
Reaction Graph*

Yuxi Fu

Department of Computer Science
Shanghai Jiao Tong University

1954 Hua Shan Road, Shanghai 200030, China

Abstract

The paper proposes reaction graphs as graphical

representations of computational objects. A reac-

tion graph is a directed graph with all its arrows

and some of its nodes labeled. Computations are

modeled by graph rewriting of a simple nature.

The basic rewriting rules embody the essence of

both the communications among processes and cut-

eliminations in proofs. Calculi of graphs are iden-

ti�ed to give a formal and algebraic account of re-

action graphs in the spirit of process algebra. With

the help of the calculi, it is demonstrated that re-

action graphs capture many interesting aspects of

computations.

1 Introduction

Interaction diagrams are introduced in [24] as a di-

agrammatic description of mobile processes. There

are three kinds of nodes. Free nodes are labeled;

they represent free names in �-calculus. Parame-

ter nodes are unlabeled; they correspond to local

names. Input nodes are also unlabeled; they de-

note the input names. Arrows in interaction dia-

grams are classi�ed into two groups. Input arrows

model the input pre�xes of �-processes whereas out-
put arrows the output pre�xes. An input arrow

must point to an input node. When an output ar-

row ends with the node an input arrow starts, a

communication can happen. Such a communication

coalesces the start node of the output arrow and the

end node of the input arrow, dragging the remain-

ing arrows along the way. The communication also

deletes the input and the output arrows. An in-

teraction diagram is partitioned into regions, each

of which representing a process. To achieve Turing

computability, either recursion or duplication must

be incorporated in the diagrammatic setting. Inter-

action diagrams are graphic representations of con-

current processes with changing access capability.

*Journal of Computer Science and Technology,

13(6):510-530, 1998.

As mathematical objects, they are not as simple as

they could be.

Linear logic ([11, 33]) was introduced as a mod-

i�cation of classical logic. One of its aims is to

achieve a proof theory for classical logic compara-

ble to that for constructive logic. Computational

interpretation of the linear logic was initiated by

Abramsky ([2]). He subsequently gave a process

interpretation of linear proofs (confer [3]). The ap-

proach was further investigated by Bellin and Scott

([6]) using �-calculus. The underlying idea of the

proof-as-process paradigm is that cut eliminations

can be interpreted as communications. What is not

so clear in the process interpretation is that it is the

underlying graphs of derivations of proofs that are

being coded up.

In this paper we present reaction graphs as alter-

natives to interaction diagrams. Reaction graphs

have inspiration from interaction diagrams. But the

two di�ers signi�cantly. Firstly there are two classes

of nodes. The local nodes are unlabeled whereas

the global nodes are labeled. Secondly there is only

one kind of arrows. There is no structural di�er-

ence between input and output arrows. In other

words, computations are regarded as a symmetric

operation. Thirdly the universal computing power

is achieved by a simple form of duplication.

The main motivation of reaction graphs however

comes from the idea of proof-as-process discipline.

The rewriting of the graphs, which models compu-

tations, attempts to capture the essence of com-

munications in concurrency theory and cut elimi-

nations in logic. Compared to the interaction dia-

grams, the selling point of reaction graphs is its sim-

plicity. There are variants of reaction graphs that

have more convenient expressive power. The design

decision we have made for reaction graphs trades o�

expressiveness for simplicity. The reaction graphs

nevertheless are strong enough to capture most fa-

miliar aspects of computations. What is carried

out in this paper can be seen in a di�erent angle as

repercussion of Abramsky's proposal. We attempt

to substantiate a process-as-proof paradigm, which

should contribute to a better understanding of both

1

disciplines.

Apart from the interaction diagram, other forms

of diagrammatic representation of computing ob-

jects have also been proposed. Milner for example

has studied �-nets ([19]) and Lafont has introduced
interaction nets ([14]) and interaction combinators

([15]).

Section 2 de�nes in an informal way reaction

graphs and reactions. Section 3 identi�es two cal-

culi of graphs in the spirit of process algebra. The

terms of the calculus are the formal counterparts

of the reaction graphs described in the previous

section. Section 4 explains how reaction graphs

capture some interesting aspects of computations.

Some remarks are made in the �nal section.

The material in this paper has been announced

in [9].

2 Reaction Graph

Reaction graphs try to represent the topological

structures of the communicabilities of processes and

the underlying graphs of proof derivations in a dis-

tilled form. Computations of reaction graphs model

communications and cut eliminations. Technically

reaction graphs are directed graphs with each of

their arrows labeled by either + or �. The labels

indicate polarities of arrows and decide what can

react upon each other. A reaction graph may have

some of its nodes labeled. These nodes are impor-

tant in that they are the channels through which

environments interact with the graph. Normally we

are not interested in those reaction graphs which do

not have any labeled nodes. In sequel, the labels of

nodes will be drawn from a set N of names ranged

over by lower case letters. Throughout this paper,

we assign a number to each of the reaction graphs

given in the paper. We will refer to a reaction graph

by Gi where i is the number assigned to it.

The graphs we are interested in this paper are

�nite directed graphs with possibly more than one

arrow from one node to another. The start node

and the end node of an arrow can be the same.

The following is a formal de�nition of such graphs.

De�nition 2.1 A �nite directed graph is a quadru-
ple hN;E; d0; d1i where both N and E are �nite sets,
d0 and d1 are functions from E to N that specify
respectively the start and the end nodes of arrows.

Graphs may be given by diagrams. For instance

j

j
j

HHHHj

??
��
��*�����

is a graph. Graphs will often be presented diagram-

matically.

2.1 Simple Reaction Graph

Reaction graphs have two kinds of nodes. There are

local nodes and global nodes. A local node is unla-

beled, represented in a graph by a circle. A global

node is labeled with a small case letter, denoted by

a circle with the label written inside the circle.

jj m

local global

A simple reaction graph is a �nite directed graph

with each of its arrows labeled by either + or �.

In addition, for each name m there is at most one

node labeled by m. Loops are allowed, meaning

that an arrow can start and end with a same node.

There can be more than one arrow from one node

to another. The following is an example of simple

reaction graph.

j

j
j

m

HHHHj

??
��
��*�����

+ + +

�

�

(1)

In sequel, we will omit the label `+' and shorten the

label `�' to `-'. The above graph will look like

j

j
j

m

HHHHj

??��
��*����� -

-

(1)

Next is another example of simple reaction graphs.

ja

j

jb

jm
?
6 6

�
�
�
���
�
�	

-(2)

A formal de�nition of simple reaction graph goes

as follows:

De�nition 2.2 A simple reaction graph is a sex-
tuple hN;E; d0; d1; o; ei such that hN;E; d0; d1i is a
�nite directed graph, o is a partial function from N
to N that is injective on the domain of de�nition,
and e is a function from E to f�;+g.

