
JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.1 (1-15)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Counting nondeterministic computations

Qizhe Yang, Yuxi Fu ∗

BASICS, Shanghai Jiao Tong University, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2020
Received in revised form 8 August 2021
Accepted 17 August 2021
Available online xxxx
Communicated by R. van Glabbeek

Keywords:
Branching bisimulation
Nondeterminism
Divergence

The structure of nondeterministic computations is extremely complicated. C-graphs are
abstract representations of the branching structure of nondeterministic computations. The
paper investigates the structure of finite state nondeterministic computations by showing
that the complexity of the structure increases non-elementarily while the number of
computation steps increases. This is achieved by establishing a recursive equation relating
the number of C-graphs of a certain height to the number of C-graphs of smaller height.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Computations can be studied in many different models. In computation theory a computation model, say the Turing
machine model [27], the λ-calculus model [2], the recursive function model [12], defines a closed system in which programs,
machine configurations, closed λ-terms, recursive functions, do not interact. Input and output actions stay at meta level. The
equality relation for computation in all these models is the extensional equality = defined as follows: f = g if and only if
for every x, either f (x) = g(x) whenever one side is defined, or both f (x) and g(x) are undefined. If one program delivers
a result upon an input and another program never stops computing on the input, the two programs are deemed unequal.
Evidently divergence plays a central role in the computation theory. It should also play a central role in concurrency theory,
which is meant to be an interactive extension of the computation theory [18].

As the foundation of the computation theory Church-Turing Thesis [16] is valid at the operational level [4]. There must
be a translation ̂_ from the computational objects of the form M to closed λ-terms. The map ̂_ essentially defines a binary
relation R that satisfies the following property whenever M R L, where M is a machine configuration and L is a closed
λ-term: (i) If M → M ′ then L →∗ L′ such that M ′ R L′; and (ii) if L → L′ then M →∗ M ′ such that M ′ R L′ . This is actually
the idea of bisimulation [18,23], or more precisely that of barbed bisimulation [20]. The relation R satisfies an additional
property. If M0 R L0 and there is an infinite computation sequence M0 → M1 → M2 → . . ., then there is an infinite com-
putation sequence from L0. It is impossible that L0 → L′ for some L′ such that L′ cannot do any computation because a
terminating computation is never equal to a divergent computation according to the definition of extensional equality. In
other words R must be divergence sensitive.

The classic Turing machines have been extended to nondeterministic Turing machines for various purposes. The best
framework to study nondeterministic computations is offered by concurrency theory. In this theory a model defines the
operational semantics of processes whose primary task is to interact with each other [15,18]. Computation is seen as a
cooperation between two interacting processes. When interactions are explicit, the idea of observations as tests for equality

* Corresponding author.
E-mail addresses: spacepenguin9494@gmail.com (Q. Yang), fu-yx@cs.sjtu.edu.cn (Y. Fu).
https://doi.org/10.1016/j.tcs.2021.08.022
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.08.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:spacepenguin9494@gmail.com
mailto:fu-yx@cs.sjtu.edu.cn
https://doi.org/10.1016/j.tcs.2021.08.022

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.2 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
becomes natural. Bisimulation then comes out as the finest characterization of the branching structure of nondeterminism
caused by interaction, extending the input-output criterion of the extensional equality. It turns out that a minimal formu-
lation of bisimulation gives rise to an equality, the barbed equality, which applies to all concurrent models. Such a model
independent theory was initiated by Milner and Sangiorgi [20] and followed by the work carried out in [22,13,8]. A sys-
tematic study of the model independent theory of interaction is carried out in [6,7]. With this theory it can be argued that
there is a unique equality for both computation and interaction.

There have been many studies on the qualitative aspect of processes [15,14,18,19,25,21]. Algebraic theory of observation
forms a considerable portion of process theory. There has been however little research on the quantitative aspect of pro-
cesses. Given for example an n-state CCS process that may interact at three channels a, b, c, how many unequal processes
are there? Questions of this kind are interesting because they help to see the complexity of nondeterminism. In this paper
we carry out a quantitative study of nondeterministic computational objects. By computational objects we mean processes
that cannot interact with any other processes. We may think of them as processes that pick up some input at the be-
ginning of computation and output a particular value by the end of the computation. The reason that we focus on these
objects is twofold. Firstly the simplification allows us to study the branching structure caused solely by the internal actions
of processes. External actions would complicate the investigation. Quantitative theory of general processes should begin
with a study of the nondeterministic computational objects. Secondly as is pointed out in [5] these objects already demon-
strate nice and rich structures that we understood very little before. Methodologies for the study of the nondeterministic
computational objects could hopefully be applied to the quantitative investigations of interactive processes.

We consider the finite state computational objects defined by a variant CCSμ of CCS that admits only τ actions. Like
in [5] we will focus on an abstract representation of the computational objects called C-graphs. In this paper we classify
computational objects by the worst case branching time complexity; equivalently we classify C-graphs according to graph
height. The main contributions of the paper are as follows:

• A recursive equality for the number Ln of C-graphs of height n is derived. Additionally it is shown that the growth rate
of Ln is non-elementary. These are reported in Section 3.

• Similar results are derived for k-regular C-graphs. This is done in Section 4.
• The relationship between the number of C-graphs counted by graph height and the number of C-graphs counted by

graph size is characterized by a set of inequalities, giving both upper and lower bounds for one in terms of the other.
This is described in Section 5.

A few comments are made in the final section.

2. C-graph

Nondeterminism is an intrinsic phenomenon of concurrency. Nondeterministic computation is best demonstrated in
a process model. Consider A = μX .(τ .0 +τ .(a | X) +τ .�a) defined in the syntax of process model CCS, where �a =
μY .τ .(a | Y). In a process model a computation step is formalized by a τ transition. Observe that A τ−→ 0, meaning that
A may terminate after one step computation. Also A τ−→ a | A and A τ−→ �a are one step computations. The process a | A
is not equivalent to A since in the former the ability to synchronize in channel a is persistent, which is not the case for
A. The process �a is not equivalent to A either because �a can synchronize at channel a again and again, whereas A
may preempt any synchronization at a from happening. Moreover a | A and �a are not equivalent due to the preemptive
power of A. Let’s slightly modify this example. Define A0 = μX .(τ .0 +τ .X +τ .�0), where �0 = μY .τ .Y . The only action
this process can do is computation. After one computation step it either evolves to the null process 0, or to the divergent
process �0, or to itself. One may argue that these three processes are not equivalent to each other from the point of view
of resource consuming. The null process 0 does not consume any energy. The divergent process �0 always consumes more
and more energy. The process A0 may terminate after consuming some energy. The equality to be introduced in a moment
is consistent with this resource consuming viewpoint.

We shall introduce two formalisms for nondeterministic computational objects. Firstly we introduce these objects using
the familiar process notation [5]. Consider a variant CCSμ of CCS that admits only τ actions. The finite state terms are
generated from the following BNF:

T := X | S | �(T) | μX .T ,

S := 0 | τ .T | S + S.

