
Axiomatization without Prefix Combinator

Yuxi Fu?

Department of Computer Science
Shanghai Jiaotong University, Shanghai 200030, China

E-mail: fu-yx@cs.sjtu.edu.cn

Abstract. The chi calculus proposed several years ago enjoys some
properties unknown from the experience with pi calculus, one of which
is the ability to model concurrent computation without the use of prefix
combinator. The atomic chi calculus studied in this paper is obtained
from polyadic chi calculus by leaving out the prefix operator. This omis-
sion is impossible in the pi framework because it would render the input
actions of pi useless. This paper focuses on complete systems of strong
equivalence relations on finite atomic chi processes. The two equivalence
relations investigated in this paper are strong bisimilarity and strong
asynchronous bisimilarity. These bisimilarities are required to be closed
under substitution on each bisimulation step. By exploring some prop-
erties enjoyed by the atomic chi calculus, it is shown that they coincide
respectively with their ground counterparts. In the definitions of strong
ground bisimilarity and strong asynchronous ground bisimilarity closure
under substitution is not explicitly required. Based upon this fact com-
plete systems are given for both relations. The axiomatic systems are
novel in that they use none of the prefix, choice and match combinators.

Key Words: Process Algebra, Bisimulation, Axiomatization

1 Introduction

Operationally computations are achieved by substitutions. This is clear from
λ-calculus, the canonical model for functional computation, and π-calculus, a
model for concurrent computation. An abstraction term in λ-calculus is of the
form λx.t. Semantically it is a function that yields t[s/x], the result of substitut-
ing s for x throughout t, when given s. This operational behaviour is formalized
in the following β-reduction rule:

(λx.t)s → t[s/x]

The variable x in λx.t is bound. A bound name in a term can be replaced by a
fresh name without affecting the meaning of the term. The input prefix operation
of π-calculus ([19]) takes similar form as a(x).P . This is the process that can

? Proceedings of the International Symposium on Domains and Processes ’99 , K.
Keimel et al eds., Kluwer Academic Publishers, 245-273, 2001.

receive a channel name y through x and then proceeds as P [y/x]. The channel
name x in a(x).P is bound. The semantics of a π-process in output prefix form
ax.Q is different in that it is ready to emit a channel name x through a and then
evolve as Q. In a(x).P and ax.Q we say that P and Q are the continuations of
the processes. As opposed to the x in a(x).P , the channel name x in ax.Q is
free. A communication between input prefix process and output prefix process
can happen when they share common channel. Communications are formalized
by labeled transitions as in the following example:

a(x).P |ay.Q
τ−→ P [y/x]|Q

The input and output processes differ in another aspect. In ax.Q the prefix
operator act as a sequential combinator. It has no other function. On the other
hand the prefix operator of a(x).P plays a double role. It is both a sequential
operator and a binding combinator. Another binding combinator in π-calculus
is the localization operator. In (x)P the component (x) localizes x to process P ,
meaning that the channel x can only be used within P . The localization operator
adds a great deal of power to π-calculus.

The π-calculus is also called monadic π-calculus. The phrase ‘monadic’ in-
dicates the fact that in a communication a process can emit or input only one
channel at a time. In practice there is a need for processes to be able to send
and receive a number of channels in one communication. The polyadic π-calculus
extends the monadic π-calculus with this capacity ([18]). The input and output
processes of the latter become respectively a(x̃).P and aỹ.Q in the former, where
x̃ and ỹ stand for finite sequences of channel names. A communication in the
polyadic version looks as follows:

a(x̃).P |aỹ.Q
τ−→ P [ỹ/x̃]|Q

in which [ỹ/x̃] is a simultaneous substitution of ỹ for x̃.
One of the applications of the polyadic π-calculus is in the computational

interpretation of classical proof theory. Girard was the first to point out possible
connections between classical linear logic and parallelism ([13]). Abramsky made
an important step in relating cut eliminations in linear logic to communications
in π-calculus ([1]). It was discovered in his work that the prefix operator plays no
role in modeling the dynamics of the proof theory. This raises the question of if
prefix operators are really necessary in a model for concurrent computation. The
asynchronous π-calculus can be seen as a partial answer to the question ([15, 3,
2]), in which output actions do not have continuations. It has been shown that
the language has enough expressive power to do what π-calculus can do. The
algebraic theory of the asynchronous π-calculus is slightly different from that of
π-calculus. For one thing the standard definition of barbed bisimilarity need be
modified to take into account the asynchronous nature of the language. In some
aspects the algebraic theory is also a little harder. For example axiomatization of
weak equivalence on asynchronous π-processes is unknown. In the asynchronous
π-calculus the input prefix operator remains the same as in the π-calculus. There
is absolutely no way to remove the continuations away from the processes in input

prefix form for that would have rendered the resultant language totally useless.
The failure is due to the double role of the prefix operator mentioned above. The
binding power of the operator would be reduced to none if there is nothing to
bind over.

One solution to the problem is to disassociate the binding ability of the prefix
operator from the sequentialization ability of the combinator. The χ-calculus
proposed by present author ([4–12]) is a process calculus that achieves just that.
The processes in input and the output forms are unified as α[x].P , where α
could be either a or a and x is global. The binding power of the language is
provided solely by the localization operator. So for instance the channel name
x in (x)α[x].P is local. A communication in χ-calculus amounts to instantiating
a local channel name by a global channel name or identifying two local channel
names. The following two examples of reduction should provide some intuition:

a[y].Q|(x)a[x].P τ−→ Q|P [y/x]

(y)a[y].Q|(x)a[x].P τ−→ (z)(Q[z/y]|P [z/x])

Now in χ-calculus one can give up on continuations altogether. The language
one obtains has the following abstract grammar:

P := 0 | α[x] | P |P | (x)P |!P

in which !P is a replication process that provides potentially infinite copies of
P . Unfortunately this language is too weak, the reason being that it lacks the
ability to control the order of computations. A communication of the language
transports only one token, which can be used either as a value or as control
information but not both. This immediately suggests a solution: To abandon
the prefix operator, one should work with a polyadic calculus. The polyadic χ-
calculus has been studied by Parrow and Victor ([21–24]). They call it Fusion
Calculus.

The atomic χ-calculus studied in this paper is obtained from the polyadic χ-
calculus by leaving out the prefix operator. The abstract syntax of the language
is as follows:

P := 0 | α[x̃] | P |P | (x)P |!P

The atomic χ-calculus has a great deal of control power. The following example
suffices to demonstrate this point:

(x)(y)(z)((a[x, y]|a[b, b])|(x[z]|y[c])) τ−→ (z)((0|0)|(b[z]|b[c]))
τ−→ (0|0)|(0|0)

It is apparent that the order of the two communications can not be swapped.
Using ideas embodied in the above example, one can show that the lazy λ-
calculus can be interpreted in the atomic χ-calculus. This calculus was proposed
by Laneve and Victor ([16]). They call it Solos. However we will refer to the
calculus as the atomic χ-calculus in the rest of the paper.

The theory of process calculus is mainly about algebraic properties of pro-
cesses. Algebraic studies are based on equivalence relations, of which the most
important ones are observational equivalences. The most well known observa-
tional equalities are the bisimulation equalities. Two processes are bisimilar if
they can simulate each other’s actions and evolve to two bisimilar processes.
Bisimilarity equalities differ from one another in the extent actions can be ob-
served. Another aspect of algebraic theory of process calculus is about axiomatic
systems for congruence relations on processes. Each system consists of a set of
conditional equations. A system should be both sound and complete in the sense
that it derives equivalent and only equivalent processes with respect to the in-
tended equality.

The focus of this paper is on algebraic theory of the atomic χ-calculus. Two
bisimulation equivalence relations are investigated. They are strong bisimilar-
ity and strong asynchronous bisimilarity. Like the situation in the asynchronous
π-calculus the asynchronous bisimilarity takes care of some very special opera-
tional properties of the atomic χ-calculus. Let’s see a typical example. The two
processes (x)(a[x]|a[x]) and (a)(x)(a[x]|a[x]) are not bisimilar in the synchronous
sense but are equivalent in the asynchronous view. The role of (x)(a[x]|a[x]) is
to absorb an atomic process of the form a[b] or a[b] as in the following commu-
nication

a[x]|(x)(a[x]|a[x]) τ−→ 0|(0|a[b])

The process (a)(x)(a[x]|a[x])|a[b] can emulate the above reduction by perform-
ing an internal communication. This example should convince the reader that
(x)(a[x]|a[x]) and (a)(x)(a[x]|a[x]) are observationally equivalent.

Both bisimilarities are closed under substitution of channel names. Closure
under substitution of channel names is a reasonable requirement in order to
guarantee congruence property because channel names in a mobile process do
get changed as results of process interactions. If one does not insist on the closure
property, one gets what we call ground bisimilarity. Usually the ground bisimilar-
ity is a much weaker relation. We will prove however that in atomic χ-calculus
strong bisimilarity and strong asynchronous bisimilarity coincide respectively
with strong ground bisimilarity and strong asynchronous ground bisimilarity.
This is anticipated by the work of Amadio, Castellani and Sangiorgi on asyn-
chronous π-calculus. This fact is then explored to study axiomatization problem
for the two bisimilarities. Usually complete systems for congruence relations on
mobile processes make heavy use of choice and match combinators, not to men-
tion prefix operator. We give in this paper complete systems for the two strong
bisimilarities. These systems are novel in that none of the prefix combinator, the
choice combinator and the match combinator is used.

