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Abstract

Subbisimilarity is proposed as a uniform tool to classify
the expressive power of the process calculi. The relative ex-
pressiveness of the variants of the Pi Calculus is studied in
terms of the subbisimilarity. Some issues concerning the ex-
pressiveness of the Pi are clarified. Several open problems
are solved along the way.

1 Computation and Interaction

A fundamental issue in the process theory is the expres-
siveness of the process calculi. The first problem one en-
counters when studying the expressiveness is how to pin
down a reasonable notion of expressiveness. What does it
mean by one process calculus being (strictly) more expres-
sive than another? We start with an overview of some of
the criteria used in the literature and some expressiveness
results on π-Calculus [13].

1.1 Criteria for Expressiveness

One may start looking for the expressiveness criteria by
asking the following question: What is the essential differ-
ence between the expressiveness of the process calculi and
the expressiveness of the Turing computing models? Pro-
cess calculi are the operational models of the open com-
puting systems that formalize the interactions between sys-
tems. In this sense process theory is a theory of interac-
tion [12]. On the other hand the Turing computing mod-
els like the λ-calculus study the closed computing systems
whose only interactions with the environments are the in-
put and output actions. Two Turing computable functions
are compared by their impacts on the environments, which
are nothing but their input-output behaviors. Generalizing
this view, a process is identified by the effect it may in-
flict on the environments. Since processes normally inter-
act with the environments continuously, the behaviors of
the processes have to be compared in a co-inductive way.

The bisimulation approach was introduced precisely for that
purpose [11, 17].

Most current results about the expressiveness of the pro-
cess calculi are actually concerned with the relative expres-
sive powers of the variants of a concurrent model, say the
π-Calculus. For the purpose of this paper, we say that two
process calculi L1 and L2, whose operational semantics
are defined by the labeled transition systems (S1, T1,−→1)
and (S2, T2,−→2) respectively, are variants to each other
if T1 = T2. In our view two variants may differ in (the
definitions of) the operators they have. But they must have
the same set of action labels to qualify for being variants of
each other. For the variants L1 and L2 the following criteria
have been used to compare their expressive powers [16, 14]:

• Interaction Preservation is the minimal criterion for
‘being more expressive’. Process calculi are opera-
tional models. For L2 to be at least as expressive as
L1, the former must be able to simulate the operational
behaviors of the latter. This normally means that there
is a translation J K from L1 to L2 such that whenever

P1
λ−→1 P2 then JP1K bλ=⇒2³ JP2K, where ³ is an

observational equivalence. From the viewpoint of in-
teractions, the Interaction Preservation alone is just not
strong enough. It may well be that JP K can engage in
an action to which P does not have any counterpart
action. And there is no guarantee that equivalent pro-
cesses are translated to equivalent processes.

• Full Abstraction is often used to remove the second
problem mentioned above. The property, P ³ Q if and
only if JP K ³ JQK, meets all the criteria from an alge-
braic point of view. The advantage of Full Abstraction
is its wide applications. It can be applied to compare
two process calculi with quite different action sets, say
the π-calculus [13] and the ambient calculus [5]. From
the viewpoint of interaction, Full Abstraction is not of
much use without Interaction Preservation. A transla-
tion from L1 to L2 may still suffer from the first prob-
lem even if it satisfies the Full Abstraction and Interac-
tion Preservation. Full Abstraction is, in our view, best
seen as a fallout property rather than a criterion.



• Interaction Reflection requires that whatever JP K can
do are the translations of the actions of P . FormallyJP K λ=⇒2 P2 implies that P

bλ=⇒1 P1 for some P1

such that JP1K ³ P2. Interaction Reflection guaran-
tees that JP K can not place more effect on an environ-
ment than P . It is easy to see that Interaction Criterion
(Interaction Preservation + Interaction Reflection) nor-
mally subsumes the Full Abstraction with respect to ³.

• Equivalence Criterion is used in [16] to compare two
process calculi which are variants to each other. If for
every P in L1 there is some P ′ in L2 such that P ³ P ′,
then L2 is at least as expressive as L1. Like Full Ab-
straction, it is subsumed by the Interaction Criterion.
But unlike Full Abstraction, it can not be applied to
compare process calculi with different action sets.

Other criteria have been used in the previous studies.
In [16], Palamidessi used Uniformity and Reasonability
as criteria to compare the expressiveness of the π-calculi.
These criteria are weaker than the Interaction Criterion from
the viewpoint of interaction. In [3, 4], Busi, Gabbrielli and
Zavattaro made use of decidability to tell apart process cal-
culi. How can computational properties be used to classify
interactions? Well in a theory of interaction, computations
are internal interactions of systems. If a process is exclu-
sively engaged in an infinite computation, the process will
never get a chance to interact externally. So computations
may interfere with interactions by not giving the latter any
chance! An encoding J K is said to meet Computation Cri-
terion if it satisfies the property that P is terminating if and
only if JP K is terminating, where P is terminating if it does
not have any infinite sequence of τ actions. The importance
of this criterion has been emphasized in the previous work.

1.2 Results and Open Issues

We now sketch some of the relative expressiveness re-
sults about the variants of the π-calculus. Let π be the π-
Calculus with the binary choice, πm the π with the mixed
choice, πs the π with the separated choice, πi the π with the
input choice, π− the π without the choice, and πa the asyn-
chronous π. In [16], Palamidessi summarized the existing
relative expressiveness of these variants by the diagram in
Figure 1. The sub-calculus relationship is indicated by the
hooked arrow ↪→. The plain arrow → indicates the exis-
tence of a uniform and reasonable encoding. Boudol, who
proposed πa, gave in [2] a translation from π− to πa that
preserves a Morris style contextual equivalence. Honda and
Tokoro provided a different encoding whose correctness is
proved for some weak bisimilarity [10]. Their notion of the
asynchronous bisimilarity has been subsequently adopted
as the standard equivalence for the asynchronous calculi.
Nestmann and Pierce studied in [14] two encodings from

π

πm

πs

πi π−

πa

?

Figure 1. Encodings Between Pi Variants

πi to πa. One is fully abstract with respect to the asyn-
chronous bisimilarity but not termination preserving. The
other is termination preserving but not fully abstract. Nest-
mann has examined some encodings of πs in πa [15] and ar-
gued without a proof that no fully abstract translation from
the former to the latter exists. Palamidessi proved in [16]
that there is no uniform and reasonable encoding from πm

to πs.
How forceful are the results stated in Figure 1? One fact

that must be pointed out is that two uniform and reasonable
encodings could exhibit quite different interactional behav-
iors. For example there is an encoding from πi to πa that
satisfies the Interaction Criterion [14]. On the other hand
the known encoding from πs to πa is much weaker [15].
There are certainly processes in πs whose interactive effect
on the environments is different from any process in πa.
The second point is that the subcalculus relationships indi-
cated in Figure 1 are not all trivial. For the identity encod-
ing from πa to π−, how do we reconcile the asynchronous
equivalence of the former to the (synchronous) equivalence
of the latter? What does the Interaction Criterion mean in
this case? Another important point is that the negative re-
sults, crucial to the classification of the expressive hierarchy
of the process calculi, depend on our choice of the expres-
siveness criteria. The selection of a set of criteria could be
subtle because both the positive results and the negative re-
sults should speak with the same potence. For instance, the
nonexistence of a uniform and reasonable encoding from
πm to πs does not rule out the existence of a fully abstract
encoding from πm to πs with respect to the weak bisimilar-
ity. On the other hand it seems that the arrow from πm to
πa, as indicated in Figure 1, can be understood as anything
but a fully abstract encoding with respect to the weak bisim-
ilarity. Finally there is a point about the Equivalence Crite-
rion. One way to understand the negative result of Figure 1
is that there is no encodings from πm to πs that satisfy the
Equivalence Criterion and the Computation Criterion. Even
if we relax on the Computation Criterion, there are strong
arguments that the arrows πs → πi, πs → π−, πs → πa

and π− → πa fail the Equivalence Criterion. Using the
simple arguments, as we shall see later, one can show that



the ‘tossing-the-coin algorithm’, which can be coded up in
πs by cf + ct, can not be programmed in any of the πi, πa

and π−. These negative results are in a sense even stronger
than the negative result offered by the Leader Election Sys-
tem [16].

According to the above analysis, there is really a need
to clarify the picture about the relative expressiveness of
the π-variants. It would be fruitful to look at the models
from the point of view of interactability. The computational
factor should also be considered since they interfere with
the interactions. In other words we expect to strengthen the
results stated in Figure 1 by answering the following:

Question 1: What are the relationships among the
variants of π-Calculus if the Interaction Criterion
is adopted? What if the Computation Criterion is
also adopted?

In Figure 1 the asynchronous π-calculi are compared
against the synchronous π-calculi. The equivalences used in
the full abstraction results are the asynchronous bisimilarity
in the former and the various (synchronous) bisimilarities
in the latter. A better understanding of the relationships can
be achieved by considering the following:

Question 2: What is the uniform framework to
study the expressiveness of the synchronous π-
calculi and the asynchronous π-calculi?

To answer the two questions, some open problems need be
solved. The relative expressiveness of π over πm has stood
unanswered for quite some time. From the viewpoint of
interactions, the problem can be formalized as follows:

Problem 1: Is there a (termination preserving) en-
coding J K from π to πm such that P ≈ JP K?

The answer is not just practically interesting, it is also the-
oretically important. Similarly the relative expressiveness
of πm over πs is not completely clear, despite the result
in [16]. Hence

Problem 2: Is there a (termination preserving) en-
coding J K from πm to πs such that P ≈ JP K?

The above two problems are about the relative powers of
the choices. There is also a question on whether any form
of the external choice is redundant.

Problem 3: Is there an encoding J K from πs to
π− such that P ≈ JP K?

The choice operator is often used in specification [11],
whereas the concurrent composition ‘|’ is an implementa-
tion operator. Problem 3 can be equivalently stated as fol-
lows: Is there a specification that can not be implemented
without the choice operator? The asynchronous π-calculus

is often presented without the choice. But intuitively πa is
strictly less expressive than all the synchronous π-calculi
interactively since the output actions do not have any con-
tinuations. So we pose the following:

Problem 4: Is πa, and πi as well, strictly less ex-
pressive than π− interactively?

Sometimes two variants only differ in the ways the infinite
behaviors are introduced. The well known recursion mech-
anism used in the π-Calculus are the fixpoint operations,
recursive constant definitions, replications etc.. It would be
interesting to see if different recursion mechanisms make a
difference interactively

Problem 5: What are the comparative expressive-
ness of the various recursion mechanisms from
the viewpoint of interaction?

Solutions to the above five questions should allow us to
have an improved understanding of the relative expressive-
ness of the π-calculi appeared in Figure 1.

1.3 Contributions

This paper sets out to answer the two questions and solve
the five problems stated in the previous subsection. Our
contributions are both methodological and technical.

• We will propose a methodology to compare the expres-
sive powers of the process calculi in a uniform man-
ner. This methodology is inspired by the Interaction
Criterion. The advantage of our approach is that it fits
well with the observational theory. It can also be easily
adapted if different observational theories are adopted.

• Technically we introduce subbisimilarity and asyn-
chronous subbisimilarity as tools to measure the rel-
ative expressiveness of the process calculi. The for-
mer works for the synchronous calculi and the latter
for both the synchronous and the asynchronous cal-
culi. Computation Criterion can be easily incorpo-
rated. Using the asynchronous (termination preserv-
ing) subbisimilarity, we clarify all the relationships
among the variants of the π-Calculus present in Fig-
ure 1. The theoretical framework also allows us to
study the independence of the operators of the pro-
cess calculi. We show that all the operators of the π-
calculus are independent to each other.

