
Categorical Properties of Logical Frameworks∗

Yuxi Fu†

Department of Computer Science
University of Manchester

Manchester M13 9PL, England

Abstract

In this paper we define a logical framework, called λTT , that is well-suited for semantic analysis.
We introduce the notion of a fibration L1 : T1 −→ C1 being internally definable1 in a fibration
L2 : T2 −→ C2. This notion amounts to distinguishing an internal category L in L2 and relating
L1 to the externalization of L through a pullback. When both L1 and L2 are term models of typed
calculi L1 and L2 respectively, we say that L1 is an internal typed calculus definable in the frame
language L2. We will show by examples that if an object language is adequately represented in λTT ,
then it is an internal typed calculus definable in the frame language λTT . These examples also show
a general phenomenon: if the term model of an object language has categorical structure S, then
an adequate encoding of the language in λTT imposes an explicit internal categorical structure S in
the term model of λTT and the two structures are related via internal definability. Our categorical
investigation of logical frameworks indicates a sensible model theory of encodings.

1 Introduction

The notion of logical framework first appeared in Martin-Löf’s work ([?]). It is meant to be a simple
language with which his type theory can be precisely defined. The idea is picked up and extended in [?, ?].
According to the authors, logical frameworks are languages in which logics can be adequately defined.
The good properties of the meta-languages then guarantee that all manipulations of the defined logics
are correct and easy (or even decidable). The language in [?, ?], now known as ELF, consists of kinds,
constructors and objects. Types are constructors of kind Type. In addition to the usual type theoretical
features, it has signatures which declare constant terms. In other words, signatures are constant contexts
in which one can declare both constant objects and constant constructors. When coding up an object
language, one first defines an appropriate signature so that logical operators become constant objects
or constructors. An important feature about ELF is that rules in object languages are presented as
objects in the framework. Logical derivations then amount to function applications. To guarantee the
correctness of the encoding, an adequacy theorem must be proved each time a logic is defined in the
framework. The adequacy theorem basically says that what has been formulated in ELF is sound and
faithful with respect to the object language of interest.

The core of Martin-Löf’s logical framework and that of ELF are the same. But their emphases are
different. Martin-Löf sees his logical framework as a foundational language upon which his constructive

∗Mathematical Structures in Computer Science, 7(1): 1-47, 1997.
†During the preparation of this paper, the author was supported by the CLICS-II project. In the later stage of the

preparation, he was under the 863 Project. The author’s present address: Department of Computer Science, Shanghai Jiao
Tong University, 1954 Hua Shan Road, Shanghai 200030, People’s Republic of China.

1The definability as used in this paper should not be confused with Bénabou’s ‘definability’ ([?]).

1



type theory is built. For that to be possible, he needs to talk about definitional equality for the object
languages. His solution is to use equational theories of his framework. So to be precise, Martin-Löf’s
monomorphic type theories are equational theories in the underlying calculus. On the other hand, the
motivation in [?, ?] is to design a meta-language once and for all, so that logics can be represented and
proof-checking be mechanized. To keep the calculus decidable, one has to settle for internal represen-
tations of the definitional equalities in object languages. Now =, like ∈, plays a special role in proof
theory. But ELF treats x = y as a judgement just like other judgements. This is a price one has to pay
to retain decidability.

A prominent question a designer of a logical framework must address is this: How are the variables
in an object language represented in the framework? ELF’s answer is to identify the variables in an
object language with those of the framework itself. One of the observations in this paper is that this
variable-identification has serious impact on model theory.

The proof theoretical and pragmatical aspects of logical frameworks have been extensively studied ([?,
?, ?]). The model theory of them however has not yet been paid enough attention it deserves2. This
paper sets out to remedy this. But first, we need to make clear what we mean by a logical framework in
this work. A logical framework is a typed calculus upon (or in) which typed calculi are defined. Putting
differently, the theory of logical framework is about internal type theory. This unifies the views taken in
[?, ?] and [?] and, arguably, also covers other more complex languages. The various well-known coding
techniques ([?, ?]) belong to internal type theory. This viewpoint is semantically motivated. What
internal categories to an ambient category, object languages are to a logical framework.