In [16] Laneve and Victor have shown how to encode some well-known process
combinators in the atomic χ-calculus. These encodings are faithful with respect
to some particular algebraic equivalences. Their results demonstrate to some
extent the expressive power of the calculus. While we should emphasize the
importance of the work of Laneve and Victor, we would also like to point out
that the study in this paper is neither about the language per se nor about its

expressiveness. It is about axiomatization of algebraic congruences with neither
the choice combinator nor the prefix operator. Since the atomic χ-calculus, or
Solos, is the only process calculus without the prefix combinator at the time of
writing, it is the only framework one can work with at the moment.

The structure of the paper is as follows: Section 2 lays down some prelim-
inaries. Section 3 introduces polyadic χ-calculus and some technical lemmas.
The reason to go through the polyadic χ-calculus first is that most account of
polyadic χ-calculus and the atomic χ-calculus are the same. The time spent on
the former is worth the effort. Section 4 defines the semantics of the atomic
χ-calculus and proves some crucial lemmas. Section 5 simplifies the definition
of open bisimilarity by providing an alternative formulation in terms of ground
bisimulation. Section 6 makes use of this result and gives a complete system for
strong ground bisimilarity. Section 7 concludes with some final remarks.

2 Preliminaries

A process calculus needs to deal with substitutions. In polyadic calculus more
care is called for since one has to use simultaneous substitutions. Also in polyadic
calculus a channel must be assigned a sort to prevent confusion. This section in-
troduces some notations and preliminary definitions for substitution and sorting.

2.1 Normal Substitution

All process calculi proposed so far are based upon the notion of channels. Pro-
cesses communicate through channels. Usually a channel is used only as a token.
Its sole identity is that it is distinct from any other channel. For this reason one
often talks about channel names or simply names. Let N be a set of names,
ranged over by lower case letters. Let N be the set of conames {x | x ∈ N}.
Names and conames can be understood as the two ends of channels. Two pro-
cesses can communicate if they are connected to the two ends of a same channel.
The union N ∪N will be ranged over by α.

A sequence of names is often abbreviated by x̃. Accordingly (x1) · · · (xn)P
is abbreviated by (x̃)P . The length of x̃ is denoted by |x̃|. A name might occur
more than once in a name sequence. For example x, y, x is a name sequence.
But when used as in (x̃)P , we always assume that all names occurring in x̃ are
pairwise distinct. Occasionally we think of a sequence x̃ = x1, . . . , xn as the
multi-set {x1, . . . , xn}. This is the case when we apply set theoretical operations
on sequences of names. We will write {x̃} for the set that contains precisely the
elements appeared in x̃. For instance if x̃ = yzy then {x̃} = {y, z}. When the
elements of x̃ are pairwise distinct, the set {x̃} is also abbreviated to x̃.

A substitution σ is a function from N to N such that the set {x | x ∈
N , σ(x) 6= x} is finite. The domain of a substitution σ, denoted by dom(σ),
is the set {x | x ∈ N , σ(x) 6= x}. The range of σ, rng(σ), is defined as the
image of dom(σ). A substitution σ is often written as [y1/x1, . . . , yn/xn] when

dom(σ) = {x1, . . . , xn} and rng(σ) = {y1, . . . , yn}. This is the function defined
as follows:

σ(x) =

y1, if x = x1

...
yn, if x = xn

x, if x 6∈ {x1, . . . , xn}

The identity function is the vacuous substitution. It will be denoted by []. The
composition of two substitutions σ1 and σ2, notation σ1σ2, is defined in terms of
function composition: σ1σ2 is function σ1 followed by σ2. So Pσ1σ2 is (Pσ1)σ2.
For a set of names S, write σ−1(S) for the set {x|σ(x) ∈ S}.

Definition 1. A substitution σ is normal if dom(σ) ∩ rng(σ) = ∅.

Suppose σ′ is defined as follows:

σ′(a) def=

y, if a = x
x, if a = y
a, if otherwise

Then σ′ is typically not normal as dom(σ′) ∩ rng(σ′) = {x, y} 6= ∅.
Suppose σ = [y1/x1, . . . , yn/xn] is a normal substitution. Define σ↑z to be

the following function:

σ(x) =
{

yi, if x = xi ∧ x 6= z ∧ (1 ≤ i ≤ n)
x, if otherwise

For instance [u/x, v/y, w/z]↑y = [u/x,w/z]. It is clear that σ↑z is a normal
substitution. We will write σ↑{z1, . . . , zn} for (. . . (σ↑z1) . . .)↑zn.

Composition of two normal substitutions is not necessarily normal. A counter
example is as follows: Both σ1 : [x → a, y → b] and σ2 : [a → y, b → x] are
normal. But neither σ1σ2 nor σ2σ1 is normal. The next lemma gives a sufficient
condition under which normal substitutions compose.

Lemma 2. If σ1 and σ2 are normal substitutions and dom(σ1) ∩ rng(σ2) = ∅
then σ1σ2 is normal.

Proof. dom(σ1σ2) is obviously finite.

dom(σ1σ2) ∩ rng(σ1σ2)
⊆ (dom(σ1) ∪ dom(σ2)) ∩ ((rng(σ1) ∪ rng(σ2)) \ (rng(σ1) ∩ dom(σ2)))
= dom(σ1) ∩ rng(σ1) ∪ dom(σ1) ∩ rng(σ2) ∪ dom(σ2) ∩ rng(σ1) ∪

dom(σ2) ∩ rng(σ2) \ ((dom(σ1) ∪ dom(σ2)) ∩ (rng(σ1) ∩ dom(σ2)))
= (rng(σ1) ∩ dom(σ2)) \ (rng(σ1) ∩ dom(σ2))
= ∅

So dom(σ1σ2) ∩ rng(σ1σ2) = ∅. ut

On the other hand, the effect of a general substitution [y1/x1, . . . , yn/xn]
on a term is the same as that of the composition of a finite number of normal
substitutions as [z1/x1] . . . [zn/xn][y1/z1] . . . [yn/zn] where z1, . . . , zn are fresh
names that do not occur in the term the substitution is applied to. Substitutions
of the form [y/x] are called atomic substitutions.

Suppose x̃ = x1, . . . , xn and ỹ = y1, . . . , yn are two name sequences of length
n. Then x̃=ỹ, which denotes x1 = y1, . . . , xn = yn, induces an equivalence
relation on N . Let σx̃=ỹ denote any chosen substitution that maps all elements
of an equivalence class of the equivalence relation to a specific element of that
class. Obviously σx̃=ỹ is a normal substitution.

Suppose x1, . . . , xn and y1, . . . , yn are name sequences of length n. We say
that x1, . . . , xn and y1, . . . , yn are consistent if ∀i, j ∈ {1, . . . , n}.xi=xj ⇔ yi=yj

and that x1, . . . , xn are replaceable by y1, . . . , yn if ∀i, j ∈ {1, . . . , n}.xi=xj ⇒
yi=yj . When {x1, . . . , xn} ∩ {y1, . . . , yn} = ∅ and x1, . . . , xn are replaceable by
y1, . . . , yn, [y1/x1, . . . , yn/xn] is a normal substitution.

2.2 Sorting

To avoid communication confusion, a name must be of some sort. The sort of a
name indicates both the number of names it carries when communicating and
the sorts of these names. The set N is partitioned into an infinite number of
collections of names, each of which contains an infinite number of names. Each
collection is called a subject sort. We write a : S to mean that a is of sort S.
A nonempty tuple of sorts 〈S1, . . . , Sn〉 is called an object sort. A sorting is a
function Sort from the set of subject sorts to the set of object sorts. For each
subject sort S the object sort Sort(S) declares the sorts of names associated to
sort S. In the rest of this paper we fix a sorting function Sort.

3 Polyadic χ-Calculus

Parrow and Victor formulate the operational semantics in a late style. In this
paper we use an early semantics.

The abstract syntax of polyadic χ-processes is given by the following BNF:

P := 0 | α[x̃].P | P |P ′ | (x)P | !P

As usual 0 is the nil process that can do nothing. We will omit a trailing 0. P |Q
is the process of composition form, where P and Q can evolve independently and
communicate if they want to. In (x)P the name x is local, meaning that it can
not been seen from outside. We will adopt the α-convention saying that a local
name in a term can be replaced by a fresh name without changing its syntax. Let
gn(P) denote the set of global names, or nonlocal names, in P . The processes
a[x̃].P and a[x̃].P are in prefix form. Roughly they have to perform the prefix
actions and then act as P . Both a[x1, . . . , xn].P and a[x1, . . . , xn].P must be well-
sorted in the sense that x1 : S1, . . . , xn : Sn whenever Sort(a) = 〈S1, . . . , Sn〉.
The set of polyadic χ-processes will be denoted by P.