The paper is organized as follows: The subbisimilarities
for CCS variants are introduced in Section 2 to study the ex-
pressiveness of the choice operators and the recursion. The
approach is extended to the setting of the π-calculus in Sec-
tion 3 to investigate the relative expressiveness of the syn-
chronous variants of the π-calculus. It is further extended in
Section 4 to cover the asynchronous π-calculi. Some com-
ments are made in Section 5.



2 Interaction Hierarchy of CCS

As an operational model of interaction [12], CCS [11] is
a test bed for studying the expressiveness of process calculi.
Apart from serving as a technical preamble, the results in
this section are also interesting on their own.

We shall assume that there is a set of names N ranged
over by the small letters. The set of action labels N ∪N ∪
{τ} is ranged over by λ. The syntax of CCS is as follows:

E := 0 | X | λ.E | E |E′ | (x)E | E+E′ | µX.E

We have left out the relabeling operation for the following
reason: Our interest in CCS is to obtain results that can be
easily transplanted to the π-Calculus. For that purpose the
relabeling operation is not necessary.

The standard operational semantics of CCS is induc-
tively generated by the following rules:

Prefix, Restriction

λ.E
λ−→ E

E
λ−→ E′ x 6∈ n(λ)

(x)E λ−→ (x)E′

Composition

E
λ−→ E′

E |F λ−→ E′ |F
E

a−→ E′ F
a−→ F ′

E |F τ−→ E′ |F ′

Choice, Fixpoint

E
λ−→ E′

E+F
λ−→ E′

E{µX.E/X} λ−→ E′

µX.E
λ−→ E′

Notice that the symmetric rules are omitted. We will

write =⇒ and
bλ=⇒ for their standard interpretations. The

α-conversion applies to this version of CCS. The standard
reference book on CCS [11] covers the fundamental the-
ory about the model. We will assume that the reader is fa-
miliar with the labeled transition semantics and the basic
operators in process calculi. We will use the standard no-
tations in process calculi. For instance we write σ to stand
for substitutions of names like {y1/x1, . . . , yn/xn}. We
write {E1/X1, . . . , En/Xn} for substitutions of variables.
When applying the substitution to a process expression E,
notation E{E1/X1, . . . , En/Xn}, we get a process expres-
sion obtained by replacing X1, . . . , Xn by E1, . . . , En re-
spectively. Bound names need be renamed to avoid name
capture. For instance (x)(y)(cx | dy |X){ax | by/X} is
the expression (v)(w)(cv | dw | ax | by). Sometimes, es-
pecially when studying dynamic binding calculi, we need
substitutions that does not admit α-conversion. For that
purpose we introduce the dynamic substitution of vari-
ables [E1/X1, . . . , En/Xn]. For instance the syntac-
tic object (x)(y)(cx | dy |X)[ax | by/X] is the expression

(x)(y)(cx | dy | ax | by). The substitutions of variables will
be ranged over by ς .

A descendant of a process expression E is an E′ such
that E

λ1−→ . . .
λn−→ E′, where n ≥ 0. Let Dscd(E) be

the set of descendants of E. By definition E ∈ Dscd(E).
A computation of E is either an infinite internal action se-
quence E

τ−→ . . .
τ−→ Ei

τ−→ . . . or a finite internal action
sequence E

τ−→ . . .
τ−→ E′ such that E′ can not perform

any internal actions. Let Comp(E) be the set of all compu-
tations of E. The expression E is terminating if Comp(E)
does not contain any infinite computation. It is divergent
otherwise.

In order to compare the expressive powers of the vari-
ants of CCS, we introduce the subbisimilarity between the
variants. For that purpose we need the following definition:

Definition 1. A binary relation R ⊆ S1 ×S2 is left surjec-
tive if ∀S1 ∈ S1.∃S2 ∈ S2.S1RS2. It is right surjective if
∀S2 ∈ S2.∃S1 ∈ S1.S1RS2.

Intuitively a subbisimilarity interprets every process of a
variant by (at least) one process in another variant in such a
way that the related processes have the same operational im-
pacts on the environments. In other words the related pro-
cesses satisfy the Interaction Criterion. In Milner’s termi-
nology [11, 17], a subbisimilarity is a left surjective bisimu-
lation between two process calculi. The following definition
is almost the same as the definition of bisimulation in [9].
Throughout this paper we confine our attention to the rela-
tions on the processes without the free process variables.

Definition 2. A subbisimilarity from the variant CCS1 to
the variant CCS2 is a left surjective relation R such that the
following bisimulation property holds whenever S1RS2:

If S1
λ−→1 S′

1 then S2

bλ=⇒2 S′
2R−1S′

1 for an S′
2;

If S2
λ−→2 S′

2 then S1

bλ=⇒1 S′
1RS′

2 for some S′
1.

We shall say that CCS1 is subbisimilar to CCS2, notation
CCS1 vccs CCS2, if there is a subbisimilarity from CCS1

to CCS2. We write CCS1 @ccs CCS2 if CCS1 vccs CCS2

and CCS2 6vccs CCS1.

The subbisimilarity relationship is transitive. A sub-
bisimilarity from a CCS variant to itself is a special bisim-
ulation [11]. The largest such bisimulation is called bisimi-
larity, denoted by ≈. Alternatively P ≈ Q if there is a right
surjective subbisimilarity from Dscd(P ) to Dscd(Q).

In sequel we often say that an encoding J K from CCS1

to CCS2 is a subbisimilarity. This should be understood
that J K is contained in a subbisimilarity. Such an encod-
ing clearly satisfies the Full Abstraction with respect to the
bisimilarity ≈.

To prove CCS2 6vccs CCS1, one only has to show that
some P2 of CCS2 exists such that for every P1 of CCS1 the
pair P2, P1 do not satisfy the bisimulation property.



2.1 Computation and Bisimulation

In process theory, what are the rules that govern the be-
haviors of the computations? From the viewpoint of inter-
action, what can be said about the processes in the sequence
P0

τ−→ P1
τ−→ P2 . . . Pi

τ−→ Pi+1(
τ−→ . . .)? A not well

known fact is that if some Pi is equivalent to the initial state
P0 then all the intermediate states are equivalent. The fol-
lowing lemma has already been stated in [8].

Lemma 1 (O-Lemma). If P0
τ−→ P1

τ−→ · · ·Pn
τ−→ P0

then P0 ≈ P1 ≈ P2 ≈ · · · ≈ Pn.

According to the O-Lemma a computation is carried out
in phases, which can be depicted as follows:

P0
τ−→ · · · τ−→ Pi1

τ−→ Pi1+1
τ−→ · · · τ−→ Pi2

τ−→ . . .

The phase one consists of all the states from P0 to Pi1 .
These states are all equivalent from the point of view of
interaction. From the point of a computing system, what
phase one accomplishes is some internal adjustment. It has
not made any irretrievable decision. The computing step
from Pi1 to Pi1+1 is fundamental. Once the system has
done that, there is no going back. The second phase start-
ing from Pi1+1 and ending at Pi2 consists of the equivalent
states again. These states are not equivalent to any of the
previous states. Generally none of the states in a phase is
equivalent to any state in the previous phases.

In practice the O-Lemma is used in the following form:

If P0
τ−→ P1

τ−→ · · · τ−→ Pn ³ P0 then P0 ³
P1 ³ P2 ³ · · · ³ Pn.

The symbol ³ stands for an observational equivalence.
The O-Lemma is of crucial importance to some fully ab-

stract encodings studied in this paper. A typical scenario of
using the O-Lemma is the following:

P0

P1

Pi

Pn

λ0

λ1

λi

λn

τ

τ∗τ∗

τ

Imagine that there is an agent traveling around the states of
the circle. All the states on the circle are equivalent by the
O-Lemma. So as long as the agent is staying on the circle, it
retains all the powers to kick off any of the possible actions
doable by Pi. But at any particular state, say Pi, the agent
might decide to kick off the action λi. Once it does that, the
system moves to the next step.

2.2 Choice, or No Choice

Instead of the binary choice +, one could have the mixed
choice

∑
i∈I λi.Ei, or the separated choice

∑
i∈I ai.Ei and∑

i∈I ai.Ei, where I is finite. The operational semantics of
the mixed/separated choice is defined as follows:

∑
i∈I λi.Ei

λi−→ Ei

We write CCSm and CCSs for the CCS with mixed choice,
respectively separated choice. In both CCSm and CCSs the
prefix operator could be dropped.

Let CCS− be the CCS without the choice operator. It
is not surprising that CCS− is less expressive than CCSs in
terms of interactability. What is surprising is that CCSs and
CCSm are equivalent interactively.

Theorem 1. CCS− @ccs CCSm vccs CCSs.

Proof. It is clear that CCS− vccs CCSm. We have to show
that CCSm 6vccs CCS−. Suppose that P is a process con-
taining no choice operations and that a+b ≈ P for distinct
a, b. To match up the action a+b

a−→ 0 there must be some
P ′ such that P =⇒ P ′ a−→. Now P ′ ≈ a+b. Therefore P ′′

exists such that P ′ =⇒ P ′′ b−→. Using the fact that P ′ con-
tains no choice operator, it is easy to show that P ′′ a−→ (see
Lemma 2 below). But then it follows from Lemma 2 that
P ′′ a−→ b−→, which contradicts to the fact that P ′′ ≈ a+b.

Next we show that CCSm vccs CCSs. It is enough to
see how to simulate the mixed choice a.P+b.Q by process
A, or B, defined as follows:

A = a.P+τ.B

B = b.Q+τ.A

Using the fixpoint operator one could get the solution to the
above equations:

A
def= a.P+τ.µY.(b.Q+τ.(a.P+τ.Y ))

B
def= µY.(b.Q+τ.(a.P+τ.Y ))

Obviously A ≈ a.P+b.Q ≈ B and A,B are in CCSs.
Clearly this is a simple application of the O-Lemma.

Lemma 2. Suppose E is a CCS− expression. If E
λ1−→ E′

and E
λ2−→ E′′ such that λ1 6= λ2, then E

λ1−→ E′ λ2−→ E′′′

and E
λ2−→ E′′ λ1−→ E′′′ for some E′′′.

Proof. This is a simple induction on the height of deriva-
tions.



2.3 Termination Preserving Encoding

The encoding given in the previous subsection is assur-
ing from an external point of view. No environments can
ever detect any difference between P and JP K. There is
however something lost over the translation. The process
a.P+b.Q is translated to a.P+τ.µY.(b.Q+τ.(a.P+τ.Y ))
which is divergent. The point is that although the divergent
computations introduced by the encoding only go through
states that are equivalent to the initial state, there is arguably
some difference between a never ending computation and a
terminating computation. One is interested in knowing if
Theorem 1 can be strengthened to meet the Computation
Criterion.

Definition 3. A subbisimilarity R from CCS1 to CCS2 is
termination preserving if it meets the Computation Crite-
rion in the following sense:

If PRQ then P is terminating if and only if Q is
terminating.

We write CCS1 vccs
↓ CCS2 if a termination preserving sub-

bisimilarity from CCS1 to CCS2 exists, and CCS1 @ccs
↓

CCS2 if CCS1 vccs
↓ CCS2 yet CCS2 6vccs

↓ CCS1.