The set f�;+g will be ranged over by p. De�ne �p
to be +(�) when p is �(+).
Let F;G; � � � range over reaction graphs. There

are four operations on reaction graphs that can be

introduced at this stage. The composition of two

2

graphs F and G, notation F jG, is obtained from

the union of F and G by identifying global nodes

with same labels. The composition G1jG2, of the

simple reaction graphs in (1) and (2), is the follow-

ing simple reaction graph:

j

j

ja

j

jb

jm
?
6 6

�
�
�
���
�
�	

6

--
@
@
@I@
@
@R
-- -(3)

For each label m, ()nm is a unary operation on

reaction graphs. Gnm is obtained from G by re-

moving the label m from the graph. For instance,

G1nm is the following graph:

j

j
j

HHHHj

??
��
��*����� -

-

(4)

The third operation is substitution. For names a
and b, G[a=b] is the graph obtained from G by

relabeling the node labeled b by a. For instance,

G1[n=m] is the following graph:

j

j
j

n

HHHHj

??
��
��*����� -

-

(5)

Notice that distinct global nodes of G might col-

lapse into one as a result of substitution operation.

The fourth operation is also unary. For each pair

of names m;n, G[m
p
!n], where p 2 f�;+g, is what

is obtained by adding to G an arrow with label p
starting from the node labeled by m and ending at

the node labeled by n. For example, G2[a
�

!b] is the
following graph:

ja

mj

jb

j?
6 6

�

-

�
�
���
�
�	

-

-

(6)

In case there isn't a node labeled by m (n) in G, the
operation has to add to the graph a node with that

label. This operation is a derived one. G[m
�

!n]
can be de�ned as the composition of G with the

following simple reaction graph:

j j-m n-(7)

The four operations de�ned here also apply to re-

action graphs that are not simple.

2.2 Atomic Reaction

Simple reaction graphs are meant to be computing

agents. The nodes of a graph are like atoms. They

react with one another, producing new atoms. The

arrows indicate the valences the nodes can exhibit.

For example, in the simple reaction graph G7 given

in section 2.1, the node labeledm shows up negative

valence to the node labeled n.

An atomic reaction happen between two local

nodes or between a local node and a global node.

When two local nodes show up opposite valences

to a same node, they can react by removing the

two arrows indicating the valences and coalescing

the two nodes. This computation step can be illus-

trated by the following simple reaction rule, where

p 2 f�;+g:

j j j je je- �p -p
)(A1)

Here the node with the incoming arrows labeled p
and �p acts as a catalyst. A circle with another

circle inside denotes either a global node or a local

node. The rule implies that a catalyst can be either

local or global. Reactions in our formalism reminds

one of the chemical reactions in the abstract chem-

ical machine ([5]). If a local node and a global node

show up opposite valences to a catalyst, they can

also react by removing the two arrows indicating the

valences and coalescing the two nodes. But now la-

bel the resulting node by the same name as the label

of the global reacting node. This computation step

can be illustrated by the following atomic reaction

rule:

j j j je je- �p -p
)m m(A2)

Another situation arises when two global nodes with

opposite valences or neutral valences are connected

to a same node, as shown in the following graph:

j j je- �p -p
mn(8)

If we merge the two nodes labeled respectively by n
and m, we wouldn't know how to label the resulting

node. We therefore disallow reactions between two

global nodes.

Applying the atomic computation rules, we can

rewrite simple reaction graphs. Graph G1 can be

rewritten in three ways. The global name labeled

by m can act as a catalyst for two reactions, which

are computationally the same:

j

j
j

m

HHHHj

??
��
��*����� -

-

)

j?
6

m

j ��� -

3

In graph G1, the node on the right can also be a

catalyst that triggers a reaction. The reduction can

be pictured as follows:

j

j
j

m

HHHHj

??
��
��*����� -

-

)

j
6-

mj �����-

The above two reductions are independent; they can

happen in parallel. In our interleaving scenario, a

choice has to be made as to which reduction is con-

ducted �rst. Nondeterminism is therefore intrinsic.

For two independent reductions, the choice of re-

duction order is immaterial. For instance, the above

two computations can be continued, ending with a

same graph:

) (

j?
6

m

j ��� -

jm
��
?

j
6-

mj �����-

The middle simple reaction graph is normal; it can-

not be reduced further.

Reactions are not always independent. Take the

next reduction sequence for instance.

j

j

j

j?
6 6

�

�
�
�	
--

-

j

j j
6

�
@
@
@I
-

-

j

j
��
?

-))

Here the second reduction depends causally on the

�rst one. Causality is an important aspect of any

model for computations.

2.3 Reaction Graph

A reaction graph can be repetitively rewritten by

applying (A1) and (A2). This procedure must ter-

minate in a �nite number of steps as each step de-

creases the number of arrows by two. To achieve

the universal computing power, we must go beyond

the simple framework.

The solution we are interested in is to introduce

another kind of nodes, called molecular nodes. A

molecule consists of a set of non-global nodes with

coupling relationships among them. Graphically a

molecule is described by a square so that all the

relevant nodes lie within the square. The following

is a molecule:

j

j
j
@@I

��	

-

6

We say that the simple reaction graph

j

j
j
@@I

��	

-

6

is the internal structure of the molecule and the

three nodes the component nodes of the molecule.

A component node of a reaction graph can itself be

a molecule:

j

j
j
@@I

��	

-

6

whose internal structure is the reaction graph

j

j
j
@@I

��	

-

6

which is not simple.

Reaction graphs and molecules are mutually de-

�ned as follows:

� A simple reaction graph is a reaction graph;

� If G is a reaction graph, then one can get an-

other reaction graph by placing a square in G
that covers at least one non-global node. The

nodes lie inside a square must be either local

or molecular

� A molecular node, or molecule, is a reaction

graph encompassed in a square.

In a sense, the internal structure of a molecule is

not completely shielded from outside. In a reaction

graph, an arrow pointing to a molecular node ac-

tually points to a component node of the molecule.

Similarly, an arrow comes from a molecule actually

comes from a node inside the molecule.

When drawing a molecule, the following condi-

tions should be observed:

� all the arrows between the nodes inside a

square lie inside the square as well;

� all the arrows between the nodes outside a

square lie outside the square as well;

4

� a node can not lie on the edge of a square;

� squares can be nested but not overlapped.

The following is not a reaction graph:

j

j
j��-

m

@@I

��	

-

6 j-

It contains a global node. The diagrammatic rep-

resentation violates our requirement in three ac-

counts: Firstly the loop on the left node props out

of the big square. Secondly the arrow points to the

right node does not come from a component node.

Finally the two squares overlap.

2.4 Molecular Reaction

Molecular reactions allow a molecule to dupli-

cate itself, thus permitting divergent computations.

When a local node reacts to a molecule, it �rst

makes a copy of the internal structure of the

molecule and then the local node reacts to the asso-

ciated component node in the replica. The following

molecular rule intend to capture the intuition:

j j j
��
��

e�-p -p

(M1) +

j
��
��

j j
��
��

e�-p

Similarly we have:

jm j j
��
��

e�-p -p

(M2) +

jm��
��

j j
��
��

e�-p

Here is an example of molecular rewriting:

j

j

j

jm
?

6 6

�

�
�
�	

-)

j

j

j

jm
?

6 6

��
�
��

-

As we have said, this reduction is carried out in two

stages. First the molecule involved in the reaction

makes a local copy of its internal structure, giving

rise to G9:

j

j

j

j

jm
?