In the above X is a term variable, S is a nondeterministic term, and μX .T is a recursive term in which X is bound. The
term �(T) either behaves as T or evolves to itself. A finite state computational object is a term that does not contain any free
term variables. We write P , Q for finite state computational objects. The operational semantics of CCSμ is defined by the
following rules.

τ .T
τ−→ T

Si
τ−→ S ′

i i ∈ {0,1}
S + S

τ−→ S ′ �(T)
τ−→ �(T)

T
τ−→ T ′

�(T)
τ−→ T ′

T {μX .T /X} τ−→ T ′

μX .T
τ−→ T ′
0 1 i

2

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.3 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
The transition �(T) τ−→ �(T) is called a self-loop. The simplest terminating computational object is 0, and the simplest
divergent computational object is � = �(0). In the rest of the paper we write τ=⇒ (=⇒) for the (reflexive and) transitive
closure of τ−→.

We now motivate the equality of the paper. From the point of computation a terminating computation is never equal to
a divergent one. An equality on nondeterministic computation objects has to be divergence respectful. There are a number
of ways to define divergence respectful relations [28,1,17,11,8,6,10]. We formulate the dichotomy between termination and
divergence using an idea of Priese [24]. In what follows we write R−1 = {(P , Q) | (Q , P) ∈R} for the reverse relation of R.

Definition 1. A binary relation R is codivergent if the following statements are valid:

• If P0 R Q 0
τ−→ Q 1

τ−→ · · · τ−→ Q n
τ−→ . . . , then P0

τ=⇒ P1 R Q j for some P1 and some j > 0.

• If P0 R−1 Q 0
τ−→ Q 1

τ−→ · · · τ−→ Q n
τ−→ . . . , then P0

τ=⇒ P1 R−1 Q j for some P1 and some j > 0.

The codivergence property has been used to define process equality, see for example [6,10]. The two processes 0, � for
example are weakly bisimilar. They are not however related by any codivergent relation. The reason that Definition 1 is the
right formulation in our case is that it goes with the notion of bisimulation hand in hand. Bisimulation equality [18,23]
is the standard equality for nondeterministic processes that takes into account of the branching structure. We shall use a
refinement of the weak bisimulation introduced by van Glabbeek and Weijland [9].

Definition 2. A binary relation R is a bisimulation if the following statements are valid:

• If P R Q τ−→ Q ′ then one of the following statements is valid:
– P =⇒ P ′ for some P ′ such that P ′ R Q and P ′ R Q ′ .
– P =⇒ P ′′ R Q for some P ′′ such that P ′′ τ−→ P ′ R Q ′ for some P ′ .

• If Q R−1 P
τ−→ P ′ then one of the following statements is valid:

– Q =⇒ Q ′ for some Q ′ such that Q ′ R−1 P and Q ′ R−1 P ′ .
– Q =⇒ Q ′′ R−1 P for some Q ′′ such that Q ′′ τ−→ Q ′ R−1 P ′ for some Q ′ .

By the standard approach in concurrency theory we can define the equality between the nondeterministic computational
objects as follows: P and Q are equal, notation P � Q , if (P , Q) is in a codivergent bisimulation.

There are infinitely many finite state computational objects. In [5] the author defined ϒ0 = 0, ϒ1 = �(τ .0), ϒ2 = τ .0 +
τ .�, and introduced the inductive definition

ϒ2i+1 = �(τ .0 + τ .ϒ2i),

ϒ2i+2 = τ .0 + τ .� + τ .ϒ2i+1.

It is clear that ϒ1 diverges whereas ϒ0 does not, and ϒ2 may terminate but ϒ1 cannot. To help the reader get a glimpse of
the complexity of C-graphs we repeat the argument that the infinite sequence ϒ0, ϒ1, ϒ2, . . . are pairwise unequal. Suppose
∀ j < 2i − 1. ϒ j 	= ϒ2i−1 and ∀ j < 2i. ϒ j 	= ϒ2i . For any even number k smaller than 2i + 1, ϒk 	= ϒ2i+1 because ϒ2i+1 loops
while ϒk does not, and ϒk 	= ϒ2i+2 by induction. If k is an odd number smaller than 2i + 1, then ϒk 	= ϒ2i+1 by induction,
and ϒk 	= ϒ2i+2 because ϒ2i+2

τ−→ � cannot be matched by any computation sequence from ϒk . For more examples of
computational objects consult [5].

It is worth remarking that the so-called weak bisimilarity [18] cannot be used to study the branching structure of
computational objects. It would identify all the finite state computational objects definable in CCSμ .

A one step computation P
τ−→ P ′ can be depicted as a directed edge with the two nodes labeled by P and P ′ respec-

tively. A one step computation P
τ−→ P is then a self-loop with the node labeled by P . The set of all computation paths

from P form a rooted graph. If we remove the labels from the nodes of the graph, we get a graph that is an abstract
representation of a nondeterministic computation structure. It is called a D-graph in [5].

Definition 3. A directed graph G = (V , E) is a D-graph if the following hold:

• There is precisely one node, the root, that does not have any incoming edge.
• There is at most one edge from a node to another. There is at most one edge from a node to itself.
• Every node is reachable from the root.

A self-loop is an edge from a node to itself. The out-degree of a node is the number of out-going edges of the node,
including the self-loop. If there is an edge from a node to a different node, the latter is a child of the former. If there is a
path from a node to a different node, the latter is a descendant of the former. For ease of reference we shall often label
3

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.4 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
Fig. 1. The left is a D-Graph but not a C-graph. The right is a C-graph.

Fig. 2. Height Versus Size of a C-Graph.

a node of a D-graph by a small case letter. We label the trivial single node D-graph by c0
0 and the trivial single self-loop

node by c1
0. Evidently every D-graph contains at least one of the two trivial D-graphs as subgraph. By D being an (induced)

subgraph of D ′ we mean that whenever the two nodes of an edge of D ′ are in D then the edge is in D . An internal node
has at least one out-going edge to a different node.

We denote a D-graph by G = (G, c), where G is a directed graph and c is the root. A D-graph is a syntax free repre-
sentation of a finite state computational object. Consider the two D-graphs presented in Fig. 1, in which the bullets are the
roots. The left is an abstract representation of the operational behavior of �(τ .τ + τ .(τ .� + τ)) and the right an abstract
representation of �(τ .�(τ) + τ .�(� + τ)). For ease of reference the nodes of the left are labeled. Every node in the D-
graph represents a computational object. The computational object �(τ .τ + τ .(τ .� + τ)) is represented by the root labeled
a. The object τ .� + τ is represented by b. The one step computation �(τ .τ + τ .(τ .� + τ)) τ−→ τ .� + τ is represented by
the edge from a to b. It is clear that the equality � can be applied to the nodes of D-graphs. It equates the nodes labeled
c0

0 and c because the relation {(a, a), (b, b), (c1
0, c1

0), (c0
0, c0

0), (c, c), (c, c0
0), (c0

0, c)} is a codivergent bisimulation. In an abstract
representation of computational object there is no point in introducing equal nodes. Hence the following.

