].Pi,
is a summand of P .

We can now conclude that P + Q = Q + Σi∈I′ [Mi]τ.Q + Σi∈I [Mi][xi/xi].Q
is provable in the system ASτ ∪ {P8, P16, P17} for some I ⊆ I3 and I ′ ⊆ I5.
Now τ.Q = τ.(Q + Σi∈I′ [Mi]τ.Q + Σi∈I [Mi][xi/xi].Q) by Pr3. It follows that
ASτ ∪ {P8, P16, P17, P r3} ` τ.(P + Q) = τ.Q.

Symmetrically ASτ ∪ {P8, P16, P17, P r3} ` τ.(P + Q) = τ.P . Therefore
ASτ ∪ {P8, P16, P17, P r3} ` τ.P = τ.Q. ut

8 Completeness Theorem

Having done all the preparations, we finally come to the completeness theorem.
Its proof is so similar to the proof of the promotion lemma reported in the
previous section as to render any reiteration redundant.

Theorem 11. (i) ASτ ∪ {Pr1} is sound and complete for =ro∪ru∪i∪fi∪fo∪u.
(ii) ASτ ∪ {P8, P16, P17, P r3} is sound and complete for =ro∪ru∪i∪fi∪fo.

Proof. Let’s see how (ii) is proved. The soundness is easy. Suppose both P and
Q are in normal form and P =ro∪ru∪i∪fi∪fo Q. Using (ii) of Theorem 10 and
its proof, one concludes that P + Q = Q + Σi∈I′ [Mi]τ.Q + Σi∈I [Mi][xi/xi].Q
is provable in the system ASτ ∪ {P8, P16, P17} for some I ⊆ I3 and I ′ ⊆ I5.
But Q must be able to simulate a first move of P by a nonempty sequence of
moves. This implies that both I and I ′ are empty. It follows that P + Q = Q
is provable in ASτ ∪ {P8, P16, P17, P r3}. Similarly P + Q = P is provable in
ASτ ∪ {P8, P16, P17, P r3}. Hence ASτ ∪ {P8, P16, P17, P r3} ` P = Q. ut



Congruence Axioms in Addition to AS ∪ {P1, P2, P3}
=ro∪ru∪i∪fi∪fo∪u Pr1

=ro∪ru∪i∪fo∪u P4 Pr1

=ro∪i∪fi∪fo∪u P5, P6, P15 Pr2

=i∪fi∪fo∪u P5, P7, P15 Pr2

=ro∪i∪fo∪u P4, P5, P6, P15 Pr2

=i∪fo∪u P4, P5, P7, P15 Pr2

=ro∪ru∪i∪fi∪fo P8, P16, P17 Pr3

=ro∪ru∪i∪fi P8, P9, P16, P17 Pr3

=ro∪ru∪i∪fo P4, P8, P10, P11, P16, P17 Pr3

=ro∪ru∪i P4, P8, P9, P10, P11, P16, P17 Pr3

=ro∪i∪fi∪fo P5, P6, P12, P15, P16 Pr4

=i∪fi∪fo P5, P7, P12, P15, P16 Pr4

=ro∪i∪fo P4, P5, P6, P13, P15, P16 Pr4

=i∪fo P4, P5, P7, P13, P15, P16 Pr4

=ro∪i∪fi P5, P6, P9, P12, P15, P16 Pr4

=ro∪i P4, P5, P6, P9, P13, P15, P16 Pr4

=i∪fi P5, P7, P9, P14, P15, P16 Pr4

=i P4, P5, P7, P9, P13, P14, P15, P16 Pr4

Fig. 5. Summary of the 18 Completeness Systems

9 Concluding Remarks

The work reported in this paper consists of two parts. The first part is a contin-
uation of the study of L-bisimilarities on asymmetric χ-processes initiated in [3].
The result of this investigation is a finer description of L-bisimilarities in terms
of open L-bisimilarities. This alternative view leads immediately to the explicit
definition of the largest congruence relation, the L-congruence, contained in an
L-bisimilarity. Building upon the first part, the second part explains a stream-
lined approach to derive complete systems for L-congruences. In addition to the
axioms and rules for strong bisimilarity, 21 axioms are proposed. It is shown that
these are enough to lift a complete system for the strong bisimilarity to complete
systems for L-congruences. Due to space restriction, the paper discusses only two
L-bisimilarities. The definitions of the other sixteen open L-bisimilarities fit into
the pattern of Definition 6. Most of them are even more complex. It should
be emphasized that these definitions are not simply a matter of putting things
together. In Figure 5 all the 18 complete systems for L-congruences are given.

It can be easily shown that the top element of the bisimulation lattice coin-
cides with the barbed bisimilarity on the χ-processes. So we have in fact given a
complete system for the barbed congruence. It is surprising that axiomatization
of the barbed congruence is almost as difficult as axiomatization of all the 18
L-congruences. This points out the importance of the bisimulation lattice. Even
if we do not care much about most of the L-congruences, we are forced to pay
attention to them. The author certainly could not have discovered the axioms for



barbed congruence had he not discovered the bisimulation lattice of χ-calculus.
As a digression, we remark that barbed bisimilarity, which we believe is a very
sensible equality, is usually much weaker than the ‘traditional bisimilarity’ we
have in mind. The coincidence, as might be the case in π-calculus with binary
choice operator, is an exception rather than the rule.

The mistake made in [11, 3] is caused by the false assumption that Hennessy
Lemma held in calculi of mobile processes. The result of this paper indicates
that none of the systems given in [11, 3] is likely to be complete for the intended
congruence. It is apparent from our work that Sangiorgi’s system for strong open
congruence on π-processes can be extended to a complete system for weak open
congruence on π-processes by adding the tau laws and the promotion axiom Pr1.

Among the 17 prefix laws, P8, P9, P10 and P11 are most unusual. They share
structural similarity that is quite different from the structures of the three tau
laws shared by the rest of the laws. We leave for future study the question of if
these laws can be simplified. The rest of the prefix laws are quite satisfactory.

The promotion axioms are very interesting. It is worth investigating the pos-
sibility of simplifying them.

Finally we remark that the prefix laws are not independent. For instance P6
is subsumed by P7 in the system AS. This however does not mean that P6 is
redundant. It is used for example in the complete system of =ro∪i∪fi∪fo∪u for
which P7 is too strong.
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