In the labeled transition semantics two kinds of labels are used: the set of
output actions is the set

{(ỹ)α[x̃] | ỹ ⊆ x̃ where ỹ are pairwise distinct}

and the set of updates
{σx̃=ỹ | |x̃| = |ỹ|}

The latter set contains the empty substitution [] which will be denoted by τ .
We now define formally the operational semantics. In the following formula-

tion, symmetric rules have been omitted.

Sequentialization

α[x̃].P
α[x̃]−→ P

Sqn

Composition

P
(ỹ)α[x̃]−→ P ′ ỹ ∩ gn(Q) = ∅

P |Q (ỹ)α[x̃]−→ P ′|Q Cmp0

P
σx̃=ỹ−→ P ′

P |Q σx̃=ỹ−→ P ′|Qσx̃=ỹ
Cmp1

Communication

P
(ũ)α[x̃]−→ P ′ Q

(ṽ)α[ỹ]−→ Q′

 ũ ∩ ṽ = ∅
w̃ = rng(σx̃=ỹ) ∩ ũṽ
(σx̃=ỹ)−1(w̃) ⊆ ũṽ

P |Q σx̃=ỹ↑ũṽ−→ (w̃)(P ′σx̃=ỹ|Q′σx̃=ỹ) Cmm

Localization

P
δ−→ P ′ z 6∈ n(δ)

(z)P δ−→ (z)P ′ Loc0

P
σx̃=ỹ−→ P ′ z ∈ dom(σx̃=ỹ)

(z)P
σx̃=ỹ↑z−→ P ′ Loc1

P
(ỹ)α[x̃]−→ P ′ z ∈ {x̃} \ ỹ α 6∈ {z, z}

(z)P
(z)(ỹ)α[x̃]−→ P ′ Loc2

Replication
P |!P δ−→ P ′

!P δ−→ P ′ Rpl

The side condition on Cmm is a bit involved. Here is an example of applying
the rule:

P
(c)(x)a[c,x,x,u]−→ P ′ Q

(d)(v)a[d,y,w,v]−→ Q′

P |Q [y/w]−→ (c)(P [c/d, y/x, y/w, u/v]|Q[c/d, y/x, y/w, u/v])

where ũ = cx, x̃ = cxxu, ṽ = dv, ỹ = dywv, w̃ = c and σx̃=ỹ is chosen to be
[c/d, y/x, y/w, u/v].

In what follows, σx̃=ỹ will often be abbreviated to σ and
[]−→ will always be

simplified to τ−→. In other words τ is identified to [] when used as a label in the
transitional semantics.

Two processes are strongly bisimilar if they can simulate each other’s actions
and evolve into processes that are still strongly bisimilar. In this approach all
actions, whether they are internal or external, are treated with equal impor-
tance. The relation introduced in the following definition would be called strong
open bisimilarity by some researchers. We will however simply call it strong
bisimilarity.

Definition 3. Suppose R is a symmetric binary relation on A. The relation R
is a strong bisimulation if whenever PRQ then the following properties hold:
(i) If Pσ

σx̃=ỹ−→ P ′ (including the case when σx̃=ỹ = τ) for a substitution σ then
some Q′ exists such that Qσ

σx̃=ỹ−→ Q′ and P ′RQ′.

(ii) If Pσ
(ỹ)α[x̃]−→ P ′ for a substitution σ then some Q′ and ỹ′ exist such that

Qσ
(ỹ′)α[x̃]−→ Q′, {ỹ} = {ỹ′} and P ′RQ′.

The strong bisimilarity ∼ is the largest strong bisimulation.

The closure under substitution ensures that ∼ is a congruence relation. The
proof of this fact is routine. The two processes (x)(y)a[x, y].P and (y)(x)a[x, y].P

are bisimilar. The transition (x)(y)a[x, y].P
(x)(y)a[x,y]−→ P is matched up by

(y)(x)a[x, y].P
(y)(x)a[x,y]−→ P . In the two actions the order of the appearances

of (x) and (y) are not the same. This explains the side condition in (ii) of the
above definition.

Theorem 4. The strong bisimilarity is congruent.

In the rest of the section, we introduce some lemmas necessary to the devel-
opment of the remaining paper.

Lemma 5. Suppose σ is a normal substitution. The following properties hold:

(i) If P
(ỹ)α[x̃]−→ P ′ and ỹ ∩ (dom(σ) ∪ rng(σ)) = ∅ then Pσ

(ỹ)α[x̃σ]−→ P ′σ.

(ii) If P
σ′

x̃=ỹ−→ P ′ then Pσ
σ′

x̃σ=ỹσ−→ P ′σσ′x̃σ=ỹσ for some chosen σ′x̃σ=ỹσ.

Proof. Both (i) and (ii) are proved by induction on the height of derivation.
(i) Suppose the last rule applied is Loc2. By induction hypothesis

Pσ
(ỹ)ασ[x̃σ]−→ P ′σ

Using the condition {zỹ}∩(dom(σ)∪rng(σ)) = ∅ one obtains that z ∈ {x̃σ}\{ỹ}
and ασ 6∈ {z, z}. Using Loc2, one has that

(z)Pσ
(z)(ỹ)ασ[x̃σ]−→ P ′σ

(ii) Suppose the last rule applied is Cmm. By α-convention and (i)

Pσ
(ṽ)ασ[x̃σ]−→ P ′σ

Qσ
(ũ)ασ[ỹσ]−→ Q′σ

By Cmm, one has

(P |Q)σ ≡ Pσ|Qσ
σ′

x̃σ=ỹσ−→ (w̃)(P ′σσ′x̃σ=ỹσ|Q′σσ′x̃σ=ỹσ) ≡ (w̃)(P ′|Q′)σσ′x̃σ=ỹσ

Suppose the last rule applied is Loc1. Then Pσ
σ′

x̃σ=ỹσ−→ P ′σσ′x̃σ=ỹσ by induction

hypothesis. Applying Loc1 one obtains that (z)Pσ
σ′

x̃σ=ỹσ↑z
−→ P ′σσ′x̃σ=ỹσ. We are

done by observing that σ′x̃σ=ỹσ↑z = σ′
x̃′σ=ỹ′σ

for some x̃′ and ỹ′ and some chosen
σ′

x̃′σ=ỹ′σ
. As z 6∈ gn(P ′σ), P ′σσ′x̃σ=ỹσ = P ′σσ′

x̃′σ=ỹ′σ
. ut

The reverse of the above lemma also holds.

Lemma 6. Suppose σ is a normal substitution. The following properties hold:

(i) If Pσ
(ỹ)α[x̃]−→ P ′ and ỹ ∩ (dom(σ) ∪ rng(σ)) = ∅ then there exist some α′, x̃′

and P1 such that P
(ỹ)α′[x̃′]−→ P1 and α = α′σ, x̃ = x̃′σ and P ′ ≡ P1σ.

(ii) If Pσ
σ1−→ P ′ is caused by a communication through a local name then P

σx̃=ỹ−→
P1 for some x̃, ỹ, σx̃=ỹ and P1 such that σ1 = σx̃σ=ỹσ and P ′ ≡ P1σσx̃σ=ỹσ for
some chosen σx̃σ=ỹσ.

Proof. This is a simple proof by induction on the height of derivation. ut

Lemma 7. Suppose a 6∈ gn(P). If (x̃)(P |a[x̃]) τ−→ P ′|a[ỹ] then P
[ỹ/x̃]−→ P ′.

Proof. It is obvious that (x̃)(P |a[x̃]) τ−→ P ′|a[ỹ] is obtained by applying Loc1

several times. So P |a[x̃]
[ỹ/x̃]−→ P ′|a[ỹ], which must follows from P

[ỹ/x̃]−→ P ′. ut

4 A Process Calculus without Precedence

Almost all process calculi has prefix operator. But the role of the combinator
has not been clarified. The main objective of having prefix operator is to impose
causal dependency which is important to all computation models. Apart from
using prefix operator, causality can be achieved by other means such as mobility.
In the rest of the paper we investigate a process calculus without prefix operator.
This model is obtained from the polyadic χ-calculus by simply removing the
prefix operator. Its abstract syntax is as follows:

P := α[x̃] | P |P ′ | (x)P | !P

The operational semantics is that of the polyadic χ-calculus minus those con-
cerned with the prefix combinator. In addition one needs th following rule:

α[x̃]
α[x̃]−→ 0

Act

where 0 is defined as (a)a[a] for some a of suitable sort.
We will call this language atomic χ-calculus. The set of atomic χ-processes

is denoted by A.
The atomic χ-calculus enjoys some properties not satisfied by the (polyadic)

χ-calculus. For instance the two actions of

(w)(a[x, y, z]|(b)(b[x, z]|b[y, w]))
a[x,y,z]−→ [y/x]−→ 0|(b)(0|0)

can be swapped as

(w)(a[x, y, z]|(b)(b[x, z]|b[y, w]))
[y/x]−→a[y,y,z]−→ 0|(b)(0|0)

After reordering the two actions are not necessarily the same as the original
ones. Some modifications are necessary. But the actions are incurred by the
same components, so to speak, as the original ones. For another example one
notices that

(x)(y)(a[x, y, z]|(b)(b[x, z]|b[y, y]))
(x)(y)a[x,y,z]−→ [y/x,y/z]−→ 0|(b)(0|0)

can be reordered as

(x)(y)(a[x, y, z]|(b)(b[x, z]|b[y, y])) τ−→a[z,z,z]−→ 0|(b)(0|0)

The drop of prefix operator allows one to rearrange the order of actions in many
occasions. The next lemma deals with two situations.