Definition 4. A C-graph G = (G, c) is a D-graph in which no two nodes are equal.

The right D-graph in Fig. 1 is a C-graph. When no confusion may arise a C-graph will be referred to by the label of its
root.

Consider another example. Two C-graphs are defined in Fig. 2. In the left one the root is not equal to the node above
the root. This is because the former can reach c0

0 whereas the latter cannot reach c0
0 without passing an unequal node. In

the right diagram the root is not equal to the node above it either because the former can loop while the latter cannot. It is
easy to see from this example how to construct a C-graph of n nodes whose height is n − 2. The notion of C-graph height
will be formalized in the next section.

We will call the single node C-graphs c0
0 and c1

0 the trivial C-graphs. Almost all C-graphs contain both c0
0 and c1

0 as leaves.
It is easy to verify that if a C-graph does not contain c0

0, it is nothing but c1
0. If a C-graph does not contain c1

0, it is either c0
0

or the two node C-graph whose root can loop.

3. Counting C-graphs

From the complexity theoretical viewpoint we are mostly interested in the maximal number of steps a computational
object may engage. C-graphs are computational objects. It is therefore natural to classify them by the length of the longest
admitted paths. Here self-loops are ignored when counting the length of a path. So we are counting the number of com-
putational steps that change states. In other words C-graphs are classified by the worst case branching time complexity.
Suppose u, v are distinct nodes in a C-graph G . The distance dist(u, v) is the length of the longest path from u to v that
contains no self-loops. If there is no path from u to v , let dist(u, v) be for instance −1. We define the height h(u) of u as
follows:

h(u) = max
{

dist
(

u, c0
0

)
,dist

(
u, c1

0

)}
.

4

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.5 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
Fig. 3. Examples of C-graph Classified by Height.

Fig. 4. Finite C-Graphs Arranged in Levels.

We define the height h(G) of the C-graph G by the height of the root. The height of c0
0 and c1

0 is 0. Here the subscript 0
indicates the height, and the superscripts 0, 1 are used to differentiate the two nodes. There are three C-graphs of height 1,
whose roots are denoted respectively by c0

1, c1
1 and c2

1, see Fig. 3, where three C-graphs of height 2, rooted respectively at
c0

2, c1
2, c2

2, are also given.
A C-graph is of height i + 1 because the children of its root are of height no more than i and at least one child is of

height i. This observation allows us to visualize the class of the finite C-graphs as forming a connected infinite directed
graph without any root. The layout of the infinite graph is such that the root of a graph of height i stays at the i-th level.
The picture is given in Fig. 4. The nodes c0

0, c1
0 of Fig. 3 are at the 0-th level in the infinite C-graph of Fig. 4. The roots c0

1,
c1 and c2 are at the first level, and the roots c0, c1, c2 are at the second level. Inductively a node, say ck

n , at the n-th level
1 1 2 2 2

5

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.6 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
of the infinite graph is the root of a finite C-graph of height n. This finite C-graph consists of all the nodes reachable from
ck

n . In this way we can talk about the number of the finite C-graphs at the n-th level. We further clarify the picture in Fig. 4
by the following observations.

• Nodes at the same level are disconnected. If a and b are distinct nodes at the n-th level and there is an edge from a to
b, then either one of the nodes is in the wrong level or the graph rooted at a is not a C-graph because a � b.

• Apart from self-loops, all out-going edges of a node a at the n-th level point to nodes at lower levels. There is at least
one out-going edge that points to a node at the (n−1)-th level, otherwise a would not be in the n-th level.

• Let C(a) be the set of the children of a node a at the n-th level. Let D(a) be 1 if a has a self-loop and be 0 otherwise.
Suppose that b is a node at the n-th level that is distinct from a. Then either C(a) 	= C(b) or D(a) 	= D(b). This is because
if C(a) = C(b) and D(a) = D(b), then � ∪ {(a, b)} is a codivergent bisimulation, and consequently a � b, contradicting to
the assumption.

• Suppose a is a node at the n-th level and a′ is a node at the (n−1)-th level. Then either C(a) � C(a′) ∪ {a′} or D(a) = 1
and D(a′) = 0. Otherwise � ∪ {(a, a′), (a′, a)} would be a codivergent bisimulation.

In the n-th level the nodes without self-loops can be classified into two groups. The node ck
n in Fig. 4 is connected to exactly

one node, say c j
n−1, in the (n−1)-th level. In this case ck

n must connect to at least one node below the (n−1)-th level that
is not a child of c j

n−1. The node ck′
n in Fig. 4 is connected to at least two nodes in the (n−1)-th level. It may or may not

connect to any node in lower levels.
Before counting the number of C-graphs classified by levels, let’s introduce some notations. We write Ln for the set of

all C-graphs in the n-th level, and Ln = |Ln| for the size of Ln . To find out the relationship between Ln and Ln−1 we need
to look at subclasses of Ln induced by the degree of roots. The notation L j

n,� stands for the subset of Ln containing those
C-graphs whose roots have self-loop and have out-degree j. Similarly L j

n,• denotes the subset of Ln containing root without
self-loop and with out-degree j. Let L j

n,� = |L j
n,�| and L j

n,• = |L j
n,•|. The set of all the C-graphs that stay at or below the

n-th level is Sn = ⋃n
i=0 Li . Let Sn = |Sn|. The following equalities hold by definition.

L j
n = L j

n,• + L j
n,�,

Ln =
Sn−1+1∑

j=1

L j
n. (1)

In (1) we have taken into account the self loop of the root. Notice that L Sn−1+1
n,� = 1. We will derive an equality for L j

n,• that
guarantees L Sn−1+1

n,• = 0 and L Sn−1
n,• = 1.

The main result of this section is stated next.

Theorem 3.1. The following recursive equality holds for n ≥ 3.

Sn =
(

n∑
k=2

(−1)k k!
k − 1

· kSn−(k−1)

)
− (−1)n(n − 1)! · (n3 + 2n2 + n + 1).

The theorem enables one to calculate Sn in an inductive manner and to compute Ln by the equality Ln = Sn − Sn−1. We
will prove Theorem 3.1 in Section 3.1 through Section 3.4.

3.1. Node with a single next level child

The standard notation for the number of combinations of choosing k items from a total of n items is
(n

k

)
. We shall allow

n to be smaller than k. Thus(
n

k

)
=

{ n!
(n−k)!·k! , if n ≥ k,

0, if n < k.

Recall that 0! = 1. To simplify the combinatorial argument, we even allow n to take the negative value −1. The following
combinatorial equations will be useful in present paper.(

K

k − 1

)
+

(
K

k

)
=

(
K + 1

k

)
, (2)

k∑(
K − K ′

i

)(
K ′

k − i

)
=

(
K

k

)
, (3)
i=0

6

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.7 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
k∑
i=0

di
(

k

i

)
= (d +1)k. (4)

Given a C-graph cn−1 in the (n−1)-th level, we construct a C-graph at the n-th level by introducing a new root cn ,
divergent or not, and connecting it to cn−1. We assume that the new node does not connect to any other node in the
(n−1)-th level. Unless cn is divergent and cn−1 is not divergent, the new root must connect to at least one node in Sn−2 for
otherwise the new root cn would be equal to the old root cn−1. Let A j

n,� be the subset of L j
n,� containing all the C-graphs

with precisely one child in the (n−1)-th level, and let A j
n,� = |A j

n,�|. Similarly we define A j
n,• and A j

n,• . The next lemma
explains how to calculate A j

n,� and A j
n,• .