In this paper we introduce the notions of internal definability, internal typed calculi and frame languages.
Examples are given to show the potential usefulness of these definitions. We propose an alternative pre-
sentation of Edinburgh LF based on the idea of internal typed calculi and frame languages. The system
is analyzed in terms of internal definability. We show that the new presentation makes it convenient
for an algebraic investigation. We use three examples to illustrate some new observations about logical
frameworks. Category theory is used to relate the model theory of the logical framework to those of the
represented languages.

Section 2 fixes some notations that will be employed later. Section 3 gives the definitions central to later
development. Section 4 is an undemanding introduction to our logical framework λTT . Some sample
encodings are given in section 5. Section 6 details the fact that λTT has built-in mechanism to generate
internal full subcategories, whose relationship to the variable convention is also explained. Section 7
and 8 reveal some further categorical properties of λTT . Section 9 outlines the idea of model theory for
encodings. Finally in section 10, we take a brief look at some questions in terms of internal definability.

2 Preliminaries

The technical definitions given in this section are necessary to describe the categorical properties of λTT .
The material is standard; see [?, ?, ?, ?] for more on the theory of fibration and [?, ?] for relevant internal
category theory.

Suppose p : F −→ B is a functor. The morphism Y
f−→ X in F is said to be a cartesian lifting of J

u−→ I

in B if (i) pf = u and (ii) for any Z
g−→ X in F and pZ

m−→ J satisfying pg = m;u, there is a unique

morphism Z
φ−→ Y with pφ = m and g = φ; f . The functor p is a fibration if for every morphism J

u−→ I
in the base category B and every object X in the fibre category F with pX = I, there is a cartesian lifting
u?X

u−→ X of u. A cloven fibration is a fibration equipped with a cleavage which is a choice {u}
J

u→I∈B

2For those familiar with [?], we mention that the logical framework considered in that paper can only encode consequence
relations, not proof theories, of logics. The models described in loc.cit. are inappropriate for logical frameworks à la Martin-
Löf.

2



of cartesian liftings. A cloven fibration is split if Id = Id and v;u = v;u for every pair of composable
morphisms in B. When this is the case, p can be presented as an indexed category P : Bop −→ Cat which
is a ‘functor’ from Bop to the ‘category’ of categories. Suppose I is an object in the base category of a
split fibration p : F−→B. The category p−1(I), the fibre over I, is the one whose objects and morphisms
are those of F that are mapped by p onto I and IdI respectively. For each morphism J

u−→ I in B, we
have a reindexing functor p−1(I) u?

−→ p−1(J). The construction tells us how to transform a split fibration
into an indexed category. The opposite construction is the so-called Grothendieck construction ([?]). A
split fibration has a fibred cartesian closed structure if each fibre has a cartesian closed structure and
the reindexing functors preserve the structure on the nose. A split fibration p : F−→B has A-indexed
products, where A is an object in B, if for each I in B, the reindexing functor over I×A→I has right
adjoint ΠI and these right adjoints satisfy the Beck-Chevalley condition: for each J

u−→ I in B, we have
(u×IdA)?; ΠJ = ΠI ;u?. A cartesian functor H from p : F −→ B to q : E −→ B is a functor H : F −→ E
such that p = H; q and H sends cartesian liftings to cartesian liftings. A cartesian functor is full (faithful)
if and only if its fibrewise functors are full (faithful). More generally, a cartesian map from p : F −→ B
to q : G −→ C consists of two functors H : F −→ G and K : B −→ C such that H; q = p;K and H
sends p-cartesian liftings to q-cartesian liftings. If both p and q are split, then the cartesian map (H,K)
is strict if H sends the chosen cartesian liftings to the chosen cartesian liftings. An object U in a locally
small category B determines a representable functor B[ , U ] : Bop −→ Set which sends A ∈ B to B[A,U ]

and A
f−→ B to B[f, U ] : B[B,U ] −→ B[A,U ].

Let F and B be two categories. A D-category ([?]) is given by three functors p, G : F −→ B and
I : B −→ F such that (i) p is a fibration; (ii) I is the fibred terminal object functor of p (so I; p = IdB,
p a I and I is full embedding) and (iii) I a G. We say that the D-category is split if p is split.

