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Abstract

The decidability of weak bisimilarity on normed BPA is a long standing open
problem. It is proved in this paper that branching bisimilarity, a standard refine-
ment of weak bisimilarity, is decidable for normed BPA and that the associated
regularity problem is also decidable.
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1 Introduction

In [BBKS7, BBK93]] Baeten, Bergstra and Klop proved a surprising result that strong
bisimilarity between context free grammars without empty productions is decidable.
The proof exploits periodic tree structure of process graphs associated to Greibach nor-
mal forms. The decidability is in sharp contrast to the well known fact that language
equivalence between these grammars is undecidable [HU79|]. Seeing from another
perspective, Baeten, Bergstra and Klop’s work has extended the decidability result
of bisimulation equivalence from finite state systems [Mil84} IMil89b, vG93] to infi-
nite state systems. After [BBK87]] decidability and complexity issues of equivalence
checking of infinite systems a la process algebra have been intensively investigated.
See [JM99, BCMSO01 [Srb04, MSS04, [KJO6L JSO8] for a number of surveys. As re-
gards BPA, Hiittel and Stirling [HS91]] improved Baeten, Bergstra and Klop’s proof
by a more straightforward one using tableau system. Hiittel [H91|] then repeated the
tableau construction for branching bisimilarity on totally normed BPA processes. Later
Hirshfeld [Hir96] applied the tableau method to the weak bisimilarity on the totally
normed BPA. An affirmative answer to the decidability of the strong bisimilarity on
general BPA is given by Christensen, Hiittel and Stirling by applying the technique of
bisimulation base [CHS92,|CHS95].

The complexity aspect of BPA has also been investigated over the years. By con-
structing an NC-reduction from a variant of the Boolean Circuit Value Problem to the
strong bisimilarity problem on a finite labeled transition system, Balcazar, Gabarro and
Santha [BGS92]| pointed out that strong bisimilarity is P-hard, reaffirming our intuition
about the sequential nature of bisimulation. Huynh and Tian [HT94] showed that the
problem is in X7, the second level of the polynomial hierarchy [Pap94]]. Hirshfeld, Jer-
rum and Moller [HIM96]] completed the picture by offering a remarkable polynomial
algorithm for the strong bisimilarity of normed BPA. For the general BPA, Burkart,
Caucal and Steffen [BCS935] showed that the strong bisimilarity problem is elementary.
They claimed that their algorithm can be optimized to get a 2-EXPTIME upper bound.
A further elaboration of the 2-EXPTIME upper bound is given in [Jan12|] with the intro-
duction of infinite regular words. The current known best lower bound of the problem,
EXPTIME, is obtained by Kiefer [Kiel2], improving both the PSPACE lower bound
result and its proof of Srba [Srb02b]. Kiefer observed that the problem of determining
the winner of a so-called hit-or-run game is EXPTIME complete and that it is reducible
to the strong bisimilarity problem of BPA. An obvious challenge now is to close the gap
between the EXPTIME lower bound and the 2-EXPTIME upper bound. Much less is
known about the weak bisimilarity on BPA. Stfibrnd’s PSPACE lower bound [Str9§] is
subsumed by both the result of Srba [Srb02bl| and that of Mayr [May03]]. Mayr reduced
the acceptance problem of Alternating Linear Bound Automaton, which is known to be
EXPTIME-complete, to the complement of the weak bisimilarity problem of normed
BPA, showing that the latter is EXPTIME-hard. These lower bound results on BPA are
subsumed by Kiefer’s recent result. A slight modification of Mayr’s reduction produces
a reduction from the acceptance problem of Alternating Linear Bound Automaton to
the complement of the branching bisimilarity problem of normed BPA. A summary
of some of the afore-mentioned results is given in Figure [T} where ~, ~ and ~ are
respectively strong bisimilarity, branching bisimilarity and weak bisimilarity.
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Figure 1: Decidability of BPA

It is generally believed that weak bisimilarity, as well as branching bisimilarity, on
BPA is decidable. There has been however a lack of technique to resolve the difficul-
ties caused by silent transitions. All currently known decidability results on BPA with
silent transitions are achieved by placing restrictions on the model. This paper answers
affirmatively to one of the questions posed in Fig. We will show that branching
bisimilarity on normed BPA and its associated regularity problem are decidable. The
crux of the proof is the observation that the tree consisting of the state preserving silent
transitions from a normed BPA process is essentially finite. In fact it is effectively
finite. The effective finite tree property allows one to approximate branching bisimi-
larity of normed BPA via a sequence of finite branching bisimulations. Consequently
a semi-decidable procedure for the complement of branching bisimilarity of normed
BPA is readily available. The effective finite tree property also suggests to investigate
tableau method for branching bisimilarity of normed BPA. It turns out that normed
BPA satisfies some form of cancelation property that can be used to control the size of
a tableau. Based on this observation a tableau based decidable procedure can be de-
signed to check the branching bisimilarity of two normed BPA processes. Remarkably
the cancelation property also offers an interesting way of deciding if a normed BPA
process is branching bisimilar to some finite state process.

The rest of the paper is organized as follows: Section[2|lays down the preliminaries.
Section [3| points out that state preserving silent transitions in normed BPA enjoy finite
tree property and derives that the complement of branching bisimilarity on normed
BPA processes is semi-decidable. Building upon the results obtained in Section[3] Sec-
tion ] defines tableau method for branching bisimilarity on normed BPA processes and
proves that branching bisimilarity on normed BPA processes is decidable. Section [3]
demonstrates that the regularity problem for normed BPA processes is decidable by
exploiting the decidability property of the branching bisimilarity. Section [6|comments
on some future research issues.



2 Branching Bisimilarity for BPA

In this section we fix the terminologies and notations for BPA and introduces the tech-
nical preliminaries necessary in the rest of the paper.

2.1 Basic Process Algebra

A basic process algebra (BPA for short) I is a triple (V, A, A) where V = {X1,....X,}
is a finite set of variables, A = {a,, . ...a,}U{7} is a finite set of actions ranged over by
¢, and A is a finite set of transition rules. The special symbol 7 denotes a silent action.
A BPA process defined in I is an element of the set V* of finite string of element of V.
The set V will be ranged over by capital letters and V* by lower case Greek letters.
The empty string is denoted by e. We think of V* as constructed from sequential
operator *.’. So a. is a sequential process which acts as a and invokes 3 only after
a has become € by performing a finite number of actions. This informal semantics
points out that the sequential operator is associative and € is the unit. The algebraic
property allows us to ignore the operator completely at the syntactical level. We will

. .. . t
use = for the grammar equality on V*. A transition rule is of the form X — a, where
¢ ranges over A. The transitional semantics is closed under composition in the sense

¢ ¢ .

that Xy — ay for all y whenever X — «. We shall assume that every variable of
a BPA is defined by at least one transition rule and every action in A appears in some
transition rule. Accordingly we sometimes refer to a BPA by its set of transition rules.

: v . .. T
We write — for — and = for the reflexive transitive closure of —. The set A*

will be ranged over by £*. If £* = £, ...¢ for some k > 0, then & R a’ stands for
4 b1 148

a— aj... — @1 — a forsome ay,...,ax—;. We say that @’ is a descendant of
aif N a’ for some £*.

We use finite branching labeled trees to describe operational behaviors of processes,
in which the label of a node is a BPA process and the label of an edge is an action.
We let I, m, n to range over the set of nodes. We often confuse a node with its label.
Suppose 7,7 are labeled trees. The notation 7~ € 7 indicates that each path from
the root of 7~ is also a path from the root of 7. If in addition 7~ is finite, we write
T Sy T'. A transition tree 7 rooted at  is composed from the transition sequences
starting from a. The subtree consists of all silent transition sequences from a, denoted
by 77, is called the 7-tree of @. We may think of 77 as a tree without any labels
on its edges. Given a variable X in a BPA, the set rv(X) of variables reachable from X
consists of every variable that appears as the first variable of anode in 7%. Similarly the
set rv¥(X) of variables reachable from X via silent transition consists of every variable
that appears as the first variable of a node in 77,

. . . ¢
A BPA process « is normed if there are some actions £,...{; such that a AN
¢

. —> €. A process is unnormed if it is not normed. Normedness is a desirable feature

for languages since generations of infinitely long words are considered unnecessary.
. ¢ ¢

The norm of a BPA process @, denoted by ||l is the least k such that & — ... — €

for some ¢4, ... €. A normed BPA, or nBPA, is one in which every variable is normed.



For each given BPA A, we introduce the following notations:
e my is the number of transition rules.

e 7, is the number of variables, and the variables will be referred to as X, ..., X,.

® rp is max {Iyl ‘ X i> vy € A}, where |y| denotes the size, or the length of y. We

will assume that r, > O for otherwise the BPA A would be a submodel of the
finite state CCS whose equivalence checking problem has already been resolved.

® fx IS Maxj<i<n, {#(X;) | #(X;) is defined}. The notation #(X;) stands for the length
of the shortest silent transition sequence from X; to €. We take #(X) as undefined
if there is no silent transition sequence leading from X to €. Clearly 7, > 0.