Lemma 3.2. The following equalities are valid.

1. A j
n,� = ∑Sn−2+1

i=1

(
Li

n−1,• · (Sn−2
j−2

) + ∑ j−2
t=1 Li

n−1,� · (Sn−2−i+1
t

) · (i−1
j−2−t

))
.

2. A j
n,• = ∑Sn−2+1

i=1

∑ j−1
t=1

(
Li

n−1,• · (Sn−2−i
t

) · (i
j−1−t

) + Li
n−1,� · (Sn−2−i+1

t

) · (i−1
j−1−t

))
.

Proof. We prove the first equality. The proof for the second one is similar. Fix j, i. There are two cases.

• The root cn of a C-graph in A j
n,� connects to a root cn−1 in Li

n−1,• . Since cn has a self-loop and cn−1 does not, cn is
already not equal to cn−1. This means that we can choose the rest of the j − 2 nodes from Sn−2 in any way we want.
This explains the summand Li

n−1,• · (Sn−2
j−2

)
.

• The root cn of a C-graph in A j
n,� connects to a root cn−1 in Li

n−1,� . The root cn should connect to at least one root in
Sn−2; otherwise cn would be equal to cn−1. For t ∈ [j−2] the root cn may connect to any j − 2 − t nodes among the
i − 1 children of cn−1, disregarding the self-loop, and to any t nodes among the other Sn−2 − i + 1 nodes in Sn−2. This
explains the summand

∑ j−2
t=1 Li

n−1,�
(Sn−2−i+1

t

)(i−1
j−2−t

)
.

We remark that
(Sn−2−i

t

)
for example is equal to 0 when Sn−2 − i ∈ {−1, 0, . . . , t − 1}. �

3.2. Node with more than one next level child

Next we consider the situation in which the root cn of a C-graph at the n-th level is connected to more than one node
in the (n−1)-th level. The notations B j

n,� , B j
n,•, B j

n,� and B j
n,• are defined in similar fashion. A node that connects to two

distinct nodes in Sn−1 must stay at the n-th level. If cn connects to t nodes in the (n−1)-th level, it may connect to any
j − t − 1 or j − t nodes in Sn−2, depending on if cn has a self-loop. Hence the following.

B j
n,� =

j−1∑
t=2

(
Ln−1

t

)(
Sn−2

j − t − 1

)
and B j

n,• =
j∑

t=2

(
Ln−1

t

)(
Sn−2

j − t

)
. (5)

3.3. The proof of Theorem 3.1

We now calculate L j
n using Lemma 3.2 and the equalities in (5).

A j
n,� + A j

n,• =
Sn−2+1∑

i=1

⎛⎝Li
n−1,• ·

(
Sn−2

j − 2

)
+

j−2∑
t=1

Li
n−1,� ·

(
Sn−2 − i + 1

t

)
·
(

i − 1

j − 2 − t

)⎞⎠ +

Sn−2+1∑
i=1

j−1∑
t=1

(
Li

n−1,• ·
(

Sn−2 − i

t

)
·
(

i

j − 1 − t

)
+ Li

n−1,� ·
(

Sn−2 − i + 1

t

)
·
(

i − 1

j − 1 − t

))
.

Fix i. In the above expression the coefficient of Li
n−1,• is

(
Sn−2

j − 2

)
+

j−1∑
t=1

(
Sn−2 − i

t

)(
i

j − 1 − t

)
(3)=

(
Sn−2

j − 2

)
+

(
Sn−2

j − 1

)
−

(
i

j − 1

)
(2)=

(
Sn−2 + 1

j − 1

)
−

(
i

j − 1

)
,

and the coefficient of Li is
n−1,�

7

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.8 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
j−2∑
t=1

(
Sn−2 − i + 1

t

)(
i − 1

j − 2 − t

)
+

j−1∑
t=1

(
Sn−2 − i + 1

t

)(
i − 1

j − 1 − t

)
(3)=

(
Sn−2

j − 2

)
−

(
i − 1

j − 2

)
+

(
Sn−2

j − 1

)
−

(
i − 1

j − 1

)
(2)=

(
Sn−2 + 1

j − 1

)
−

(
i

j − 1

)
.

The two coefficients are the same. Thus

A j
n,� + A j

n,• =
Sn−2+1∑

i=1

Li
n−1 ·

((
Sn−2 + 1

j − 1

)
−

(
i

j − 1

))
= Ln−1 ·

(
Sn−2 + 1

j − 1

)
−

Sn−2+1∑
i=1

Li
n−1 ·

(
i

j − 1

)
.

The above equality can be justified by a combinatorial argument. The number A j
n,� + A j

n,• can be calculated in the following
manner: Fix a new root with i children. For each (n − 1)-th level child, there are

(Sn−2
j−2

)+(Sn−2
j−1

) = (Sn−2+1
j−1

)
different D-graphs.

Thus there are Ln−1 · (Sn−2+1
j−1

)
D-graphs altogether. Let’s calculate the number of those D-graphs that are not C-graphs. For

that purpose we only have to look at the situations where the root is actually equal to the (n − 1)-th level node. There are
two cases.

• Suppose the (n − 1)-th level node does not have a self-loop and its out degree is i. The new root is equal to the (n − 1)-
th level node if and only if the other j − 1 children of the new root are also the children of the (n − 1)-th level node.
There are

∑Sn−2+1
i=1 Li

n−1,• · (i
j−1

)
such D-graphs.

• Suppose the (n − 1)-th level node has a self-loop and its out degree is i. The new root is equal to the (n − 1)-th level
node if and only if either of the following happens: (i) The new root has a self-loop and the j − 2 children are also
the children of the (n − 1)-th level node. There are

∑Sn−2+1
i=1 Li

n−1,� · (i−1
j−2

)
such D-graphs. (ii) The new root does not

have a self-loop and the j − 1 children of the new root are also the children of the (n − 1)-th level node. There are ∑Sn−2+1
i=1 Li

n−1,� · (i−1
j−1

)
such D-graphs. Altogether there are

∑Sn−2+1
i=1 Li

n−1,� · (i
j−1

)
such D-graphs.

By summing up the above two expressions one gets
∑Sn−2+1

i=1 Li
n−1 · (i

j−1

)
. We have effectively given two proofs for the

equality A j
n,� + A j

n,• = Ln−1 · (Sn−2+1
j−1

) − ∑Sn−2+1
i=1 Li

n−1 · (i
j−1

)
.