An internal category C in B consists of objects C0, C1, C2 and morphisms as shown in the diagram below.

C2 C1 C0
γ
Π0

Π1

id
d0

d1

-
-

-
�

-

-

These morphisms in B must satisfy the well-known conditions: (i) Π0 (Π1) is the pullback of d0 (d1)
along d1 (d0); (ii) the (co)domain of the composition of a pair of composable arrows is the (co)domain
of the first (second) arrow: γ; d0 = Π0; d0 and γ; d1 = Π1; d1; (iii) id; d0 = id; d1 = IdC0 ; (iv) id is a
unit for composition: (id×0 IdC1); γ = Π1 and (IdC1×0 id); γ = Π0; and (v) composition is associative:
(γ×0IdC1); γ = (IdC1×0γ); γ. The externalization of C is a split fibration domC : [C] −→ B. An object

in [C] is a morphism I
α−→ C0. A map from (I α−→ C0) to (J

β−→ C0) is a pair (I
f−→ J, I

m−→ C1) such
that the two diagrams below commute.

I C1

C0

m

d0α

?

-

@
@

@
@
@R

I

J

C1

C0

f

β

m

d1

?

-

?
-

The functor domC sends (I
f−→ J, I

m−→ C1) onto I
f−→ J . The canonical cartesian lifting over I

f−→ J

with respect to J
β−→ C0 is (I

f−→ J, I
f−→ J

β−→ C0
id−→ C1). The corresponding indexed category is

denoted by [ ,C] : Bop −→ Cat. A morphism (I α−→ C0) −→ (I
β−→ C0) in [I,C] is a morphism I

m−→ C1

in B such that the following diagram commutes.

3



C0

I

C1 C0
d0

α m β

d1

?

�
�

�
�

�	

@
@

@
@
@R

� -

Let D be a collection of morphisms, called display maps ([?, ?]), of B such that for any A
d−→ X in D

and any morphism Y
f−→ X, there is a (unique) morphism A[f ]

d[f ]−→ Y in D rendering the diagram

A[f ]

Y

A

X

d[f ]

f

d

?

-

?
-

a pullback. Let B/D be the full subcategory of the arrow category B→ determined by D. The definition
of D simply says that B/D cod−→ B is a (cloven) fibration. The fibration B/D cod−→ B is split if it is cloven
and for each display map d, we have d[Id] = d and d[f ; g] = d[g][f ].

Suppose B has finite products and D is a family of display maps. Let V
G−→ C0 be in D. We can transplant

the well-known construction of an internal full subcategory in a locally cartesian closed category ([?]) to
B if there are enough exponential structure in B/D cod−→ B (notice that B already has enough pullback
structure guaranteed by D). We will call the resulting C the internal category induced by V

G−→ C0.
For any I

a−→ C0, we have a display map G[a] that is the pulling-back of G along a. We say that the
G-induced internal category C is an internal full subcategory of B relative to D if

(I a−→ C0) 7−→ G[a],

(I a−→ C0)
(α,m)−→ (J b−→ C0) 7−→ (α, m?) : G[a]→G[b]

establishes a full embedding cartesian functor from domC : [C] −→ B to B/D cod−→ B. We remark that we
could not afford to give a detailed explanation of this construction. The construction however will be
given for the specific examples used in this paper.

We say that the internal category C induced by V
G−→ C0 has explicit cartesian closed (object) structure

if there are morphisms 1 >̇−→ C0, C0×C0
×̇−→ C0 and C0×C0

→̇−→ C0 such that we have pullbacks as
follows:

1

1

V

C0>̇

G

?

-

-
?

•

C0×C0

V

C0

G1×C2
0
G2

×̇

G

?

-

?
-

•

C0×C0

V

C0

G1→C2
0
G2

→̇

G

?

-

?
-

where Gi is the pulling-back of G along C0×C0
πi−→ C0 for i = 1, 2 and ×C2

0
(→C2

0
) is the product

(exponential) functor on (B/D)−1(C0×C0). We say that C has explicit A-indexed products if there is a

4



morphism (A→C0)
Π̇−→ C0 such that we have a pullback diagram as follows:

•

A→C0

V

C0

ΠA(G[ev])

Π̇

G

?