The next theorem says that one must be ready to sacrifice
Computation Criterion if the use of the choice is restricted.

Theorem 2. CCS 6vccs
↓ CCSm 6vccs

↓ CCSs.

Proof. We prove that there are no termination preserving
subbisimilarities from CCS, respectively CCSm, to CCSm,
respectively CCSs.

Suppose that P is a terminating process with only sep-
arated choice. We argue that P is not bisimilar to a+b. If
not, then for each P ′ such that P =⇒ P ′ and ¬(P ′ τ−→),
one would have that P ′ ≈ a+b, which would imply that

P ′ a−→ and P ′ b−→. This is an obvious contradiction.
Next we prove that the process µX.(a+b |X), which

is in CCS and is terminating, is not bisimilar to any ter-
minating process in CCSm. Notice that µX.(a+b |X) is
terminating and infinite branching and that it turns into a
process of the form b | . . . | b︸ ︷︷ ︸

j times

after performing an a action.

If µX.(a+b |X) were bisimilar to some terminating P of
CCSm, then according to the finite branching property of
CCSm, there are only finitely many Pi, for i ∈ I , such that
P =⇒ a−→ Pi. If P were bisimilar to µX.(a+b |X) then
for each i ∈ I there would exist some ji < ω such that

µX.(a+b |X) a−→ b | . . . | b︸ ︷︷ ︸
ji times

≈ Pi

Let jm be such that jm > supi∈I{ji}. It is clear that the
action µX.(a+b |X) a−→

∏
1≤j≤jm

b can not be matched
up by P .

2.4 Static Binding, or Dynamic Binding

The infinite behaviors of CCS could be defined in a
number of ways. Using the fixpoint operator µ, interest-
ing process behaviors can be defined. Consider the process
A

def= µX.(a+b |X). A finite action trace of the process
takes the following shape

A
b−→ . . .

b−→︸ ︷︷ ︸
i times

A
a−→ A

b−→ . . .
b−→︸ ︷︷ ︸

j times

0

At first glance the interactional behavior of A has a lot to
do with the fact of A being not finitely branching. But what
really causes the particular pattern of the infinite behavior
is the fact that X is unguarded. For the CCS we have de-
fined, finite branching property is available if one restricts
to CCSm.

Another way to achieve the finite branching property is
to use the replicator with its semantics formulated a la Gi-
ambiagi, Schneider and Valencia [9]:

E
λ−→ E′

!E λ−→ E′ | !E
E

a−→ E′ E
a−→ E′′

!E τ−→ E′ |E′′ | !E

Let CCS! denote the variant of CCS whose infinite behav-
iors are defined by the replicator. Intuitively one has that
!P ≈ P | !P . One obvious advantage of using the replica-
tion instead of the fixpoint operation is that one could give a
purely first order presentation of CCS. Giambiagi, Schnei-
der and Valencia have shown that the guarded µ and the
replicator ! are equivalent interactively. This result is better
stated in terms of CCSm.

Fact 1 (Giambiagi, Schneider, Valencia [9]). The following
holds: CCSm vccs

↓ CCS! vccs
↓ CCSm.

Proof. Intuitively !P of CCS! can be interpreted in CCSm

as µX.(P |X). Conversely µX.E of CCSm is simulated
in CCS! by (m)(E{m.0/X} | !m.E{m.0/X}), where m
does not occur in E.

The above equivalence still leaves us with the open prob-
lem: What is the relationship between CCS and CCS!?

Problem 1. CCS vccs CCS!?

The infinite behaviors can also be admitted through con-
stant definition [11] and parametric definition [9]. We shall
spend a minute to explain the mechanism of constant defini-
tion. Suppose E1, . . . , En are expressions with free process
variables X1, . . . , Xn. The following form a finite set of
constant definitions:

C1 = E1{C1/X1, . . . , Cn/Xn}
...

Cn = En{C1/X1, . . . , Cn/Xn}



We mention that we do not allow recursively defined defi-
nitions using an infinite set of equations. A prominent fea-
ture of the constant mechanism is that it disallows the α-
conversion. Take for instance the constants defined below:

D1 = xy | (x)(y(z).zx |D2)
D2 = yx | (y)(x(z).zy |D1)

The free y in the definition of D2 is captured by the localiza-
tion operator (x) in the definition of D1 dynamically. One
has that

D1
τ−→ xy | (x)(xx | (y)(x(z).zy |D1))
τ−→ xy | (x)(xx | (y)(yy | (x)(y(z).zx |D2)))

These internal actions are possible only if bound names are
never renamed.

Yet another way of introducing the infinite behaviors is
by using the dynamic fixpoint. For the dynamic binding µ-
operator, free names might get bound dynamically while
unfolding the recursion. For instance µX.x | (x)(x |X)
may not do any action if the static binding is adopted. It is
divergent if the dynamic binding is admitted. For the static
fixpoint operations the α-conversion is admitted, whereas
for the dynamic fixpoint operations the α-conversion is
banned.

Let CCSdef be the finite CCS with the constant defini-
tion, CCSpdef be the finite CCS with the parametric defi-
nition, and CCSdµ be the finite CCS with the dynamic µ-
operator. It should be pointed out that the α-conversion do
not apply to these three variants. For uniformity, we some-
times write CCSµ for CCS with the static µ-operator.

Fact 2 (Giambiagi, Schneider, Valencia [9]). One has that
CCSdµ vccs

↓ CCSdef vccs
↓ CCSpdef vccs

↓ CCSdµ.

Proof. For a proof of CCSdef vccs
↓ CCSpdef vccs

↓ CCSdef

the reader is referred to [9]. The conversions between
CCSdµ and CCSdef are relevant to this paper. So we take
some time to explain them. Given a process P in CCSdµ,
we may convert it into a finite set of constant definitions in
the following manner:

• To start with we introduce the constant C = P .

• Suppose the conversion has introduced the following
set of constant definitions:

C = E0

C1 = E1

...
Cn = En

If µX.E is a subexpression in one of E1, . . . , En

such that E does not contain any occurrence of the µ-
operator, then we replace the above set of definitions
by the following set of definitions

C = E0{Cn+1/µX.E}
C1 = E1{Cn+1/µX.E}

...
Cn = En{Cn+1/µX.E}

Cn+1 = En+1{Cn+1/X}

• The second step is repeated until there is no occurrence
of µ-operator in any of the definitions.

It is easy to see that P is strongly bisimilar to C.
Next we explain the converse conversion. Without loss

of generality, suppose we have in CCSdef the following set
of constant definitions:

C1 = E1{C1/X1, C2/X2}
C2 = E2{C1/X1, C2/X2}

Now C1, C2 form a solution to the following equations

X1 = E1

X2 = E2

Using the dynamic µ-operator of CCSdµ, one could
construct the process expression µX1.E1. Substituting
µX1.E1 for X1 in the second equation gives rise to the
equation

X2 = E2{µX1.E1/X1}

from which we could construct µX2.E2{µX1.E1/X1}. It
is easy to see that

C1 ∼ µX1.E1{µX2.E2{µX1.E1/X1}/X2}
C2 ∼ µX2.E2{µX1.E1/X1}

We are done.

Let CCSd− be the variant of CCS− with the dynamic
fixpoint operator. Similarly we have CCSdm and CCSds.
What is the relationship between CCSm and CCSdm? It is
easily seen that CCSm vccs

↓ CCSdm. Busi, Gabbrielli and
Zavattaro have shown in [3, 4] that the termination prop-
erty is decidable in CCSm but undecidable in CCSdm. It
is important to notice that this result per se is not about the
interactability! However the dynamic recursion is indeed
strictly stronger interactively than the static recursion in the
setting of CCS. In other words, CCSdm can not be encoded
in CCSm.



Theorem 3. The following properties hold:
(i) CCS− @ccs CCSd−;
(ii) CCSs @ccs CCSds;
(iii) CCSm @ccs CCSdm.

Proof. Consider the counter Z defined in CCSdm:

Z = z.Z + a.(x)(O |x.Z)
O = a.x + a.(y)(E | y.O)
E = a.y + a.(x)(O |x.E)

This is a simplification of the counter defined in [3]. It has
the following operational behavior

Z
a−→ . . .

a−→︸ ︷︷ ︸
i times

a−→ . . .
a−→︸ ︷︷ ︸

i times

z−→

for every natural number i. The process Z is capable of
remembering the difference between the number of a’s it
has performed and the number of a’s it has done. After Z
has done consecutive n a’s, it must do at least n a’s before
it can do a z. This dynamic behavior can not be captured by
any process in CCSm with the static fixpoint operator.

In view of Fact 1 we only have to show that Z is not
bisimilar to any process in CCS!. The proof of this fact
bears resemblance to the decidability proof of [3, 4], mak-
ing use of the theory developed in [6]. See Appendix A for
a proof.

It is easy to see how to modify the above proof to show
that CCSs @ccs CCSds. In CCSd−, and CCS− as well,
one could define the internal choice E +̇ F as follows:

E +̇ F
def= (m)(m.E |m.F |m)

where m does not appear in E |F . Using the internal choice
one could define a weak form of counter in CCSd− in the
following manner

Z ′ = τ.z.Z ′ +̇ τ.a.(x)(O′ |x.Z ′)
O′ = τ.a.x +̇ τ.a.(y)(E′ | y.O′)
E′ = τ.a.y +̇ τ.a.(x)(O′ |x.E′)

Although Z ′ does not always do what the environments
want, it does exhibit the same memory capacity as Z. For
this reason the approach used in Appendix A can be applied
to prove (i).

The fact that the dynamic fixpoint operations, or the con-
stant definitions, are much stronger than the static fixpoint
operations, or the replications, is reinforced by another fact.
The CCS with dynamic fixpoint operations and the mixed
choices is strong enough to code up the CCS with arbitrary
choices. It is a phenomenal result that not only points out
the power of the constant definitions, but also pinpoints the
difference between guarded choices and arbitrary choices.

Cb
0 = xb

Cb
λ.E = xb + λ.(xb)Cb

E

Cb
(a)E = (a)Cb

E

Cb
E1+E2

= xb + τ.(xb)(C
b
E1

|xb.C
b
E1+E2

)

+ τ.(xb)(C
b
E2

|xb.C
b
E1+E2

)

Cb
E1 |E2

= xb + τ.(u)(V b
E1|E2

|W b
E1|E2

)

V b
E1|E2

= τ.(xb)(C
b
E1

|xb.V
b
E1|E2

) + u.Cb
E1 |E2

W b
E1|E2

= τ.(xb)(C
b
E2

|xb.W
b
E1|E2

) + u

where b ∈ {>,⊥}, b = ¬b and x>, x⊥ are fresh names.

Figure 2. Translation from CCSdµ to CCSdm

Theorem 4. CCSdµ vccs CCSdm vccs CCSds.

Proof. The proof CCSdm vccs CCSds can be read-
ily copied from the proof of Theorem 1. To establish
CCSdµ vccs CCSdm we demonstrate how to translate a
CCSdµprocess to a CCSdm process. The translation con-
sists of four steps:

1. First a translation from the CCSdµ expressions that
contain no µ-operations to the finite sets of constant
definitions in CCSdm is defined as given in Figure 2.
For each CCSdµ expression E without µ-operator, a
constant Cb

E is introduced. The translation is indexed
by the boolean value b, which is either truth > or false
⊥, and b is the negation of b. The name x> and x⊥
are used to trace back to the starting point of an inter-
nal wandering. The alternating use of the bound names
x>, x⊥ is essential.

