
Checking Equality and Regularity
for Normed BPA with Silent Moves?

Yuxi Fu

BASICS, Department of Computer Science, Shanghai Jiao Tong University
MOE-MS Key Laboratory for Intelligent Computing and Intelligent Systems

Abstract. The decidability of weak bisimilarity on normed BPA is a
long standing open problem. It is proved in this paper that branching
bisimilarity, a standard refinement of weak bisimilarity, is decidable for
normed BPA and that the associated regularity problem is also decidable.

1 Introduction

In [BBK87] Baeten, Bergstra and Klop proved a surprising result that strong
bisimilarity between context free grammars without empty production is decid-
able. The decidability is in sharp contrast to the well known fact that language
equivalence between these grammars is undecidable. After [BBK87] decidability
and complexity issues of equivalence checking of infinite systems à la process
algebra have been intensively investigated. As regards BPA, Hüttel and Stir-
ling [HS91] improved Baeten, Bergstra and Klop’s proof by a more straight-
forward one using tableau system. Hüttel [Hüt92] then repeated the tableau
construction for branching bisimilarity on totally normed BPA processes. Later
Hirshfeld [Hir96] applied the tableau method to the weak bisimilarity on the
totally normed BPA. An affirmative answer to the decidability of the strong
bisimilarity on general BPA is given by Christensen, Hüttel and Stirling by ap-
plying the technique of bisimulation base [CHS92].

The complexity aspect of BPA has also been investigated over the years. Bal-
cazar, Gabarro and Santha [BGS92] pointed out that strong bisimilarity is P-
hard. Huynh and Tian [HT94] showed that the problem is in Σp

2 , the second level
of the polynomial hierarchy. Hirshfeld, Jerrum and Moller [HJM96] completed
the picture by offering a remarkable polynomial algorithm for the strong bisimi-
larity of normed BPA. For the general BPA, Burkart, Caucal and Steffen [BCS95]
showed that the strong bisimilarity problem is elementary. They claimed that
their algorithm can be optimized to get a 2-EXPTIME upper bound. A further
elaboration of the 2-EXPTIME upper bound is given in [Jan12] with the intro-
duction of infinite regular words. The current known best lower bound of the
problem, EXPTIME, is obtained by Kiefer [Kie13], improving both the PSPACE
lower bound result and its proof of Srba [Srb02]. Much less is known about the
weak bisimilarity on BPA. Stř́ıbrná’s PSPACE lower bound [Stř98] is subsumed

? F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 244-255, 2013.

by both the result of Srba [Srb02] and that of Mayr [May03], all of which are
subsumed by Kiefer’s recent result. A slight modification of Mayr’s proof shows
that the EXPTIME lower bound holds for the branching bisimilarity as well.

It is generally believed that weak bisimilarity, as well as branching bisim-
ilarity, on BPA is decidable. There has been however a lack of technique to
resolve the difficulties caused by silent transitions. This paper aims to advance
our understanding of the decidability problems of BPA in the presence of silent
transitions. The main contributions of the paper are as follows:

– We introduce branching norm, which is the least number of nontrivial actions
a process has to do to become an empty process. With the help of this concept
one can carry out a much finer analysis on silent actions than one would have
using weak norm. Branching norm turns out to be crucial in our approach.

– We reveal that in normed BPA the length of a state preserving silent tran-
sition sequence can be effectively bounded. As a consequence we show that
branching bisimilarity on normed BPA processes can be approximated by a
sequence of finite branching bisimulations.

– We establish the decidability of branching bisimilarity on normed BPA by
constructing a sound and complete tableau system for the equivalence.

– We demonstrate how to derive the decidability of the associated regularity
problem from the decidability of the branching bisimilarity of normed BPA.

The result of this paper is significantly stronger than previous decidability
results on the branching bisimilarity of totally normed BPA [Hüt92,CHT95]. It is
easy to derive effective size bound for totally normed BPA since a totally normed
BPA process with k variable occurrences has a norm at least k. For the same
reason right cancellation property holds. Hence the decidability. The totality
condition makes the branching bisimilarity a lot more like strong bisimilarity.