[A]] is max {||X;]| | 1 < i < np and X; is normed}.

Each of ma, na, ra, ta and ||A|| can be effectively calculated from A. For example
algorithms for 74 and ||A|| can be designed using dynamic programming technique.

2.2 Branching Bisimilarity

The idea of the branching bisimilarity of van Glabbeek and Weijland [vGW&9] is that
not all silent actions can be ignored. What can be ignored are those that do not change
system states irreversibly. The following definition is from [vGW89]. We write R
for the reverse relation of R and we often use infix notation xRy for (x,y) € R.

Definition 1. A binary relation R on BPA processes is a van-Glabbeek-Weijland branch-
ing bisimulation if the following statements are valid whenever aRB:

1. If BR '« N o’ then one of the following statements is valid:
(i) € =1and a'RB.
(ii) B = 'R 'a for some B” such that 8" L B'R'a for some B

¢
2. If aRB — B’ then one of the following statements is valid:
(i) € =71 and aRpB'.
¢
(ii) @ = a""RB for some " such that @’ — &' RB’ for some a’.

The van-Glabbeek-Weijland branching bisimilarity ~,gw is the largest van-Glabbeek-
Weijland branching bisimulation.

For the purpose of defining an equality for BPA the above definition has to be mod-
ified, the reason being that ~,y is not a congruence relation for sequential processes.
The simplest counter example is given by the process € and the process € defined by
the BPA (Q, {1}, {Q = Q}). One clearly has Q ~,gw €, but Qo #,6w €a for every «
that may perform an external action. The modification we adopt imposes a condition
easily checkable algorithmically.



Definition 2. A binary relation R is a branching bisimulation for BPA if it is a van-
Glabbeek-Weijland branching bisimulation and the following is valid whenever aRB:

3. Ifa=€then = €, and if f = € then « = €.
The branching bisimilarity =~ for BPA is the largest branching bisimulation for BPA.

The branching bisimilarity =~ satisfies the standard properties of observational equiv-
alence stated in the next two lemmas.

. T T T T
Lemma 3 (Computation Lemma). Suppose ¢y — a; — ay — ... — a; = .
Thenay =~ a; ~ay ~ ...~ .

Lemma 4 (Bisimulation Lemma). Suppose « = o ~ fand 8 = ' ~ a. Then
a ~a =~ :8 ~ ﬂ'_

As far as we know Lemma [3| appears for the first time in [vGW89] and Lemma 4]
in [DNMV90]. Using Computation Lemma one easily sees that whenever 8 ~ « R o

o ¢
is simulated by 8 N Bi SN Ba... SN Br — B such that By ~ @ and ' ~ o’ then
B =B ~...=pf. Using the same lemma it is easy to prove that =~ is a congruence.

Lemma 5. The branching bisimilarity ~ is equivalent and congruent. It is the largest
equivalent congruence contained in =,gy.

Proof. Let R C ~,gw be an equivalence and a congruence and let @ be such that aRe.

Define A by the labeled transition system {A —, A}, where a is some label that is not
used by a. Now @ARA by congruence. So @A ~,gw A. Hence « = €. O

Having defined an equality for BPA, we can formally draw a line between the silent
actions that change the capacity of systems and those that do not. We say that a silent
action @ — o is state preserving if @ ~ «'; it is a change of state if @ # a’. We will
write @ — o’ if @ — @ is state preserving and @ 5 o ifitisa change of state. The
reflexive and transitive closure of — is denoted by —*. Since both external actions and
change-of-state silent actions must be explicitly bisimulated, we let j range over the set

J .
(AN {T) U {t}). So @ — o’ means either « % o forsome a # T or @ —> . The
following lemma is an easy consequence of Computation Lemma.

Lemma 6. Ifthere exists a state preserving silent transition sequence from « to 3, then
all silent transition sequences from « to B are state preserving.

It is time to see some BPA’s and some examples of branching bisimilar processes.

Example 7. The BPA T is defined by the following transition rules:

b b
XSe Yv25e z5v vz

It is easy to see that XYZ ~ Z but XZ # Z # YZ. The variables Z, V are unnormed.
We remark that the set {@ | ®Z ~ Z} is infinite but is finitely generated by {XY}. At
the moment we do not know the answer to the following question: For an unnormed
variable U defined in a general BPA, is the set {a@ | «U =~ U} finitely generated?



Example 8. The BPA T'; is defined by the following transition rules:

HSe HSU HSW USU w-Sw
Although U # W, one has HU =~ HW. In this example both U and W are unnormed.

Example 9. The BPA T, is defined by the following transition rules:

A4 ASe BB BDe
b

cSce c-5cC CcSe

p-La ELB

It is easy to see that AC ~ BC and DC ~ EC, although A # B and D # E. In this
example all variables are normed.

Example 10. The BPA T is defined by the following transition rules:

a a c c b T
1 — J, J—I, I—e J—K K-—e¢ K-—e¢€,
Lom ML L Se MLN NSe NDe

b
050, 050 0-5e

It is not difficult to see that ILIQ =~ JLIQ and ILILQ ~ JLILQ. However ILI # JLI
and ILIL # JLIL.

The equalities and inequalities stated in Example [7] and Example [§] are also valid
for strong bisimilarity.

2.3 Bisimulation Base

An axiom system A is a finite set of equalities on normed BPA processes. An element
a = p of Ais called an axiom. Write A + @ = g if the equality @ = 8 can be derived
from the axioms of A by repetitive use of any of the three equivalence rules and two
congruence rules. For our purpose the most useful axiom systems are those that gen-
erate branching bisimulations. These are bisimulation bases originally due to Caucal
(see the survey paper [BCMSOI1] for more background). The following definition is
Hiittel’s adaptation to the branching scenario [H91].

Definition 11. A finite axiom system A is a bisimulation base if the following bisimu-
lation base property hold for every axiom (ay, By) of A:

1. IfBA ey — a1 — ... — a, —€> o' then there are By, ...,B,, B such that
Aray =B, ..., A+ a, =By A+« =B and the following hold:

(i) For each i with 0 < i < n, either B; = Bi+1, or Bi — Bi+1, or there are
i ki
11,,8:‘ suchkthatﬁi —>ﬂ} — ... — B D Biand Ar a; = 11
...,ﬂl—al':ﬁii.



(ii) Either { = Tt and B, = ', or B, R B, or there are B, . ,ﬁﬁ such that
Br—f — . B B and Ay =B ..., A ay =B

2. lIf g ABy — B1 — ... — Bn —€> B’ then there are ay,...,a,, & such that
ArBr=ay, ..., Ar By =, Ar B =a and the following hold:

(i) For each i with 0 < i < n, either a; = ajy1, OF @j — @jy1, OF there are

ki ki
a;,...,ai’ such that a; — a'il — ... D ayand Ar P = a/il,
_ ki
...,ﬂl—ﬁi—(li.
.. . 4 k
(ii) Either € = T and a, = &, or a,, — &', or there are a,',,...,a,," such that
¢
a,,—>a,1,—>...—>a/’,‘l”—>a’andﬂkﬁn=a/,1,,...,ﬂk,8n=af,”.
3. Ifay = e then either By = eorBy — B1 — ... — By — € for some B, ...,Lx

with k > 0 such that Avr e =B, ..., Ar € = ;.

4. If Bo = € then either oy = € or @9 — @ — ... — @ —> € for some
ay,...,ap withk >0 suchthat Avr ay =¢€,..., A+ a; =€

The next lemma points out the importance of bisimulation base [H91]]. It also
explains the terminology ‘bisimulation base’.

Lemma 12. If A is a bisimulation base then A" = {(«,B) | A+ a = B} is a branching
bisimulation.

Proof. We prove that A" satisfies the bisimulation base property, which implies that it
is a branching bisimulation. Suppose A + @ = B. It can be easily shown by induction
that there must exist

Y1611, Y2002, 30343, . . ., Vi1 0k—1 di—1, YOk and 67, .. ., 5,
for k > 1 such that @ = y16141, y10;, A = 8 and the following hold:

Y1611 A y18141 = 26240 A 2052 = v30343 . .. V16,1 A1 = ViGxAx A Y0, Ak

Now suppose @« — a; — ... — a, N a’. The last action ¢ could be performed
by y1 or 01 or 4;. If it is caused by vy, the process y1674; can trivially bisimulate the
action sequence. If it is caused by ¢, it suffices to make use of the bisimulation base
property. The third case is similar to the second one. Property 3 and property 4 of
Definition [TT] are necessary in the last case. By repeating the argument we eventually

.. .. 4 .
get a transition sequence from f that bisimulates « — ¢y — ... — @, — @’ in
the style prescribed in Definition m]

Given a bisimulation base A, it is semi-decidable to check if A + @ = B. This
property, together with Lemma([I2] explains why bisimulation base has often been used
to produce (semi-)decidable procedure. For the application of this technique to the
decidability study of strong bisimilarity on BPA and branching bisimilarity on totally
normed BPA, see [HS91] [H91, [CHS92].