6 6

�

�
�
�	�-

-

-(9)

and then the local copy participates in the reaction.

The following is another example of molecular re-

duction

j--
j

j
j
@@I

��	 6

j

j

���

6

j

j
j
@@I

��	 6
)

The molecular reaction rule does not cover the situ-

ation where one of the reacting atom lie in a nested

molecule. In the following reduction, a local node

reacts to an atom inside a molecule inside another

molecule:

j--
j

j
j
@@I

6

j

j -

�

6

j

jj

j

�

6
)

The internal structure of the molecule was �rst

copied. The internal structure of the smaller

molecule in the replica is copied afterwards. Then

the reaction happened.

In general a molecular reaction should make suc-

cessively internal structures of nested molecules un-

til the relevant atom becomes nude. The reaction

then follows.

For simplicity, we do not consider nested molec-

ular reaction in this paper. We also disallow reac-

tions between two molecular nodes.

A molecular node can not act as a catalyst.

2.5 Guarded Graphs

A molecular node in a reaction graph can react to

di�erent atomic nodes via di�erent arrows. In the

following reaction graph both the node a and the

j

j j

j j

j
m

n

a

b

- -
?� ?

6

-

node b can react to a node in a replica of the

5

molecule. In many situations it is convenient to

have guarded molecules. A guarded molecule is a

molecule that has a principal component node that

is local. In a graph, every guarded molecule has a

principal arrow that starts from the principal com-

ponent node of the molecule and ends at an atomic

node outside the molecule. The molecule in the fol-

lowing graph is guarded.

j

j j

j j

j
m

n

a

b

- -
?� ?

6

-

�

The bottom node in the molecule is the principal

node and the principal arrow is indicated by an

enlarged dot at the junction of the arrow and the

square. The only way an atomic node can react

upon a guarded molecule is with the principal node

through the principal arrow. For instance there is

only one initial reaction in the above graph. By a

guarded reaction graph we will refer to either a sim-

ple reaction graph or a reaction graph with guarded

molecules. The molecular rules are

j j j
��
��

e�-p -p
�

(M1') +

j
��
��

j j
��
��

e�-p �

and

jm j j
��
��

e�-p -p
�

(M2') +

jm��
��

j j
��
��

e�-p �

Guarded reaction graphs are introduced because

they have better algebraic properties and are easier

to implement.

2.6 Classi�cation of Graphs

The labels of the reaction graphs described so far

range over the set f�;+g. Only arrows with op-

posite labels can react upon each other. We will

call such reaction graphs diadic. If instead we let

the labels be drawn from the set Z of integers, we

get polyadic reaction graphs. The following is a

polyadic reaction graph:

j

j
j

m

HHHHj

??
��
��*�����

1 2 -3

-1

-4

If we go to extreme, we can draw the labels from

a singleton set. This is the same as not to label

arrows at all. Below is such a graph

j

j
j

m

HHHHj

??
��
��*�����

We call such graphs monadic reaction graphs1. In a

polyadic reaction graphs, an arrow labeled by i can
react to an arrow labeled by �i if they point to a

same atom.

3 Calculi of Graphs

Instead of giving a formal de�nition of reaction

graphs in a set theoretical setting, we de�ne in this

section calculi for reaction graphs in the spirit of

process algebra ([16, 20, 18]). Two languages will be

proposed. One is for the plain reaction graphs. The

other is for the guarded reaction graphs. Strictly

speaking, the terms of the calculi are more general

than the graphs. But the generality is only techni-

cal. Graph terms are those terms that correspond

precisely to reaction graphs. The non-graph terms

can be coded up in graph terms. The encoding is

faithful both operationally and algebraically. Simi-

larly one can also identify a class of terms in the cal-

culus of guarded reaction graphs that are in bijec-

tive correspondence to guarded graphs. Any term

can be transferred to one such term. The trans-

formation also preserves operational and algebraic

semantics. We will concentrate on polyadic reac-

tion graphs. All results in this section hold in the

diadic and monadic cases as well.

3.1 Calculus of Graphs

The calculus of graphs intends to give term repre-

sentations of reaction graphs. We �rst de�ne the

set of terms by the following abstract syntax:

P := 0 j mi[x] j (x)P j P jP 0
j !P;

1
Our convention on drawing diadic reaction graphs is now

causing confusion. Such ambiguity never arises in this paper.

6

where i 2 Z. Here m and x range over the set

N of names. In (x)P , x is local, meaning that it

can not be seen from outside. We will abbreviate

(x1) : : : (xn)P to (~x)P . Terms of the from P jQ are

composition terms. Terms of the form mi[x] are
called atomic terms whereas those of the form !P
molecular terms. In mi[n], m is subjective and n is

objective. It is helpful to think of mi[n] as describ-
ing the situation where the datum n is stored at

the i-th port of mediumm. We say that an atomic

term mi[n] is free in P if it is a subterm of P and

both m and n are global in P . Let T be the set of

all terms. We will adopt the so-called �-convention
which says that replacing a local name in a term

by a fresh name does not change the syntax of the

term. For diadic graphs, the syntax of the calculus

is de�ned as follows:

P := 0 j m[x] j m[x] j (x)P j P jP 0
j !P:

And for monadic graphs,

P := 0 j m[x] j (x)P j P jP 0
j !P:

Before de�ning the operational semantics of the

calculus, we need to de�ne a structural equivalence

on the set of all terms.

De�nition 3.1 The structural relation = is the
least congruence on terms that contains:
(i) P j0 = P , P1jP2 = P2jP1, and P1j(P2jP3) =

(P1jP2)jP3;
(ii) (x)0 = 0, (x)(y)P = (y)(x)P , (x)(P jQ) =

P j(x)Q if x 62 gn(P).

We think of = as a grammatic equality. So P=Q
means that P and Q are the same term.

A term P is in standard form if it is either 0 or

of the form,

(~x)(A1j : : : jAij!M1j : : : j!Mj);

where i+j � 1, A1; : : : ; Ai are atomic terms and

M1; : : : ;Mj are in standard forms. In the latter case

A1; : : : ; Ai will be called the atomic components of

P and !M1; : : : ; !Mj the molecular components of

P .

Lemma 3.2 For any term P there is a term Q in
standard form such that P=Q.

In sequel the notation [y=x] stands for an atomic

substitution. The result of substituting y for x
throughout P is denoted by P [y=x]. Local names

in P need be renamed to avoid y being captured.

A substitution [y1=x1] : : : [yn=xn] is a concatenation
of atomic substitutions. The e�ect of a substitution

on a term is de�ned as follows:

P []
def
= P

P [y1=x1] : : : [yn=xn]
def
= (: : : P [y1=x1] : : :)[yn=xn]

where [] is the empty substitution. Substitutions

will be ranged over by �.

The operational semantics for the calculus of

graphs is given in a reductional style rather than

by a labeled transition system. It consists of the

following reduction rules.

Atomic Reduction

(x)(mi[x]jm�i[y]jP)! (x)(P [y=x])

Molecular Reduction

mi[x]j!(y)(m�i[y]jP)! P [x=y]j!(y)(m�i[y]jP)

Structural Rule

P ! P 0

P jQ! P 0
jQ

P ! P 0

(x)P ! (x)P 0

Let !+ (!�) be the (reexive and) transitive clo-

sure of !.