Lemma 8. The following properties hold:

(i) If P
(ỹ)α[x̃]−→ σ−→ P ′ and σ−1(ỹ ∩ rng(σ)) ⊆ ỹ then P

σ↑ỹ−→(ỹ′)α[x̃σ]−→ P ′, where
ỹ′ = ỹ \ dom(σ).

(ii) If P
(ỹ)α[x̃]−→ (ỹ′)α′[x̃′]−→ P ′ then P

(z̃′)α′[x̃′]−→ (z̃)α[x̃]−→ P ′ such that z̃′ = ỹ′ ∪ ({x̃′} ∩ ỹ)
and z̃ = ỹ \ {x̃′}.

Proof. The proof is carried out by induction on the height of derivation. There
are several cases:

– P is α[z̃]. Impossible.
– P is of form P1|P2. If the two actions are caused solely by either P1 or P2

individually then apply the induction hypothesis. Otherwise ỹ ∩ (dom(σ) ∪
rng(σ)) = ∅. Suppose P1

(ỹ)α[x̃]−→ P ′
1, P2

σ−→ P ′
2 and P

(ỹ)α[x̃]−→ σ−→ P ′ is

P ≡ P1|P2
(ỹ)α[x̃]−→ P ′

1|P2
σ−→ P ′

1σ|P ′
2 ≡ P ′

Then
P ≡ P1|P2

σ−→ P1σ|P ′
2

(ỹ)α[x̃σ]−→ P ′
1σ|P ′

2 ≡ P ′

by Lemma 5.

– P is of the form (v)P1. There are several subcases:

1. P
(ỹ)α[x̃]−→ σ−→ P ′ is caused by P1

(ỹ)α[x̃]−→ σ−→ P ′
1 such that v 6∈ {x̃} and

v 6∈ dom(σ)∪ rng(σ). By induction hypothesis, P1
σ↑ỹ−→(ỹ′)α[x̃σ]−→ P ′

1, where

ỹ′ = ỹ \ dom(σ). So P
σ↑ỹ−→(ỹ′)α[x̃σ]−→ P ′.

2. P
(ỹ)α[x̃]−→ σ−→ P ′ is caused by P1

(ỹ)α[x̃]−→ σ′

−→ P ′
1 such that v 6∈ {x̃}, v ∈

dom(σ′) and σ = σ′↑v. By assumption σ−1(ỹ∩rng(σ)) ⊆ ỹ. So (σ′)−1(ỹ∩
rng(σ′)) ⊆ ỹv. There are two further subcases:
(a) (σ′)(v) 6∈ ỹ. Then (σ′)−1(ỹ ∩ rng(σ′)) ⊆ ỹ. By induction hypothesis,

P1
σ′↑ỹ−→(ỹ′)α[x̃σ′]−→ P ′

1 such that ỹ′ = ỹ\dom(σ′). Hence P
σ′↑ỹ↑v−→ (ỹ′)α[x̃σ′]−→

P ′. Now ỹ′ = ỹ \ dom(σ′) = ỹ \ dom(σ), σ′↑ỹ↑v = σ′↑v↑ỹ = σ↑ỹ and

x̃σ′ = x̃σ as v 6∈ {x̃}. So P
σ↑ỹ−→(ỹ′)α[x̃σ]−→ P ′, where ỹ′ = ỹ \ dom(σ).

(b) (σ′)(v) ∈ ỹ. Suppose (σ′)(v) is z. Let σ1 be defined as follows:

σ1(x) def=

σ′(x) x ∈ dom(σ′) \ (σ′)−1(z)
v x ∈ (σ′)−1(z) \ {v}
v x = z
x otherwise

By Lemma 5, P1
(ỹ)α[x̃]−→ σ1−→ P ′

1[v/z]. Clearly σ−1(ỹ ∩ rng(σ)) ⊆ ỹ
implies that σ−1

1 (ỹ ∩ rng(σ1)) ⊆ ỹ. It follows by induction that

P1
σ1↑ỹ−→ P ′′

1

(ỹ′)α[x̃σ1]−→ P ′
1[v/z] for some P ′′

1 such that ỹ′ = ỹ \dom(σ1).
By Loc0,

(v)P1
σ1↑ỹ−→ (v)P ′′

1

(v)(ỹ′)α[x̃σ1]−→ P ′
1[v/z]

By α-conversion and Lemma 5, one obtains

(v)P1
σ1↑ỹ−→ (z)P ′′

1 [z/v]
(z)(ỹ′)α[x̃σ′]−→ P ′

1

Now σ↑ỹ = (σ′↑v)↑ỹ = σ1↑ỹ and x̃σ′ = x̃σ. Therefore

(v)P1
σ↑ỹ−→(z)(ỹ′)α[x̃σ]−→ P ′

1

It also follows from ỹ′ = ỹ \ dom(σ1) that zỹ′ = ỹ \ dom(σ).

3. P
(ỹ)α[x̃]−→ σ−→ P ′ is caused by P1

(ỹ′)α[x̃]−→ σ−→ P ′ such that ỹ = ỹ′v and
v 6∈ dom(σ) ∪ rng(σ). The assumption σ−1(ỹ ∩ rng(σ)) ⊆ ỹ and the
condition v 6∈ dom(σ) ∪ rng(σ) imply that σ−1(ỹ′ ∩ rng(σ)) ⊆ ỹ′. By

induction hypothesis P1
σ↑ỹ′
−→(ỹ′′)α[x̃σ]−→ P ′ such that ỹ′′ = ỹ′ \ dom(σ). So

(v)P1
σ↑ỹ′
−→(v)(ỹ′′)α[x̃σ]−→ P ′. Clearly vỹ′′ = vỹ′ \ dom(σ) = ỹ \ dom(σ).

4. P
(ỹ)α[x̃]−→ σ−→ P ′ is caused by P1

(ỹ′)α[x̃]−→ σ−→ P ′ such that ỹ = ỹ′v and v ∈
dom(σ). By assumption σ−1(ỹ ∩ rng(σ)) ⊆ ỹ. So σ−1(ỹ′ ∩ rng(σ)) ⊆ ỹ.
The rest of the proof is similar to the subcase 2.

5. P
(ỹ)α[x̃]−→ σ−→ P ′ is caused by P1

(ỹ′)α[x̃]−→ σ−→ P ′ such that ỹ = ỹ′v and
v ∈ rng(σ). The assumption σ−1(ỹ ∩ rng(σ)) ⊆ ỹ implies σ−1(ỹ′ ∩

rng(σ)) ⊆ ỹ′. By induction hypothesis P1
σ↑ỹ′
−→(ỹ′′)α[x̃σ]−→ P ′ such that

ỹ′′ = ỹ′ \ dom(σ). It follows from the assumption σ−1(ỹ ∩ rng(σ)) ⊆ ỹ

that v 6∈ dom(σ↑ỹ′) ∪ rng(σ↑ỹ′). So (v)P1
σ↑ỹ′
−→(v)(ỹ′′)α[x̃σ]−→ P ′. That is

(v)P1
σ↑ỹ′v−→ (v)(ỹ′′)α[x̃σ]−→ P ′. It is clear that vỹ′′ = ỹ′v \ dom(σ).

– P is of the form !P1. Then P1|!P1
(ỹ)α[x̃]−→ σ−→ P ′ and σ−1(ỹ ∩ rng(σ)) ⊆ ỹ.

By induction hypothesis P1|!P1
σ↑ỹ−→(ỹ′)α[x̃σ]−→ P ′ such that ỹ′ = ỹ \ dom(σ).

Therefore P
σ↑ỹ−→(ỹ′)α[x̃σ]−→ P ′.

This completes the proof of (i).
(ii) The proof is similar. ut

Corollary 9. If P
(ỹ)α[x̃]−→ τ−→ P ′ then P

τ−→(ỹ)α[x̃]−→ P ′.

Proof. This is a special case of Lemma 8. ut

In polyadic χ-calculus P
(x)a[x]−→ a[y]−→ P ′ does not imply P

τ−→ P ′[y/x]. Take
for example P to be (x)a[x].a[y]. In the atomic χ-calculus however one can

conclude P
τ−→ P ′[y/x] from P

(x)a[x]−→ a[y]−→ P ′. This is one of the virtues of working
without prefix operator. On the other hand if the communication P

τ−→ P ′ takes
place through a global name a then it can be decomposed as it were into two
output actions with both subject names being a. The next lemma generalizes
this observation to updates.