3 Approximation of Branching Bisimilarity
To look at the algebraic property of the branching bisimilarity ~ more closely, we
introduce a notion of normedness appropriate for the equivalence.

Definition 13. The branching norm of a BPA process « is the least number k such that

Ji J2 Jk .
dp ..o day .o SF— @) ST — L. o — o =" €. The branching
norm of a is denoted by ||||p.

Clearly if @ —* ' then |||, = |lell,. It is also clear that ||a||, < |la||. The

inequality is useful since we can replace ||a||, by ||a|| when we look for effective upper
bound. Let’s look at a number of examples:

o The branching norm of A defined by {A -5 €} is 0; the branching norm of B
defined by {B - B,B -5 ¢} is 1; and the branching norm of C defined by

IC5SYy-5yy-5eist
e The branching norm of D defined by {D N D} is oo.

e The branching norm of E defined by {E£ SE } is tricky. An algorithm that tries
to calculate the branching norm would never stop. We will say that the branching
norm of E is undefined. We denote this fact by writing ||E]|, = L.

We now state several simple lemmas about branching norm. The first is standard.
Lemma 14. If a = 3 then ||loly = [|Bllp-

The second one is expected.
Lemma 15. The following hold:

1. If |lally = 0 then a ~ €.

2. If llally = L then a =~ Q.

3. If |lally = oo then ay ~ a.

Proof. If a cannot perform any external action, then its branching norm must be zero
if it can terminate and must be undefined if it can only diverge. If @ can never reach €,
then everything after « is useless. O

The next lemma is more interesting.
Lemma 16. Suppose « is normed. Then a = da if and only if |||, = ||0c]lp.

Proof. If ||a|l, = ||0a|l, then every silent action sequence from da to @ must contain
only state preserving silent transitions according to Computation Lemma. Moreover
there must exist such a silent action path for otherwise |||, < ||0c]lp- |

It does not follow from @ =~ da that § =~ €. This is the most tricky situation as far as
equivalence checking is concerned. A counter example is given by the BPA defined in
Example[9] One has AC ~ C ~ BC. But clearly € # A # B # €. To deal with situations
like this we need the notion of relative norm.



3.1 Relative Norm

Definition 17. The relative norm ||l of @ with respect to o is the least k such that

1 Je=1 g k

J J
a0 =5 alo... =25 oo L gk —* o for some Ji,..., Jis @1, ..., Q.

In other words, the relative norm of @ with respect to o is the least total number of
external actions and change-of-state silent actions @o- must perform in order to reach
0. Obviously 0 < |||} < |lally. Returning to the BPA I'; defined in Example E] again,
we see that [|A||¥ = 1 and [|A]|§ = 0.

Using the notion of relative norm we can introduce the following terminologies:

e A transition Xoo — no is norm consistent if either ||5l|7 = [IX||] and £ = 7 or
Il =11XIly —1and £ # 7V =1

e If X0 — 7o is norm consistent with || X||7 > 0, then it is norm splitting if there
are at least two variables in 7 whose relative norms in no are greater than 0.

For a normed BPA A no silent transition sequence contains more than ||Al|, norm split-
ting transitions, where ||Al|, denotes max{||X;||, | 1 < i < na and X; is normed}.
The crucial property about relative norm is described in the following lemma.

Lemma 18. Suppose a,f, 8,y are normed and IIa'IIZ = IIﬁIIi. If ay ~ B theny ~ 6.

Proof. Suppose |ll] = ||BIS. Now [ldl] + Ivlls = lleylls = 1185l = 11BIIE + [161ls-
. . « J1 « Jk ¥
Therefore |lyll, = [|0]l,- A norm consistent action sequence ay =»*— ... >"——>"y

must be matched up by B BN LN B0 for some g'. Clearly ||8dll, = |I¥lls =
1611, It follows from Lemmal[I6|that § ~ 8/ ~ . ]

It should be remarked that the above lemma fails if 6,y are unnormed. Indeed
the BPA defined in Example [§] renders a counter example. Lemma [T8] describes a
weak form of left cancelation property. The general left cancelation property fails. The
normed process A defined in Example[J]satisfies AA ~ A. But clearly A # €. Obviously
this counter example also shows that right cancelation fails as well. In the decidability
proof of the strong bisimilarity for normed BPA, the right cancelation property plays
a crucial role. One wonders if some useful form of right cancelation holds. We dwelt
upon the following conjecture for a few days: If Xo # o and aXo ~ SXo then
aX =~ BX. We realized that it is a false conjecture when we came up with the BPA
defined in Example [I0] The search for an alternative to the right cancelation property
led to the discovery of a nice and simple property of nBPA that allows us to control
the size of common suffix of a pair of bisimilar processes. The basic idea is to remove
redundant variables from two bisimilar processes while maintaining bisimilarity.

Definition 19. A process « is irredundant over vy if IIa/IIZ > 0. It is redundant over 7y if
||CX||Z = 0. A process « is head irredundant if either & = € or a = Xa' for some X, o’
such that a # . It is head redundant otherwise. We write Hirred(a) to indicate that «
is head irredundant. A process a is completely irredundant if every suffix of « is head
irredundant. We write Cirred(a) to mean that « is completely irredundant.

10



If @ is normed, then « is irredundant over v if and only if @y # y. The next lemma
says that a redundant process consists solely of redundant variables.

Lemma 20. Suppose X1, ..., Xy, o are normed. Then X, ... Xy is redundant over o if
and only if X; is redundant over o for every X; € {X1, ..., X}

Proof. Suppose X1, ..., X, o are normed and X ... X is redundant over o. Then
Xi..Xi0=>X..X0= ... = X0 = 0 =X;...X,0.

It follows from Computation Lemma that X ... X0 =~ X,... Xpo = ... = X0 =~ 0.
We are done by using the congruence property. The implication in the other direction
is due to congruence. O

The normedness assumption in Lemma [20]is crucial. The lemma would be invalid
without the assumption. A counter example is given by the BPA defined in Example
The lemma suggests to introduce, for each o, the redundant set R, of o defined by

R, ¥ (X|Xo=~o0).

In other words R, is the set of the redundant variables over o-. Let V(a) be the set of
variables appearing in @. We have two useful corollaries. The first is simple.

Corollary 21. Suppose a, o are normed. Then ao ~ o if and only if V(@) C R,
The second is instructive to our construction of tableau.

Corollary 22. Suppose a,f3, 00,0 are defined in a normed BPA and Ry, = R,. Then
aoy = Boy if and only if oy = Bo.

Proof. Suppose R, = R,. Let S be {(aoo,Boo) | ao; =~ Bo}. It is not difficult to
see that S U ~ is a branching bisimulation. O

3.2 Finite Tree Property

We now take a close look at the 7-trees of normed BPA processes. We are particularly
interested in the subtrees of 7-trees containing only state preserving silent transitions.
It turns out that all such subtrees are essentially finite. Let’s explain what we mean

by ‘essentially finite’. Suppose 8 = Xw =~ « N o’ and the action is bisimulated by

Xw —* Z0 N n6. Generally the length of the state preserving transition sequence
Xw —* Z0 is unbounded, and consequently we have to consider an infinite number
of simulating sequences. But if there is some 6 such that Xw —* Z8' and ' =~ 6,
and moreover the length of Xw —* Z€¢’ is smaller than that of Xw —* Z6, then we

¢
can safely abandon the bisimulating sequence Xw —* Z6 — 76 in favor of Xw —*

0 -5 n6’. We say that 3 has the finite tree property, and that the subtree of 77
containing only state preserving silent transitions is essentially finite, if there is a finite
subtree 7 of 727 such that whenever 8 —* Y then there is some node Y§’ in 7 with
¢’ ~ ¢. Before discussing the finite tree property for nBPA, let’s see in how many steps

11



a variable V can reach silently every variable that can ever be reached from V silently.
A variable Z is said to be reachable silently from a process y if y = Zy’ for some y’.
Suppose V — Vj, ... Vy,. It takes at most (ry — 1)5 + 1 silent transitions to reach from
Vto Vi, with 1 <i < j. It follows that in fewer than ((ra — 1)ta + 1)(na — 1) steps every
variable W reachable via silent transitions from V can be reached. Recall that we have
assumed that ro > 0 and 75 > 0. So the previous formula is bounded by rata(na — 1).

Next we establish two technical lemmas. The first is about state preserving transi-
tions caused by an irredundant variable.

Lemma 23. Suppose Xw —* Yw' and || X||) = ||Y||Z‘/ > 0. Then there is some w” such
that " =~ ', Xw —* YW and the length of Xw —* Y& is bounded by rata(na — 1).

Proof. First notice that if Xw —* Yo' and [|X]| = ||Y||Z’/ > 0 then «’ = dw for some §
and Xw —* Y’ is induced by X = Y. Notice that if

Xw =" Vyjw =" Wyw =" Yo'

for some head irredundant processes Vy w, Wy,w such that the processes on the path
from Vyjw to Wy, w, excluding both Vyw and Wy, w, are all head redundant, then by
Lemmal6|we may assume that Vy,w —* Wy,w is the shortest silent transition sequence
from Vy,w to Wy,w, whose length is bounded by (rp — 1)#s + 1. It follows that we may
assume that the length of the transition sequence between every pair of neighboring
head irreducible processes in Xw —* Y’ is bounded by (rp — 1)ty + 1. Under this
assumption if the length of X = Y is greater than rata(na—1) > ((ra—Dta+1)(na—1),
then there must be two head irreducible processes Zyyw, Zy;w such that

X=Zyy=Zy, =Y

and
Xw =" Zyow =" Zyw - Yéw.