Lemma 3.3 If P ! P 0 then P [y=x]! P 0[y=x].

We now investigate the algebraic theory of the

language. Suppose a is a global name in term P .
We say that a is an immediate barb of P , notation
P#a, if

� P = ai[x] for some i 2 Z;

� P = P1jP2 and either P1#a or P2#a;

� P = (x)P 0 and P 0
#a and x 6= a.

Write P#Q if 8a 2 N :P#a $ Q#a. We say that a
is a barb of P , notation P+a, if Q exists such that

P !
� Q#a. For two terms P and Q, write P+Q

if 8a 2 N :P+a , Q+a. A binary relation R is

barbed if PRQ impliesP+Q. Our de�nition of barb
is non-standard in that we completely ignore the

internal structure of molecules. It is reasonable for

the version of barbed bisimilarity introduced below.

Lemma 3.4 If P=Q then P#Q and P+Q.

Lemma 3.5 If P ! Q and Q+a then P+a.

There are many ways to de�ne an equivalence re-

lation on processes ([23, 16, 26, 27, 25]). What

seems most suitable to the terms of the calcu-

lus of graphs is the barbed bisimilarity introduced

in [21]. Barbed bisimulations are de�ned in terms

of a reduction semantics and an observation pred-

icate. The de�nition below is closer to the version

of Honda and Yoshida ([13]).

7

De�nition 3.6 Let R be a subset of T �T . The
relation R is a barbed bisimulation if it is barbed
and whenever PRQ then for any term R and any
sequence ~x of names, it holds that
(i) if (~x)(P jR) ! P 0, then there exists some Q0

such that (~x)(QjR)!� Q0 and P 0
RQ0;

(ii) if (~x)(QjR) ! Q0, then there exists some P 0

such that (~x)(P jR)!� P 0 and P 0
RQ0.

The barbed bisimilarity� is the largest barbed bisim-
ulation.

According to the de�nition, one has that !!P � 0

and !mi[x] � 0.

De�nition 3.7 Let R be a subset of T �T . The
relation R is a barbed bisimulation up to � if it is
barbed and whenever PRQ then for any term R and
any sequence ~x of names, it holds that
(i) if (~x)(P jR) !� P 0, then there exists some Q0

such that (~x)(QjR)!� Q0 and P 0
� R � Q0;

(ii) if (~x)(QjR) !� Q0, then there exists some P 0

such that (~x)(P jR)!� P 0 and P 0
� R � Q0.

Care should be given to proofs using bisimulation

up to technique ([29]).

Lemma 3.8 If R is a barbed bisimulation up to �,
then R ��.

Theorem 3.9 Suppose P � Q. Then
(i) P jR � QjR for any R 2 T ;
(ii) (x)P � (x)Q.

Proof: (i) If P � Q then P jO � QjO. Consider

R
def
= f(P jO;QjO)jP � Q ^ O 2 T g[�. Sup-

pose (~x)(P jOjR) ! P 0. Then by de�nition some

Q0 exists such that (~x)(QjOjR) !� Q0, P 0
� Q0

and P 0
+Q0. Hence R is a barbed bisimulation.

(ii) If P � Q then (y)P � (y)Q. This can be

proved by showing thatR
def
= f((~y)P; (~y)Q)jP � Qg

is a barbed bisimulation. Suppose (~x)((~y)P jR) !
P 0. Then (~x)(~y)(P jR) ! P 0. By de�nition,

(~x)(~y)(QjR) !� Q0 such that P 0
� Q0 and P 0

+Q0.

Therefore R is a barbed bisimulation. 2

Unfortunately� is not a congruence relation. For

a counter example, notice that

(x)mi[x] � (x)(a)(ai[x]j(b)(b0[a]jb0[m])):

But !(x)(a)(ai[x]j(b)(b0[a]jb0[m])) is clearly not

bisimilar to !(x)mi[x] as the former is barbed bisim-

ilar to 0 whereas the latter is not. This is part of

the reason to introduce guarded molecules.

Before ending this section, we prove an important

technical lemma.

Lemma 3.10 If P � Q, then P [y=x] � Q[y=x].

Proof: Suppose P � Q and P [y=x] ! P 0. By

theorem 3.9, (x)(P ja0[y]ja0[x]) � (x)(P ja0[y]ja0[x])
for a fresh name a. Assuming x 6= y, one has

(x)(P ja0[y]ja0[x])! P [y=x]! P 0

By de�nition, (x)(Qja0[y]ja0[x]) !
� Q0 such that

P 0
� Q0 and P 0

+Q0. So the communication between

a0[x] and a0[y] must have happened before reaching

Q0. It can be easily seen from lemma 3.3 that the

communication through a can happen in the very

�rst place:

(x)(Qja0[y]ja0[x]) ! Q[y=x]

!
� Q0:

So P [y=x]! P 0 is matched by Q[y=x]!� Q0. 2

3.2 Calculus of Guarded Graphs

The reaction graphs are simpler than the guarded

reaction graphs. But the latter enjoys a better alge-

braic theory, as will be shown below. The terms of

the calculus of guarded reaction graphs are de�ned

as follows:

P := 0 j mi[x] j (x)P j P jP 0
j mi(x)�P;

where i 2 Z. The operational semantics of this

calculus is de�ned similarly to the one for the cal-

culus of graphs. Only the molecular rule need be

rede�ned.

Molecular Reduction

mi[x]jm�i(y)�P ! P [x=y]jm�i(y)�P:

The algebraic theory of this language can be stud-

ied in completely the same way as we have done

with the calculus of graphs. All results in sec-

tion 3.1 also hold for the calculus of unguarded

graphs. However the bisimilarity for the terms of

the calculus of guarded graphs enjoys much better

algebraic properties as the following theorem shows.

Theorem 3.11 The barbed bisimilarity is a con-
gruence equivalence.

Proof: We only have to prove that if P � Q then

mi(x)�P � mi(x)�Q. Let R be the following rela-

tion8<
:((~x)(Rjmi(x)�P); (~x)(Rjmi(x)�Q))

������
P � Q
R 2 T

~x 2 N

9=
; :

Suppose (~x)(Rjmi(x)�P) ! P 0. There are two

cases:

8

� (~x)(Rjmi(x)�P) ! P 0 is caused by a commu-

nication within R. P 0 must be of the form

(~x0)(R0
j(mi(x)�P)�). Then obviously

(~x)(Rjmi(x)�Q)! (~x0)(R0
j(mi(x)�Q)�):

By lemma 3.10,

(~x0)(R0
j(mi(x)�P)�)R(~x0)(R

0
j(mi(x)�Q)�):

� (~x)(Rjmi(x)�P)! P 0 is caused by a communi-

cation between R and mi(x)�P . Then P
0 is of

the form (~x0)(R0
jP [y=x]jmi(x)�P). Similarly

(~x)(Rjmi(x)�Q)! (~x0)(R0
jQ[y=x]jmi(x)�Q):

Now

(~x0)(R0
jP [y=x]jmi(x)�P)

� R � (~x0)(R0
jQ[y=x]jmi(x)�Q)

by theorem 3.9 and lemma 3.10.