2. Secondly each CCSdµ process P with n occurrences
of the µ-operator is unrolled to a set of n equations

X1 = E1
P

...
Xn = En

P

in the way as explained in the proof of Fact 2. Let
EP be the CCSdµ expression obtained by replacing
the n fixpoints by the corresponding process variables
X1, . . . , Xn. We then have a new equation

X = EP

for a fresh process variable X .

3. Thirdly we have a set of constant definitions in



CCSdm. This set consists of the following definitions

C>
X = C>

E

C>
X1

= C>
E1

P

...
C>

Xn
= C>

En
P

C⊥
X1

= C⊥
E1

P

...
C⊥

Xn
= C⊥

En
P

plus the constant definitions introduced by the con-
stants C>

E1
P
, . . . , C>

En
P
, C⊥

E1
P
, . . . , C⊥

En
P

.

4. Finally the encoding JP K is defined as follows:

JP K def= (x>)C>
X

The encoding J K so defined makes full use of the dynamic
binding mechanism. It is very much like the counter exam-
ple defined in the proof of Theorem 3.

To understand the encoding, the reader is advised to
work out the encoding of the process P ≡ µX.(a+b |X).
The equations derived from this process are

X = Y

Y = a + b |Y

which can be simplified to a single equation

X = a + b |X (1)

To improve readability let’s write PE for C>
E and QE for

C⊥
E . The constant definitions that correspond to (1) are the

following:

PX = Pa+b|X

Pa+b|X = x + τ.(y)(Qa|y.Pa+b|X)
+ τ.(y)(Qb|X |y.Pa+b|X)

Qa = y + a.(x)P0

Qb|X = y + τ.(u)(Q1
b|X |Q2

b|X)

Q1
b|X = τ.(x)(Pb|x.Q1

b|X) + u.Qb|X

Q2
b|X = τ.(x)(PX |x.Q2

b|X) + u

Pb = x + b.(x)P0

P0 = x

The proof of the correctness of the encoding can be
found in Appendix B.

Theorem 1 and Theorem 4 imply that there are specifica-
tions in CCS that can not be implemented by CCS processes
without the choice operators.

3 Interaction Hierarchy of Pi

In this section we apply the idea of the subbisimilarity
to investigate the interactability of the variants of the π-
Calculus. Most results we have established for CCS can be
easily transplanted to the π-Calculus. We start with the core
of the π-Calculus whose abstract grammar is as follows:

E := 0 | a(x).E | ax.E | E |E | (x)E | µX.E

We shall let π− denote this calculus. The semantic rules are
given below:

Prefix

a(x).E
ay−→ E{y/x} ax.E

ax−→ E

Restriction

E
ax−→ E′

(x)E
a(x)−→ E′

E
λ−→ E′ x 6∈ n(λ)

(x)E λ−→ (x)E′

Composition, Fixpoint

E
λ−→ F ′

E |F λ−→ E′ |F
E

ax−→ E′ F
ax−→ F ′

E |F τ−→ E′ |F ′

E
ax−→ E′ F

a(x)−→ F ′

E |F τ−→ (x)(E′ |F ′)

E{µX.E/X} λ−→ E′

µX.E
λ−→ E′

The semantics of the µ-operator is defined as in CCS. The
variants with the choice, mixed choice and the separated
choice are denoted respectively by π (or πµ), πm and πs.
We will write π! for the variant of π obtained by replacing
the µ-operator by the replicator “!”.

To compare the interactional powers of the variants of
the π, we need to define the subbisimilarity relations for the
π variants. Among all the equivalence relations proposed
for the π-Calculus [21], the quasi open bisimilarity stands
out as the bisimulation equivalence with the right distin-
guishing power [20, 7]. A quasi bisimulation is a family
of relations {Rex}ex⊆fN indexed by the set of the finite set
of names (⊆f being the finite subset relation). Intuitively
PRexQ means that P and Q are quasi open bisimilar under
the assumption that the names x̃ were local names that have
been opened up by the bounded output actions. To make
sure that the quasi open bisimilarity is closed under the pre-
fix operation, it is required that each Rex is closed under
the respectful substitutions. A substitution σ respects x̃ if
(∀x ∈ x̃.σ(x) = x) ∧ (∀z 6∈ x̃.σ(z) 6∈ x̃).

The following definition extends that of the quasi open
bisimulations, in which bn(λ) is the set of bound names in
λ.



Definition 4. Suppose that π1 and π2 are two π variants. A
subbisimilarity from π1 to π2 is a family {Rex}ex⊆fN such
that the following properties hold:
(i) For each x̃ ⊆f N , Rex is a left surjective and is closed
under the substitutions that respect x̃.
(ii) The bisimulation property holds whenever S1RexS2:

If S1
λ−→1 S′

1 then S2

bλ=⇒2 S′
2 for some S′

2 such
that S′

1 Rexbn(λ) S′
2;

If S2
λ−→2 S′

2 then S1

bλ=⇒1 S′
1 for some S′

1 such
that S′

1 Rexbn(λ) S′
2.

We say that π1 is subbisimilar to π2, notation π1 vpi π2,
if there is a subbisimilarity from the former to the latter. A
subbisimilarity {Rex}ex⊆fN satisfies the Computation Cri-
terion if Rex satisfies the Computation Criterion for each
x̃ ⊆f N . The notations @pi,vpi

↓ , @pi
↓ are defined accord-

ingly.

A subbisimilarity from a (synchronous) variant of π to
itself is a special quasi open bisimulation. The largest of
such quasi open bisimulation is the quasi open bisimilarity
denoted by ≈.

The results obtained in the previous section can be re-
done in the π framework. In what follows we make use of
the subbisimilarity to classify the interactability of the name
passing interactions.

3.1 Choice and Recursion for Mobile Process

The relative expressiveness of the choice operators in the
π-Calculus is the same as in CCS. The following theorems
confirm.

Theorem 5. π− @pi πm vpi πs.

Proof. A reiteration of the proof of Theorem 1 suffices.

If the Computation Criterion must be met, the picture
remains the same as in CCS.

Theorem 6. πs @pi
↓ πm @pi

↓ π.

Proof. Both the proof of πs @pi
↓ πm and the proof of

πm @pi
↓ π can be copied from the proof of Theorem 2.

Next we take a look at the various recursion mechanisms
in the setting of π-Calculus. For the sake of bookkeeping,
we repeat the following well known fact [9]:

Fact 3. πm vpi
↓ π! vpi

↓ πm.

As it turns out, the relationship between π! and π is best
seen via the corresponding variants using the dynamic fix-
point. In other words, we need to work with πdµ, the π

with the dynamic µ-operator, and πdm, the πm with the dy-
namic µ-operator. We will postulate that in πdµ and πdm,
free names can get bound by both the localization operators
and the input prefix binders. For instance after unfolding
µX.(xz | y(z).(x)(X | zz)), one gets the process

xz | y(z).(x)(µX.(xz | y(z).(x)(X | zz)) | zz)

Here the free name z in µX.(xz | y(z).(x)(X | zz)) is
bound by the input prefix operator y(z) and the free name
x is bound by the localization operator (x). Clearly the dy-
namic fixpoint subsumes the static fixpoint.

Theorem 7. πm vpi
↓ πdm and π vpi

↓ πdµ.

Proof. Using α-conversion, one may assume that all the
bound names in a π process P are distinct and are different
from all the free names of P . The interactional behaviors of
such a P remain unchanged if the fixpoint operator becomes
dynamic. Hence πm vpi

↓ πdm and π vpi
↓ πdµ.

The above theorem would not be interesting if the ex-
istences of the reverses of the two subbisimilarities are un-
known. The next theorem reveals that πm and πdm are com-
pletely equivalent.

Theorem 8. πdm vpi
↓ πm.

Proof. Now suppose P is in πdm. Let µX1.E1 be a subex-
pression of P that does not contain any µ-operator inside
it. We can translate the expression µX1.E1 into the πm ex-
pression

(mX)(mX(c).cx1 . . . xn.0 |µX.mX(c).c(x1 . . . xn).Eς)

where

• mX , c are fresh names;

• x1, x2, . . . , xn are the free names in E1;

• c(x1 . . . xn).Eς is c(x1).c(x2). · · · .c(xn).Eς ;

• cx1 . . . xn.0 is cx1.cx2. · · · .cxn.0;

• ς is [(mX(c).cx1 . . . xn.0) |X/X], a dynamic substi-
tution of variable.

The intuition about the translation is that every time the fix-
point is unfolded, the free names of the expression E are
updated with the local information. So there is actually no
name capture when unfolding the fixpoint. By proceeding
from the inside to outside, we can do the transformation to
all the subexpressions (of P ) in the fixpoint form. The re-
sulting πm process is then the encoding JP K of P . Notice
that for this encoding to work the guarded choice condition
is crucial.



Formally the encoding from πdm process expressions to
πm process expressions is defined as follows:

J0K def= 0JXK def= XJ(x)EK def= (x)JEKJ∑
i∈I

λi.EiK def=
∑
i∈I

λi.JEiK
JE1 |E2K def= JE1K | JE2KJµX.EK def= (mX)(mX(c).c~x

|µX.mX(c).c(~x).JEK[mX(c).c~x |X/X])

where mX , c, ~x = x1, . . . , xn, ς are defined as above. The
πdm process P is encoded by JP K. Let’s take a look at the
operational aspect of the encoding. First of all notice that in
πm one has that

JµX.EK =⇒ (mX)JEK[mX(c).c~x |µX/X]

and JµX.EK ≈ (mX)JEK[mX(c).c~x |µX/X]

where µX ≡ µX.mX(c).c(~x).JEK[mX(c).c~x |X/X]. It
might occur to the reader whether something would go
wrong if mX(c).c~x communicate with another copy of µX

rather than the neighboring µX . The fact that such a com-
munication would do no harm is stated in Lemma 3 estab-
lished right after this proof. It follows immediately from
Lemma 3 that JµX.EK ≈ JEK[JµX.EK/X].

Now define the relation R as follows:

R def= {(P, JP K) | P is a πdm process}

Using Lemma 4 it is routine to show that R ≈ is a subbisim-
ilarity from πdm to πm. Now suppose P1 R JP1K ≈ Q1.
If P1

λ−→ P2 then JP1K λ=⇒ P ′ ≈ JP2K. By definition

some P ′′ exists such that Q1

bλ=⇒ Q′
1 ≈ P ′. ThereforeJP2K R ≈ Q′

1. In the other direction if Q1
λ−→ Q′

1 then P ′

exists such that JP1K bλ=⇒ P ′ ≈ Q′
1. By (ii) of Lemma 4,

some P2 exists such that P1

bλ=⇒ P2 for some P2 such thatJP2K ≈ P ′. Hence P ′
1 R ≈ Q′

1.

Lemma 3. Suppose P ≡ µX.E is in πdm. Let µX abbre-
viate the process µX.mX(c).c(~x).JEK[mX(c).c~x |X/X].
Then (mX)JEK[mX(c).c~x |µX/X] ≈ JEK[JµX.EK/X] in
πm.