2 Branching Bisimilarity for BPA

A basic process algebra (BPA for short) Γ is a triple (V,A, ∆) where V =
{X1,Xn} is a finite set of variables, A = {a1,am} ∪ {τ} is a finite set of
actions ranged over by `, and ∆ is a finite set of transition rules. The special sym-
bol τ denotes a silent action. A BPA process defined in Γ is an element of the set
V∗ of finite string of element of V. The set V will be ranged over by capital letters
and V∗ by lower case Greek letters. The empty string is denoted by ε. We will

use = for the grammar equality on V∗. A transition rule is of the form X
`−→ α,

where ` ranges over A. The transitional semantics is closed under composition

in the sense that Xγ
`−→ αγ for all γ whenever X

`−→ α. We shall assume that
every variable of a BPA is defined by at least one transition rule and every action
in A appears in some transition rule. Accordingly we sometimes refer to a BPA
by its set of transition rules. We write −→ for

τ−→ and =⇒ for the reflexive
transitive closure of

τ−→. The set A∗ will be ranged over by `∗. If `∗ = `1 . . . `k

for some k ≥ 0, then α
`∗−→ α′ stands for α

`1−→ α1 . . .
`k−1−→ αk−1

`k−→ α′ for some

α1, . . . , αk−1. We say that α′ is a descendant of α if α
`∗−→ α′ for some `∗.

A BPA process α is normed if there are some actions `1, . . . `j such that

α
`1−→ . . .

`j−→ ε. A process is unnormed if it is not normed. The norm of a BPA

process α, denoted by ‖α‖, is the least k such that α
`1−→ . . .

`k−→ ε for some
`1, . . . `k. A normed BPA, or nBPA, is one in which every variable is normed.

For each given BPA ∆, we introduce the following notations:

– m∆ is the number of transition rules; and n∆ is the number of variables.

– r∆ is max
{
|γ|
∣∣∣ X λ−→ γ ∈ ∆

}
, where |γ| denotes the length of γ.

– ‖∆‖ is max {‖Xi‖ | 1 ≤ i ≤ n∆ and Xi is normed}.
Each of m∆, n∆, r∆ and ‖∆‖ can be effectively calculated from ∆.

2.1 Branching Bisimilarity

The idea of the branching bisimilarity of van Glabbeek and Weijland [vGW89]
is that not all silent actions can be ignored. What can be ignored are those that
do not change system states irreversibly. For BPA we need to impose additional
condition to guarantee congruence. In what follows xRy stands for (x, y) ∈ R.

Definition 1. A symmetric relation R on BPA processes is a branching bisim-
ulation if the following statements are valid whenever αRβ:

1. If βRα `−→ α′ then one of the following statements is valid:
(i) ` = τ and α′Rβ.

(ii) β =⇒ β′′Rα for some β′′ such that β′′
`−→ β′Rα′ for some β′.

2. If α = ε then β =⇒ ε.

The branching bisimilarity ' is the largest branching bisimulation.

The branching bisimilarity ' satisfies the standard property of observational
equivalence stated in the next lemma [vGW89].

Lemma 1. Suppose α0
τ−→ α1

τ−→ . . .
τ−→ αk ' α0. Then α0 ' α1 ' . . . ' αk.

Using Lemma 1 it is easy to show that ' is a congruence and that whenever

β ' α
`−→ α′ is simulated by β

τ−→ β1
τ−→ β2 . . .

τ−→ βk
`−→ β′ such that

βk ' α and β′ ' α′ then β ' β1 ' . . . ' βk.
Having defined an equality for BPA, we can formally draw a line between the

silent actions that change the capacity of systems and those that do not. We say
that a silent action α

τ−→ α′ is state preserving if α ' α′; it is a change-of-state
if α 6' α′. We will write α→ α′ if α

τ−→ α′ is state preserving and α
ι−→ α′ if it

is a change-of-state. The reflexive and transitive closure of → is denoted by →∗.
Since both external actions and change-of-state silent actions must be explicitly

bisimulated, we let range over the set (A\{τ})∪{ι}. So α
−→ α′ means either

α
a−→ α′ for some a 6= τ or α

ι−→ α′.
Let’s see an example.

Example 1. The BPA Γ1 is defined by the following transition rules:

A
a−→ A, A

τ−→ ε, B
b−→ B, B

τ−→ ε, C
a−→ C, C

b−→ C, C
τ−→ ε.

Clearly AC ' BC, although A 6' B. In this example all variables are normed.

2.2 Bisimulation Base

An axiom system B is a finite set of equalities on nBPA processes. An element
α = β of B is called an axiom. Write B ` α = β if the equality α = β can be
derived from the axioms of B by repetitive use of any of the three equivalence
rules and two congruence rules. For our purpose the most useful axiom systems
are those that generate branching bisimulations. These are bisimulation bases
originally due to Caucal. The following definition is Hüttel’s adaptation to the
branching scenario [Hüt92].

Definition 2. A finite axiom system B is a bisimulation base if the following
bisimulation base property hold for every axiom (α0, β0) of B:

1. If β0 −→ β1 −→ . . . −→ βn
`−→ β′ then there are α1, . . . , αn, α

′ such that
B ` β1 = α1, . . . , B ` βn = αn, B ` β′ = α′ and the following hold:
(i) For each i with 0 ≤ i < n, either αi = αi+1, or αi −→ αi+1, or there

are α1
i , . . . , α

ki
i such that αi −→ α1

i −→ . . . −→ αkii −→ αi+1 and

B ` βi = α1
i , . . . , B ` βi = αkii .