Next we count the number of the C-graphs of height n with more than two (n − 1)-th level nodes. It follows from (5)
and the equality Ln−1 = Sn−1 − Sn−2 that

B j
n,� + B j

n,• =
j−1∑
t=2

(
Ln−1

t

)(
Sn−2

j − t − 1

)
+

j∑
t=2

(
Ln−1

t

)(
Sn−2

j − t

)
(3)=

(
Sn−1

j − 1

)
− Ln−1

(
Sn−2

j − 2

)
−

(
Sn−2

j − 1

)
+

(
Sn−1

j

)
− Ln−1

(
Sn−2

j − 1

)
−

(
Sn−2

j

)
(2)=

(
Sn−1 + 1

j

)
−

(
Sn−2 + 1

j

)
− Ln−1 ·

(
Sn−2 + 1

j − 1

)
. (6)

The expression in (6) can also be argued in a combinatorial fashion. To construct a C-graph of height n in B j
n , we let the

n-th level root connect to any j nodes in lower levels or add a self-loop and connect to any j − 1 nodes in lower levels.
There are

(Sn−1
j−1

) + (Sn−1
j

) = (Sn−1+1
j

)
different constructions. These constructions do not necessarily produce C-graphs in B j

n .

We must remove those that are not in B j
n . There are two bad cases.

• If the j neighbors of the root are either in Sn−2 or is the root itself, the graph is not in B j
n . There are

(Sn−2+1
j

)
such

C-graphs.
• The graph that connects to only one next level child is not in B j

n . There are Ln−1 · (Sn−2+1
j−1

)
such C-graphs.

This completes the combinatorial argument. We can now calculate L j
n .

L j
n = L j

n,� + L j
n,•

= A j + B j + A j
n,• + B j

n,•
n,� n,�

8

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.9 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
=
(

Sn−1 + 1

j

)
−

(
Sn−2 + 1

j

)
−

Sn−2+1∑
i=1

Li
n−1 ·

(
i

j − 1

)
. (7)

We calculate Ln by summing up over j and simplify the expression by making use of (4).

Ln =
Sn−1+1∑

j=1

L j
n (8)

=
Sn−1+1∑

j=1

⎛⎝(
Sn−1 + 1

j

)
−

(
Sn−2 + 1

j

)
−

Sn−2+1∑
i=1

Li
n−1 ·

(
i

j − 1

)⎞⎠
=

Sn−1+1∑
j=0

(
Sn−1 + 1

j

)
−

Sn−2+1∑
j=0

(
Sn−2 + 1

j

)
−

Sn−2+1∑
j=1

Sn−2+1∑
i=1

Li
n−1 ·

(
i

j − 1

)

(4)= 2Sn−1+1 − 2Sn−2+1 −
Sn−2+1∑

i=1

⎛⎝Li
n−1 ·

Sn−2+1∑
j=1

(
i

j − 1

)⎞⎠
(4)= 2Sn−1+1 − 2Sn−2+1 −

Sn−2+1∑
i=1

2i Li
n−1. (9)

The right hand side of (8), which is equal to
∑Sn−1+1

j=1 1 j ·L j
n , is unfolded to the expression

∑Sn−2+1
i=1 2i Li

n−1 in (9). The alert
reader might wonder if the unfolding can be done inductively. This is indeed the case.

Sm−1+1∑
i=1

ki Li
m

(7)=
Sm−1+1∑

i=1

ki

⎛⎝(
Sm−1 + 1

i

)
−

(
Sm−2 + 1

i

)
−

Sm−2+1∑
t=1

Lt
m−1

(
t

i − 1

)⎞⎠
=

Sm−1+1∑
i=0

ki
(

Sm−1 + 1

i

)
−

Sm−2+1∑
i=0

ki
(

Sm−2 + 1

i

)
−

Sm−1+1∑
i=1

ki
Sm−2+1∑

t=1

Lt
m−1

(
t

i − 1

)
(4)= (k + 1)Sm−1+1 − (k + 1)Sm−2+1 − k

Sm−2+1∑
t=1

Lt
m−1

Sm−1+1∑
i=1

ki−1
(

t

i − 1

)

= (k + 1)Sm−1+1 − (k + 1)Sm−2+1 − k
Sm−2+1∑

t=1

Lt
m−1

t∑
i=0

ki
(

t

i

)
(4)= (k + 1)Sm−1+1 − (k + 1)Sm−2+1 − k

Sm−2+1∑
t=1

Lt
m−1(k + 1)t .

The equality can be manipulated into the following form:

(k − 1)!
Sm−1+1∑

i=1

ki Li
m = (k + 1)!

k
((k + 1)Sm−1 − (k + 1)Sm−2) − k!

Sm−2+1∑
t=1

(k + 1)t Lt
m−1. (10)

It is clear from Fig. 3 that L0 = 2, L1 = 3, L1
1 = 0, L2

1 = 2 and L3
1 = 1. By repeatedly applying (10) we get the following

sequence of equality.

Ln = 2Sn−1+1 − 2Sn−2+1 −
Sn−2+1∑

j=1

2 j L j
n−1. (11)

= 2Sn−1+1 − 2Sn−2+1 −
⎛⎝3Sn−2+1 − 3Sn−3+1 − 2

Sn−3+1∑
j=1

3 j L j
n−2

⎞⎠
= · · ·

= 2!
1

(2Sn−1 − 2Sn−2) − 3!
2

(3Sn−2 − 3Sn−3) + · · · + (−1)n(n − 2)!
⎛⎝nS1+1 − nS0+1 − (n − 1)

S0+1∑
t=1

nt Lt
1

⎞⎠

9

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.10 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
=
n∑

k=2

(
(−1)k k!

k − 1
(kSn+1−k − kSn−k)

)
+ (−1)n+1(n − 1)!

3∑
t=1

nt Lt
1

=
n∑

k=2

(
(−1)k k!

k − 1
(kSn+1−k − kSn−k)

)
− (−1)nn!(n2 + 2n).

We are now in a position to calculate Sn .

Sn =
n∑

i=0

Li = L0 + L1 +
n∑

i=2

Li = 5 +
n∑

i=2

(
i∑

k=2

(−1)k k!
k − 1

(kSi+1−k − kSi−k) + (−1)i+1(i − 1)!(2i2 + i3)

)
.

Notice that

n∑
i=2

i∑
k=2

(−1)k k!
k − 1

(kSi+1−k − kSi−k) =
n∑

k=2

(−1)k k!
k − 1

n∑
i=k

(kSi+1−k − kSi−k) =
n∑

k=2

(−1)k k!
k − 1

(kSn+1−k − kS0).

Therefore

Sn = 5 +
n∑

k=2

(−1)k k!
k − 1

(kSn+1−k − kS0) +
n∑

i=2

(−1)i+1(i − 1)!(2i2 + i3)

= 5 +
n∑

k=2

(−1)k k!
k − 1

kSn+1−k −
n∑

k=2

(−1)k k!
k − 1

k2 +
n∑

k=2

(−1)k+1(k − 1)!(2k2 + k3)

= 5 +
n∑

k=2

(−1)k k!
k − 1

kSn+1−k +
n∑

k=2

(
(−1)k+1(k − 1)!(2k2 + k3) − (−1)k k!

k − 1
k2

)

=
n∑

k=2

(−1)k k!
k − 1

· kSn−(k−1) +
(

n∑
k=2

(−1)k−1(k − 2)!(k4 + 2k3 − 2k2)

)
+ 5. (12)

We still need to remove the second summation operator in (12).