Conclude that R is a bisimulation up to �. 2

3.3 Graph Terms

A graph term P is a term such that none of

its molecular subterms contains any free atomic

components. Graph terms correspond to reaction

graphs.

Lemma 3.12 If P ! Q and P is a graph term,
then Q is a graph term.

An inductive de�nition of a translation g from

graph terms to reaction graphs goes as follows:

� g(0) is the empty reaction graph;

� g(mi[x]) is the following reaction graph:

j j-x m
i

which is a basic building block in the construc-

tion of reaction graphs;

� g((x)P) is the reaction graph g(P)nx;

� g(P jQ) is the reaction graph g(P)jg(Q);

� if g(P) is the reaction graph

&%

'$

�� @@

j

j jx1 xn

xi

� �

� �

where x1; : : : ; xn are the global names in P ,
then g(!P) is the following reaction graph:

&%

'$

�� @@

j

j jx1 xn

xi

� �

� �

This completes the de�nition of g. Suppose P is a

graph term. The following properties are obvious:

(i) if P ! Q, then g(P)! g(Q); (ii) if g(P)! G,
then Q exists such that P ! Q and g(Q) is G.
On the other hand, it is clear that every reaction

graph can be translated into a graph term. The

two translations are in an obvious sense reversible

to each other.

How about the non-graph terms? The fact of the

matter is that the di�erence between graph terms

and non-graph terms is only technical. There is

a translation from terms to graph terms that pre-

serves both operational and algebraic semantics.

First we de�ne an auxiliary translation () , where

 is a �nite set of names:

(0)
def
= 0

(P jQ)
def
= (P) j(Q)

((x)P)
def
= (x)(P) [fxg

(!P)
def
= !P

(mi[x])
def
= mi[x]; when fm;xg \ 6= ;

(mi[x])
def
= (a)(ai[x]j(b)(b0[a]jb0[m]));

when fm;xg \ = ;:

Lemma 3.13 For a term P in the calculus of
graphs and a �nite set of names , (P) !

� P
and (P) � P .

The translation can then be de�ned as follows:

0�
def
= 0

(mi[x])
� def

= mi[x]

(P jQ)�
def
= P �

jQ�

((x)P)�
def
= (x)P �

(!P)�
def
= !(P �);:

It is clear that if P is a term then P � is a graph

term. The following two theorems guarantee that

we do not lose any expressive power by restricting

our attention to graph terms.

9

Theorem 3.14 Suppose P and Q are terms in the
calculus of graphs. Then
(i) if P ! Q, then P �

!
+ Q�;

(ii) if P �
! P 0, then P1 exists such that P ! P1,

P 0
!

+ P �

1 and P 0
� P �

1 .

Proof: (i) If P ! Q is caused by an atomic com-

munication, then clearly P �
! Q�. If P ! Q

is caused by a molecular communication, then use

lemma 3.13.

(ii) Equally simple. 2

Theorem 3.15 P � P � for any term in the calcu-
lus of graphs.

Proof: The relation f(P; P �) j P a termg is a

bisimulation up to �. 2

Corollary 3.16 P � Q if and only if P �
� Q�.

Next we take a look at the graph terms in the cal-

culus of guarded graphs. In the calculus of guarded

graphs, the graph terms are also strong enough to

code up all the non-graph terms. The following sim-

ple translation is part of the encoding to be de�ned

later.

0
def
= 0

mi[x]
def
= (a)(ai[x]j(b)(b0[a]jb0[m]))

P jQ
def
= P jQ

(x)P
def
= (x)P

m(x)�P
def
= m(x)�P:

Lemma 3.17 For a term P in the calculus of
guarded graphs, P !

� P and P � P .

Now the encoding:

b0 def
= 0dmi[x]
def
= mi[x]

dP jQ def
= bP j bQ

d(x)P def
= (x) bP

dmi(x)�P
def
= mi(x)� bP:

The proofs of the next three results are similar to

those for the corresponding results in the calculus

of graphs.

Theorem 3.18 Suppose P and Q are terms of the
calculus of guarded graphs. Then
(i) if P ! Q then bP !

+ bQ;
(ii) if bP ! P 0 then there exists some P1 such that

P ! P1, P
0
! cP1 and P 0

� cP1.
Theorem 3.19 For a term P in the calculus of
guarded graphs, P � bP .

Corollary 3.20 For terms P and Q in the calculus
of guarded graphs, P � Q if and only if bP � bQ.
Results in this section substantiate our claim that

the calculus of (guarded) graphs is a formal lan-

guage for (guarded) reaction graphs. If something

can be coded up in the calculus, it can also be coded

up in the reaction graphs and vice versa.

3.4 Equivalence of Calculi

The terms of the guarded reaction graphs are bet-

ter behaved. On the other hand the terms of

the unguarded reaction graphs have more concise

graphic representations. The two languages are

however equivalent. The following translation from

the guarded terms to the terms should look familiar:

0!
def
= 0

(mi[x])
! def

= mi[x]

(P jQ)!
def
= (P)!j(Q)!

((x)P)!
def
= (x)P !

(mi(x)�P)
! def

= !(x)(mi[x]j(P)
!):

A reverse translation from the terms to the guarded

terms can be de�ned as follows:

0?
def
= 0

(mi[x])
? def

= mi[x]

(P jQ)?
def
= P ?jQ?

((x)P)?
def
= (x)P ?

(!P)?
def
= m1

i1
(x1)�P

?
1 j : : : jm

j
ij
(xj)�P

?
j ;

where m1
i1
6=x1,. . . ,m

j
ij
6=xj for some j � 0 and

P = (x1)(m
1
i1
[x1]jP1) = � � � = (xj)(m

j
ij
[xj]jPj):

Here m1
i1
[x1],. . . ,m

j
ij
[xj] are all the atomic compo-

nents of P whose subjects are not local in P and

whose objects are local in P . Notice that when

j=0, m1
i1
(x1)�P

?
1 j : : : jm

j
ij
(xj)�P

?
j is 0.

Let's see an example:

(!(x)(y)(m0[x]jn0[y]jn0[y]j!Q))
?

= m0(x)�(n0[y]jn0[y]j(!Q)
?)

jn0(y)�(m0[x]jn0[y]j(!Q)
?)

jn0(y)�(m0[x]jn0[y]j(!Q)
?):

The proof of the next theorem is similar to that of

theorem 3.14.

Theorem 3.21 Suppose P and Q are terms of the
calculus of graphs. Then
(i) if P ! Q then P ? !+ Q?;

10

(ii) if P ? ! P 0 then P1 exists such that P ! P1,
P 0
! (P1)

? and P 0
� P ?1 .

Suppose P and Q are terms of the calculus of
guarded graphs. Then
(i) if P ! Q then P !

!
+ Q!;

(ii) if P !
! P 0 then P1 exists such that P ! P1,

P 0
! (P1)

! and P 0
� P !

1.

The composition of the two translations is not an

identity function in either way. But they are inverse

to each other up to bisimilarity in the sense of the

following theorem.