(ii) Either ` = τ and αn = α′, or αn
`−→ α′, or there are α1

n, . . . , α
kn
n

such that αn −→ α1
n −→ . . . −→ αknn

`−→ α′ and B ` βn = α1
n, . . . ,

B ` βn = αknn .
2. If β0 = ε then either α0 = ε or α0 −→ α1 −→ . . . −→ αk −→ ε for some

α1, . . . , αk with k ≥ 0 such that B ` α1 = ε, . . . , B ` αk = ε.
3. The conditions symmetric to 1 and 2.

The next lemma justifies the above definition [Hüt92].

Lemma 2. If B is a bisimulation base then B` = {(α, β) | B ` α = β} ⊆ '.

Proof. If B ` α = β, then an inductive argument shows that there exist γ1δ1λ1,
γ2δ2λ2, γ3δ3λ3, . . . , γk−1δk−1λk−1, γkδkλk and δ′1, . . . , δ

′
k for k ≥ 1 such that α =

γ1δ1λ1, γkδ
′
kλk = β and γ1δ1λ1 B γ1δ′1λ1 = γ2δ2λ2 B γ2δ′2λ2 = . . . γk−1δ

′
k−1λk−1

= γkδkλk B γkδ′kλk. The transitive closure makes it easy to see that B` satisfies
the bisimulation base property. Consequently it is a branching bisimulation. ut

3 Approximation of Branching Bisimilarity

To look at the algebraic property of the branching bisimilarity ' more closely,
we introduce a notion of normedness appropriate for the equivalence.

Definition 3. The branching norm of an nBPA process α is the least number

k such that ∃1 . . . k.∃α1 . . . αk.α →∗
1−→ α1 →∗

2−→ . . . αk−1 →∗
k−→ αk →∗ ε.

The branching norm of α is denoted by ‖α‖b.

For example the branching norm of B defined by {B a−→ B,B
τ−→ ε} is 1. It is

easy to prove that if α ' β then ‖α‖b = ‖β‖b and that if ‖α‖b = 0 then α ' ε.
It follows that ‖α′‖b = ‖α‖b whenever α→∗ α′. Also notice that ‖α‖b ≤ ‖α‖.

An important property of branching norm is stated next.

Lemma 3. Suppose α is normed. Then α ' δα if and only if ‖α‖b = ‖δα‖b.

Proof. If ‖α‖b = ‖δα‖b then every silent action sequence from δα to α must
contain only state preserving silent transitions according to Lemma 1. Moreover
there must exist such a silent action path for otherwise ‖α‖b < ‖δα‖b. ut

It does not follow from α ' δα that δ ' ε. A counter example is given by the
BPA defined in Example 1. One has AC ' C ' BC. But clearly ε 6' A 6' B 6' ε.
To deal with situations like this we need the notion of relative norm.

Definition 4. The relative norm ‖α‖σb of α with respect to σ is the least k such

that ασ →∗ 1−→ α1σ . . . αk−1σ →∗
k−→ αkσ →∗ σ for some 1, . . . , k, α1, . . . , αk.

Obviously 0 ≤ ‖α‖σb ≤ ‖α‖b. Returning to the BPA Γ1 defined in Example 1,
we see that ‖A‖Bb = 1 and ‖A‖Cb = 0. Using the notion of relative norm we may
introduce the following terminologies:

– A transition Xσ
`−→ ησ is norm consistent if either ‖η‖σb = ‖X‖σb and ` = τ

or ‖η‖σb = ‖X‖σb − 1 and ` 6= τ ∨ ` = ι.
– If Xσ −→ ησ is norm consistent with ‖X‖σb > 0, then it is norm splitting if

at least two variables in η have (smaller) nonzero relative norms in ησ.

For an nBPA ∆ no silent transition sequence contains more than ‖∆‖b norm
splitting transitions, where ‖∆‖b is max{‖Xi‖b | 1 ≤ i ≤ n∆ and Xi is normed}.

The crucial property about relative norm is described in the following lemma.

Lemma 4. Let α, β, δ, γ be normed with ‖α‖γb = ‖β‖δb. If αγ ' βδ then γ ' δ.

Proof. Suppose ‖α‖γb = ‖β‖δb . Now ‖α‖γb + ‖γ‖b = ‖αγ‖b = ‖βδ‖b = ‖β‖δb +

‖δ‖b. Therefore ‖γ‖b = ‖δ‖b. A norm consistent action sequence αγ →∗ 1−→
. . . →∗ k−→→∗ γ must be matched up by βδ →∗ 1−→ . . . →∗ k−→ β′δ for some β′.
Clearly ‖β′δ‖b = ‖γ‖b = ‖δ‖b. It follows from Lemma 3 that δ ' β′δ ' γ. ut

Lemma 4 describes a weak form of left cancelation property. The general left
cancelation property fails. Fortunately there is a nice property of nBPA that
allows us to control the size of common suffix of a pair of bisimilar processes.