Proof. Let E be an expression in πm. It suffices to show
that (mX)E[mX(c).c~x |µX/X] ≈ E[JµX.EK/X]. We
prove that (mX)E[mX(c).c~x |µX/X] and E[JµX.EK/X]

bisimulate. If an action is caused by E then the bisimulation
is trivial. If an action of E[JµX.EK/X] is caused by

JµX.EK τ−→ (c)(c~x | c(~x).JEK[mX(c).c~x |µX/X])

In the same place, (mX)E[mX(c).c~x |µX/X] can do the
same action. If an action of (mX)E[mX(c).c~x |µX/X] is
caused by a communication of a mX(c).c~x and a µX , then
structurally speaking the communication is the same as the
communication between mX(c).c~x and its neighboring µX .
So this action of (mX)E[mX(c).c~x |µX/X] is simulated
by the same action of E[JµX.EK/X].

To state the following lemma, we introduce a notation:

P
bλ−→ P ′ is either P

λ−→ P ′ or P ≡ P ′ when λ = τ .
In other words P

bτ−→ P ′ could be either P
τ−→ P ′ or

P ≡ P ′.

Lemma 4. The following properties hold:
(i) If P1

λ−→ P2 then JP1K λ=⇒≈ JP2K.

(ii) If JP1K λ1−→ . . .
λn−→ P ′ then P1

cλ1−→ . . .
cλn−→ P2 for

some P2 such that JP2K ≈ P ′.

Proof. (i) The proof is by structural induction. If P is
not a fixpoint then use the induction hypothesis. Other-
wise use Lemma 3. (ii) If λ1 . . . λn is a sequence of in-
ternal communications between either some mX or some
c, then JP1K ≈ P ′. If λi1 , . . . , λin are not actions be-
tween either some mX or some c and all the rest actions
are communications between either some mX or some c,

then P1

λi1−→ . . .
λim−→ P2 such that JP2K ≈ P ′.

Our efforts spent in the proof of Theorem 4 pays off by
the following result.

Theorem 9. πdµ vpi πdm and πdµ 6vpi
↓ πdm.

Proof. Using the technique developed in the proof of The-
orem 4, one can prove that πdµ vpi πdm. The counter
example in the proof of Theorem 2 can be reused here to
show that πdµ 6vpi

↓ πdm.

Using Theorem 7, Theorem 8 and Theorem 9 a charac-
terization of the relationships between πm and π in terms of
subbisimilarity is achieved.

Theorem 10. πdµ vpi π vpi πm.

The results of this subsection about the mobile processes
can be summarized as follows: All forms of choice are in-
teractively equivalent; and all mechanisms of introducing
the infinite behaviors are interactively equivalent.

The only unrevealed relationship is to do with πdµ and
π. Is there an encoding from πdµ to π that satisfies the
Computation Criterion? This is the second open problem of
the paper left for further investigation.

Problem 2. πdµ vpi
↓ π?



3.2 Independence Result

The name passing communication mechanism of the π-
Calculus facilitates the internalization of the conditionals
useful in programming. It is interesting to see how the con-
ditionals enhance the interactability of the π. The syntaxes
of the match and the mismatch operators are [x=y]E and
[x6=y]E respectively. The semantics is defined by the fol-
lowing rules:

E
λ−→ E′

[x=x]E λ−→ E′
E

λ−→ E′

[x6=y]E λ−→ E′

We use the notations π=, π 6= and πc to stand for the π with
respectively the match operator =, the mismatch operator
6= and both match and mismatch operators. It is clear that
π vpi π= (π 6=) vpi πc. More about the interactability of
the conditionals are given in the next theorem.

Theorem 11. The following negative results hold:
(i) π= 6vpi π and π= 6vpi π 6=.
(ii) π 6= 6vpi π and π 6= 6vpi π=.
(iii) πc 6vpi π= and πc 6vpi π 6=.

Proof. (i) Consider the process a(x).[x=y]bb. Suppose that
a(x).[x=y]bb R P for a process P of π and a subbisimilar-
ity R from π= to π. The two consecutive observable actions

a(x).[x=y]bb
ay−→ [y=y]bb bb−→ 0 must be simulated by P

in the manner P =⇒ P1
ay−→ P2 =⇒ P3

bb−→ P4 =⇒≈ 0.
We claim that for a fresh z some P ′

2, P
′
3, P

′
4 exist such that

P1
az−→ P ′

2 =⇒ P ′
3

bb−→ P ′
4 (2)

This fact can be proved by induction. The tricky part is to
do with the prefix operator. Suppose P1 ≡ a(x).P ′

1. Then
clearly P ′

1{y/x} ≡ P2 and P ′
1{z/x} ≡ P ′

2. It should be
clear that P2 ≈ bb. This equivalence implies that the inter-
nal computations in P2 =⇒ P3 must be via local names.
Since P2 does not contain any match operations, the sub-
stitution {y/x} does not enable any internal actions in P ′

1.

Therefore P ′
1 =⇒ bb−→, from which (2) follows. But (2)

contradicts the fact that a(x).[x=y]bb az−→ [z=y]bb. Hence
π= 6vpi π. The argument for π= 6vpi π 6= is similar.

(ii) Suppose the process a(x).[x 6=y]bb were equivalent
to a process P of π (π=). For a fresh z the two consecutive

actions a(x).[x6=y]bb az−→ [x6=y]bb bb−→ 0 must be simu-

lated by P
az=⇒ bb=⇒. But then P

ay
=⇒ bb=⇒, which can not be

simulated by a(x).[x 6=y]bb of course.
(iii) The proofs are similar.

An important application of the subbisimilarity approach
is to formally establish the independence of the operators.

Let π1 be a variant of π and π−op
1 be obtained from π1 by

removing the operator op of π1 and the associated opera-
tional rules. We say that the operator op is independent to
the other operators of π1 if π1 6vpi π−op

1 .

Theorem 12. All the operators of πc are independent.

Proof. Theorem 11 says that the match, and the mismatch
as well, is independent from the rest of the operators of πc.
The prefix operator and the replicator are easily seen to be
independent from the other operators. The proof of Theo-
rem 5 shows that the choice operator is independent. The
localization operator is independent because the restricted
output actions are interactively different from the input ac-
tions and the free output actions.

4 Asynchronous Subbisimilarity

Asynchronous communications are those in which the
parties that send messages immediately go ahead without
waiting for any acknowledgements from the receiving par-
ties. In the setting of the π-Calculus the asynchronous out-
put can be defined by the following semantic rules

ax.P
τ−→ ax |P ax

ax−→ 0

It is apparent that ax.P is bisimilar to ax |P under this se-
mantics. This fact tells us that if we want to study the asyn-
chronous communications in the setting of the π-Calculus,
we might as well focus on the following syntax:

P := 0 | a(x).P | ax | P |P | (x)P | !P

This is the well known asynchronous π, often denoted by
πa. The variants of πa include the followings:

• πi is the πa extended with the input choice operation∑
i∈I ai(x).Pi, where I is finite;

• πa
= is the πa extended with the equality conditional

prefix ϕa(x).P ; πi
= is the πi extended with the equal-

ity conditional input choice
∑

i∈I ϕiai(x).Pi;

• πa
6= is the πa extended with the inequality conditional

prefix ϕa(x).P ; πi
6= is the πi extended the inequality

conditional input choice
∑

i∈I ϕiai(x).Pi;

• πa
c is the πa extended with the conditional prefix

ϕa(x).P ; πi
c is the πi extended with the conditional

input choice
∑

i∈I ϕiai(x).Pi.

In the asynchronous calculi, ax is a message that has been
sent by some process but has not yet been received by any
process. It does not really make sense to place any con-
dition right in front of ax. The algebraic theory of πa

has been studied by several researchers [2, 10, 14, 16, 15].



These studies have reached in a consensus on how the asyn-
chronous processes should be observed.

An asynchronous observer differs in observing power
from a synchronous one in that the former can not really see
the input actions performed by the observees. Consequently
the subbisimilarity relations between two asynchronous π
variants do not explicitly bisimulate the input actions. The
abilities to perform input actions are compared by the ef-
fects they exert on the neighboring processes. The follow-
ing definition of the asynchronous subbisimilarity borrows
the ideas from [10, 1].

Definition 5. Suppose that π1 and π2 are two π variants.
An asynchronous subbisimilarity from π1 to π2 is a family
{Rex}ex⊆fN such that the following properties hold:
(i) For each x̃ ⊆f N , Rex is left surjective and is closed
under the substitutions that respect x̃;
(ii) For each x̃ ⊆f N , Rex is closed under composition;
(iii) The bisimulation property holds whenever S1RexS2:

If S1
λ−→1 S′

1 for some λ ∈ {ax, a(x) | a, x ∈
N}∪{τ}, then S2

bλ=⇒2 S′
2 for some S′

2 such that
S′

1 Rexbn(λ) S′
2;

If S2
λ−→2 S′

2 for some λ ∈ {ax, a(x) | a, x ∈
N}∪{τ}, then S1

bλ=⇒1 S′
1 for some S′

1 such that
S′

1 Rexbn(λ) S′
2.

We say that π1 is asynchronously subbisimilar to π2, no-
tation π1 vasy π2, if there is some asynchronous sub-
bisimilarity from the former to the latter. The notations
@asy,vasy

↓ , @asy
↓ are defined accordingly.

There are several alternatives and simplifications to the
above definition, see [10, 1] for more details. But Defini-
tion 5 is formulated to reconcile the asynchrony with the
synchrony. The following proposition explains.

Proposition 1. Suppose π1 and π2 are two synchronous
variants of π. Then (i) π1 vasy π2 if and only if π1 vpi π2;
and (ii) π1 vasy

↓ π2 if and only if π1 vpi
↓ π2.

Proof. Suppose π1 and π2 are two synchronous variants of
the π-Calculus. Let R = {Rex}ex⊆fN be a subbisimilarity
from π1 to π2 in the sense of Definition 4. For each x̃ ⊆f

N , we define an infinite sequence of relations from π1 to
π2 by the following induction:

• vex0
def= Rex;

• vexn+1
def=

 ((z)S1, (z)S2),
(S1 |S′

1, S2 |S′
2)

∣∣∣∣∣∣
S1 vexn S2

S′
1 vexn S′

2

z 6∈ x̃

.

Now let vex∞ be
⋃

n∈ω vexn and v∞ be {vex∞}ex⊆fN . It is a
standard exercise to show that v∞ satisfies the bisimulation

property of Definition 5. By construction it is closed under
composition. Hence π1 vasy π2. If R satisfies the Compu-
tation Criterion, then it follows from the bisimulation prop-
erty that v∞ also satisfies the Computation Criterion.

Let A = {Aex}ex⊆fN be an asynchronous subbisimilarity
from π1 to π2. Suppose PAexQ

az−→ Q′. For names b, c that
appear neither in P nor Q, there must be some process B in
π2 such that az.bc Aex B. It should be not difficult to see
that B

az=⇒ bc−→∼ 0. Consequently

P | az.bc Aex Q |B τ=⇒ bc=⇒∼ Q′ |0

It follows from the bisimulation property that P
az=⇒ P ′

and P ′ |0 Aex Q′ |0. We conclude that {∼ Aex ∼}ex⊆fN is
a subbisimilarity from π1 to π2 in the sense of Definition 4.
Obviously {∼ Aex ∼}ex⊆fN satisfies the Computation Cri-
terion if and only if {Aex}ex⊆fN satisfies the Computation
Criterion.

Proposition 1 asserts that the asynchronous subbisimi-
larity provides a uniform criterion for comparing the inter-
actability of both the asynchronous π as well as the syn-
chronous π. Thanks to Proposition 1 the asynchronous sub-
bisimilarity relationships imply the full abstractions that re-
late the asynchronous bisimilarities to the (synchronous)
bisimilarities. In the rest of the section we use the asyn-
chronous subbisimilarity to characterize the interactability.
The next theorem says that the conditionals also add sub-
stantial expressive power in the asynchronous setting.