Theorem 3.22 The following properties hold:
(i) if P is a term in the calculus of guarded graphs,
then (P !)? � P ;
(ii) if P is a term in the calculus of graphs, then
(P ?)! � P .

Proof: (i) The proof is carried out by induction on

the structures of terms. The only non-trivial case

is for molecular terms:

((mi(x)�P)
!)? = (!(x)(mi[x]j(P)

!))?

= mi(x)�((P)
!)?:

By lemma 3.17, P � P . By induction hypothe-

sis, ((P)!)? � P and (P !)? � P . Hence by theo-

rem 3.11,

((mi(x)�P)
!)? = mi(x)�((P)

!)?

� mi(x)�P

� mi(x)�P

� mi(x)�(P
!)?:

This completes the proof of (i).

(ii) Let R be the following relation:8<
:((~x)(RjP); (~x)(Rj(P ?)!))

������
P 2 T

R 2 T

~x names

9=
; :

We show that R is a barbed bisimulation up to �.

The only nontrivial case is when P is a molecular

term. So assume

(!P)? = m1
i1
(x1)�P ?1 j : : : jm

j
ij
(xj)�P ?j :

Then ((!P)?)! is

!(x)(m1
i1
[x1]j(P ?1)

!)j : : : j!(x)(mj
ij
[xj]j(P ?j)

!):

Suppose R is a term and ~x is a sequence of names.

Suppose further that (~x)(RjP) ! P 0. There are

two cases:

� If (~x)(Rj!P) ! P 0 is induced by a communi-

cation within R, then P 0 must be of the form

(~x0)(R0
jP�). On the other hand,

(~x)(Rj((!P)?)!)! (~x0)(R0
j((!P)?)!�):

That is

(~x)(Rj((!P)?)!)! (~x0)(R0
j((!(P�))?)!):

� If (~x)(Rj!P) ! P 0 is caused by a communi-

cation between R and !P , then P 0 must be of

the form (~x)(R0
jPik[a=y

ik]j!P) for some a and

1 � k � j. Correspondingly

(~x)(Rj((!P)?)!)

! (~x)(R0
j((Pik[a=y

ik])?)!j((!P)?)!):

Clearly,

((Pik [a=y
ik])?)! � ((Pik [a=y

ik])?)!:

By induction hypothesis,

((Pik [a=y
ik])?)! � ((Pik [a=y

ik])?)!

� Pik [a=y
ik]:

So by theorem 3.9,

(~x)(R0
j((Pik [a=y

ik])?)!j((!P)?)!)

� (~x)(R0
jPik[a=y

ik]j((!P)?)!):

It follows that

(~x)(R0
jPik[a=y

ik]j!P)

� R � (~x)(R0
j((Pik[a=y

ik])?)!j((!P)?)!):

So R is a bisimulation up to �. 2

For the sake of the next proof, let's annotate

the barbed bisimilarity in the calculus of guarded

graphs by a subscript g.

Theorem 3.23 (i) Suppose P and Q are terms in
the calculus of guarded graphs. Then P �g Q if and
only if P !

� Q!.
(ii) Suppose P and Q are terms in the calculus of
graphs. Then P � Q if and only if P ? �g Q

?.

Proof: (i) We �rst show that if P �g Q then

P !
� Q!. Consider the relation

S
def
= f(P !; Q!) j P �g Qg:

Suppose R is a term, ~x a sequence of names and

(~x)(RjP !) ! P1. Then (~x)(R?j(P !)?) !+ P ?1 by

theorem 3.21. By assumption and theorem 3.22,

(P !)? � (Q!)?. So (~x)(R?j(Q!)?) !� Q2 for some

Q2 such that P ?1 �g Q2. Hence by theorem 3.21,

(~x)((R?)!j((Q!)?)!)!� Q!
2:

But

(~x)((R?)!j((Q!)?)!) � (~x)(RjQ!)

11

according to theorem 3.22. So Q1 exists such that

Q!
2 � Q1 and (~x)(RjQ!) !� Q1. It follows that S

is a bisimulation up to �.

(ii) Similarly we can show that if P � Q then P ? �g
Q?.
(iii) For guarded terms P andQ, if P !

� Q!, then by

theorem 3.22 and (ii), P �g (P
!)? �g (Q

!)? �g Q.
(iv) The proof is similar to (iii). 2

The calculus of guarded graphs appears to have

the edge over the calculus of graphs. But theorems

3.21, 3.22 and 3.23 establish the equivalence of the

two languages. These results justify the decision to

take reaction graphs as the basic computing agents.

3.5 Graphs as Models

Suppose we have two calculi Li, i = 1; 2. Li is

equipped with a reduction relation !i and an ob-

servational equivalence �i. The former de�nes the

operational semantics of Li while the latter charac-

terizes its denotational semantics. A translationM

from L1 to L2 should preserve at least the opera-

tional semantics of L1, meaning that the following

two complementary properties are satis�ed:

� if S !1 T , then MS !2 MT ;

� if MS !2 T
0, then T exists such that S !1 T

and T 0
!

�

2 MT

The �rst condition guarantees the soundness of the

translation and the second ensures the faithfulness.

As for the preservation of the observational equiva-

lence, a natural requirement is

S �1 T impliesMS �2 MT:(1)

IfM is not meant to be part of a comparison of L1

against L2, but acts as a translation that interpret

L1 in the target language L2, then (1) is too strong

a requirement. L2 might have far more discrimi-

nating power than L1. For example suppose L1 is a

high level programming language and L2 is an as-

sembly language. Normally we are not interested

in the behaviour of two programmesMS and MT
in the presence of an arbitrary piece of assembly

code. All we care about is how they act in the pres-

ence of MP where P is a programme in L1. The

next de�nition to be introduced shortly come with

these considerations. We �rst introduce the notion

of contexts in the calculus of graphs, which can be

inductively de�ned as follows:

� [] is a context;

� if C[] is a context, then C[]jP , (x)C[] are con-
text.

De�nition 3.24 Suppose C is a set of contexts in
the calculus of graphs and R is a subset of T �T .
The relation R is a barbed bisimulation with respect
to C if it is barbed and whenever PRQ then for each
C[] 2 C it holds that
(i) if C[P] ! P 0, then there exists some Q0 such
that C[Q]!� Q0 and P 0

RQ0;
(ii) if C[Q] ! Q0, then there exists some P 0 such
that C[P]!� P 0 and P 0

RQ0.
The barbed bisimilarity with respect to C, notation
�C , is the largest barbed bisimulation with respect
to C.

When C includes all contexts, �C coincides with �.

In next section we show how the calculus of

graphs act as a target language.

4 Applying Reaction Graphs

In the end, a computational model has to be judged

in practice. This section is devoted to demon-

strations of the operational adequacy of reaction

graphs. We �rst explain how to regard a multi-

plicative linear logic proof as a reaction graph. The

graph theoretical interpretation explicates that re-

actions in graphs are cut eliminations in an abstract

setting. It is obvious that some reactions in a re-

action graph can happen in parallel. The fact that

sequential computations can be modeled in reac-

tion graphs should indicate that graphs are con-

current computational agents. We will elaborate

this point by giving a translation of the mini mo-

bile processes to reaction graphs. By composing

this translation with Milner's translation of the lazy

�-calculus ([4, 1, 22]), we get immediately a transla-

tion of the latter in the calculus of graphs. A fallout

of this fact is that reaction graphs possess Turing

computability.