It follows from ||X[l¥ = [|Y]l¢" > O that |Z|}*” = |IZI[}'” = [|Y||¢". Using the fact that
1211, > 0 one sees immediately that y; = ]y, for some y|. By removing the part
¥} from every process in Zy;w —* Yéw we can remove Zyow —* Zyjw from Xw —*
Zyyw —* Zyjw —" Yéw and get a shorter sequence Xw —* Zypw —* Y’ w for some
¢ with ¢’w ~ w ~ dw by Lemma The above procedure can be repeated until we
reach a transition sequence whose length is strictly bounded by raza(na — 1). |

The second deals with state preserving transitions caused by a redundant variable.

Lemma 24. Suppose Zy = Z6, Zow —" Zéw and ||Zlly = 0. Then Zy = Z&' for
some ¢ such that Zyw —* Z6'w and the length of Zy = Z¢’ is bounded by rata(na—1).

Proof. 1t is important to notice that every silent transition sequence Zy — Z¢ must
take the following shape

Zy — 0 Zin, = Zin}
— /2o, = o,
— 02ty -y = Zay -y = 28

r
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for some 1}, Zy,n}, 07, Z>,n2, ... .0}, Zi, 7t such that none of 7%, ... 7, n} is affected in
the transition sequence. By the assumption [|Z6||’ = O, one derives from Lemma
that n}, Zy,nl, . Zo, %, . ... 1f, Zi, k- are all redundant over w. If k > ny then there
must be i < j such that Z; = Z;. In this case we can remove the transition sequence
Zimi...tnt = Zl ...y} from Zy = Z6 in the following manner:

Zy — 0 Zin} = Zin}
iz 2ol oy 7 2ol _ 7 i 21
T]l lr]r"’nrnr lnr"'r]rr]r ]nr"'nrr]r
ol o
— izl = Zagk gy
So we may as well assume that k < na. According to Lemmal6] we may assume further
that, for each & € {1,...,k}, the transition sequence U?thlf = Zyn" is the shortest
among all the silent transition sequences from n;’Zhn’} to Z,n", which is bounded by
(ra — Dta. It follows that some ¢’ exists such that ¢’ ~ ¢ and Zy —* Z4’ with its legnth
bounded by (rp — Dta(na — 1) + (np — 1) < rata(na — 1). [}

We are now in a position to prove that all normed BPA processes enjoy the finite
tree property and that there are effective bounds on the size of the finite trees.

Lemma 25. For each normed BPA process @ = Xw, one can effectively construct a
Sfinite tree T, Sy T 7 of height less than an effective bound H, uniformly computable
from a such that whenever @« —* V0 then 6 ~ n for some node Vn of T,.

Proof. Suppose @ = Xw. We take a closer look at the state preserving silent transitions
caused by X. There are four possibilities:

1. [IX][ = 0. In this case an upper bound is given by Lemma@

2. IXII7 > 0. Xw —" Zéw for some Z, 6 such that ||Z||i‘” = |IX][. In this case an
upper bound is given by Lemma [23]

3. 1IXI7 > 0. Xw —* Zéw for some Z, 6 such that X = Zo, ||Z||iw = 0 and all the
processes on the path, except Xw, are head redundant. Using the same argument
as in the proof of Lemma[24]we can easily show that X = Z¢’ for some 6" such
that (i) Xw —* Z¢'w, (ii) apart from Xw all the processes in Xw —* Zdéw are
head redundant and (iii) the length of X = Z¢’ is bounded by ratana.

4. X1l > 0. Xw -" Yyw = nyw is caused by X —* Yy = nry for some

Y,v,n such that Yyw SLIN nyw is a norm splitting transition and no transition in
Xw —* Yyw is norm splitting. By Lemma [23] we know that in no more than
rata(na — 1) + 1 steps we can encounter the norm splitting transition.

The bounds derived in the above four cases are no greater than ratana.

If Xw is head irredundant then « —* V@ may contain at most ||All, — 1 norm
splitting transitions and that no transition in the sequence can affect w. After the last
norm splitting transition it takes fewer than ratana steps to exhaust all possibilities.
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Therefore some 7 exists such that n ~ 6 and @« —* Vn with its length bounded by
ratanallAllp. If Xw is head redundant, then either every variable in « is redundant or
there are at most || — 1 consecutive redundant variables in @. Consequently we have
the bound max{ratanalal, ratana(la|—1+||Allp)}. So we can set H, = ratana(|a|+]|Allp);
and we can let 7, be the finite tree consisting of all silent transition sequences whose
length is no more than H,,. O

The effective bound H, defined in the above proof could be too generous. A much
more economic analysis is necessary if one intends to study the complexity aspect of
the problem. For the purpose of this paper it is sufficient to know that the number of
possible simulation sequences of a given transition is effectively bounded.

Corollary 26. Suppose «, By are normed BPA processes andy # By. If By ~ « N a,
then there is a transition sequence By —* "y N B’y with its length bounded by Hg
such that B’y ~ a and B’y = o'.

Proof. Under the assumption y # By we can repeat the proof of Lemma [23]for By in a
way that y is not affected. So the computable bound is independent y. O

We are now in a position to prove the following.
Proposition 27. The relation # on normed BPA processes is semi-decidable.

Proof. We define ~, the branching bisimilarity up to depth k, by exploiting Corol-
lary 26] The inductive definition is as follows:

e a =~ S forall a,B.
e « ~;, B if the following hold:

1. IfB :i" a N a’ then one of the following statements is valid:
(i) ¢=7tand o’ ~; .

() p=p" zi‘l a for some B such that g8 N Jei :i‘l a’ for some
and the length of 8 = B” is bounded by Hp.

2. fa~p N [’ then one of the following statements is valid:
(i) {=vanda ~; .

.. 1
(i) @ = a" ~; B for some " such that @’ — o’ ~; §’ for some o’ and
the length of « = @'’ is bounded by H,.

Since we are only dealing with normed BPA, we do not need the following clause in the
above definition: If @ = € then 8 = ¢, and if 8 = € then @« = €. Each ~; is decidable
because (i) the finite branching property holds for the transition system, (ii) the length
of every simulating sequence is bounded effectively, and (iii) the property 3 in the
definition of =, is decidable. Using Corollary 26| one easily sees that =~ C (N, .
The converse inclusion can be proved by showing that the relation

{(a,B) | @ = B for infinitely many k}

is a branching bisimulation, which is standard. The semi-decidability of # then follows
from the coincidence of ~ with (;¢,, =« and the decidability of ~; forevery k > 0. O
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4 Equality Checking

Milner’s approach to the proof of bisimulation equivalence between two finite state
processes is by fixpoint induction [Mil84, Mil89b]]. To prove that P is weakly congruent
to O, we unfold P and Q simultaneously to produce a tree of equality. If P is really
weakly congruent to Q, we get a finite tree. A leaf of the tree is either a pair of identical
processes or a pair (M, N) that is the same as one of its ancestors. Now by folding
up leaves of the latter form, we get a guarded equation satisfied by both P and Q.
The fixpoint induction then allows us to conclude that P, Q are provably equal. The
tableau approach can be seen as a generalization of the fixpoint induction from finite
state systems to infinite state systems. A tree of this kind has been called a tableau
system [HSO1], HO1]. The goal of this section is to give a semi-decidable procedure for
the branching bisimilarity on normed BPA processes using tableau method.

4.1 Tableau Method

Suppose apa # @ and Sy # . A match for an equality aga = BofS over (a,f) is a

finite set {y;a = /l,-,B}le containing only those equalities accounted for in the following

two reciprocal conditions:

1. For each transition aya —[> a’a, one of the following holds:
e (=tand @@ =ByB € {yix = 4B}

¢
e there is a sequence 5y = BB SLEN LN Bu8 — B'B, for n < Hp,, such

that {zoa = B1B, ..., a0 = BB, @’ = BB} C {yia = A4B)L, and BB # B
forallie{l,...,n}.

2. For each transition Sy N B'B, one of the following holds:

e {=7and e = BB € {yix = 4B}

. ¢

e there is a sequence e SN @ =5 @ — ', forn < Hy,,,

such that {@ = BB, ..., = BoB.o’a = BB} C {yi = 4B}, and
aa#aforallie{l,..., n}

If ago # o and Boo # o, a match for ago = Byo over (o, o) is said to be a match
for ago = Boo over o. The conditions 8, # S and ;@ # a can be dropped. We
include them for conceptual clarity. The presence of the computable bounds H,,, Hg,,
which are reasonable in view of Corollary [26] guarantees that the number of matches
for apa = BB over (a, B) is effectively bounded.