3.4. Closed formula for
∑n

k=2(−1)k−1(k − 2)!(k4 + 2k3 − 2k2)

Let the alternating factorial function af be defined by

af(n) =
n∑

k=1

(−1)n−kk!.

There is a closed formula for af(n). It turns out however that we only need the following recursive equality.

af(n) = n! − af(n − 1). (13)

Let A stand for the summation
∑n

k=2(−1)k−1(k − 2)!(k4 + 2k3 − 2k2). We can rewrite A with the help of the alternating
factorial function.

A =
n∑

k=2

(−1)k−1(k + 2)! −
n∑

k=2

(−1)k−1k! +
n∑

k=2

(−1)k−1(k − 1)! +
n∑

k=2

(−1)k−1(k − 2)!

=
n∑

k=1

(−1)k−1(k + 2)! +
n∑

k=1

(−1)kk! +
n−1∑
k=1

(−1)kk! −
n−2∑
k=1

(−1)kk! − 6

= (−1)n+1
n+2∑
k=1

(−1)n+2−kk! + (−1)n
n∑

k=1

(−1)n−kk! + (−1)n−1(n − 1)! − 5

= (−1)n+1 (af(n + 2) − af(n) + (n − 1)!) − 5
(13)= (−1)n+1 ((n + 2)! − (n + 1)! + (n − 1)!) − 5

= (−1)n+1(n − 1)!(n3 + 2n2 + n + 1) − 5.

The proof of Theorem 3.1 is completed.
10

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.11 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
3.5. Growth rate of Ln

It should now become clear that Ln is bounded by the number of subsets of Ln of size at least 2. In other words
Ln ≥ 2Ln−1 − Ln−1 − 1. The inequality immediately implies that the growth rate of Ln is not elementary [3], meaning that

Ln cannot be bounded by any function of the form 22···
2n

. In this subsection we show that Ln can be approximated by
2Ln−1 Ln−1, that is Ln = �(2Ln−1 Ln−1).

Corollary 3.3. Ln and Ln−1 satisfy the following inequalities for all n ≥ 2.

2Ln−1 Ln−1 < Ln < 2Ln−1
(

Ln−1 + 4 log2(Ln−1)
)

.

Proof. It is easily checked that the inequalities hold for n = 2. Suppose n ≥ 3. By using the inequality Ln < 2Sn−1+1, which
follows from (11), and the equality Sn−1 − Sn−2 = Ln−1 we derive the following.

Ln
(11)= 2Sn−1+1 − 2Sn−2+1 −

Sn−2+1∑
i=1

2i Li
n−1 > 2Sn−1+1 − 2Sn−2+1 − Ln−12Sn−2+1

= 2Sn−2+1(2Ln−1 − Ln−1 − 1) ≥ (Ln−1 + 1)(2Ln−1 − Ln−1 − 1)

≥ Ln−12Ln−1 .

To establish the other inequality consider the quotient of Ln over Ln−1.

Ln

Ln−1
= 2Sn−1+1 − 2Sn−2+1 − ∑Sn−2+1

i=1 2i Li
n−1

2Sn−2+1 − 2Sn−3+1 − ∑Sn−3+1
i=1 2i Li

n−2

<
2Sn−1+1

2Sn−2+1 − 2Sn−3+1 − Ln−22Sn−3+1

= 2Ln−1

(
1 + Ln−2 + 1

2Ln−2 − Ln−2 − 1

)
≤ 2Ln−1

(
1 + 2Ln−2 + 2

2Ln−2

)
.

Now Ln−1 ≤ 2Sn−2+1 = 2Sn−3+1 · 2Ln−2 ≤ 2Ln−22Ln−2 follows from 2Ln−2 > 2Sn−3+1. Thus

Ln

2Ln−1 Ln−1
≤ 1 + 2Ln−2 + 2

Ln−1
2Ln−2

= 1 + 4Ln−2(Ln−2 + 1)

Ln−1
≤ 1 + 4 log2(Ln−1)

Ln−1

using the inequalities Ln−1 ≥ Ln−22Ln−2 ≥ 2Ln−2+1. �
4. Regular C-graph

From the viewpoint of implementation, fixed-degree branching computational objects are much more manageable than
the finite branching computational objects. We consider a subclass of C-graphs where the out-degrees of nodes are bounded
by a constant. Recall that an internal node is a node that has at least one out-going edge to another node.

Definition 5. A C-graph is k-regular if the out-degree of every internal node is at most k.

The simplest regular C-graphs are 2-regular. Let Kn be the set of all 2-regular C-graphs in the n-th level and set Kn =
|Kn|. The set of all the 2-regular C-graphs that stay at or below the n-th level is Tn = ⋃n

i=0 Ki . Let Tn = |Tn|. It is not
difficult to convince oneself that the derivation for (7) can be modified to establish the following equality that is valid for
n ≥ 2.

Kn =
(

Tn−1 + 1

2

)
−

(
Tn−2 + 1

2

)
− 2Kn−1.

The right hand side of the equality can be rewritten as follows:
11

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.12 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
(
Tn−1 + 1

2

)
−

(
Tn−2 + 1

2

)
− 2Kn−1 = 1

2
((Tn−1 + 1)Tn−1) − 1

2
((Tn−2 + 1)Tn−2) − 2Kn−1

= 1

2
(Tn−1 + Tn−2 + 1)(Tn−1 − Tn−2) − 2Kn−1

= 1

2
(Tn−1 + Tn−2 + 1)Kn−1 − 2Kn−1.

It is now clear that 2Kn
Kn−1

+ 3 = Tn−1 + Tn−2 and also 2Kn−1
Kn−2

+ 3 = Tn−2 + Tn−3. So 2Kn
Kn−1

= Kn−1 + Kn−2 + 2Kn−1
Kn−2

. Hence

Corollary 4.1. The following recursive equality holds for n ≥ 3.

Kn = K 2
n−1

2
+ Kn−1 Kn−2

2
+ K 2

n−1

Kn−2
.

Notice that K0 = K1 = 2, K2 = 3 and K3 = 12. Thus K 2
n−1

Kn−2
≤ K 2

n−1
3 for n ≥ 3. Also notice that K3 > 3K2 and Kn >

K 2
n−1
2 >

12Kn−1
2 > 3Kn−1 for n ≥ 4. Therefore 3Kn−1 Kn−2 ≤ K 2

n−1 for all n ≥ 4. It follows that Kn−1 Kn−2
2 + K 2

n−1
Kn−2

≤ K 2
n−1
2 for all n ≥ 4.

Hence the following.

Corollary 4.2. K 2
n−1
2 ≤ Kn ≤ K 2

n−1 for all n ≥ 4.