Lemma 10. The following properties hold:

(i) If P
(ũ)a[x̃]−→ P1

(ṽ)a[ỹ]−→ P ′
1 then there exist some w̃, σx̃=ỹ and P ′ such that

P
σx̃=ỹ↑ũṽ−→ P ′, (w̃)(P ′

1σx̃=ỹ) ∼ P ′, w̃ = rng(σx̃=ỹ) ∩ ũṽ and (σx̃=ỹ)−1(w̃) ⊆ ũṽ.
(ii) If P

σ−→ P ′ is caused by a communication through a global name a then

there exist some x̃, ỹ, ũ, ṽ, w̃, σx̃=ỹ, P1 and P ′
1 such that P

(ũ)a[x̃]−→ P1
(ṽ)a[ỹ]−→ P ′

1,
σ = σx̃=ỹ↑ũṽ, (w̃)(P ′

1σx̃=ỹ) ∼ P ′, w̃ = rng(σx̃=ỹ) ∩ ũṽ and (σx̃=ỹ)−1(w̃) ⊆ ũṽ.

Proof. Suppose P
(ũ)a[x̃]−→ P1

(ṽ)a[ỹ]−→ P ′
1. We prove by induction on the height of

derivation.

– P is of the form α[z̃]. This case is impossible.

– P is of the form A1|A2. If A1
(ũ)a[x̃]−→ (ṽ)a[ỹ]−→ A′

1 then A1
σx̃=ỹ↑ũṽ−→ A′ for some

chosen σx̃=ỹ and A′ and (w̃)(A′
1σx̃=ỹ) ∼ A′ for some w̃ such that w̃ =

rng(σx̃=ỹ) ∩ ũṽ and (σx̃=ỹ)−1(w̃) ⊆ ũṽ. Then A1|A2
σx̃=ỹ↑ũṽ−→ A′|A2σx̃=ỹ↑ũṽ.

Therefore

A′|A2σx̃=ỹ↑ũṽ ∼ (w̃)(A′
1σx̃=ỹ)|A2σx̃=ỹ↑ũṽ ∼ (w̃)(A′

1σx̃=ỹ|A2σx̃=ỹ)

because ũṽ ∩ gn(A2) = ∅.

– P is of the form A1|A2 and the two consecutive actions P
(ũ)a[x̃]−→ P1

(ṽ)a[ỹ]−→ P ′
1

are performed by A1 and A2 respectively. We are done by applying Cmm.
– P is of the form (z)A and z 6∈ x̃ỹ. This case is simple.

– P is of the form (z)A and z ∈ x̃. Let ũ′ be ũ \ z. Then A
(ũ′)a[x̃]−→ P1

(ṽ)a[ỹ]−→ P ′
1.

By induction hypothesis, A
σx̃=ỹ↑ũ′ṽ−→ P ′ and (w̃)(P ′

1σx̃=ỹ) ∼ P ′ for some cho-
sen σx̃=ỹ and for some w̃ such that w̃ = rng(σx̃=ỹ)∩ ũṽ and (σx̃=ỹ)−1(w̃) ⊆
ũṽ. There are two subcases:
• z ∈ dom(σx̃=ỹ). Then P

(ũ)a[x̃]−→ P1
(ṽ)a[ỹ]−→ P ′

1 and P
σx̃=ỹ↑ũṽ−→ P ′. There is

nothing more to be proved.

• z ∈ rng(σx̃=ỹ). Then P
(ũ)a[x̃]−→ P1

(ṽ)a[ỹ]−→ P ′
1 and P

σx̃=ỹ↑ũṽ−→ (z)P ′. Now
clearly (w̃z)(P ′

1σx̃=ỹ) ∼ (z)P ′. So this case is fine as well.
– P is of the form (z)A and z ∈ ỹ. The situation is similar to the above case.
– P is of the form !P1. Use induction hypothesis.

Suppose P
σ−→ P ′ is caused by a communication through a global name a.

The the following proof goes by structural induction.

– P is of the form α[z̃]. This case is impossible.
– P is of the form A1|A2. If the update action is caused solely by either A1

or A2, then apply induction hypothesis. If the update action is caused by

A1
(ũ)a[x̃]−→ A′

1 and A2
(ṽ)a[ỹ]−→ A′

2, then ũ∩ ṽ = ∅ by α-convention. We are done
by applying Cmm-rule.

– P is of the form (z)A1. There are two subcases:
• If P

σ−→ P ′ is obtained from A1
σ−→ A′

1 such that P ≡ (z)A1, P ′ ≡ (z)A′
1

and z 6∈ dom(σ) ∪ rng(σ). By induction hypothesis, there exist some a,

x̃, ỹ, ũ, ṽ, w̃, σx̃=ỹ, B1 and B′
1 such that A1

(ũ)a[x̃]−→ B1
(ṽ)a[ỹ]−→ B′

1, σ =
σx̃=ỹ↑ũṽ, (w̃)(B′

1σx̃=ỹ) ∼ A′
1, w̃ = rng(σx̃=ỹ) ∩ ũṽ and (σx̃=ỹ)−1(w̃) ⊆

ũṽ. It follows that P
(ũ)a[x̃]−→ (z)B1

(ṽ)a[ỹ]−→ (z)B′
1 and

(w̃)((z)B′
1σx̃=ỹ) ∼ (z)A′

1 ≡ P ′

• If P
σ−→ P ′ is obtained from A1

σ′

−→ P ′ such that P ≡ (z)A1, z ∈
dom(σ′) and σ = σ′↑z. By induction hypothesis, there exist some a, x̃, ỹ,

ũ, ṽ, w̃, σx̃=ỹ, B1 and B′
1 such that A1

(ũ)a[x̃]−→ B1
(ṽ)a[ỹ]−→ B′

1, σ′ = σx̃=ỹ↑ũṽ,
(w̃)(B′

1σx̃=ỹ) ∼ P ′, w̃ = rng(σx̃=ỹ) ∩ ũṽ and (σx̃=ỹ)−1(w̃) ⊆ ũṽ. Then

either P
(z)(ũ)a[x̃]−→ B1

(ṽ)a[ỹ]−→ B′
1 or P

(ũ)a[x̃]−→ (z)B1
(z)(ṽ)a[ỹ]−→ B′

1. In either
case σ = σ′↑z = σx̃=ỹ↑ũṽz. It is also obvious that w̃ = rng(σx̃=ỹ) ∩ ũṽz
and (σx̃=ỹ)−1(w̃) ⊆ ũṽz.

– P is of the form !P1. Use induction hypothesis.

This completes the proof. ut

The next lemma spells out another property enjoyed by atomic χ-calculus.
It is not satisfied by the polyadic χ-calculus.

Lemma 11. If P
(ỹ)α[x̃]−→ P ′ then P ∼ (ỹ)(α[x̃]|P ′).

Proof. The proof is carried out by structural induction.

– P is of the form α[x̃]. Then P ∼ α[x̃]|0 ≡ α[x̃]|P ′.

– P is of the form P1|P2 and P
(ỹ)α[x̃]−→ P ′ is caused by P1

(ỹ)α[x̃]−→ P ′
1. By

induction hypothesis P1 ∼ (ỹ)(α[x̃]|P ′
1). Hence

P ∼ (ỹ)(α[x̃]|P ′
1)|P2 ∼ (ỹ)(α[x̃]|(P ′

1|P2))

– P is of the form (z)P1. If P
(ỹ)α[x̃]−→ P ′ is caused by P1

(ỹ)α[x̃]−→ P ′
1 such that z 6∈

x̃. Then P ′ ≡ (z)P ′
1 and P1 ∼ (ỹ)(α[x̃]|P ′

1). Therefore P ∼ (z)(ỹ)(α[x̃]|P ′
1) ∼

(ỹ)(α[x̃]|(z)P ′
1) ≡ (ỹ)(α[x̃]|(z)P ′). If P

(ỹ)α[x̃]−→ P ′ is caused by P1
(ỹ′)α[x̃]−→ P ′

such that z ∈ x̃ and ỹ = zỹ′. Then P1 ∼ (ỹ′)(α[x̃]|P ′). Consequently P ∼
(ỹ)(α[x̃]|P ′).

– P is of the form !P1. Then P1|!P1
(ỹ)α[x̃]−→ P ′. So P ∼ P1|!P1 ∼ (ỹ′)(α[x̃]|P ′).

This completes the proof. ut

5 Ground Bisimilarity for Atomic χ-Calculus

In the study of asynchronous π-calculus it was observed that ground bisimilar-
ity is closed under substitution and therefore is a congruence relation. This is
significant in view of the fact that the ground bisimilarity for the π-calculus is
not closed under substitution. This closure property is essentially due to three
facts for the asynchronous language. The first is that a communication through
a global name can be decomposed into an output action followed immediately
by an input action. The second is that the ability to communicate through a
local name is not affected by substitution. And the third is the property that
P

δ−→ P ′ implies Pσ
δσ−→ P ′σ for all substitution σ. All the three properties

hold of the atomic χ-calculus. Therefore it should not come as a surprise that
strong bisimilarity is equivalent to its ground counterpart. Compared with the
situation in the asynchronous π-calculus, additional attention should be paid to
update actions in atomic χ-calculus.