Given a normed BPA process a, it is easy to check if @ ~ e. It amounts to checking
if X =~ € for every X € V(a), which is the same as checking if X = € and if X can
only perform silent actions. So we shall focus on the equality between two nontrivial
normed BPA processes, say ag,By. A tableau for @y = By is a tree with each of its
nodes labeled by an equality between two normed BPA processes. The root of the
tableau is labeled by ay = By. We shall distinguish between global tableau, local
tableau and ambient tableau. The global tableau is the overall tableau whose root is
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Vo= A3 o +141 > 0,
Decmp YU € V(y).U = ¢,
a=8 {(Ua= a'}Ueﬂ/(y) (v :B}VE"V(A) YV e V).V = e.
Iyl + 141 > 0,
a = A i j
SDecmp Y B Hirred(a), Hirred(B),
a=p {(Ua=alycvy {(VB=PBvevn YU e V(y).U =k,
YV e V(N).V = e.
ya = A8 ya # a, AB # B, and {;a = BiB}X.
Match : i=1
ae=B18 ... qpa = BB is amatch for ya = 4B over (@, ).
ya = AB . .
Subst. ~——— a = B is the residual.
YoB = AB
ya = AB : .
SubstR ~ ————— da = B s the residual.
ya = da
ContrL rzo =4 Hirred(6), Z d IyZsl {laol, Bol}IA
, L= > , .
ontr o= Z6=0 irre € and |y. max{|aol, [Bo
vy =AZ6
ContrR Hirred(6), Z = € and |AZ6]| > max{|ag|, |Bol}HIAll.
y=A6 Z6=96
Yo' ooy = A o0 |O'f0'00'1| > 2" ol > 0,
ContrC - - Hirred(o),
vo'or=a0'cr  {Voi = 0ilvevioy) YV € Vo).V = .

Figure 2: Rules for Global Tableaux

labeled by the goal @y = By. Local tableau and ambient tableau are relative notions;
their difference will be explained later. A global tableau is constructed from the rules
given in Fig.[2] Decmp rule decomposes a goal into several subgoals. We shall find
it useful to use SDecmp, which is a stronger version of Decmp. The side condition
of SDecmp ensures that it is unnecessary to apply it consecutively since both @ and
B are irredundant. When applying Decmp rule we assume that an equality yo = o,
respectively o = yo, is always decomposed in the following manner

Yo =0 o=yo

respectively
oc=0 {Vo=0dlvevy oc=0 {Vo=0dlvevy

Accordingly y = €, respectively € = v, is always decomposed in the following fashion

Y =€ . E=Y
respectively
e=€ {V=c¢€lvevy e=€ {V=-¢€lvevry
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Match rule can be applied as long as « respectively S is prefixed by process irredundant
over « respectively 8. SubstL and SubstR allow one to create common suffix for the two
processes in an equality. ContrL and ContrR are used to remove a redundant variable
inside a process. In the side conditions of these two rules, ag,Bo are the processes
appearing in the root label of the global tableau. ContrC deletes redundant variables
from the common suffix of a node label whenever the size of the common suffix is over
limit. Notice that all the rules are forward and backward sound. Notice also that all the
side conditions on the rules are semi-decidable due to the semi-decidability of #.

In what follows a node Zn = Wk to which Match rule is applied with the condition
Zn # n A Wk # « is called an M-node. A node of the form Zo = o with o being
head irredundant is called a V-node. We now describe in detail how a global tableau for
ay = By is constructed. Assuming @y = yXa; and Sy = AYB; such that Xa| # @ and
YB1 # B1, we apply the following instance of SDecmp rule to construct the children of
the root:

yXa) = AYB,
Xay =Yp1 {UXa; = Xarlyevy) {VYB1 = YBilvevw
By definition Xa; = Y3, is an M-node and {UXa1 = Xa1}yevy) U{VYS1 = YBilvevwy

is a set of V-nodes. These nodes are the roots of new subtableaux. We now explain
how these subtableaux are constructed:

I. Starting from Xa; = Y, we apply Match rule under the condition that neither
a; nor B is affected. The application of Match rule is repeated to grow the
subtableau rooted at Xa; = Y. The construction of the tree is done in a breadth
first fashion. So the tree grows level by level. At some stage we apply Decmp
rule to all the current leaves. The application of Decmp rule must meet the
following conditions:

— Both a; and 8; must be kept intact in all the current leaves.

— Either a; or 3, is exposed in at least one current leaf.

Choose a leaf labeled by either a1 = 6,6, for some 6; or by ¢ a; = B for
some ¢] and call it the residual node or R-node. Suppose the residual node
is @1 = 018;. All the other current leaves, the non-residual nodes, must be
labeled by an equality of the form y;a; = 1,8;. A non-residual node with label
yiay = 418 is then attached with a single child labeled by y,6,8; = 4,8;. This
is an application of SubstL rule. Now we can recursively apply the global tableau
construction to y;613; = 48, to produce a new subtableau.

Let’s take a look at the size of y;a; = 4;8;. The number of times Match rule
has been applied in the above construction is bounded by ||A||. By the definition
of Match rule, the maximal length of transition sequence admitted in a match is
effectively bounded. So the maximal length of overall transition sequences from
the root to the leaves of the subtableau is bounded by a number, say S, effectively
computable. It follows that 0], |y;| and |4;] are effectively bounded by rS .

The treatment of a V-node child, say UXa; = X/, is similar. We keep applying
Match rule over @; as long as the side condition is met. At certain stage we
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apply Decmp rule to all the leaves. The decomposition should meet the following
conditions:

— No occurrence of « is affected.

— There is an application of Decmp that takes the following shape

viay = iag

ar =a;  {(Va; = atlvevy,) (Var =ailvevay

It is clear that the size bound r,S still applies to the new leaves. We can then
recursively apply the global tableau construction to the current leaves to produce
new subtableaux.

The construction of a path in a global tableau ends with either a successful leaf
or an unsuccessful leaf. The definition of successful/unsuccessful leaf for the
global tableau is as follows:

— A successful leaf is either a node labeled by ¢ = ¢ for some ¢, or a node
labeled by € = V (V = €) with V = ¢, or a node labeled by yo = Ao that
meets two conditions: (i) the label is the same as the label of one of its
ancestors and (ii) |y|,|4] < 2raS and |o| < 2",

— An unsuccessful leaf is produced if the node is either labeled by € = V
(V =€) with V # ¢, or labeled by some ¢ = ¢’ with distinct ¢, ¢’ such that
no rule is applicable to ¢ = ¢’.

In the above construction the R-node @; = 6,8 deserves special treatment. It
is the root of a new subtableau, which might contain another R-node say o, =
023;. In this way new R-nodes are generated one by one. Two things may
happen. An R-node shares the same label as one of its ancestors. In this case
we get a successful leaf. A different situation arises when we get an R-node
whose size is larger than max{|ayg, |Bol}||All. Since the branching norms of the
R-nodes strictly decrease, the size violation must be caused by a huge number of
redundant variables. Therefore we may apply ContrL and/or ContrR repeatedly
to reduce the size of the node. By the end of this procedure we get a leaf whose
size is under control.

If after an application of SubstL/SubstR rule we get a node @’c’ogo; = B0’ oo
such that ContrC rule is applicable, we get a C-node. Once a C-node appears, we im-
mediately apply ContrC rule to reduce the size of its common suffix. An application
of ContrC rule may produce some V-nodes and some more C-nodes. We apply ContrC
to the new C-nodes if necessary. Intuitively we should apply ContrC sufficiently of-
ten so that the common suffix becomes completely irredundant. Eventually either the
length of the common suffix has become no more than 2", in which case we continue
to build up the global tableau, or the side conditions of Localization rule are satisfied,
in which case we get an L-node. Notice that without ContrC rule we may come to a
node @’0’ o090 = §'0’0po| where the length of the common suffix surpasses the limit
but the condition Cirred(c’oyo1) A Cirred(o”’o) is not satisfied.
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[yl > 0 and |4| > O; |0”0p01| > 2™,
2" > |oq| > 0 and |o| > O;
Cirred(o’ oyoy) and Cirred(o” o),

Localization yo' ooy = Ao’ ogoy yo'ogoy £ o' ogoy, Yooy £ 0oy,
yo'o = Ao’ oy Ao’ ogo # o' ogoy, Ao'oy # ooy
(Xio1 = o1}ies INJ=0,10J={1,...,np};
(Xiooo| = 0001 )iy VjGJ.XjO’()OjiO'oO'l ande0'1$0'1;

X; = eforalliel.