Definition 5. A process α is irredundant over γ if ‖α‖γb > 0. It is redundant
over γ if ‖α‖γb = 0. A process α is head irredundant if either α = ε or α = Xα′

for some X,α′ such that α 6' α′. It is head redundant otherwise. We write
Hirred(α) to indicate that α is head irredundant. A process α is completely
irredundant if every suffix of α is head irredundant. We write Cirred(α) to
mean that α is completely irredundant.

If α is normed, then α is irredundant over γ if and only if αγ 6' γ. In nBPA
a redundant process consists solely of redundant variables.

Lemma 5. Suppose X1, . . . , Xk, σ are normed. Then X1 . . . Xk is redundant
over σ if and only if Xi is redundant over σ for every Xi ∈ {X1, . . . , Xk}.

Proof. Suppose X1, . . . , Xk, σ are normed and X1 . . . Xk is redundant over σ.
Then X1 . . . Xkσ =⇒ X2 . . . Xkσ =⇒ . . . =⇒ Xkσ =⇒ σ ' X1 . . . Xkσ. It
follows from Lemma 1 that X1 . . . Xkσ ' X2 . . . Xkσ ' . . . ' Xkσ ' σ. We are
done by using the congruence property. ut

For each σ, let the redundant set Rσ of σ be {X | Xσ ' σ}. Let V(α) be the
set of variables appearing in α. We have two useful corollaries.

Corollary 1. Suppose α, σ are normed. Then ασ ' σ if and only if V(α) ⊆ Rσ.

Corollary 2. Suppose α, β, σ0, σ1 are defined in an nBPA and Rσ0
= Rσ1

.
Then ασ0 ' βσ0 if and only if ασ1 ' βσ1.

Proof. SupposeRσ0 = Rσ1 . Let S be {(ασ0, βσ0) | ασ1 ' βσ1}. It is not difficult
to see that S ∪ ' is a branching bisimulation. ut

We now take a look at the state preserving transitions of nBPA processes.
We are particularly interested in knowing if the quotient set {θ | α →∗ V θ}/'
of the equivalence classes is finite for every nBPA process α and every variable
V . It turns out that all such sets are finite with effective size bound.

Lemma 6. For each nBPA process α = Xω, there is an effective bound Hα,
uniformly computable from α, satisfying the following: If α→∗ V θ then α→∗ V η
for some η such that θ ' η and the length of α→∗ V η is no more than Hα.

Proof. The basic idea is to show that in an effectively bounded number of steps
α can reach, via norm consistent and norm splitting silent transitions, terms V θ
with all possible variable V and all possible relative norm of V . We then apply
Lemma 4. The bound Hα is computed from |α| and the transition system. ut

Under the assumption γ 6' βγ we can repeat the proof of Lemma 6 for βγ in
a way that γ is not affected. Hence the next corollary.

Corollary 3. Suppose α, βγ are nBPA processes and γ 6' βγ. If βγ ' α −→ α′,

then there is a transition sequence βγ →∗ β′′γ −→ β′γ with its length bounded
by Hβ such that β′′γ ' α and β′γ ' α′.

We are now in a position to prove the following.

Proposition 1. The relation 6' on nBPA processes is semi-decidable.

Proof. We define 'k, the branching bisimilarity up to depth k, by exploiting
Corollary 3. The inductive definition is as follows:

– α '0 β for all α, β.
– α 'i+1 β if the following condition and its symmetric version hold: If α 'i
β

`−→ β′ then one of the following statements is valid:
(i) ` = τ and α 'i β′.
(ii) α =⇒ α′′ 'i β for some α′′ such that α′′

`−→ α′ 'i β′ for some α′ and
the length of α =⇒ α′′ is bounded by Hα.

Each 'k is decidable. Using Corollary 3 one easily sees that ' ⊆
⋂
k∈ω 'k. The

proof of the converse inclusion is standard. ut

4 Equality Checking

A straightforward approach to proving an equality between two processes is
to construct a finite bisimulation tree for the equality. A tree of this kind has
been called a tableau system [HS91,Hüt92]. To apply this approach we need to
make sure that the following properties are satisfied: (i) Every tableau for an
equality α = β is finite. (ii) The set of tableaux for an equality α = β is finite.
We can achieve (i) by using Corollary 2 and Corollary 3. This is because if σ
is long enough then according to Corollary 2 it can be decomposed into some
σ0σ1σ2 such that Rσ1σ2

= Rσ2
. Then λσ0σ1σ2 ' γσ0σ1σ2 can be simplified to

λσ0σ2 ' γσ0σ2. The equivalence provides a method to control the size of labels
of a tableau. Now (ii) is a consequence of (i), Corollary 3 and König lemma.