We conclude that Kn is bounded by a double exponential function of n.
Now consider the general k-regular C-graphs. Let Kk

n be the set of all k-regular C-graphs in the n-th level and set
K k

n = |Kk
n|. Let Kk(i)

n be the set of all k-regular C-graphs with the out-degree of the root being i and set K k(i)
n = |Kk(i)

n |. Let
T k

n = ⋃n
i=1 Kk

i and T k
n = |T k

n |. Similar to the 2-regular case, the derivation of (7) can be repeated to show that

K k
n =

k∑
j=1

(
T k

n−1 + 1

j

)
−

k∑
j=1

(
T k

n−2 + 1

j

)
−

k∑
i=1

2i K k(i)
n (14)

for all n ≥ 2. Notice that

k∑
i=1

2i K k(i)
n ≤ 2k

k∑
i=1

K k(i)
n = 2k K k

n . (15)

Using (14) and (15) we have

K k
n ≥

k∑
j=1

(
T k

n−1 + 1

j

)
−

k∑
j=1

(
T k

n−2 + 1

j

)
− 2k K k

n . (16)

The following inequality follows immediately from (14) and (16).

k∑
j=1

(
T k

n−1 + 1

j

)
−

k∑
j=1

(
T k

n−2 + 1

j

)
≤ (2k + 1)K k

n ≤ (2k + 1)

⎛⎝ k∑
j=1

(
T k

n−1 + 1

j

)
−

k∑
j=1

(
T k

n−2 + 1

j

)⎞⎠ . (17)

By summing up the inequalities in (17) and bearing in mind that T k
1 = 5, one obtains

k∑
j=1

(
T k

n−1 + 1

j

)
− 64 ≤ (2k + 1)T k

n ≤ (2k + 1)

k∑
j=1

(
T k

n−1 + 1

j

)
. (18)

It follows from (18) and the following well-known bound(n

k

)k ≤
(

n

k

)
≤

(en

k

)k

that

1

2k + 1

k∑
j=1

(
T k

n−1 + 1

j

) j

− 64

2k + 1
≤ T k

n ≤ ek
k∑

j=1

(
T k

n−1 + 1

j

) j

. (19)

The next theorem is an immediate consequence of (19).
12

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.13 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
Theorem 4.3. For k-regular C-graphs and all n ≥ 2, c1
(
T k

n−1

)k ≤ T k
n ≤ c2

(
T k

n−1

)k
for some positive constants c1, c2 that depend on

k.

For fixed k the function T k
n , and K k

n as well is bounded by a double exponential function of n.

5. Remark on counting by graph size

Theorem 3.1 provides a nice and useful recursive equality for calculating the number of C-graphs counted level by level
in terms of graph height. An obvious question is if there is a closed formula for Sn and Ln as well. Theory of enumerative
combinatorics [26] might offer help in this regard. Since the focus of this paper is computational, we leave the issue for
future investigation. In enumerative combinatorics, the usual approach is to count C-graphs according to the number of
nodes. How many C-graphs of n nodes are there? The following theorem reveals the relationship between the height and

the size of C-graph. Recall that log∗(n) is the minimal k such that n ≤ 2
. .

.2
}

k
.

Theorem 5.1. The following statements are valid.

1. For n ≥ 3, the height h(Gn) of an n-node C-graph Gn renders true the following.

log∗(n) − 1 ≤ h(Gn) ≤ n − 2. (20)

2. The size s(Gh) of a non-trivial C-graph Gh of height h renders true the following.

h + 2 ≤ s(Gh) ≤ 1 + Sh−1. (21)

Proof. It is not difficult to see that the C-graphs in Fig. 2 can be generalized to a C-graph of n nodes that is of height n − 2.
So the upper bound of (20) and the lower bound of (21) are tight. For the other inequality in (21) observe that an h-height
C-graph may have all the nodes in the h′-th level for h′ < h. Thus s(Gh) ≤ 1 + Sh−1. We now establish the lower bound
in (20). It is easy to see that the inequality holds when n = 3, and the lower bound is tight. For n ≥ 4, the height of an
n-node C-graph is at least h if n ≥ 2 + Sh−2 since a C-graph of height h − 1 has at most 1 + Sh−2 nodes. Next notice that
we have the following bounds for Lh .

2Sh−1 < Lh < 2·2Sh−1 . (22)

The second inequality in (22) follows immediately from (11). For the first inequality, observe that

2Sh−2+1 +
Sh−2+1∑

j=1

2 j L j
h−1 ≤ 2Sh−2+1 + 2Sh−2+1

Sh−2+1∑
j=1

L j
h−1 ≤ 2Sh−2(2 + 2Lh−1) ≤ 2Sh−2 ·2Lh−1 = 2Sh−1 .

Using (11) again we conclude that Lh > 2Sh−1+1 − 2Sh−1 = 2Sh−1 . It suffices to prove that 2n−2 ≥ Lh−1 when h = log∗(n) − 1.
This is because 2n−2 ≥ Lh−1 ≥ 2Sh−2 by (22), which implies n − 2 ≥ Sh−2. To establish the inequality 2n−2 ≥ Lh−1, we prove
that the following is valid for all h ≥ 2.

2
. .

.2
}

h ≤ Lh ≤ 1

4
· 2

. .
.2

}
h+2

. (23)

The first inequality is due to Corollary 3.3. One has Lh ≥ Lh−12Lh−1 ≥ 2Lh−1 . We are done by natural induction, bearing in
mind that L1 = 3. The second inequality is derived from Corollary 3.3 and induction:

Lh ≤ 2Lh−1(Lh−1 + 4 log2(Lh−1))

≤ 22Lh−1

≤ 2
1
2 ·2. .

.2
}

h+1

≤ 1

4
· 2

. .
.2

}
h+2

,

where the last step is correct because 2
1
2 x ≤ 1

4 2x for x ≥ 6 and L2 = 40 > 6. The base of the induction is L2 = 40 < 1
4 2222

. It

follows from (23) and definition that 2n ≥ 2
. .

.2
}

h+1
with h = log∗(n) − 1. We are done. �

Theorem 5.1 reveals that the difference between counting by size and counting by height is dramatic. Our initial investi-
gation seems to suggest that the former is a lot trickier than the latter.
13

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.14 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
Fig. 5. C-Graphs of Height 2.

6. Comment

By casting computations in the framework of process theory, we are able to study the branching structure of nondeter-
ministic computations in an abstract form. Our definition of the branching time complexity of a C-graph enables us to count
the number of C-graphs. In a C-graph the root is the point an input is picked up, and the trivial node without loop is the
point an output is released. In all other states the capability to engage in any interaction is absent at the point. This way of
seeing the C-graphs helps explain the equality relation for them.

We have already observed that L0 = 2 and L1 = 3. Furthermore we obtain L2 = 40 by Theorem 3.1. All the forty C-
graphs are presented diagrammatically in Fig. 5. The number L3 is staggering, it is 246 − 676. If 70 C-graphs of height three
are drawn on one page, it takes 1012 pages to draw all of them. That says something about the quantitative aspect of
nondeterminism.