Theorem 13. The following relationships hold:
(i) πa @asy πa

= @asy πa
c ; πa @asy πa

6= @asy πa
c ;

(ii) πi @asy πi
= @asy πi

c; πi @asy πi
6= @asy πi

c;

Proof. The inclusion maps are all asynchronous subbisim-
ilarities. The processes a(x).(c)(cc | [x=y]c(z).bb) and
a(x).(c)(cc | [x 6=y]c(z).bb) are in πa

= and πa
6= respectively.

They can be used to show that there are no asynchronous
subbisimilarities in the opposite directions. Suppose there
were an asynchronous subbisimilarity R from πa

= to πa and
that a(x).(c)(cc | [x=y]c(z).bb) R P for some P in πa.
Suppose further that ayRA and azRB. Since R is closed
under composition, one must have

ay | a(x).(c)(cc | [x=y]c(z).bb) R A |P (3)
az | a(x).(c)(cc | [x=y]c(z).bb) R B |P (4)

By definition the only observable action A can do is ay. For
the same reason B can not do any observable actions apart
from az. It follows from (3) and (4) that

P ′ az←−⇐= P
ay

=⇒ bb=⇒ (5)

for some P ′ that can not do bb. As in the proof of Theo-
rem 11, the two sequences of actions in (5) contradict.



The relationship between πa and πi has been studied by
Nestmann and Pierce in [14]. The remarkable result of [14]
is that these two calculi are interactively equivalent.

Fact 4 (Nestmann, Pierce [14]). πi vasy πa.

The technique used to prove the above fact can be easily
adapted to a proof of the following fact.

Fact 5. πi
= vasy πa

=; πi
6= vasy πa

6=; πi
c vasy πa

c .

However the above equivalences fail if the computational
factor is taken into account. It is conjectured in [14] that
there is no termination preserving fully abstract encoding
from πi to πa. The next theorem confirms the conjecture.

Theorem 14. The following relationships are valid:
πa @asy

↓ πi; πa
= @asy

↓ πi
=; πa

6= @asy
↓ πi

6=; πa
c @asy

↓ πi
c.

Proof. If πi vasy
↓ πa were true, there would be an asyn-

chronous subbisimilarity R from πi to πa that satisfies the
Computation Criterion. Then there would be C in πa such
that a(z)+b(z) R C. Since a(z)+b(z) is terminating, there
must be some C ′ such that C =⇒ C ′ and the next action of
C ′ can not be τ . By definition C =⇒ C ′ must be matched
up by a(z)+b(z). But the latter can not do any internal
actions. Therefore a(z)+b(z) R C ′. So we may as well as-
sume that the next action of C can not be τ in the first place.
Similarly A and B exist such that aaRA and bbRB. Again
we may assume that the next action of A (B) can only be
aa (bb). Since R is closed under composition, one would
have that aa | bb | (a(z)+b(z)) R A |B |C, from which it
follows that C could do immediately an input action on a
and an input action on b. But then C could do an input ac-
tion on a followed by an input action on b, which would
lead to a contradiction.

Nestmann looked at the encodings from πs to πa [15].
The adequacy of the encodings is established for some
equivalences considerably weaker than the bisimilarity. As
a matter of fact there is little room for improvement.

Theorem 15. πa @asy π−; πi @asy πs.

Proof. Suppose A is in πa. There is no asynchronous sub-
bisimilarity R from π− to πa to which (ax.by,A) belongs.
This can be argued as follows: Suppose there were an asyn-
chronous subbisimilarity R such that (ax.by,A) ∈ R. Now

the two consecutive actions ax.by
ax−→ by

by−→ 0 had to be

simulated by A =⇒ A1
ax−→ A2 =⇒ A3

by−→=⇒ A′. By
the definition of asynchrony, the action A1

ax−→ A2 can be
delayed until all the internal actions from A2 to A3 have
been executed. In other words, there is an A′

2 such that
A1 =⇒ A′

2
ax−→ A3. Using the asynchronous property

πdµ

πdm π

π!

πm

πs

πi π−

πa

Figure 3. Subbisimilarities of Pi

again, one should have A′
2

by−→ ax−→. This action sequence
is impossible for ax.by to simulate.

The argument for πi @asy πs is the same.

Theorem 15 can be interpreted as saying that the asyn-
chronous variants of π are strictly less expressive than the
synchronous counterparts from the viewpoint of interaction.

Finally we state some results that tighten up most of the
loose ends.

Theorem 16. π− 6vasy πi; πs 6vasy π−; πi 6vasy
↓ π−.

Proof. The arguments used in the proof of Theorem 15 are
good for π− 6vasy πi. The arguments for Theorem 1 can be
modified to prove πs 6vasy π− and πi 6vasy

↓ π−.

5 Final Remark

The paper clarifies some issues on the relative expressive
power of the variants of the π-Calculus. The results of this
paper about the π-calculi are summarized in Figure 3. In
the diagram, the tailed arrow ½ is vasy

↓ ; the plain arrow →
represents vasy; and 9 indicates 6vasy . The existence of
the plain arrow → from π1 to π2 should also be understood
to rule out the existence of the tailed arrow ½ from π1 to
π2, except in the case of πdµ → π. The question of whether
πdµ ½ π holds is yet to be answered. The picture of Fig-
ure 3 is not compatible with that of Figure 1. For example
there is an arrow from πs to πa in Figure 1. In Figure 3
there is definitely not a plain arrow from πs to πa for other-
wise it would contradict to πs 9 π−. As a matter of fact in
Figure 1 there is an arrow from πs to π− by composing two
arrows.

The approach of using subbisimilarity to compare the ex-
pressiveness of process calculi as advocated in this paper is
an attempt towards a general theory of interactability. An
avenue that must be further pursued is about how to com-
pare process calculi with different sets of actions. Suppose
T1, T2 are the sets of the actions of L1 and L2 respectively.
A subbisimilarity R from L1 to L2 must be accompanied by



an injective map ι : T1 → T2 such that ι(τ) = τ . The role
of the injective map is to identify the actions of L1 to the
associated actions of L2 so that the bisimulation property
can be defined in a manner that looks like the following:

If S2R−1S1
λ−→ S′

1 then S2

bλ′
=⇒ S′

2R−1S′
1 for

some λ′, S′
2 such that ι(λ) = λ′;

If S1RS2
λ′

−→2 S′
2 then S1

bλ=⇒1 S′
1RS′

2 for
some λ, S′

1 such that ι(λ) = λ′.

A simple example of two calculi with the different sets of
actions is given by πI [18] and π. First notice that the inclu-
sion map from πI to π is not a subbisimilarity. The process
a(x).(x(z) | y(z)) in πI is interactively different from the
same process in π. Constructing a subbisimilarity from π
to πI is even more problematic since the free output actions
of the former are not available in the latter. The situation
is similar if the relationship between π and the higher order
π [22, 19] is to be studied in terms of subbisimilarity. A
positive subbisimilarity relationship between two quite dif-
ferent calculi is offered in [8], where a variant of the Am-
bient Calculus [5], called FA, is proposed and studied. It
is shown that there is an injective map from the set of the
actions of the π-calculus to the set of the actions of FA that
supports a subbisimilarity from π to FA, implying that π
is actually a subcalculus of FA even from the viewpoint of
interactability.
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A The Proof of Theorem 3

The proof of Theorem 3 could be given by a head-on
approach. We will however make use of the materials de-
veloped by Busi, Gabbrielli and Zavattaro. The following
definitions and propositions are from [3], in which ≡ is the
structural congruence defined in [3].

Definition 6. A well-quasi-ordering (wqo) is a quasi-
ordering ≤ over a set X such that, for any infinite sequence
x0, x1, x2, . . . in X , there exist indexes i < j such that
xi ≤ xj .

Definition 7. A well-structured transition system with
strong compatibility is a transition system TS = (S,→),
equipped with a quasi-ordering ≤ on S, such that the two
following conditions hold:

1. well-quasi-ordering: ≤ is a wqo over S, and

2. strong compatibility: ≤ is (upward) compatible with
→, i.e., for all s1 ≤ t1 and all transitions s1 → s2,
there exists a state t2 such that t1 → t2 and s2 ≤ t2.

Definition 8. Let P ∈ CCS!. With Deriv(P ) we denote
the set of processes reachable from P with a sequence of τ
actions.

Deriv(P ) = {Q |P τ−→
∗

Q}

Proposition 2. Let P,Q ∈ CCS!. If P ≡ Q and P
α−→ P ′

then there exists Q′ such that Q
α−→ Q′ and P ′ ≡ Q′.

Definition 9. Let P,Q ∈ CCS!. We write
P ¹ Q if and only if there exist n, x1, . . . , xn,
P ′, R, P1, . . . , Pn, Q1, . . . , Qn such that P ≡
P ′ |

∏n
i=1(xi)Pi, Q ≡ P ′ |R |

∏n
i=1(xi)Qi, and Pi ¹ Qi,

for i = 1, . . . , n.

Theorem 17. Let P ∈ CCS!. Then the transition system
(Deriv(P ), τ−→,¹) is a well-structured transition system
with strong compatibility.

Using the above results, we may establish the following
lemma.

Lemma 5. Let P,Q ∈ CCS!. If P ¹ Q and P
λ−→ P ′

then there exists Q′ such that Q
λ−→ Q′ and P ′ ¹ Q′.

Proof. Suppose P ≡ C ′ |
∏n

i=1 (xi)Ci and Q ≡
C ′ |R |

∏n
i=1 (xi)Di with Ci ¹ Di.

• If C ′ |
∏n

i=1 (xi)Ci
λ−→ C ′′ |

∏n
i=1 (xi)Ci ≡ P ′ is

caused by C ′ λ−→ C ′′, then C ′ |R |
∏n

i=1 (xi)Di
λ−→

C ′′ |R |
∏n

i=1 (xi)Di and Q
λ−→ Q′ ≡

C ′′ |R |
∏n

i=1 (xi)Ci. Thus P ′ ¹ Q′ by defini-
tion.

• If C ′ |
∏n

i=1 (xi)Ci
λ−→ C ′ | (x1)C ′

1 |
∏n

i=2 (xi)Ci ≡
P ′ is caused by (x1)C1

λ−→ (x1)C ′
1, then by

structural induction, we have D1
λ−→ D′

1 and
C ′

1 ¹ D′
1. Thus C ′ |R |

∏n
i=1 (xi)Di

λ−→
C ′ |R | (x1)D′

1 |
∏n

i=2 (xi)Di. That is Q
λ−→ Q′ ≡

C ′ |R | (x1)D′
1 |

∏n
i=2 (xi)Di. Clearly P ′ ¹ Q′ by

definition.

• Suppose λ = τ and

C ′ |
n∏

i=1

(xi)Ci
τ−→ C ′′ | (x1)C ′

1 |
n∏

i=2

(xi)Ci ≡ P ′

is caused by C ′ α−→ C ′′ and C1
α−→ C ′

1.
Then by structural induction, D1

α−→ D′
1 and

C ′
1 ¹ D′

1. Thus C ′ |R |
∏n

i=1 (xi)Di
τ−→

C ′′ |R | (x1)D′
1 |

∏n
i=2 (xi)Di. That is Q

τ−→ Q′ ≡
C ′′ |R | (x1)D′

1 |
∏n

i=2 (xi)Di. And P ′ ¹ Q′ by def-
inition.