4.1 Proofs as Polyadic Graphs

Linear logic was proposed as a modi�cation of clas-

sical logic ([11, 12, 33]). A computational treat-

ment of the proofs of the classical linear logic is

initiated in [2]. The idea is further explored in the

setting of process algebras; see for example [6]. In

this approach, a sequent proof is annotated with

variables. A process interpreting the proof has free

variables occurring in the conclusion of the proof as

its free names through which it communicates with

outside world. The Abramsky approach generalizes

the proof-as-term paradigm to a proof-as-process

paradigm. Cut eliminations are interpreted as pro-

cess communications. Two things are noteworthy

with this interpretation. First in order to model

cut eliminations high up in a derivation tree, one

needs reduction under pre�xing. In [6], unguarded

12

pre�xes are introduced to achieve that. Second the

linear logic proofs are more symmetric than the �-
calculus can capture. The mismatch is due essen-

tially to the functional nature of the communica-

tions in �-calculus.
Another important point of the proof-as-process

interpretation is that it tries to code up the underly-

ing tree structures of the derivations of proofs. This

is especially true for the multiplicative part of the

linear logic. However in the process interpretation,

the tree structures are buried in the syntax of the

process calculus.

In this section we take a look at Abramsky's

translation of the multiplicative linear logic in our

graph theoretical setting. We will see that the graph

interpretation is more symmetric and reects more

faithfully the tree structures of proofs.

There are four rules for the multiplicative linear

logic, ignoring those rules for units:

x : A; y : A?
Axiom

... F
~w : �; x : A

... G
~v : �; y : B

~w : �; ~v : �; z : A
B

... F
~w : �; x : A; y : B

~w : �; z : A}B
}

... F
~w : �; x : C

... G
~v : �; y : C?

~w : �; ~v : �
Cut

The basic idea of the interpretation is that a proof

of the sequent x1 : A1; : : : ; xn : An is interpreted

by a reaction graph with n global nodes labeled

respectively by x1; : : : ; xn, as is shown below:

&%

'$j

j jx1 xn

xi

� �

� �

In the sequel, only relevant global nodes are dis-

played. The translation is inductively de�ned as

follows:

� The axiom is interpreted by the following reac-

tion graph:

j
j j��	 @@R
0 0

yx

Formally the axiom is modeled in the calculus

of graphs by the term (a)(x0[a]jy0[a]). Notice

the symmetric roles of x and y in this term.

� If the premises of the
-rule are interpreted

respectively as the following reaction graphs:

&%

'$

&%

'$

j jx y

then the conclusion of the rule is interpreted

by the reaction graph:

&%

'$

&%

'$

j j
j@@R ��	
z

1 0

Algebraically the interpretation is the term

(x)(y)(z1[x]jz0[y]jF jG).

� If the premise of the }-rule is interpreted by

the following reaction graph:

&%

'$

j jx y

then the conclusion of the rule is then inter-

preted by the reaction graph:

&%

'$

j j
j@@R ��	
z

-1 0

In the calculus of graphs, it is expressed as

(x)(y)(z�1[x]jz0[y]jF).

� If the two premises of the cut rules are inter-

preted by the following reaction graphs:

&%

'$

&%

'$
j jx y

then the conclusion of the rule is interpreted

by the following reaction graph:

&%

'$

&%

'$
j

13

More formally, the interpretation is the follow-

ing term (z)(F [z=x]jG[z=y]).

This completes the de�nition of the interpretation.

Cut eliminations for the multiplicative linear

logic correspond to reductions in reaction graphs.

A precise statement of this fact is omitted. Con-

fer [6].

4.2 Processes as Diadic Graphs

Conceptually reactions that are not causally related

can happen in parallel. Meanwhile reactions can

be ordered in terms of enablement and the recur-

sion mechanism. It is in this sense reaction graph

rewriting captures concurrent computations. This

section explains how to think of mobile processes as

reaction graphs. The processes considered here are

the so-called mini �-processes ([17]):

P := 0 j m(x):P j mx:P j (x)P j P jP 0
j m(x)�P:

We will impose a syntactical equality on the set of

all mini �-processes in the same way as we have

done with the terms of the calculus of graphs.

De�nition 4.1 The structural relation = is the
least congruence on terms that contains:
(i) P j0 = P , P1jP2 = P2jP1, and P1j(P2jP3) =

(P1jP2)jP3;
(ii) (x)0 = 0, (x)(y)P = (y)(x)P , (x)(P jQ) =

P j(x)Q if x 62 gn(P).

The operational semantics of the calculus is de�ned

by the following two reduction rules:

m(x):P jmy:Q! P [y=x]jQ

m(x)�P jmy:Q! m(x)�P jP [y=x]jQ

and the following three structural rules:

P ! P 0

P jQ! P 0
jQ

P ! P 0

(x)P ! (x)P 0

We now de�ne a translation from the �-processes to
reaction graphs. In view of the results in section 3,

it su�ces to de�ne a translation from the processes

to the calculus of guarded graphs:

0y
def
= 0

(m(x):P)y
def
= (a)(m[a]ja(x)?(a[a]jP y))

(mx:P)y
def
= (a)(m[a]ja[x]ja(b)?Qy)

(P jQ)y
def
= P y

jQy

((x)P)y
def
= (x)P y

(m(x)�P)y
def
= m(x)�P y:

Theorem 4.2 Suppose P is a �-process.
(i) if P ! Q then P y

! Qy;
(ii) if P y

! P 0, then Q exists such that ! Q,
P 0
!

� Qy and P 0
� Qy.

The algebraic properties of the �-calculus have been
intensively studied ([30, 20, 31, 25, 26, 27, 32]).

What is relevant to us in this paper is the barbed

bisimilarity. Let's mention that a is an immediate
barb of P , notation P#a, if

� P � a(x):P or P � ax:P ;

� P � P1jP2 and either P1#a or P2#a;

� P � (x)P 0 and P 0
#a and x 6= a.

The barbed bisimulation (up to bisimilarity) can be

de�ned for the mini �-processes in completely the

same way as for the terms of the calculus of graphs.

The barbed bisimilarity is preserved by all but the

input pre�xing operator.

Let C� be the set of all mini �-process contexts.
The graph interpretations of the mini �-processes
preserve the algebraic equality in the sense of the

theorem below.

Theorem 4.3 Let � be the set fC[]y j C[] 2 C�g.
If P and Q are two mini �-processes and P � Q,
then P y

�� Qy.

5 Conclusion

The operational aspects of computations encapsu-

lated in reaction graphs are important enough to

justify their introduction. This is reinforced by the

simplicity of the structures of the reaction graphs.