Declaration of competing interest

There is no conflict of interest concerning the submission of this paper.

Acknowledgements

We thank NSFC (62072299, 61772336) for the financial support. We thank BASICS members for their interest. We also
thank the anonymous referee for the comment and the insight, and for the observation that the non-elementary growth of
Sn has a much simpler argument than we originally provided.

References

[1] L. Aceto, M. Hennessy, Termination, deadlock, and divergence, J. ACM 39 (1992) 147–187.
[2] A. Church, An unsolvable problem of elementary number theory, Am. J. Math. 58 (2) (1936) 345–363.
[3] N. Cutland, Computability: An Introduction to Recursive Function Theory, Cambridge University Press, 1980.
[4] P. van Emde Boas, Machine models and simulations, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science: Algorithm and Complexity,

vol. A, Elsevier, 1990, pp. 65–116.
[5] Y. Fu, Nondeterministic structure of computation, Math. Struct. Comput. Sci. 25 (2015) 1295–1338.
[6] Y. Fu, Theory of interaction, Theor. Comput. Sci. 611 (2016) 1–49.
[7] Y. Fu, The universal process, Log. Methods Comput. Sci. 13 (2017) 1–23.
[8] Y. Fu, H. Lu, On the expressiveness of interaction, Theor. Comput. Sci. 411 (11–13) (2010) 1387–1451.
14

http://refhub.elsevier.com/S0304-3975(21)00486-2/bib22D1B05139D4003B3BB5C2FCB9270B52s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib87C911D53C2D3F52D3BC6B20743A2F86s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib8472E46E97B6BDFE19BFAA0AC2E8671Es1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib12E981E7A2E4454B44A4BB0C55203F3Fs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib12E981E7A2E4454B44A4BB0C55203F3Fs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib9D271F45D287BA6922D2191AEB972717s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib225C0EF35BB0F5CA52E02677ADAF3517s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibC1EF6207A8CCC24CA8F97839DA112D6As1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib2299B916425C4B2F62BFD17A7B675A74s1

JID:TCS AID:13075 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.15 (1-15)

Q. Yang and Y. Fu Theoretical Computer Science ••• (••••) •••–•••
[9] R. van Glabbeek, W. Weijland, Branching time and abstraction in bisimulation semantics, in: Information Processing’89, North-Holland, 1989,
pp. 613–618.

[10] R. van Glabbeek, B. Luttik, L. Spaninks, Rooted divergence-preserving branching bisimilarity is a congruence, arXiv:1801.01180, 2018.
[11] R. van Glabbeek, B. Luttik, N. Trčka, Branching bisimilarity with explicit divergence, Fundam. Inform. 93 (2009) 371–392.
[12] K. Gödel, Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme, Monatshefte Math. Verwandter Syst. I 38 (1931)

173–198.
[13] D. Gorla, Comparing communication primitives via their relative expressive power, Inf. Comput. 206 (2008) 931–952.
[14] M. Hennessy, An Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.
[15] C. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[16] S.C. Kleene, Origins of recursive function theory, Ann. Hist. Comput. 3 (1) (1981) 52–67.
[17] M. Lohrey, P. D’Argenio, H. Hermanns, Axiomatising divergence, Inf. Comput. 203 (2005) 115–144.
[18] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[19] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes (part I), Inf. Comput. 100 (1992) 1–40;

R. Milner, J. Parrow, D. Walker, A calculus of mobile processes (part II), Inf. Comput. 100 (1992) 41–77.
[20] R. Milner, D. Sangiorgi, Barbed bisimulation, in: Proc. ICALP’92, in: Lecture Notes in Comput. Sci., vol. 623, 1992, pp. 685–695.
[21] U. Nestmann, Welcome to the jungle: asubjective guide to mobile process calculi, in: Proc. CONCUR’06, in: Lecture Notes in Comput. Sci., vol. 4137,

2006, pp. 52–63.
[22] C. Palamidessi, Comparing the expressive power of the synchronous and the asynchronous π -calculus, Math. Struct. Comput. Sci. 13 (2003) 685–719.
[23] D. Park, Concurrency and automata on infinite sequences, in: Theoretical Computer Science, in: Lecture Notes in Comput. Sci., vol. 104, Springer, 1981,

pp. 167–183.
[24] L. Priese, On the concept of simulation in asynchronous, concurrent systems, Prog. Cybern. Syst. Res. 7 (1978) 85–92.
[25] D. Sangiorgi, D. Walker, The π Calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.
[26] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Stud. Adv. Math., 1999.
[27] A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, J. Math. 58 (345–363) (1936) 5.
[28] D. Walker, Bisimulation and divergence, Inf. Comput. 85 (1990) 202–241.
15

http://refhub.elsevier.com/S0304-3975(21)00486-2/bibAA4940BC332005FF70D9EB724300E63Fs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibAA4940BC332005FF70D9EB724300E63Fs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibE4EC7C7ECCABBFAE976C45054BBECE03s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibD096A991328DF7F04E0D88E3D65EE8E7s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib4F43C190FE5C79504FB5BE3D7015552Cs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib4F43C190FE5C79504FB5BE3D7015552Cs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib5926A4CFEAF4974B5C6F87B08FC49D13s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib8B72F5781DF577C2C5AFAEEC21FE8679s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib57BE258A050F6497E9D393EC5D41B7D1s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibB2D2A0CC85D48306A7CE506B2851A9E4s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibD53558F4501E7B4ACA9BFB6137069785s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibB1CC58A43DC3AD415B4B1EBC007D987Es1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibB4A5130E065CB0A6E77BCC2F9AEB4F83s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibB4A5130E065CB0A6E77BCC2F9AEB4F83s2
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib27EB43D0A1962E3D8121C27CF1F85E87s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibA337B4BE91FD6FEECA1EA90B6D9514E1s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibA337B4BE91FD6FEECA1EA90B6D9514E1s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibE03E90A127949B8CC30C15E507E1085Fs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib7F2622092DB592F55043ED48549A13E0s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib7F2622092DB592F55043ED48549A13E0s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib3CD9D5247F64095FE7CE0232C81B97F2s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib698E78B57C50C65A7837622C5C0CEC6As1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib995E3D80E362269E297A930D17C111A9s1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bib3D5067BE270B83D263DF5127877F2CDCs1
http://refhub.elsevier.com/S0304-3975(21)00486-2/bibA60E57957A38B4C4ADB669B14F82A64Ds1

	Counting nondeterministic computations
	1 Introduction
	2 C-graph
	3 Counting C-graphs
	3.1 Node with a single next level child
	3.2 Node with more than one next level child
	3.3 The proof of Theorem 3.1
	3.4 Closed formula for ∑nk=2(−1)k−1(k−2)!(k4+2k3−2k2)
	3.5 Growth rate of Ln

	4 Regular C-graph
	5 Remark on counting by graph size
	6 Comment
	Declaration of competing interest
	Acknowledgements
	References