The building blocks for tableaux are matches. Suppose α0α 6' α and β0β 6' β.
A match for the equality α0α = β0β over (α, β) is a finite symmetric relation
{γiα = λiβ}ki=1 containing only those equalities accounted for in the following

condition: For each transition α0α
`−→ α′α, one of the following holds:

– ` = τ and α′α = β0β ∈ {γiα = λiβ}ki=1;

– there is a sequence β0β
τ−→ β1β

τ−→ . . .
τ−→ βnβ

`−→ β′β, for n < Hβ0
, such

that {α0α = β1β, . . . , α0α = βnβ, α
′α = β′β} ⊆ {γiα = λiβ}ki=1.

If α0σ 6' σ 6' β0σ, a match for α0σ = β0σ over (σ, σ) is said to be a match for
α0σ = β0σ over σ. The computable bound Hβ0

, given by Corollary 3, guarantees
that the number of matches for α0α = β0β is effectively bounded.

Suppose α0, β0 are nBPA processes. A tableau for α0 = β0 is a tree with each
of its nodes labeled by an equality between nBPA processes. The root is labeled
by α0 = β0. We shall distinguish between global tableau and local tableau. The
global tableau is the overall tableau whose root is labeled by the goal α0 = β0.
It is constructed from the rules given in Fig. 1. Decmp rule decomposes a goal
into several subgoals. We shall find it useful to use SDecmp, which is a stronger
version of Decmp. The side condition of SDecmp ensures that it is unnecessary
to apply it consecutively. When applying Decmp rule we assume that an equality
γσ = σ, respectively σ = γσ, is always decomposed in the following manner

γσ = σ

σ = σ {V σ = σ}V ∈V(γ)
respectively

σ = γσ

σ = σ {V σ = σ}V ∈V(γ)
.

Accordingly γ = ε, respectively ε = γ, is decomposed in the following fashion

γ = ε

ε = ε {V = ε}V ∈V(γ)
respectively

ε = γ

ε = ε {V = ε}V ∈V(γ)
.

SubstL and SubstR allow one to create common suffix for the two processes in
an equality. ContrL and ContrR are used to remove a redundant variable inside
a process. In the side conditions of these two rules, α0, β0 are the processes
appearing in the root of the global tableau. ContrC deletes redundant variables
from the common suffix of a node label whenever the size of the common suffix

Decmp
γα = λβ

α = β {Uα = α}U∈V(γ) {V β = β}V ∈V(λ)

|γ|+ |λ| > 0,
∀U ∈ V(γ).U =⇒ ε,
∀V ∈ V(λ).V =⇒ ε.

SDecmp
γα = λβ

α = β {Uα = α}U∈V(γ) {V β = β}V ∈V(λ)

|γ|+ |λ| > 0,
Hirred(α), Hirred(β),
∀U ∈ V(γ).U =⇒ ε,
∀V ∈ V(λ).V =⇒ ε.

Match
γα = λβ

α1α = β1β . . . αkα = βkβ

γα 6' α, λβ 6' β, and {αiα = βiβ}ki=1

is a match for γα = λβ over (α, β).

SubstL
γα = λβ

γδβ = λβ
α = δβ is the residual.

SubstR
γα = λβ

γα = λδα
δα = β is the residual.

ContrL
γZδ = λ

γδ = λ Zδ = δ
Hirred(δ), Z =⇒ ε and |γZδ| > max{|α0|, |β0|}‖∆‖.

ContrR
γ = λZδ

γ = λδ Zδ = δ
Hirred(δ), Z =⇒ ε and |λZδ| > max{|α0|, |β0|}‖∆‖.

ContrC
γσ′σ0σ1 = λσ′σ0σ1

γσ′σ1 = λσ′σ1 {V σ1 = σ1}V ∈V(σ0)

|σ′σ0σ1| > 2n∆ , |σ0| > 0,
Hirred(σ1),
∀V ∈ V(σ0).V =⇒ ε.

Fig. 1. Rules for Global Tableaux

is over limit. Notice that all the side conditions on the rules are semi-decidable
due to the semi-decidability of 6'. So we can effectively enumerate tableaux.

In what follows a node Zη = Wκ to which Match rule is applied with the
condition Zη 6' η ∧Wκ 6' κ is called an M-node. A node of the form Zσ = σ
with σ being head irredundant is called a V-node. We now describe how a global
tableau for α0 = β0 is constructed. Assuming α0 = γXα1 and β0 = λY β1 such
that Xα1 6' α1 and Y β1 6' β1, we apply the following instance of SDecmp rule:

γXα1 = λY β1
Xα1 = Y β1 {UXα1 = Xα1}U∈V(γ) {V Y β1 = Y β1}V ∈V(λ)

.