Reactions of graphs are cut elimination reincar-

nated in a graph theoretical setting. It is intended

that reaction graphs abstract common geometric

structures from processes and proofs while reactions

capture the dynamic recon�gurations of the struc-

tures typically found in concurrency theory and

proof theory. More speci�cally, a con�guration of

the form

j j
j@@R ��	� +

in a reaction graph is a cut. The recon�guration

of the cut by reaction eliminates the cut. On the

other hand, a subgraph of the shape

jm j
je@@R ��	� +

14

describes the situation in which m is ready to out-

put through a channel which can also act as a chan-

nel for an input action. The reaction of the sub-

graph is a communication which instantiates the

local name by m.

We have emphasized that reaction graphs are

computational objects on their own. It is however

also worthwhile to see them as implementations of

computational objects.

Coming back to the view that reaction graphs are

underlying structures of an abstract proofs, we can

see that the calculus of graphs and the encodings

of mini �-processes as graph terms are activities in

a process-as-proof paradigm. The proof theoretical

interpretation gives rise to a nonstandard under-

standing of mobile processes. Such an understand-

ing demands a further stay-away from the familiar

functional view of computations.

Rewriting of reaction graphs reminds one of

chemical reactions ([5]), which explains our choice

of terminology. What comes natural in a chemical

scenario is that things happen in parallel. We can

also think of the calculus of graphs as a model for

parallel computations. If two reactions do not result

in conict, they might as well proceed in parallel.

To simplify the operational semantics for this par-

allel model, it is better to ban the rules (A2) and

(M2). The simpli�cation does not decrease the ex-

pressive power of the model though. From another

viewpoint, elimination of (A2) and (M2) push the

reaction graphs closer to proofs. The situation draw

a resemblance to that where attention is paid to a

sublanguage �I of the �-calculus ([28]).

By adding the sequentiality combinator to the

calculus of graphs, we get a process calculus, �-
calculus, that has been studied in [7, 8]. The syntax

of the calculus also motivates a symmetric presen-

tation of the �-calculus ([10]).

References

[1] S. Abramsky. The Lazy Lambda Calculus.

Declarative Programming , ed. D. Turner, 65{
116, Addison-Wesley, 1988.

[2] S. Abramsky. Computational Interpretations

of Linear Logic.Theoretical Computer Science,
111: 3{57, North Holland, 1993.

[3] S. Abramsky. Proofs as Processes. Theoretical
Computer Science, 135: 5{9, North-Holland,

1994.

[4] H. Barendregt. The Lambda Calculus: Its Syn-
tax and Semantics. Studies in Logic and Foun-

dations of Mathematics, North-Holland, 1984.

[5] G. Berry and G. Boudol. The Chemical Ab-

stract Machine. Theoretical Computer Science,
96: 217{248, North Holland, 1992.

[6] G. Bellin and P. Scott. On the �-Calculus and
Linear Logic. Theoretical Computer Science,
135: 11{65, North-Holland, 1994.

[7] Y. Fu. The �-Calculus. Proceedings of the In-
ternational Conference on Advances in Par-
allel and Distributed Computing, 74-81, 19-21
March, Shanghai, China, IEEE Computer So-

ciety Press, 1997.

[8] Y. Fu. A Proof Theoretical Approach to Com-

munications. ICALP'97, 7-11 July, Bologna,

Italy, Lecture Notes in Computer Science 1256,

Springer Verlag, 1997.

[9] Y. Fu. Reaction Graphs. International Work-
shop on Formal Model of Programming and Its
Applications, Beijing, 17-20 September, 1997.

[10] Y. Fu. Symmetric �-Calculus. Journal of Com-

puter Science and Technology , 13: 202{208,

1998.

[11] J. Girard. Linear Logic. Journal of Theoretical
Computer Science, 50: 1{102, North-Holland,
1987.

[12] J. Girard. Towards a Geometry of Interaction.

Categories in Computer Science and Logic,
ed. J.W. Gray and A. Scedrov, Contemporary

Mathematics, 92, 69{108, AMS, 1989.

[13] Honda and Yoshida. On Reduction Based Pro-

cess Semantics. Theoretical Computer Science,
152(2):437{486, North-Holland, 1995.

[14] Y. Lafont. Interaction Nets. POPL'90 , 95{108,
ACM, 1990.

[15] Y. Lafont. Interaction Combinators. Informa-
tion and Computation, 137: 69{101.

[16] R. Milner. Communication and Concurrency ,
Prentice Hall, 1989.

[17] R. Milner. Functions as Processes. Journal of
Mathematical Structures in Computer Science
2: 167{180, 1992.

[18] R. Milner. The Polyadic �-Calculus: a Tuto-

rial. Technical Report, Department of Com-

puter Science , University of Edinburgh, 1992.

[19] R. Milner. �-Nets: a Graphical Form of �-
Calculus. ESOP'94, Lecture Notes in Com-

puter Science 788, 26{42, Springer Verlag,

1994.

15

[20] R. Milner, J. Parrow and D. Walker. A Calcu-

lus of Mobile Processes. Information and Com-
putation, 100: 1{40 (Part I), 41{77 (Part II),

Academic Press, 1992.

[21] R. Milner and D. Sangiorgi. Barbed Bisimula-

tion, ICALP'92 , Lecture Notes in Computer

Science 685{695, Springer Verlag, 1992.

[22] L. Ong. The Lazy Lambda Calculus: An In-
vestigation into the Foundations of Functional
Programming . PhD thesis, Imperial College of

Science and Technology, University of London,

1988.

[23] D. Park. Concurrency and Automata on In-

�nite Sequences. Lecture Notes in Computer

Science 154, 561{572, Springer Verlag, 1981.

[24] J. Parrow. Interaction Diagrams. A Decade of
Concurrency , Lecture Notes in Computer Sci-

ence 803, Springer Verlag, 1993.

[25] J. Parrow and D. Sangiorgi. Algebraic Theo-

ries for Name-Passing Calculi. Information and
Computation, 120, Academic Press, 1995.

[26] D. Sangiorgi. Expressing Mobility in Pro-
cess Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, Department of Com-

puter Science, University of Edinburgh, 1993.

[27] D. Sangiorgi. A Theory of Bisimulation for

�-Calculus. CONCUR'93 , Lecture Notes in

Computer Science 715, Springer Verlag, 1993.

[28] D. Sangiorgi. �I: A Symmetric Calculus

Based on Internal Mobility, ICALP'95 , Lec-
ture Notes in Computer Science, Springer Ver-

lag, 1995.

[29] D. Sangiorgi and R. Milner. Techniques of

\Weak Bisimulation Up To". CONCUR'92 ,
Lecture Notes in Computer Science, Springer

Verlag, 1992.

[30] B. Thomsen. A Calculus of Higher Order

Communicating Systems. POPL'89 , 143{154,
Austin, Texas, USA, 1989.

[31] B. Thomsen. Plain CHOCS|A Second Gen-

eration Calculus for Higher Order Processes.

Acta Informatica, 30: 1{59, Springer Verlag,

1993.

[32] B. Thomsen. A Theory of Higher Order Com-

municating Systems. Information and Compu-
tation, 116: 38{57, Academic Press, 1995.

[33] A. Troelstra. Lectures on Linear Logic. CSLI

Lecture Notes, 1992.

16