• If λ = τ is caused by a communication between Ci

and Cj , the proof is similar.

We are done.

Theorem 18. CCS! @ccs CCSdµ.

Proof. We are to prove that there is no process in CCS! that
is bisimilar to Z in CCSdµ defined as follows:

Z = z.Z + a.(x)(O |x.Z)
O = a.x + a.(y)(E | y.O)
E = a.y + a.(x)(O |x.E)

Assume that there was a P in CCS! such that (P,Z) was in
a subbisimilarity. Since Z0

def= Z
a−→ Z1

a−→ Z2
a−→ · · · ,

we must have P0
def= P

a=⇒ P1
a=⇒ P2

a=⇒ · · · such that
Pi ≈ Zi. Let P ′

i be defined as follows:

P ′
i

def= Pi | (x)(!a |0i)

Then clearly P ′
0

τ=⇒ P ′
1

τ=⇒ P ′
2

τ=⇒ · · · . Since ¹ is a
well quasi order in Deriv(P ′

0), there must be i,j such that
i < j and P ′

i ¹ P ′
j . By the definition of ¹ and P ′

i , we have
Pi | (x)(!a |0i) ≡ C ′ |

∏n
i=1 (xi)Ci and Pj | (x)(!a |0j) ≡

C ′ |R |
∏n

i=1 (xi)Di with Ci ¹ Di. Since Pj ≈ Zj , Pj



can only do the action a for j times. Without loss of gener-
ality we may assume that Cn ≡!a |0i and Dn ≡!a | j . Then
Pi ≡ C ′ |

∏n−1
i=1 (xi)Ci and Pj ≡ C ′ |R |

∏n−1
i=1 (xi)Di

with Ci ¹ Di. Thus Pi ¹ Pj .

It follows from Pi ≈ Zi that Pi
a=⇒ . . .

a=⇒︸ ︷︷ ︸
i times

z=⇒. Then

by Lemma 5, we have Pj
a=⇒ . . .

a=⇒︸ ︷︷ ︸
i times

z=⇒. Again since

Pj ≈ Zj , we have Zj
a=⇒ . . .

a=⇒︸ ︷︷ ︸
i times

z=⇒. This is an obvious

contradiction.

B The Proof of Theorem 4

Let Drv(E) be the set of derivatives of E formally de-

fined as {E′ | E
λ1−→ . . .

λn−→ E′ for n ≥ 0}. For a CCSdµ

expression E let F, F ′ be two elements of Drv(JEK). We
shall write F

τ0−→ F ′ if F
τ−→ F ′ such that the τ -action

is either caused by the explicit τ prefix introduced by the
encoding in Figure 2, or by a communication between the
local names x>, x⊥ or u introduced by the encoding in Fig-
ure 2. We use the standard notation τ0−→

∗
for the reflexive

and transitive closure of τ0−→, and τ0−→
n

for a sequence of n
τ0−→ concatenated one after another.

Using the notations introduced in Figure 2, one could
define a relation R by the following(E1 | . . . |En, T1 | . . . |Tn)

∣∣∣∣∣∣∣
(xb)Cb

Ei

τ0−→
∗

Ti

or (u)V b
Ei |E

τ0−→
∗

Ti

or (u)W b
E |Ei

τ0−→
∗

Ti


We are to prove that R ∼ is a subbisimilarity from πdµ to
π. We need to prove several technical lemmas.

Lemma 6. (xb)C
b
E ∼ (u)Cb

E ∼ Cb
E .

Proof. The equivalences are obvious due to the following
facts: In Cb

E , V b
E1 |E2

and W b
E1 |E2

, every occurrence of

Cb
E′ or xb is restricted by (xb); and in Cb

E , every occurrence
of V b

E1 |E2
or W b

E1 |E2
is restricted by (u).

Lemma 7. If either (xb)Cb
E

τ0−→
∗

T or (u)V b
E |F

τ0−→
∗

T

or (u)W b
E |F

τ0−→
∗

T , then (x>)T ∼ (x⊥)T ∼ (u)T ∼ T .

Proof. Straightforward from the definition. Notice that ev-
ery occurrence of Cb

E |F in V b
E |F is prefixed by u.

Lemma 8. The following properties hold:
(i) If Cb

E
τ0−→

n
F

xb−→ then F ∼ Cb
E and F

xb−→∼ 0.
(ii) If V b

E1 |E2

τ0−→
n

F
u−→ then F ∼ V b

E1 |E2
and

F
u−→∼ Cb

E1 |E2
.

(iii) If W b
E1 |E2

τ0−→
n

F
u−→ then F ∼ W b

E1 |E2
and

F
u−→∼ 0.

Proof. By the definition of strong bisimilarity and the defin-
tion of the encoding, one has the followings: (i) if F ∼ Cb

E

then F
xb−→∼ 0; (ii) if F ∼ V b

E1 |E2
then F

u−→∼ Cb
E1 |E2

;

and (iii) if F ∼ W b
E1 |E2

then F
u−→∼ 0. We prove the

lemma by induction on n. The case n = 0 is trivial. Sup-
pose that the lemma is true for all n < k, we show that it is
true for n = k.

Let F0 be either Cb
E , or V b

E1 |E2
, or W b

E1 |E2
and that

F0
τ0−→ F1

τ0−→ · · · τ0−→ Fk ≡ F
λ−→

where correspondingly λ is either xb, or u, or u. If there
exist i and j such that i < j ≤ k and Fi ∼ Fj , then F ∼ F0.
This can be proved as follows: If j = k then F ∼ Fi ∼ F0

by induction. Otherwise Fj
τ0−→

(k−j)
Fk and the definition

of the strong bisimilarity imply that we have Fi
τ0−→

(k−j)

F ′
k ∼ Fk ≡ F for some F ′

k. Then F0
τ0−→

(i+k−j)
F ′

k
xb−→.

Since i + k − j < k, by induction we have F ∼ F ′
k ∼ F0.

We now prove that the i and j in the above argument
must exist:

• F0 ≡ Cb
0 or F0 ≡ Cb

λ.E1
: In this case k must be 0.

There is nothing to prove.

• F0 ≡ Cb
(a)E1

: In this case we simply consider Cb
E1

.

• F0 ≡ Cb
E1+E2

: Consider that

Cb
E1+E2

τ0−→ (xb)(C
b
E1

| xb.C
b
E1+E2

) ≡ F1

Since Cb
E1

∼ (xb)Cb
E1

by Lemma 6, we must have that

Cb
E1

τ0−→
∗ xb

6−→

Cb
E1

τ0−→
n1 xb−→ G1

for some G1 and

F1
τ0−→

(n1+1)
(xb)(G1 | Cb

E1+E2
) ≡ F(n1+2)

τ0−→
(k−n1−2)

F

Since n1 < k, we have G1 ∼ 0 by induction. Thus
F(n1+2) ≡ (xb)(G1 | Cb

E1+E2
) ∼ Cb

E1+E2
≡ F0 by

Lemma 6.

If Cb
E1+E2

τ0−→ (xb)(C
b
E2

| xb.C
b
E1+E2

) ≡ F1, then
the argument is the same.



• F0 ≡ Cb
E1 |E2

: Consider that

Cb
E1 |E2

τ0−→ (u)(V b
E1 |E2

| W b
E1 |E2

) ≡ F1

Since Cb
E1

∼ (xb)Cb
E1

, we have Cb
E1

τ0

−→∗
xb

6−→ and

thus V b
E1 |E2

τ0

−→∗
xb

6−→. The same property holds of
W b

E1 |E2
. By induction we must have

V b
E1 |E2

τ0−→
n1 u−→ G1 ∼ Cb

E1 |E2

W b
E1 |E2

τ0−→
n2 u−→ G2 ∼ 0

for some G1, G2 and consequently

F1
τ0−→

(n1+n2+1)
F(n1+n2+2) ∼ Cb

E1 |E2
≡ F0

• F0 ≡ V b
E1 |E2

: The first internal action must be

V b
E1 |E2

τ0−→ (xb)(C
b
E1

| xb.V
b
E1 |E2

)

Since Cb
E1

∼ (u)Cb
E1

τ0−→
∗ u

6−→, we must have by in-

duction that Cb
E1

τ0−→
n1 xb−→ G1 ∼ 0 for some G1.

Therefore

F0
τ0−→ (xb)(C

b
E1

| xb.V
b
E1 |E2

)

τ0−→
(n1+1)

Fn1+2 ∼ V b
E1 |E2

≡ F0

• F0 ≡ W b
E1 |E2

: The proof is almost the same as for
V b

E1 |E2
.

We are done.

Lemma 9. The following properties hold:
(i) If Cb

E
τ0−→

n
F then F

τ0−→
m

G ∼ Cb
E for some m and

G;
(ii) If V b

E1 |E2

τ0−→
n

F then F
τ0−→

m
G ∼ V b

E1 |E2
for

some m and G;
(iii) If W b

E1 |E2

τ0−→
n

F then F
τ0−→

m
G ∼ W b

E1 |E2
for

some m and G.

Proof. We prove the lemma by induction on n. The n = 0
case is trivial. Suppose the lemma is true for all n < k, we
show that it is true for n = k as well.

Let F0 be either Cb
E , or V b

E1 |E2
, or W b

E1 |E2
and that

F0
τ0−→ F1

τ0−→ · · · τ0−→ Fk ≡ F

If there exist i, j such that i < j ≤ k and Fi ∼ Fj , then
there exist m and G such that F

τ0−→
m

G and G ∼ F0. This
can be proved as follow. If j = k then we may simply use

the induction. Otherwise it follows from Fj
τ0−→

(k−j)
Fk

and the definition of strong bisimilarity that Fi
τ0−→

(k−j)

F ′
k ∼ Fk ≡ F . Then F0

τ0−→
(k+i−j)

F ′
k. Since k + i− j <

k, by induction we have F ′
k

τ0−→
m

G′ and G′ ∼ F0 for
some m and G′. Since F ′

k ∼ F , we have F
τ0−→

m
G and

G ∼ G′ ∼ F0 for some G.
Next we now prove the i, j in the above argument do

exist:

• F0 ≡ Cb
0 or F0 ≡ Cb

λ.E : In this case there is nothing
to prove.

• F0 ≡ Cb
(a)E1

: In this case we consider Cb
E1

.

• F0 ≡ Cb
E1+E2

: Suppose that

Cb
E1+E2

τ0−→ (xb)(C
b
E1

| xb.C
b
E1+E2

)

is the first internal action. If Cb
E1

τ0−→
j xb−→∼ 0 for

some j < k then

F0
τ0−→

j+1
∼ (xb)C

b
E1+E2

∼ F0

If

(xb)(C
b
E1

| xb.C
b
E1+E2

)
τ0−→

n−1
(xb)(H

′ | xb.C
b
E1+E2

) ≡ F

then by induction we have H ′ τ0−→
m′

G′ and G′ ∼
Cb

E1
for some m′ and G′. But then

F
τ0−→

m′

(xb)(G
′ | xb.C

b
E1+E2

) ∼ F1

and since F1
τ0−→ (xb)(0 | Cb

E1+E2
), there must ex-

ist some G such that F
τ0−→

m′+1
G and G ∼

(xb)(0 | Cb
E1+E2

) ∼ F0.