Definition 12. Suppose R is a symmetric binary relation on A. The relation R
is a strong ground bisimulation if whenever PRQ then the following properties
hold:
(i) If P

σx̃=ỹ−→ P ′ (including the case when σx̃=ỹ = τ) then some Q′ exists such
that Q

σx̃=ỹ−→ Q′RP ′.

(ii) If P
(ỹ)α[x̃]−→ P ′ then some Q′ exists such that Q

(ỹ′)α[x̃]−→ Q′RP ′ and {ỹ} = {ỹ′}.
The strong ground bisimilarity, notation ∼g, is the largest strong ground bisim-
ulation.

The next result is crucial to axiomatization of the strong bisimilarity.

Theorem 13. ∼g is the same as ∼.

Proof. It is obvious that ∼⊆∼g. For the reverse inclusion we prove that

R def= {(Pσ,Qσ) | P ∼g Q and σ is a substitution}

is a strong bisimulation. Since a substitution is the composition of a finite number
of normal substitutions, we may consider normal substitutions only. Suppose
P ∼g Q and σ is a normal substitution. There are three cases:

– Pσ
(ỹ)a[x̃]−→ P ′. By Lemma 10, there must exist some b, x̃′ and P1 such that

P
(ỹ)b[x̃′]−→ P1, bσ = a, x̃′σ = x̃ and P1σ = P ′. By definition some Q1 and ỹ′

exist such that Q
(ỹ′)b[x̃′]−→ Q1 ≈g P1 and {ỹ} = {ỹ′}. By Lemma 5, Qσ

(ỹ′)a[x̃]−→
Q1σ.

– Pσ
σ1−→ P ′ is caused by an interaction through global name a. By Lemma 10,

there exist some x̃, ỹ, ũ, ṽ, w̃, σx̃=ỹ, P1 and P ′
1 such that Pσ

(ũ)a[x̃]−→ (ṽ)a[ỹ]−→ P ′
1,

σ1 = σx̃=ỹ↑ũṽ, (w̃)(P ′
1σx̃=ỹ) ∼ P ′, w̃ = rng(σx̃=ỹ) ∩ ũṽ and (σx̃=ỹ)−1(w̃) ⊆

ũṽ. It follows from Lemma 6 that P
(ũ)a′[x̃′]−→ (ṽ)a′′[ỹ′]−→ A′

1 for some a′, a′′, x̃′ and
ỹ′ such that x̃′σ = x̃, ỹ′σ = ỹ, a = a′σ = a′′σ and P ′

1 ≡ A′
1σ. By definition

some ũ′, ṽ′, B1 and B′
1 exist such that Q

(ũ)a′[x̃′]−→ (ṽ)a′′[ỹ′]−→ B′
1 ∼g A′

1, {ũ} =

{ũ′} and {ṽ} = {ṽ′}. Using Lemma 5 one gets that Qσ
(ũ)a[x̃]−→ (ṽ)a[ỹ]−→ B′

1σ. By

Lemma 9, Qσ
σx̃=ỹ↑ũṽ−→ Q′ for some Q′ such that Q′ ∼ (w̃)(B′

1σσx̃=ỹ). Notice
that P ′ ∼ (w̃)(A′

1σσx̃=ỹ) ≡ (w̃)(P ′
1σx̃=ỹ).

– Pσ
σ1−→ P ′ is caused by an interaction through a local name. By Lemma 6,

P
σx̃=ỹ−→ P1 for some σx̃=ỹ and P1 such that σx̃σ=ỹσ = σ1 and P1σσx̃σ=ỹσ ≡ P ′.

By definition some Q1 exists such that Q
σx̃=ỹ−→ Q1 ∼g P1. By (iii) of Lemma 5,

Qσ
σx̃σ=ỹσ−→ Q1σσx̃σ=ỹσ.

Conclude that R is a strong bisimulation up to ∼ and localization. It is then
easy to show that R is included in the strong bisimilarity. ut

Similarly one can introduce strong asynchronous ground bisimilarity. This
bisimilarity formalizes the intuition that (x̃)(a[x̃]|a[x̃]) should be equivalent to
(a)(x̃)(a[x̃]|a[x̃]).

Definition 14. Suppose R is a symmetric binary relation on A. The relation R
is a strong asynchronous ground bisimulation if it satisfies the following property:
(i) If P

σ−→ P ′ then Q′ exists such that Q
σ−→ Q′RP ′.

(ii) If P
(ỹ)α[x̃]−→ P ′ and |ỹ| < |x̃| then Q′ and ỹ′ exist such that Q

(ỹ′)α[x̃]−→ Q′RP ′

and {ỹ} = {ỹ′}.
(iii) If P

(ỹ)α[x̃]−→ P ′ and |ỹ| = |x̃| then Q′ exists such that one of the following
properties holds:

– ỹ′ exist such that Q
(ỹ′)α[x̃]−→ Q′RP ′ and |ỹ′| = |x̃|.

– Q
τ−→ Q′ and some P ′′ exists such that P ′ α[x̃]−→ P ′′RQ′.

The strong asynchronous ground bisimilarity, notation ∼a
g , is the largest strong

asynchronous ground bisimulation.

Theorem 15. ∼a
g is closed under substitution.

Proof. The proof is similar to that of Theorem 13. ut

It follows that ∼a
g is a congruence relation. If in Definition 14 we have required

the relation to be closed under substitution we would get strong asynchronous
bisimilarity ∼a. Theorem 15 says that the strong asynchronous bisimilarity is
the same as the strong asynchronous ground bisimilarity.

6 Axiomatization in the Absence of Prefix, Summation
and Match Combinators

The problems of axiomatization for equivalences on mobile processes are much
more interesting than those in CCS. Extra effort is necessary to deal with mobil-
ity in an interleaving scenario. For that purpose match combinator is introduced
in π-calculus. Together with the prefix and the summation combinators, the
match operator retains the mobility when converting a concurrent process to a
nondeterministic process. All the three operators, prefix, summation and match
combinators, play crucial role in axiomatic treatment of π-calculus.

In [2] the authors have given a complete system for strong ground bisimilarity
on finite asynchronous π-processes. The axiomatization uses restricted forms of
prefix and summation operators. The match operator is not necessary.

In this section we make an initial step towards an axiomatic theory of atomic
χ-calculus. We will be focusing on the strong bisimilarity and strong asyn-
chronous bisimilarity. Our treatment is novel in that it uses none of the prefix
combinator, the summation combinator and the match combinator.

Let P1, . . . , Pn be n atomic χ-processes. We will write

n∏
i=1

Pi or
∏

i∈{1,...,n}

Pi

for (. . . ((P1|P2)|P3) . . .)|Pn. When n = 0,
∏n

i=1 Pi is just 0. We say that x̃
are the global name occurrences in P if the sequence of all the occurrences
of global names appeared in P from left to right is x̃. We say that x̃ are the
local name occurrences in P if the sequence of all the occurrences of local
names appeared in P from left to right is x̃. Local name occurrences ignore
the names appeared in localization operators. For instance the global name oc-
currences of (x)(a[x]|(y)(a[y]|c[c, x])) are aacc and the local name occurrences

of (x)(a[x]|(y)(a[y]|c[c, x])) are xyx. Suppose x̃1, . . . , x̃n are the global name oc-
currences in P1, . . . , Pn respectively and b̃1, . . . , b̃n are the local name occur-
rences in P1, . . . , Pn respectively. Suppose further that z̃1, . . . , z̃n and d̃1, . . . , d̃n

are pairwise distinct fresh names such that |z̃1| = |x̃1|, . . . , |z̃n| = |x̃n| and
|d̃1| = |b̃1|, . . . , |d̃n| = |b̃n|. Let c̃i, for each i ∈ {1, . . . , n}, be obtained from
b̃i by removing repetitive occurrences. It follows that {c̃i} = {b̃i} and c̃i are
pairwise distinct. Abbreviate x̃1 . . . x̃n, b̃1 . . . b̃n, z̃1 . . . z̃n, d̃1 . . . d̃n and c̃1 . . . c̃n

by x̃, b̃, z̃, d̃ and c̃ respectively. Let ṽ1, . . . , ṽn and w̃1, . . . , w̃n be sequences of
names such that |ṽ1| = |w̃1|, . . . , |ṽn| = |w̃n| and let ṽ1 . . . ṽn, w̃1 . . . w̃n be abbre-
viated respectively by ṽ and w̃. We will write

∑n
i=1[ṽi=w̃i].Pi for the following

atomic χ-process:

(e)(a)(
n∏

i=1

(z̃)(d̃)(a[ez̃d̃w̃1 . . . ˜wi−1ṽi ˜wi+1 . . . w̃n]|Pi[z̃id̃i])|(c̃)a[ex̃b̃w̃])

where e is a fresh name, a is fresh with suitable sort and Pi[z̃id̃i], for i ∈
{1, . . . , n}, is Pi obtained by removing all the localization operators in Pi and
replacing the global name occurrences x̃i by z̃i and local name occurrences b̃i by
d̃i. Let’s see one example. Suppose P1 is (a)(z)(a[x]|(a[z]|b[b])) and P2 is c[y]|d[d].
Suppose further that ṽ1 = b, w̃1 = c, ṽ2 = cd and w̃2 = ef . Then

∑2
i=1[ṽi=w̃i].Pi

denotes the following process

(t)(s)(((z̃)(b̃)(s[tz̃bef]|b1[z1]|(b2[b3]|z2[z3]))|(z̃)(s[tz̃ccd]|(z4[z5]|z6[z7])))|A)

where A stands for (a)(z)s[txbbcyddaazcef], z̃ stands for z1z2z3z4z5z6z7 and b̃
stands for b1b2b3.