Figure 3: Rule for Local Tableaux

Now suppose an L-node is labeled by @’c’cgo; = f'0’0go. In the following
application of Localization rule

a'o’ogoy = o’ ogo

TUJ={1,...,np},
Xior =01l ooy =p0c'cr  {Xiooor = 000 1}ies

the node o’0’0; = B'o’0; is a new L-node, {X;0; = 01}, are the left siblings of the
new L-node, and {X;o00| = 090 1};; are the right siblings. We call {X; | i € I} the
R-set of the new L-node. If the size of the common suffix of @’c’0y = B0’ is still
larger than 2", we continue to apply Localization rule. Otherwise we get an L-root,
which is the root of a local tableau. Now suppose @’c”’0 = /0’0 is an L-root. The
construction of the local tableau should stick to two principles described as follows:

e Locality. No application of Decmp, SDecmp, SubstL, SubsR and ContrC should
ever affect 0’0y or any suffix of 0’0|. Notice that applications of SubstL or
SubstR can never affect 0”0y or any suffix of 0”oy.

o Consistency. Suppose ya = A is a node to which Match rule is applied using a
match over (@, 8). Then either oo is a suffix of both@ and 8, or @ = 8 = 0" 04
for some o satisfying the following:

— o is a proper suffix of 0”;
— ¥ =UZ and A = Z such that Zo™” is a suffix of o’; and

— the match is over o 0.

The locality and consistency conditions basically say that the choices made in the con-
struction of the local tableau should not contradict to the fact that 0”0 is completely
irredundant.

A right sibling may still be subject to an application of Localization rule. But since
the size of a right sibling strictly shrinks, we eventually reach a situation in which
Localization rule is no longer applicable.

A local tableau may contain another local tableau. In this case we say that the
former is an ambient tableau of the latter. A series of nested local tableaux creates a
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hierarchical structure. A node of a local tableau is only compared to a node within the
same local tableau with one exception: An L-root must be compared to the L-roots that
are in the path from the root of the global tableau to the present L-root.

A local tableau inherits the definition of successful/unsuccessful leaves from the
global tableau (see page[I8). In addition a local tableau has two new kind of success-
ful/unsuccessful leaves:

e An L-root is a successful leaf if it shares the same label with one of its ancestors
that is also an L-root.

e Suppose a@’c’ogo = f'0’ogo is an L-node and its child @’0’o; = f'o’0 is
an L-root. In the local tableau rooted at @’0’c0; = 8’0’01, a node of the form
Zo = o is deemed as a leaf. It is a successful leaf if Z is in the R-set of the
L-root; it is an unsuccessful leaf otherwise.

The first question one must ask about the tableau construction is if it always termi-
nates. The answer is affirmative.

Lemma 28. The size of every tableau for an equality is effectively bounded.

Proof. A path cannot contain an infinite number of L-nodes since every L-node do =
o’ o satisfies |0], |0] < 2raS and o < 2rpS + 2™, It cannot contain an infinite number
of L-roots since every L-root 6o = §’ 0 satisfies |0],|0’| < 2raS and o < 2™, In other
words the length of a chain of nested local tableaux is effectively bounded. For the
same reason a path in the global tableau or within a local tableau contains only an
effectively bounded number of M-nodes and V-nodes. Such a path cannot contain an
infinite number of R-nodes since that would imply the existence of an infinite number
of M-nodes or V-nodes. It is easy to see that the number of R-nodes in such a path is
also effectively bounded. Since the branching degree of all tableaux is bounded by a
constant, we conclude that every tableau is finite with an effective bound. O

In view of Lemma [28|and the fact that the number of the matches for an equality is
effectively bounded, we derive immediately the following corollary.

Corollary 29. The number of tableaux for an equality is finite and effectively bounded.

4.2 Completeness Proof

We now turn to tableaux that define bisimulation bases. A tableau is successful if all
of its leaves, including all the leaves of all local tableau inside it, are successful. It is
unsuccessful if it is not successful. The significance of the existence of a successful
tableau is pointed out in the following proposition.

Proposition 30. Suppose Xa, YB are normed BPA processes. Then Xa ~ Y if and
only if there is a successful tableau for Xa = Y.

Proof. If Xa = Y3 we can easily construct a tableau using the bisimulation property,
Corollary [26] and Corollary 22| Conversely suppose there is a successful tableau T
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for Xa = YB. Let A be the axiom system consisting of three parts as defined by the
following equation:

A = A,UA UA,.
The set A, of basic axioms is given by the labels of T:
A, = {y=A4]|y=Aisalabel of anodein T}.

The sets (A;, A, are defined from T. To define A; we introduce for each L-root n a
tableau I obtained by performing some relabeling operation on the local tableau with
the root n:

1. Let n be an L-root whose associated local tableau does not contain any local
tableau, and let yo'o; = Ao’o be its label and yo'oyo; = Ao’ oo be the
label of its parent. Let T be constructed from the local tableau rooted at n by
replacing consistently the label no’o; = ko’ of a node of the local tableau
by the label no’ogo; = ko’opo;. When this is done we say that the L-root
yo'o; = Ao’o and its associated local tableau have been lifted to its ambient
tableau. Notice that after relabeling the L-root and its parent have the same label.
We therefore coerce these two nodes in the ambient tableau.

/ /17 7 17 /

2. In the inductive step let m be an L-root y'0” 0y0”| = A'c” oy} that has not yet
been lifted and that contains only L-roots that have been lifted. Let my, ..., my
be all the top local tableaux, properly relabeled in previous steps, inside the local
tableau rooted at m. By a top local tableau inside the local tableau rooted at
m we mean that the former is not inside another local tableau inside the latter.
Now replace in T the local tableaux rooted at my,...,my by T™ ... T™ re-
spectively. Again the parent of m;, an L-node, for each i € {1,...,k}, is coerced
with the root of T™. Now we apply the relabeling operation as described in step
1 to the resulting local tableau rooted at m. What we get is T™.

Let A, denote all the labels of T". Now A is defined by

A = U A

n is an L node

The set A, is defined by

A, = {V0'=90',90'=0'

Vo = oisin Ay, andV=T>6$ €
is a chosen shortest path from V to €.

According to Lemma it is sufficient to show that A is a bisimulation base. The
proof is by induction on the nodes of the tableau starting with leaves.

e The axioms ¢ = ¢ obviously satisfy the property of bisimulation base.

e The axiom X = € satisfies the bisimulation base property using A,.
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e Suppose X ...X;n =Y;...Y;kis anode to which Decmp rule is applied:

Xl...X,'UZYl...YjK
n=«k Xmm=n...Xm=n Yk=«k...Yik=k

Suppose we have the following transition sequence from X ... X;n:

('7 /
Xi..Xin—m — ... 1 — e — 07 (1)

We prove that can be simulated by a transition sequence from X;...X;_n
that satisfies the bisimulation base operty. The last action ¢ could be caused by
f

¢
any one of X, ..., X;,n. Suppose (1) is X; ... Xin — ... — Xin = n—mn.
Now X;...Xin — ... — X is simulated by X;...X;-.yjp — ... — 7
trivially. The transition X;n = n can be simulated by n vacuously using A,.

.. 4 L 14
And the transition n — 71’ is simulated of course by  — n’. For another case
. t . .

suppose (1) is X; ... Xy — ... — Xy — X/ — X'n7. Here the simulating
sequence from X ... X;_177 can be easily produced using induction hypothesis on
X;n = n. Finally if the action ¢ is caused by one of X, ..., X;_, the simulating
sequence is trivial. In summary (I)) can be simulated by a transition sequence
from X;...X;_1n in a way that satisfies the defining property of bisimulation

base.

. .. 4
For similar reason a transition sequence X;...X;-;n — ... —— 1" can

be simulated by a transition from X, ...X;_»7n, and so on and so fourth. By
putting all these simulations together we conclude that (I)) must be simulated
by a transition sequence from 7 that satisfies the bisimulation base property. The
induction hypothesis on n = « produces a simulating sequence from «. This
simulating sequence can be simulated by Y; ... Y« by the transition sequence

Yi...Y = k, permitted by A, followed by the transition sequence from «.

e Suppose ya = A is a node to which Match rule is applied. Let ya¢ — ... —

4 .. ..
a” — ' be a transition sequence from ya. By the definition of Match the

whole transition sequence or part of the transition sequence can be simulated
¢

in the relation A,. Assume that ya — ... — o — ... — o’ —
is the transition sequence and that ya — ... — aga can be simulated by
AB — ... — BoB in A,. By induction hypothesis the transition sequence

¢ . .
apa — ... — @’ — ' can be simulated by a transition sequence from Sy(.

o If @« = B € A, is a node to which SubstL/SubstR/ContrL/ContrR/ContrC is
applied, we may use simple induction to establish the bisimulation base property.

e Now we prove that the nodes in A; satisfy the bisimulation base property. Sup-
pose lis an L-root whose associated local tableau contains no local tableaux. It is
easy to show that the pairs in A, satisfy the bisimulation base property, assuming
that all its leaves satisfy the bisimulation base property. The inductive step can be
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proved as follows. Suppose ng is an L-root labeled yo’o; = Ao”’0 | and its par-
ent my, an L-node, is labeled by yo’cogo; = 40’090 1. A node in Ay, is of the
form éoogo| = Booyo;. The pair (doogo 1, 00 cd0o1) copycats the bisimulation
strategy of (6001, 00071) until it reaches a subgoal of the form (X;o¢0 1, 090 1)
for X; in the R-set of my. The subdoal can bisimulate each other by construction.
This argument relies on the property that bisimulation of (6oo,800) keeps
o1 intact until it reaches subgoals of the form (X;o1, 01) for X; in the R-set of
my. It is guaranteed by the consistency condition imposed on the local tableau
construction. So the bisimulation base property also hold for the pairs in Ay, .