By definition Xα1 = Y β1 is an M-node and {UXα1 = Xα1}U∈V(γ) ∪ {V Y β1 =
Y β1}V ∈V(λ) is a set of V-nodes. These nodes are the roots of new subtableaux.
Starting from Xα1 = Y β1 we apply Match rule under the condition that neither
α1 nor β1 is affected. The application of Match rule is repeated to grow the
subtableau rooted at Xα1 = Y β1. The construction of the tree is done in a
breadth first fashion. So the tree grows level by level. At some stage we apply
Decmp rule to all the current leaves. This particular application of Decmp must
meet the following conditions: (i) Both α1 and β1 must be kept intact in all the
current leaves; (ii) Either α1 or β1 is exposed in at least one current leaf. Choose
a leaf labeled by either α1 = δ1β1 for some δ1 or by δ′1α1 = β1 for some δ′1 and
call it the residual node or R-node. Suppose the residual node is α1 = δ1β1. All
the other current leaves, the non-residual nodes, must be labeled by an equality
of the form γ1α1 = λ1β1. A non-residual node with label γ1α1 = λ1β1 is then

Localization
γσ′σ0σ1 = λσ′σ0σ1

γσ′σ1 = λσ′σ1

{Xiσ1 = σ1}i∈I
{Xiσ0σ1 = σ0σ1}i∈I

|γ| > 0 and |λ| > 0; |σ′σ0σ1| > 2n∆ ,
2n∆ ≥ |σ1| > 0 and |σ0| > 0;
Cirred(σ′σ0σ1) and Cirred(σ′σ1);
γσ′σ0σ1 6' σ′σ0σ1, γσ

′σ1 6' σ′σ1;
λσ′σ0σ1 6' σ′σ0σ1, λσ

′σ1 6' σ′σ1;
I ∩ J = ∅, I ∪ J = {1, . . . , n∆};
∀j ∈ J. Xjσ0σ1 6'σ0σ1 and Xjσ1 6'σ1;
Xi =⇒ ε for all i ∈ I.

Fig. 2. Rule for Local Tableaux

attached with a single child labeled by γ1δ1β1 = λ1β1. This is an application of
SubstL rule. Now we can recursively apply the global tableau construction to
γ1δ1β1 = λ1β1 to produce a new subtableau. The treatment of a V-node child,
say UXα1 = Xα1, is similar. We keep applying Match rule over α1 as long as
the side condition is met. At certain stage we apply Decmp rule to all the leaves.
The application should meet the following conditions: (i) No occurrence of α1 is
affected; (ii) There is an application of Decmp that takes the following shape

γ1α1 = λ1α1

α1 = α1 {V α1 = α1}V ∈V(γ1) {V α1 = α1}V ∈V(λ1)

.

We then recursively apply the tableau construction to create new subtableaux.
In the above construction the R-node α1 = δ1β1 can be the root of a new

subtableau, which might contain another R-node. In fact a chain of R-nodes is
possible. ContrL/ContrR is used to control the size of R-nodes.

After an application of SubstL/SubstR rule we may get a C-node α′σ′σ0σ1 =
β′σ′σ0σ1 if ContrC rule is applicable. Once a C-node appears, we immediately
apply ContrC rule to reduce the size of its common suffix. Intuitively we should
apply ContrC rule sufficiently often so that the common suffix becomes com-
pletely irredundant. Eventually either the length of the common suffix has be-
come no more than 2n∆ , in which case we continue to build up the global tableau,
or Localization rule as defined in Fig. 2 is applicable, in which case we get an
L-node. The soundness of Localization rule is guaranteed by Corollary 2.

Suppose Localization rule is applied to an L-node α′σ′σ0σ1 = β′σ′σ0σ1:

α′σ′σ0σ1 = β′σ′σ0σ1
{Xiσ1 = σ1}i∈I α′σ′σ1 = β′σ′σ1 {Xiσ0σ1 = σ0σ1}i∈I

.

The node α′σ′σ1 = β′σ′σ1 is a new L-node. We call {Xi | i ∈ I} the R-set of the
new L-node. If the size of the common suffix of α′σ′σ1 = β′σ′σ1 is still larger
than 2n∆ , we continue to apply Localization rule. Otherwise we get an L-root,
which is the root of a local tableau. Now suppose α′σ′σ1 = β′σ′σ1 is an L-root.
The construction of the local tableau should stick to two principles described
as follows: (I) Locality. No application of Decmp, SDecmp, SubstL, SubsR and
ContrC should ever affect σ′σ1 or any suffix of σ′σ1. Notice that applications of

SubstL or SubstR can never affect σ′σ1 or any suffix of σ′σ1. (II) Consistency.
Suppose γα = λβ is a node to which Match rule is applied using a match over
(α, β). Then either σ′σ1 is a suffix of both α and β, or α = β = σ′′σ1 for some
σ′′ satisfying the following: (i) σ′′ is a proper suffix of σ′; (ii) γ = UZ and λ = Z
such that Zσ′′ is a suffix of σ′; and (iii) the match is over σ′′σ1. The locality
and consistency conditions basically say that choices made in the construction
of the local tableau should not contradict to the fact that σ′σ1 is completely
irredundant.