We call [ṽi=w̃i].Pi a summand of
∑n

i=1[ṽi=w̃i].Pi and [ṽi=w̃i] an update pre-
fix and Pi the corresponding continuation. We call [ṽi=w̃i] a tau prefix, written
τ , if both ṽi and w̃i are empty. When n = 1 we abbreviate

∑n
i=1[ṽi=w̃i].Pi to

[ṽ1=w̃1].P1, which will be further abbreviated to [ṽ1=w̃1] if P1 is 0.
The reason to introduce a lot of fresh names in

∑n
i=1[ṽi=w̃i].Pi is to make

sure that
n∑

i=1

[ṽi=w̃i].Pi

σṽi=w̃i−→ ∼g Piσṽi=w̃i

and that
∑n

i=1[ṽi=w̃i].Pi can not perform any other actions. To conform to the
standard notation we will often write

∑n
i=1[ṽi=w̃i].Pi alternatively as

[ṽ1=w̃1].P1 + . . . + [ṽn=w̃n].Pn

We write . . . + Pi + . . . for instance when we want to emphasize particular
summand(s) of

∑n
i=1[ṽi=w̃i].Pi.

For update prefix [ṽ=w̃] let [(ṽ=w̃) \ x] denote any update prefix [ỹ=z̃] such
that ∀a, b.(a 6= x)∧ (b 6= x) ⇒ ((ṽ=w̃ ⇒ a = b) ⇔ (ỹ=z̃ ⇒ a = b)). For example
[(xy=yw) \ y] can be [x=w].

E1 P = P
E2 P = Q if Q = P
E3 P = R if P = Q and Q = R
E4 P |R = Q|R if P = Q
E5 (x)P = (x)Q if P = Q
C1 P |0 = P
C2 P |Q = Q|P
C3 P |(Q|R) = (P |Q)|R
L1 (x)0 = 0
L2 (x)(y)P = (y)(x)P
L3 (x)(P |Q) = P |(x)Q if x 6∈ gn(P)

S1 . . . +[ṽ=w̃].P+[ṽ′=w̃′].P ′+ . . . = . . . +[ṽ′=w̃′].P ′+[ṽ=w̃].P+ . . .
S2 . . . +[ṽ=w̃].P+[ṽ=w̃].P+ . . . = . . . +[ṽ=w̃].P+ . . .
S3 . . . +[ṽ=w̃].P+ . . . = . . . +[ṽ=w̃].P [wi/vi]+ . . .

if vi is the i-th component of ṽ and wi is the
i-th component of w̃

S4 . . . +[ṽ=w̃].P+ . . . = . . . +[ṽ′=w̃′].P+ . . . if ṽ=w̃ ⇔ ṽ′=w̃′

S5 (x)
∑n

i=1
[ṽi=w̃i].Pi =

∑n

i=1
[(ṽi=w̃i) \ x].(x)Pi[xi/x]

where, for each i ∈ {1, . . . , n}, ṽi=w̃i ⇒ x = xi

and xi = x only if ∀y.y 6= x ⇒ (ṽi=w̃i 6⇒ x = y)
A (x̃)(a[x̃]|a[x̃]) = τ

Fig. 1. Axioms for ∼g and ∼a
g

Let ASA be the set of axioms given in Figure 1 together with the following
expansion law

(x̃)(
∏

i∈{1,...,n}

αi[ṽi]) = (x̃)
1≤i<j≤n∑

αi=αj

[ṽi=ṽj].
∏

k∈{1,...,n}\{i,j}

αk[ṽi]

where for each i ∈ {1, . . . , n} either αi ∈ x̃ or αi ∈ x̃. Let AS be ASA \ {A}. We
will write AS ` P = Q to mean that the equality P = Q is derivable from the
rules and axioms of AS. When no confusion arises, we simply write P = Q. We
will also write P

R= Q to indicate that R is the major axiom applied to derive
P = Q. The meaning of ASA ` P = Q is similar.

Lemma 16. If P is finite and P
(ỹ)α[x̃]−→ P ′ then AS ` (ỹ)(α[x̃]|P ′) = P .

Proof. This is a simple proof by structural induction. ut

A process P is in normal form if it is of the form

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)

such that the following conditions hold:

1. Each Pj , for 1 ≤ j ≤ m, is in normal form.
2. x̃ ⊆ gn(

∏n
i=1 αi[b̃i]).

3. There is an enumeration i1, . . . , in of {1, . . . , n} such that

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)
(ỹ1)αi1 [˜bi1]
−→ . . .

(ỹn)αin [˜bin]−→ ∼g

m∑
j=1

[ṽj=w̃j].Pj

for some ỹ1, . . . , ỹn with x̃ = ỹ1 . . . ỹn. When |x̃| = 0 and m = n = 0 the normal
form is 0.

Lemma 17. Every finite atomic χ-process is provably equal in AS to a normal
form process.

Proof. Suppose P is a finite atomic χ-process. Then P
(ỹ1)α1[b1]−→ . . .

(ỹn)αn[bn]−→ P ′,
for n ≥ 0, such that all subject names in P ′ are local. By (ii) of Lemma 8 the
process P ′ is not affected if (ỹ1)α1[b1], . . . , (ỹn)αn[bn] are performed in a different
order as long as it is legal. By C-axioms, L-axioms and Lemma 16, one derives
that

AS ` P = (ỹ1 . . . ỹn)(α1[b̃1]| . . . |αn[b̃n]|P ′)

When y ∈ {ỹ1 . . . ỹn} \ gn(α1[b̃1]| . . . |αn[b̃n]), we can use the L-laws and S5 to
push (y) inwards. So we may assume that {ỹ1 . . . ỹn} ⊆ gn(α1[b̃1]| . . . |αn[b̃n]).
Apply the expansion law and S5 to P ′, one gets

AS ` P = (ỹ1 . . . ỹn)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)

For each j ∈ {1, . . . ,m}, Pj is structurally simpler than P . So we can use induc-
tion hypothesis on Pj . ut

We are now in a position to prove completeness theorems.

Theorem 18. AS is sound and complete for ∼g.

Proof. The soundness can be easily verified. Suppose P ∼g Q. By Lemma 17,
we can assume that both P and Q are in normal form. Let P be

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)

and Q be

(x̃′)(
n′∏

i=1

α′i[b̃′i]|
m′∑
j=1

[ṽ′j=w̃′
j].Qj)

By definition there is an enumeration i1, . . . , in of {1, . . . , n} such that

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)
(ỹ1)αi1 [˜bi1]
−→ . . .

(ỹn)αin [˜bin]−→ =
m∑

j=1

[ṽj=w̃j].Pj

for some ỹ1, . . . , ỹn with x̃ = ỹ1 . . . ỹn. Now Q has to match up the above sequence
of actions by

(x̃′)(
n′∏

i=1

α′i[b̃′i]|
m′∑
j=1

[ṽ′j=w̃′
j].Qj)

(ỹ′
1)αi1 [˜bi1]
−→ . . .

(ỹ′
n)αin [˜bin]−→ =

m′∑
j=1

[ṽ′j=w̃′
j].Qj

such that
∑m

j=1[ṽj=w̃j].Pj ∼g

∑m′

j=1[ṽ
′
j=w̃′

j].Qj and {ỹ′i} = {ỹi} for each i ∈
{1, . . . , n}. This says that by using C-laws, L-laws and α-conversion one can
rewrite Q as

(x̃)(
n∏

i=1

αi[b̃i]|
m′∑
j=1

[ṽ′j=w̃′
j].Qj)

So we only have to show that

AS `
m∑

j=1

[ṽj=w̃j].Pj =
m′∑
j=1

[ṽ′j=w̃′
j].Qj (1)

Now for each j ∈ {1, . . . ,m} one has that

m∑
j=1

[ṽj=w̃j].Pj

σṽj=w̃j−→ = Pjσṽj=w̃j
(2)

for any chosen σṽj=w̃j
. To match up there must exist some j′ ∈ {1, . . . ,m′} such

that
m′∑
j=1

[ṽ′j=w̃′
j].Qj

σ
ṽ′

j
=w̃′

j−→ = Qj′σṽ′
j′=w̃′

j′
∼g Pjσṽj=w̃j

and σṽ′
j′=w̃′

j′
= σṽj=w̃j

. The latter implies ṽ′j′=w̃′
j′ ⇔ ṽj=w̃j . It is clear that

Pjσṽj=w̃j
and Qj′σṽ′

j′=w̃′
j′

are structurally simpler than P and Q respectively.