• F0 ≡ Cb
E1 |E2

: Then obviously

Cb
E1 |E2

τ0−→ (u)(V b
E1 |E2

| W b
E1 |E2

) ≡ F1

If, for some 1 ≤ j < k, Fj ≡ (u)(P |Q), and
Fj+1 is obtained by the synchronization between P
and Q through u, then it follows from Lemma 8 that
P ∼ V b

E1 |E2
, Q ∼ W b

E1 |E2
and Fj ∼ F0. So we have

found the i,j. If there is no synchronization on u be-
tween P and Q, then F ≡ (u)(P |Q), V b

E1 |E2

τ0−→
n1

P and W b
E1 |E2

τ0−→
n2

Q. By induction we have

P
τ0−→

m1∼ V b
E1 |E2

and Q
τ0−→

m2∼ W b
E1 |E2

for

some m1 and m2. Then F
τ0−→

m1+m2+1
G ∼ F0

for some G.



• F0 ≡ V b
E1 |E2

or F0 ≡ W b
E1 |E2

: The proof is almost
the same as for Cb

E1+E2
.

We are done.

Lemma 10. The followings hold if λ 6∈ {xb, u, u, τ0}:

(i) If Cb
E

τ0−→
n

T
λ−→ T ′, then there exists some E′ such

that E
λ−→ E′ and E′R ∼ T ′.

(ii) If V b
E1 |E2

τ0−→
n

T
λ−→ T ′, then there exists some E′

such that E1
λ−→ E′ and E′R ∼ T ′.

(iii) If W b
E1 |E2

τ0−→
n

T
λ−→ T ′, then there exists some E′

such that E2
λ−→ E′ and E′R ∼ T ′.

Proof. We prove the lemma by induction on n. Let F0 be
either Cb

E , or V b
E1 |E2

, or W b
E1 |E2

. When n = 0, the only

possibility is F0 ≡ Cb
λ.E . In this case Cb

λ.E
λ−→ (xb)Cb

E .

Clearly λ.E
λ−→ E and E R (xb)Cb

E by the definition of
R. Suppose that the lemma is true for n < k, we prove that
it is also true for n = k.

• F0 ≡ Cb
(a)E1

: Consider Cb
E1

.

• F0 ≡ Cb
E1+E2

: Assume that the first internal action is

Cb
E1+E2

τ0−→ (xb)(C
b
E1

| xb.C
b
E1+E2

)

Suppose that there is a synchronization on the explicit
xb at the i-th internal action. In other words the as-
sumption takes the following form for some F :

Cb
E1+E2

τ0−→
i
F

τ0−→
n−i

T

Then by Lemma 8 we have F ∼ Cb
E1+E2

. Thus by the
definition of strong bisimilarity, one gets that

Cb
E1+E2

τ0−→
n−i λ−→ F ′ ∼ T ′

for some F ′. By induction some E′ exists such that

E1+E2
λ−→ E′ R ∼ F ′ ∼ T ′

If such synchronization does not exist, then T ′ ≡
(xb)(T

′
1 | xb.C

b
E1+E2

) and Cb
E1

τ0−→
n−1 λ−→ T ′

1. By

induction, E1
λ−→ E′

1 R ∼ T ′
1 ∼ T ′ for some E′

1.
Therefore E1+E2

λ−→ E′
1 R ∼ T ′.

• F0 ≡ Cb
E1 |E2

: The first internal action is

Cb
E1 |E2

τ0−→ (u)(V b
E1 |E2

| W b
E1 |E2

)

If there is a synchronization on the explicit u at the

i-th internal action like Cb
E1 |E2

τ0−→
i

F
τ0−→

n−i

T for some F , then by Lemma 8 we have F ∼

Cb
E1 |E2

. Thus by the definition of strong bisimilarity,

Cb
E1 |E2

τ0−→
n−i λ−→ F ′ ∼ T ′ for some F ′. It follows

by induction that E1 |E2
λ−→ E′ R ∼ F ′ ∼ T ′.

If T ′ ≡ (u)(T ′
1 |T2), V b

E1 |E2

τ0−→
n1

T1
λ−→ T ′

1

for some T1 and W b
E1 |E2

τ0−→
n2

T2, then by in-

duction one has that E1
λ−→ E′

1R ∼ T ′
1 for some

E′
1. It follows from T ′ ≡ (u)(T ′

1 |T2) ∼ T ′
1 | (u)T2

and (u)W b
E1 |E2

τ0−→
n2

(u)T2 that E1 |E2
λ−→

E′
1 |E2R ∼ T ′.

If T ′ ≡ (u)(T ′
1 |T ′

2), V b
E1 |E2

τ0−→
n1

T1
a−→ T ′

1 and

W b
E1 |E2

τ0−→
n2

T2
a−→ T ′

2 for some T1, T
′
1, T2, T

′
2,

then we have by induction that E1
a−→ E′

1R ∼ T ′
1

for some E′
1 and E2

a−→ E′
2R ∼ T ′

2 for some E′
2. It

is then clear that E1 |E2
τ−→ E′

1 |E′
2 R ∼ T ′

1 |T ′
2 ∼

(u)(T ′
1 |T ′

2) ≡ T ′.

• T0 ≡ V b
E1 |E2

or T0 ≡ W b
E1 |E2

: The proof is almost
the same as for Cb

E1+E2
.

We are done.

Lemma 11. The followings hold if E
λ−→ E′:

(i) Cb
E

τ0−→
∗ λ−→ T ′ for some T ′ such that E′R ∼ T ′;

(ii) V b
E |F

τ0−→
∗ λ−→ T ′ for some T ′ such that E′R ∼ T ′;

(iii) W b
F |E

τ0−→
∗ λ−→ T ′ for some T ′ such that E′R ∼ T ′.

Proof. If Cb
E

τ0−→
∗ λ−→ T ′ and E′R ∼ T ′, then by def-

inition V b
E |F

τ0−→
∗ λ−→ (xb)(T

′ | xb.V
b
E |F ) ∼ T ′. And

similarly for W b
F |E . So we only have to prove (i). This is

done by induction on the inference tree of E
λ−→ E′.

• λ.E
λ−→ E: Then Cb

λ.E
λ−→ (xb)Cb

E . It is obvious
that ER(xb)Cb

E .

• E
λ−→ E′ ⇒ (x)E λ−→ (x)E′: By induction we have

Cb
E

τ0−→
∗ λ−→ T ′′ and E′R ∼ T ′′. Since Cb

(x)E ∼

(x)Cb
E , we have Cb

(x)E

τ0−→
∗ λ−→ T ′ ∼ (x)T ′′ and it is

easy to see that (x)E′R ∼ (x)T ′′ ∼ T ′.

• E1
λ−→ E′

1 ⇒ E1 + E2
λ−→ E′

1: By induction we
have Cb

E1

τ0−→
∗ λ−→ T ′

1 and E′
1R ∼ T ′

1. Then we have

Cb
E1+E2

τ0−→
∗ λ−→ (xb)(T

′
1 | xb.C

b
E1+E2

) ∼ T ′
1.

• E1
λ−→ E′

1 ⇒ E1 |E2
λ−→ E′

1 |E2: By induction we
have V b

E1 |E2

τ0−→
∗ λ−→ T ′

1 and E′
1R ∼ T ′

1. Then we

have Cb
E1 |E2

τ0−→ (u)(V b
E1 |E2

| W b
E1 |E2

) τ0−→
∗ λ−→



(u)(T ′
1 | W b

E1 |E2
) ∼ T ′

1 | (u)W b
E1 |E2

. It is easily
seen that E′

1 |E2R ∼ T ′
1 | (u)W b

E1 |E2
.

• E1
a−→ E′

1 ∧ E2
a−→ E′

2 ⇒ E1 |E2
τ−→ E′

1 |E′
2: By

induction we have V b
E1 |E2

τ0−→
∗ a−→ T ′

1 and E′
1R ∼

T ′
1 for some T ′

1 and likewise W b
E1 |E2

τ0−→
∗ a−→ T ′

2 and

E′
2R ∼ T ′

2 for some T ′
2. Consequently Cb

E1 |E2

τ0−→
(u)(V b

E1 |E2
| W b

E1 |E2
) τ0−→

∗ τ−→ (u)(T ′
1 | T ′

2) ∼
T ′

1 | T ′
2. It is obvious that E′

1 |E′
2R ∼ T ′

1 |T ′
2.

This completes the induction.

We are in a position to prove the following proposition.

Proposition 3. R ∼ is a subbisimilarity.

Proof. Assume E1 |E2 | · · · |Ek R T1 |T2 | · · · |Tk ∼ T .

• Suppose E1 |E2 | · · · |Ek
λ−→ E′ for some E′. With-

out loss of generality there are basically two cases: ei-
ther

E1 |E2 | · · · |Ek
λ−→ E′

1 |E2 | ... |Ek

is caused by E1
λ−→ E′

1, or

E1 |E2 | · · · |Ek
τ−→ E′

1 |E′
2 | ... |Ek

is caused by a communication between E1 and E2. In
the first case, we have by Lemma 9 that F1

τ0−→
m

T1, where F1 is either (xb)Cb
E1

, or (u)V b
E1 |E , or

(u)W b
E |E1

for some E. By Lemma 11, we have

T1
τ0−→

n λ−→∼ T ′
1 and E′

1R ∼ T ′
1 for some T ′

1. Thus

T
τ0−→

(m+n) λ−→ T ′ for some T ′ such that

E′
1 |E2 | · · · |Ek R ∼ T ′

1 |T2 | · · · |Tk ∼ T ′

For the second case, suppose E1
a−→ E′

1 and E2
a−→

E′
2. By Lemma 11, we have that

F1
τ0−→

m1
T1

τ0−→
n1 a−→ T ′

1 ∼ R−1E′
1

and

F2
τ0−→

m2
T2

τ0−→
n2 a−→ T ′

2 ∼ R−1E′
2

where Fi, for i ∈ {1, 2}, is either (xb)Cb
Ei

,
or (u)V b

Ei |E , or (u)W b
E |Ei

, and E′
iR ∼ T ′

i .

It is then clear that T
τ0−→

(m1+n1+m2+n2) τ−→∼
T ′

1 |T ′
2 | ... |Tk ∼ R−1E′

1 |E′
2 | ... |Ek.

• If T
λ−→ T ′ then by the definition of strong bisimilar-

ity, we have without loss of generality that either

T1 |T2 | · · · |Tk
λ−→ T ′

1 |T2 | · · · |Tk ∼ T ′

caused by T1
λ−→ T ′

1, or

T1 |T2 | · · · |Tk
τ−→ T ′

1 |T ′
2 | · · · |Tk ∼ T ′

caused by T1
a−→ T ′

1 and T2
a−→ T ′

2. For the first case
we have by definition that F1

τ0−→
n

T1
λ−→ T ′

1 where
F1 is either (xb)Cb

E1
, or (u)V b

E1 |E , or (u)W b
E |E1

.
According to Lemma 10, there exists E′

1 such that
E1

λ−→ E′
1R ∼ T ′

1. Thus E′
1 |E2 | · · · |Ek R ∼

T ′
1 |T2 | · · · |Tk ∼ T ′. For the second case, we have

F1
τ0−→

n1
T1

a−→ T ′
1 and F2

τ0−→
n2

T2
a−→ T ′

2

for some T ′
1, T

′
2. By Lemma 10, we have E1

a−→
E′

1R ∼ T ′
1 and E2

a−→ E′
2R ∼ T ′

2 for some E′
1, E

′
2.

Thus E1 |E2 | · · · |Ek
τ−→ E′

1 |E′
2 | · · · |EkR ∼

T ′
1 |T ′

2 | · · · |Tk ∼ T ′.

This completes the proof.