The construction of a path in a tableau ends with a leaf. A successful leaf is
either a node labeled by ς = ς for some ς, or a node labeled by ε = V (V = ε) with
V ' ε, or a node that has the same label as one of its ancestors. An unsuccessful
leaf is produced if the node is either labeled by ε = V (V = ε) with V 6' ε,
or labeled by some ς = ς ′ with distinct ς, ς ′ such that no rule is applicable to
ς = ς ′. A local tableau has additionally two new kind of successful/unsuccessful
leaves: (i) An L-root is a successful leaf if it shares the same label with one
of its ancestors that is also an L-root. (ii) Suppose α′σ′σ0σ1 = β′σ′σ0σ1 is an
L-node and its child α′σ′σ1 = β′σ′σ1 is an L-root. In the local tableau rooted
at α′σ′σ1 = β′σ′σ1, a node of the form Zσ1 = σ1 is deemed as a leaf. It is
a successful leaf if Z is in the R-set of the L-root; it is an unsuccessful leaf
otherwise.

Tableau constructions always terminate. In fact we have the following.

Lemma 7. The size of every tableau for an equality is effectively bounded. The
number of tableaux for an equality is effectively bounded.

A tableau is successful if all of its leaves are successful. Successful tableaux
generate bisimulation bases.

Proposition 2. Suppose Xα, Y β are nBPA processes. Then Xα ' Y β if and
only if there is a successful tableau for Xα = Y β.

Proof. If Xα ' Y β we can easily construct a tableau using the bisimulation
property, Corollary 2 and Corollary 3. Conversely suppose there is a successful
tableau T for Xα = Y β. Let A = Ab ∪ Az ∪ Al. The set Ab of basic axioms is
given by {γ = λ | γ = λ is a label of a node in T}. The set Az is defined by

Az =

{
V σ = θσ, θσ = σ

∣∣∣∣V σ = σ is in Ab, and V
τ

=⇒ θ
τ

=⇒ ε
is a chosen shortest path from V to ε.

}
.

Suppose γσ′σ1 = λσ′σ1 is an L-root and γσ′σ0σ1 = λσ′σ0σ1 is its parent. A
node ησ′σ1 = κσ′σ1 in the local tableau rooted at γσ′σ1 = λσ′σ1 must be lifted
to ησ′σ0σ1 = κσ′σ0σ1 in order to show that γσ′σ0σ1 = λσ′σ0σ1 satisfies the
bisimulation base property. Since local tableaux may be nested, the node might
have several lifted versions. The set Al is defined to be the collection of all such
lifted pairs. We can prove by induction on the nodes of the tableau, starting with
the leaves, that A is a bisimulation base. Hence Xα ' Y β by Lemma 2. ut

Our main result follows from Proposition 1, Lemma 7 and Proposition 2.

Theorem 1. The branching bisimilarity on nBPA processes is decidable.

5 Regularity Checking

Regularity problem asks if a process is bisimilar to a finite state process. For
strong regularity problem of nBPA, Kučera [Kuč96] showed that it is decidable
in polynomial time. Srba [Srb02] observed that it is actually NL-complete. The
decidability of strong regularity problem for the general BPA was proved by
Burkart, Caucal and Steffen [BCS95,BCS96]. It was shown to be PSPACE-hard
by Srba [Srb02]. The decidability of almost all weak regularity problems of pro-
cess rewriting systems [May00] are unknown. The only exception is Jancar and
Esparza’s undecidability result of weak regularity problem of Petri Net and its
extension [JE96]. Srba [Srb03] proved that weak regularity is both NP-hard and
co-NP-hard for nBPA. Using a result by Srba [Srb03], Mayr proved that weak
regularity problem of nBPA is EXPTIME-hard [May03].

The present paper improves our understanding of the issue by the following.

Theorem 2. The regularity problem of ' on nBPA is decidable.