By induction hypothesis

AS ` Pjσṽj=w̃j = Qj′σṽ′
j′=w̃′

j′

Now

m′∑
j=1

[ṽ′j=w̃′
j].Qj ≡ . . . + [ṽ′j′=w̃′

j′].Qj′ + . . .

S3= . . . + [ṽ′j′=w̃′
j′].Qj′σṽ′

j′=w̃′
j′

+ . . .

= . . . + [ṽ′j′=w̃′
j′].Pjσṽj=w̃j + . . .

S4= . . . + [ṽj=w̃j].Pjσṽj=w̃j
+ . . .

S3= . . . + [ṽj=w̃j].Pj + . . .

For each j ∈ {1, . . . ,m} we consider all the summands of
∑m′

j=1[ṽ
′
j=w̃′

j].Qj that
can match the action in (2) and carry out the transformation. In this way we
can rewrite

∑m′

j=1[ṽ
′
j=w̃′

j].Qj into a form each of its summands is syntactically
identical to a summand of

∑m
j=1[ṽj=w̃j].Pj . Then use S1 and S2 to get (1). ut

Theorem 19. ASA is sound and complete for ∼a
g .

Proof. Suppose P ∼a
g Q. Let P be

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)

and Q be

(x̃′)(
n′∏

i=1

α′i[b̃′i]|
m′∑
j=1

[ṽ′j=w̃′
j].Qj)

If

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)
(b̃′

i
)α[b̃i]−→ P ′

where {b̃′i} = {b̃i} and |b̃′i| = |b̃i|, is matched up by

(x̃′)(
n′∏

i=1

α′i[b̃′i]|
m′∑
j=1

[ṽ′j=w̃′
j].Qj)

τ−→ Q′

for some Q′ such that

P ′ α[b̃i]−→ P ′′ ∼a
g Q′

Then b̃i ∩ gn(Q′) = ∅ and b̃i ∩ gn(P ′′) = ∅ for otherwise P ′′ can perform a
sequence of actions which Q′ can not simulate. Using L-laws, one shows that

AS ` P = (b̃i)(α[b̃i]|α[b̃i])|P1

for some normal form process P1. Consequently

ASA ` P = τ |P1

by induction hypothesis. If on the other hand

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)
(b̃′

i
)α[b̃i]−→ P ′ α[b̃i]−→ P ′′ (3)

such that b̃i ∩ gn(P ′′) 6= ∅, then by the above analysis

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)
(b̃′

i
)α[b̃i]−→ P ′

must be simulated by

(x̃′)(
n′∏

i=1

α′i[b̃′i]|
m′∑
j=1

[ṽ′j=w̃′
j].Qj)

(b̃′′
i
)α[b̃i]−→ Q′

for some Q′ and b̃′′i such that {b̃′′i } = {b̃i} and |b̃′′i | = |b̃i|.
To continue observe that, by expansion law,

ASA ` τ |
m∑

j=1

[ṽj=w̃j].Pj =
m∑

j=1

[ṽj=w̃j].(τ |Pj) + τ.
m∑

j=1

[ṽj=w̃j].Pj

Here the right hand side stands for

m+1∑
j=1

[ṽ′j=w̃′
j].P

′
j

where ṽ′j = ṽj , w̃′
j = w̃j , P ′

j ≡ Pj , for j ∈ {1, . . . ,m}, ˜v′m+1 and ˜w′
m+1 are empty

sequence, and Pm+1 is
∑m

j=1[ṽj=w̃j].Pj . So we can now assume that P is of the
normal form

(x̃)(
n∏

i=1

αi[b̃i]|
m∑

j=1

[ṽj=w̃j].Pj)

such that b̃i ∩ gn(P ′′) 6= ∅ whenever (3) holds. Similar assumption can be made
for Q.

The rest of the proof is similar to that of Theorem 18. ut

7 Final Remarks

The popular way of defining the operational semantics of the Fusion Calculus is
to impose a structural congruence on processes. This approach makes it easy to
define communications. In this paper we have adopted a pure labeled transition
semantics. In our view this latter approach simplifies rather than complicates
the algebraic investigation.

Complete systems for weak congruences are much more difficult than those
for strong congruences. In CCS ([14, 17]) it is well known that complete system
for weak equivalence can be obtained from that for strong equivalence by adding
three famous tau laws of Milner’s. For some time it had been conjectured that
the situation in π-calculus is similar. It was pointed out recently by the present
author ([10]) however that in general Milner’s tau laws fail to lift a complete
system for a strong congruence on finite mobile processes to a complete system
for the corresponding weak congruence. A fourth tau law is necessary to deal
with mobility. Axiomatization for asynchronous π-calculus is more difficult than
for π-calculus. Weak congruence for finite asynchronous π-processes has not been
axiomatized. As atomic χ-calculus shares properties with the asynchronous π-
calculus one expects that its axiomatization problem for weak congruence is

equally difficult. This seems to be the most important question about atomic
χ-calculus. Until we have answered this question, we can’t really say that we
understand the algebraic theory of the calculus.

Acknowledgement The author is supported by the NNSFC (69873032), the
863 Hi-Tech Project (863-306-ZT06-02-2), the Young Scientist Research Fund
and the University Scholar Funding Scheme. He is also supported by BASICS,
Center of Basic Studies in Computing Science, sponsored by Shanghai Education
Commission. BASICS is affiliated to the Department of Computer Science of
Shanghai Jiaotong University.

References

1. S. Abramsky, Proofs as Processes, Theoretical Computer Science, 135, 5–9, 1994.

2. R. Amadio, I. Castellani, D. Sangiorgi. On Bisimulation for the Asynchronous π-
Calculus. CONCUR’96 , Lecture Notes in Computer Science 1119, Springer, 1996.

3. G. Boudol. Asynchrony and the π-calculus. Research Report 1702, INRIA, Sophia-
Antipolis, 1992.

4. Y. Fu. The χ-Calculus. Proceedings of the International Conference on Advances
in Parallel and Distributed Computing , 74-81, March 19th-21th, Shanghai, IEEE
Computer Society Press, 1997.

5. Y. Fu. A Proof Theoretical Approach to Communications. ICALP’97 , 325–335,
July 7th-11th, Bologna, Italy, Lecture Notes in Computer Science 1256, Springer,
1997.

6. Y. Fu. Symmetric π-Calculus. Journal of Computer Science and Technology , 13:
202–208, 1998.

7. Y. Fu. Reaction Graphs. Journal of Computer Science and Technology , 13: 510–
530, 1998.

8. Y. Fu. Bisimulation Lattice of Chi Processes. ASIAN’98 , December 8-10, Manila,
The Philippines, Lecture Notes in Computer Science 1538, Springer, 245–262, 1998.

9. Y. Fu. Variations on Mobile Processes. Theoretical Computer Science, Vol. 221,
327-368, 1999.

10. Y. Fu. Open Bisimulations of Chi Processes. CONCUR’99 , Eindhoven, The
Netherlands, August 24-27, Lecture Notes in Computer Science 1664, 304-319,
Springer, 1999.

11. Y. Fu, Z. Yang. Chi Calculus with Mismatch. CONCUR 2000, 22-25 August, Penn-
sylvenia, USA, Lecture Notes in Computer Science 1877, 596-610, Springer, 2000.

12. Y. Fu, Z. Yang. The Ground Congruence for Chi Calculus. FST&TCS 2000, De-
cember, India, Lecture Notes in Computer Science, Springer, 2000.

13. J. Girard. Linear Logic, Theoretical Computer Science, 50, 1–102, 1987.

14. M. Hennessy, R. Milner. Algebraic Laws for Nondeterminism and Concurrency.
Journal of ACM , 67: 137–161, 1985.

15. K. Honda, M. Tokoro. An Object Calculus for Asynchronous Communication. Proc.
ECOOP ’91 , Geneve, 1991.

16. C. Laneve, B. Victor. Solos in Concert. ICALP’99 , July 11th-15th, Prague, Hun-
gary, Lecture Notes in Computer Science, Springer, 1999.

17. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

18. R. Milner, The Polyadic π-Calculus: a Tutorial, Proceedings of the 1991 Markto-
berdorf Summer School on Logic and Algebra of Specification, NATO ASI, Series
F, Springer, 1993.

19. R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes. Information and
Computation, 100: 1–40 (Part I), 41–77 (Part II), Academic Press.

20. M. Merro, D. Sangiorgi. On Asynchrony in Name-Passing Calculi. ICALP’98 , Lec-
ture Notes in Computer Science 1443, Springer, 1998.

21. J. Parrow, B. Victor. The Update Calculus. AMAST’97, Sydney, December 13-17,
1997.

22. J. Parrow, B. Victor. The Fusion Calculus: Expressive and Symmetry in Mobile
Processes. LICS’98 , 1998.

23. J. Parrow, B. Victor. The Tau-Laws of Fusion. CONCUR’98 , Lecture Notes in
Computer Science, 1998.

24. B. Victor, J. Parrow. Concurrent Constraints in the Fusion Calculus. ICALP ’98,
Lecture Notes in Computer Science 1443, 455–469, Springer, 1998.