To give a flavor of what really happens, let’s see the above argument in more
detail. Suppose in the local tableau rooted at ng there is an L-root n; labeled by
y' 0”03 = A’0” 03. The parent node m; of the L-root, an L-node, is labeled by
Yy o'oyo = X'oyo’oy. The tree structure is indicated by the following

my : yo'ogo = Ao’ oo

Xior=01lieg Mo: yo'or=A0'01 {Xio0o1 = 000 1}ies

m; : yoio'oy = Aoy’ oy

{(Xpos =03}y My Yo'o3=A0"03 {(Xp0203 =0203}ep

where 00’01 = 0"’ 0203. By induction all nodes in T™ satisfy the bisimulation
base property. The root of T™ is y' 0" 0,03 = A'0” 0y03, which is syntactically
the same as y'oj0’0| = A'0(0’c1. The nodes in T™ must be relabeled in T™.
‘We need to prove that the nodes in T™ still satisfy the bisimulation base property
after they are lifted into T™0. A node in T™ lifted from T™ must be of the form

Y'c" oo ooo = Ao oo’ opoy. 2)

We show that satisfies the bisimulation base property. This can be demon-
strated by mimicking bisimulations in the local tableaux. We look at two cases:

— |o1| > losl. Let 021,013 be such that o, = 05,1013 and o1 = 0 3073.
According to the lift construction, the pair in (Z)) can copycat the bisimula-
tion of Yo"’ 0” 03 = 2”0’ 0" 073 until it is decomposed into subgoals of
the form Xy 010001 = 03,1000 for i’ € I'. The subgoal Xy 0, 10001 =
02,1000 imitates X; 0,03 = 0073 until it reaches further subgoals of the
form X;opo; = opo;. The bisimulation base property is satisfied by the
pair (X;090 1, 09071) by construction. Notice that the consistency condition
is needed to keep clear for example the boundary at o ; and o 3.

— |o1] < losl. Let o3 be such that 03 = 03107;. The pair in (2)) can copy-
cat the bisimulation of y”o0"’ 0”03 = A”0"’c" 03 until it is decomposed
into subgoals of the form Xy 0,03 10001 = 02031000 for i’ € I’. The
latter pair then bisimulate each other like the pair (X003, 0,03) until it
is decomposed into further subgoals of the form (X;o¢o1,000) fori € I.
Now (X;og01, 000 1) satisfies the bisimulation base property by definition.
Again the consistency condition is necessary here.
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o Finally let’s consider the axioms in A;. Suppose Vo = o € A, and Vo =

T . o ¢
6o = o with Vo = 00,600 = o € A,. A transition sequence 00 —=— y

. ¢
is simulated by Vo SLIN Gy = 6,0 =05 6o - o —=— Y.
Notice that A, + Vo = 6o =0 =60, ..., A, + Vo = o = 0 = Go. The
.. ¢
transition sequence Vo = oo ELIN e =05 6o - b0 —=— 0%

can be simulated by a transition sequence from o by induction on Vo = 0. We
conclude that both Vo = 8o and 8o = o satisfy the bisimulation base property.

We have verified that A is indeed a bisimulation base. It follows from Lemma[12] that
A is part of a branching bisimulation. Consequently Xa = Yg. O

We are now in a position to establish the main result.
Theorem 31. The branching bisimilarity on normed BPA processes is decidable.

Proof. The equality between an nBPA process y and € is decidable. Given two nBPA
processes Xa and Yf3, our algorithm constructs all tableaux for Xa = Y in parallel.
At the same time it keeps checking if a successful tableau has been generated. By
Proposition [30| the algorithm terminates with a ‘yes’ answer if and only if Xa ~ Yg.
Since by Lemma[28]there is an effective bound on the number of tableaux for Xa = Y8,
the algorithm is capable of answering ‘no’ if no successful tableau exists. O

We remark that in the presence of Proposition [27|one gets decidability as long as
every tableau is finite.

5 Regularity Checking

Given a process « defined in a normed BPA A, the bisimulation class [a] represented by
a is the set {a’ | @’ =~ a}. A bisimulation class of A is a bisimulation class represented
by some process defined in A. We say that the BPA A is a finite state system if the set
of bisimulation classes of A is finite. We say that « is a finite state process if the set of
the bisimulation classes represented by the nodes of 77¢ is finite. It is an infinite state
process otherwise. The regularity problem of branching bisimilarity for normed BPA
asks if a normed BPA process is a finite state process.

The regularity problem for the strong bisimilarity on normed BPA has been set-
tled. Kucera [Kuc96] showed that it is decidable in polynomial time. Srba [Srb02al|
observed that it is actually solvable in nondeterministic logarithmic space. In the same
paper he also proved that the problem is NL-hard using a reduction from the reachabil-
ity problem of DAG. The decidability of the regularity problem for the strong bisim-
ilarity on general BPA was proved by Burkart, Caucal and Steffen [BCS95, [BCS96].
The problem was shown to be PSPACE-hard by Srba [Srb02al] by reducing from the
Quantified Boolean Formula Problem. In the presence of silent actions the picture
is far less clear. To the best of our knowledge the decidability of almost all regular-
ity problems of weak/branching bisimilarity, in the setting of process rewriting sys-
tem [MayOO|, are unknown. The only exception is the undecidability result of the
regularity problem for weak bisimilarity of Petri Net, and its extension, established
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9
) )

~ ’ EXPTIME-hard [MayO3||

EXPTIME-hard [May0] NP-hard [STF98, Stb03]

Figure 4: Regularity of BPA

by Jancar and Esparza [JE96]. This is interesting in view of the fact that the regu-
larity problem for strong bisimilarity of Petri Net is decidable [JE96]. For the totally
normed BPA Stfiabrna [Sti98]] proved that the regularity of weak bisimilarity is NP-
hard. Srba [Srb03] improved the result by showing that the problem is both NP-hard
and co-NP-hard for normed BPA. Mayr proved that the weak bisimilarity of weakly
regular BPA processes is EXPTIME-hard [May03|]]. A BPA process is weakly regular
if it is weakly bisimilar to a finite state. By combining Srba’s polynomial reduction
from the weak bisimilarity of weakly regular processes to the regularity problem of
weak bisimilarity [Srb03]], one concludes that the latter is EXPTIME-hard. Mayr’s
proof of the EXPTIME lower bound [MayO3|] can be modified so that it applies to
branching bisimilarity as well. We omit the details here. A summary of these results is
given in Fig. 4

In this section we show that the regularity problem of branching bisimilarity for
normed BPA is decidable. We begin with a proof that a related but slightly different
problem is decidable.

Proposition 32. [t is decidable to check if a normed BPA A defines a finite state system.

Proof. Let A be a normed BPA with n variables. We need to prove that the set of all
bisimulation classes of processes defined in A is finite. For every process defined by A
of length 2" + 1, we can algorithmically check if it is completely irredundant. If no such
process is completely irredundant, then A is a finite state system. Otherwise let x be
such a process. Now there must exist processes o/, o, 0’ such that x = 0”00’ and the
redundancy set of oo™ is the same as the redundancy set of o’. The inequality oo’ #
o’ holds by the complete irredundancy of k. Moreover ocoo’ # oo’ for otherwise
Corollary would imply o0’ ~ ¢’. Meanwhile we also have ocoo’ # o’ since
looo'll, > lloo’ll, > llo’|l,. By induction we can prove that o'*'o” # oo’ and
o], > lloo”|l, for all i > 0, where ¢ stands for . ..o It follows that o’o”’ #
N
i times
oo’ whenever i # j. Therefore A defines an infinite state system in this case. O

Proposition [32] does not imply the decidability of the regularity problem. This is
because even if a normed BPA defines an infinite state system, a process defined in the
BPA can still be a finite state process. To prove the general result we need the following
technical lemma.
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Lemma 33. For normed BPA there is an algorithm to calculate the function ||_||p.

Proof. Let a be a process defined by a normed BPA. Consider the transition tree 7.
This tree is in general infinite. We can trim this tree down to a finite tree by cutting off
a path at some point. The strategy is as follows:

12 g . . .
o Ifar — aj... = ay contains ||a|| external actions plus change-of-state silent
actions, then remove all the descendants of «;.

[7] fk . .
e Suppose ¢ — ... — @ — Q4] — ... — @ is a path in the tree. If

2 & . .
a — «a... — «a contains at most ||e|| — 1 external actions plus change-of-

state silent actions and the length of @y — @41 — ... = @ is Hy,, then remove
all the descendants of .

The first rule is based on the fact |||, < |||l and the second rule on Lemma 23] It is
now easy to calculate ||a||, from the finite tree using Theorem@ |

It is interesting to notice that, unlike the situation for the strong bisimilarity, it is
after the proof of the decidability of ~ that we are able to show the effectiveness of ||_||.
By Lemmathe value [|A]| is effectively calculable.