Proof. One proves by a combinatorial argument that, in the transition tree of

an infinite state BPA process, (i) a path V0σ0
`∗1−→ V1σ1

`∗2−→ V2σ2 . . .
`∗m−→ Vmσm

exists such that (ii) |σ0| < |σ1| < |σ2| < . . . < |σm| and (iii) ‖V0σ0‖b < ‖V1σ1‖b <
‖V2σ2‖b < . . . < ‖Vmσm‖b. We can choose m large enough such that 0 ≤ i <
j ≤ m for some i, j satisfying Vi = Vj and Rσi = Rσj . Let σj = σσi for some
σ. Clearly ‖σi‖b < ‖σj‖b. Using Corollary 2 one can prove by induction that
σiσi 6' σjσi whenever i 6= j. It is semi-decidable to find (i) with properties (ii,iii).
The converse implication is proved by a tree construction using Theorem 1. ut

6 Remark

For parallel processes (BPP/PN) with silent actions, the only known decidability
result on equivalence checking is due to Czerwiński, Hofman and Lasota [CHL11].
This paper provides the analogous decidability result for the sequential processes
(BPA/PDA) with silent actions. For further research one could try to apply the
technique developed in this paper to general BPA and normed PDA.

Acknowledgement. I am indebted to He, Huang, Long, Shen, Tao, Yang, Yin
and the anonymous referees. The support from NSFC (60873034, 61033002, ANR
61261130589) and STCSM (11XD1402800) is gratefully acknowledged.

References

[BBK87] J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence
for processes generating context-free languages. In PARLE’87, pages 94–113.
Lecture Notes in Computer Science 259, 1987.

[BCS95] O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation decision
procedure for arbitrary context free processes. In MFCS’95, pages 423–433.
Lecture Notes in Computer Science 969, Springer, 1995.

[BCS96] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the pro-
cess taxonomy. In CONCUR’96, pages 247–262. Lecture Notes in Computer
Science 1119, Springer, 1996.

[BGS92] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is p-complete.
Formal Aspects of Computing, 4:638–648, 1992.

[CHL11] W. Czerwiński, P. Hofman, and S. Lasota. Decidability of branching bisimu-
lation on normed commutative context-free processes. In CONCUR’11, pages
528–542. Lecture Notes in Computer Science 6901, Springer, 2011.

[CHS92] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decid-
able for all context-free processes. In CONCUR’92, pages 138–147. Lecture
Notes in Computer Science 630, Springer, 1992.

[CHT95] D. Caucal, D. Huynh, and L. Tian. Deciding branching bisimilarity of normed
context-free processes is in σp2 . Information and Computation, 118:306–315,
1995.

[Hir96] Y. Hirshfeld. Bisimulation trees and the decidability of weak bisimulations.
Electronic Notes in Theoretical Computer Science, 5:2–13, 1996.

[HJM96] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding
bisimilarity of normed context free processes. Theoretical Computer Science,
158(1-2):143–159, 1996.

[HS91] H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisimi-
larity for context-free processes. In LICS’91, pages 376–386, 1991.

[HT94] T. Huynh and L. Tian. Deciding bisimilarity of normed context free processes
is in σp2 . Theoretical Computer Science, 123:83–197, 1994.

[Hüt92] H. Hüttel. Silence is golden: Branching bisimilarity is decidable for context
free processes. In CAV’91, pages 2–12. Lecture Notes in Computer Science
575, Springer, 1992.

[Jan12] P. Jančar. Bisimilarity on basic process algebra is in 2-exptime. 2012.
[JE96] P. Jančar and J. Esparza. Deciding finiteness of petri nets up to bisimula-

tion. In ICALP’96, pages 478–489. Lecture Notes in Computer Science 1099,
Springer, 1996.

[Kie13] S. Kiefer. Bpa bisimilarity is exptime-hard. Information Processing Letters,
113:101–106, 2013.

[Kuč96] A. Kučera. Regularity is decidable for normed bpa and normed bpp pro-
cesses in polynomial time. In SOFSEM’96, pages 377–384. Lecture Notes in
Computer Science 1175, Springer, 1996.

[May00] R. Mayr. Process rewrite systems. Information and Computation, 156:264–
286, 2000.

[May03] R. Mayr. Weak bisimilarity and regularity of bpa is exptime-hard. In EX-
PRESS’03, 2003.

[Srb02] J. Srba. Strong bisimilarity and regularity of basic process algebra is pspace-
hard. In ICALP’02, pages 716–727. Lecture Notes in Computer Science 2380,
Springer, 2002.

[Srb03] J. Srba. Complexity of weak bisimilarity and regularity for BPA and BPP.
Mathematical Structures in Computer Science, 13:567–587, 2003.

[Stř98] J. Stř́ıbrná. Hardness results for weak bisimilarity of simple process algebras.
Electronic Notes in Theoretical Computer Science, 18:179–190, 1998.

[vGW89] R. van Glabbeek and W. Weijland. Branching time and abstraction in
bisimulation semantics. In Information Processing’89, pages 613–618. North-
Holland, 1989.