In what follows we provide two semi-decidable procedures that would lead to the
decidability of the regularity problem. The first semi-decidable procedure allows one
to answer positively when the input nBPA process is a finite state process.

Lemma 34. It is semi-decidable to check if an nBPA process is a finite state process.

Proof. Suppose « is a normed BPA process. Construct the branching transition tree
with root label @ as follows:

o The tree is constructed in a width first fashion. Suppose ( is a leaf of the current
tree that is not marked as a leaf of the final tree. Suppose further that § —*

B = v is such that the length of 8 —* " is less than Hg. Then the node § has
a child labeled y and the edge is labeled by ¢.

o Whenever a new leaf is generated whose label is branching bisimilar to the label
of some inner node of the current tree, then that leaf is marked as a leaf of the
final tree. An inner node of the tree is a node that is not a leaf.

o A leaf labeled by € is marked as a leaf of the final tree.

If « is a finite state process then clearly the branching transition tree is finite. Con-
. ... . . ¢ 1
versely suppose the branching transition tree is finite. Let « -5 .. o

be a transition sequence such that each a; with 1 < i < k is branching bisimilar to some
node of the branching transition tree and ¢y is not branching bisimilar to any node of

. ¢ f
the tree. Clearly there must be some node in the sequence S D ... o,
say aj,, that is a leaf of the tree. By definition there must be some inner node 3; such
Ciia g‘.
that a;, =~ B;. It follows that there is some «;, such that a;, L aj,
. . . .. Ljjn * ¢ .
is bisimulated by some transition sequence 31 e N B> with the latter

sequence satisfying the following:
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e 31 — ... — B, is a path in the branching transition tree with 3, being a leaf.
o the edges are labeled respectively by £;,,1,...,¢},.

Now g, is branching bisimilar to some inner node of the tree. So we may repeat the
above argument. Eventually we get some node of the tree that is branching bisimilar
to ay, which is a contradiction. We conclude that every process reachable from « is
branching bisimilar to some node in the finite tree. The construction of the branch-
ing transition tree is effective due to Lemma 26| and Theorem Hence the semi-
decidability of the procedure. O

To simplify the account of the other semi-decidable procedure we introduce the
following technical lemma.

¢
Lemma 35. Suppose Voo is defined in a normed BPA A with n variables and Voo LN
¢ 2
Vio) — Vaos ... — Vuom for some m > n2" such that |og| < |oi| < ... < |opl If

there are n2" + 1 processes Vi 0y, Vi Ci s« oy Vipn Cipn» Where iy < iy < ... <1y, such
that ||Vi,oiglly < IVi,oills < ... <IVip0ille, then Voorg is an infinite state process.

Proof. By assumption there must exist j, j € {0,...,n2"} such that j < j', Vi, =V},
. R
and R‘T"; =R, . Now Ti, =00y, for some o since |o7;| < Ia',-f, |. Moreover [lo]|,” > 0
J
due to the inequality ||V, o[l < ||V,'7,0',-J., |lp. Clearly V,»/o"‘a','f is a descendant of Vo
for all k > 0. By the proof of Lemma [32| we conclude that Vo is an infinite state
process. O

Lemma 36. There is a semi-decidable procedure to check if a normed BPA process is
an infinite state process.

Proof. Suppose « is an infinite state process defined by a normed BPA A with n vari-

. . 14 [ Gi
ables. There must be an infinite path « LN 02 N @p... — ;... such that the
norms of the processes a, @1, ..., ;... are unbounded. Assume that @ = Vyoq for
some Vy, 0 and «; = V;o; for some V;,o; for each i > 0. The infinite transition
sequence can be rewritten as
4 123 4
V00'0—>V10'1—>V20’2...—>Vi0'i.... (3)
Choose from (3)) a finite subsequence
Cis Civa 148
Vioj — Vinoj — Viaojn ... — Viog “
such that the following are satisfied:
Yiel{j+1,....kllojl <lojl, (®)]
IVioills > 1V lls + n222"||Allpra. (6)

By Lemma [33] condition (6) is effectively checkable. Condition (3] implies that o; is
a proper suffix of o for all j/ € {j+1,...,k}. We call Vo, for p > j, a minimal
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turning point if there exists some p’ such that j < p’ < pand |op_1| > lop| = ... =
lopl < lops1l. Let Vjo;, be a minimal turning point such that for any other minimal
turning point V,o, the inequality |o;,| < |o7,| holds and if |oj,| = |op| then j; > p.
Since o ; is a suffix of o, there must be a maximal initial segment
¢ ¢,
VjO'j — Vj+10'j+1 el T Vj'IO'j/l (7)

of lﬁl that enjoys the property |o7j| < |oj ] < ... < Ia'jfll. If there are n2" + 1 processes
in (7), say Vo, ..., V"Z'* g2+ such that Ve, < ... < [[V"¥"*+1 02"+, then we
conclude from Lemma [35]that « is an infinite state process. Otherwise we derive from

. . ¢ by
the fact |o7j| < |o7j,| < Ia'j/1| that there is an initial segment V;o-; — V31041 ... —
G . .
Vipojr — Virs10jrsq of (7)) that meets the following condition
0] < o] < oyl ®)

Notice that |07, | = |o J'il is impossible by the way o, is chosen. So the right inequality
in (8)) must be strict. By normedness one has that

. o C .
VjO'j i) Vj+10'j+1 ce i) Vj'I'O'j'I' ]l—+>] Vj'l'+10'j']'+1 L) gj
for some £*. Clearly

WVioils =Viaills = IVill," + ol = Vol
< ||Vj1||:j] +WVirio gl = IViojll
< WV + 1V oy lls = 1Vl
< Al + (12" = DIAllpra
< n2"Allpra,

using the assumption that there are at most (n2" — 1) transitions in (7).

The above construction can be repeated and we eventually get a transition sequence
o I I
1 2 m
Vio;— Vjo; — V,0j,...— V; o suchthat|oj| <|o;|<...<|oj,|and

Wiaille <WViojlls < ... <1IVj,05, - )

It follows from condition (€ that m > n2" and that there are at least n2" strict inequal-
ities in (9). So we can apply Lemma [35]anyway.

The existence of a transition sequence described above allows one to design a semi-
decidable procedure. Given a normed BPA process « the semi-decidable program con-
structs the transition tree 7, in a width first fashion and keeps checking if there is a
sub-path of a path in the tree satisfying the property described in (3)) and (€). If « is
an infinite state process then the procedure is bound to find such a sub-path and gives a
positive answer. O

In summary we have the following decidability result.

Theorem 37. The regularity problem of branching bisimilarity on nBPA is decidable.
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6 Remark

For parallel processes, basic parallel processes (BPP) and Petri nets (PN), in which
silent transitions are treated as unobservable the only known decidability result con-
cerning equivalence checking is due to Czerwinski, Hofman and Lasota. They have
proved in [CHLI11] that branching bisimilarity on normed BPP processes is decidable.
Their proof is based on a novel technique that reduces every normed BPP process to
a normal form. The norm form for a bisimulation class is an element in the class that
is minimal with regards to lexicographic order. Other equivalence checking problems
about parallel processes are either open or undecidable. This paper provides the first
decidability result for the sequential processes, basic process algebras (BPA) and push-
down automata (PDA), in which silent transitions are treated as unobservable. The
technique used to establish this result is more traditional compared to the one used
by Czerwiriski, Hofman and Lasota. For further research one could try to apply the
technique developed in this paper to the general BPA. One could also try to adapt the
methodology to investigate the decidability issue of branching bisimilarity of PDA. The
latter problem is particularly interesting in the light of the facts that the strong bisim-
ilarity on PDA is decidable [[Sén98, [Sti98] whereas the weak bisimilarity on normed
PDA is undecidable [JSOS]. If either problem turns out to be decidable, the associated
regularity problem would then invite immediate study.

Currently we do not see how the techniques used in this paper can be transplanted
to weak bisimilarity [Mil89a]]. Neither Lemma [I8] nor Corollary 22]is known to hold
for weak bisimilarity, although Lemma [20] is valid for weak bisimilarity on normed
BPA processes. Without Lemma|[I8]we are not able to establish the finite tree property.
And without Corollary 22]we cannot control the size of a tableau. Further investigation
is necessary before we can say more about the decidability of the weak bisimilarity.

This paper is a first step in looking for upper bound on branching bisimilarity of
normed BPA processes. In next step one could try to answer the following question:
Is the problem elementary? In view of Kiefer’s result [Kiel2] one expects that the
EXPTIME lower bound to be improved. At this point it seems appropriate to mention
a recent result of Benedikt, Moller, Kiefer and Murawski [BMKMI12]. They have
proved that strong bisimilarity on normed PDA is non-elementary.
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and valuable discussions. One of the discussions has convinced me that the reduction
described in [May03|] can be improved to show that branching bisimilarity of nBPA
and its associated regularity problem are EXPTIME-hard. In particular my thanks go
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and Qiang Yin for thought provoking discussions, and to Zhimo Shen and Fei Yang for
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proof of Lemma [25] The support from NSFC (60873034, 61033002) is gratefully
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