-

?
-

where G[ev] is the pulling-back of G along (A→C0)×A
ev−→ C0 and ΠA is the right adjoint to the

weakening functor over (A→C0)×A
π1−→ (A→C0).

If C has explicit cartesian closed structure (A-indexed products), then the externalization of C has
fibrewise cartesian closed structure and the reindexing functors preserve the structure on the nose (right
adjoints to the weakening functors over morphisms I×A

π1→ I) and the Beck-Chevalley condition is
satisfied.

3 Internal Typed Calculi and Frame Languages

The central theme of the theory of fibration is that an object in a base category should be regarded as
a ‘set’ (and a morphism a ‘function’). A fibration p : E −→ B is a mathematical discipline in which one
carries out mathematical activities with respect to the ‘set theory’ B. Thinking ‘set theoretically’, it is
important to distinguish between ‘small’ fibrations and ‘non-small’ ones. Roughly speaking, a ‘small’
fibration is obtained by externalizing some ‘set-theoretical’ gadget in B. An externalization process
transfers internal notions in B to external ones. The famous Yoneda lemma then acts the role similar
to that of extensionality axiom; it says that a ‘small’ fibration is essentially the same thing as a ‘set’
(‘small’ category etc.) in B. So a ‘small’ fibration is a fibration that is ‘definable’ in the ‘set theory’ B.

Given so many papers dealing with relationship between typed calculi and fibrations, it is perhaps
surprising that in type theory we have not yet proposed the notion of ‘internal definability’, a notion
that is fundamental in the theory of fibration. In this paper, we will show that this concept is potentially
useful to type theory, especially to the study of logical framework.

Type theoretically, a strict cartesian map (H, I) from a split fibration L1 : T1 −→ C1 to another L2 :
T2 −→ C2 is a translation from the language L1 to the language L2. When both H and I are embedding
functors, the translation is faithful. In this case L1 can be seen as a sublanguage of L2. If furthermore
both H and I are full, then L2 is a conservative extension of L1. A special case of this conservative
extensionality relationship arises when the whole extension L1 ↪→ L2 is determined by C1 ↪→ C2, part of
the extension. Categorically, this means that L1 is the pulling-back of L2 along I.

In the present, it is most useful to combine the notion of ‘internal definability’ with that of conservative
extensionality. So typically, we have a strict cartesian map (H, I) from a language L : T −→ C, viewed
as a fibration, to an externalization fibration domU : [U] −→ D, where U is an internal category in D;
both H and I are embedding functors. Because domU is completely determined by the internal category
U in D, it makes sense to require L be totally determined by I : C −→ D (i.e., L : T −→ C is the
pulling-back of domU along I : C −→ D).

To introduce the central notion in this paper, we find it helpful to give an auxiliary definition.

Definition 3.1 Suppose p1 : E1 −→ B1 is a split fibration and B2 a category. Then p1 is said to be
internally codable in B2 by L via I if (i) I : B1 −→ B2 is an embedding functor; (ii) L in B2 is an

5



internal category and (iii) there is an embedding functor H : E1 ↪→ [L] such that (H, I) is a strict
cartesian map from p1 to domL : [L] −→ B2. The fibration p1 is said to be internally definable in B2 by
L via I if in addition both H and I are full and the following square is a pullback.

E1

B1

[L]

B2

p1

I

H

domL

?

-

?
-

Example 3.2 Given a second order λ-theory, we can construct its term model as a split fibration with
fibred cartesian closed structures. In [?], it is shown that this fibration is internally definable in a topos
by an internal category equipped with explicit cartesian closed structure. 2

Example 3.3 The higher order polymorphic λ-calculus is a two level type system. At the first level we
have kinds and constructors. The valid kinds are defined inductively as follows:

⇒ > a kind
⇒ Type a kind

K1 kind, K2 kind ⇒ K1×K2 kind
K1 kind, K2 kind ⇒ K1→K2 kind.

A kinding context is a finite set of constructor variables with their specified kinds. Suppose ∆ is [X1 :
K1, . . . , Xn : Kn]. Then ∆, X : K denotes the kinding context [X1 : K1, . . . , Xn : Kn, X : K]. Given
a kinding context, we can form valid constructors whose constructor variables are all declared in that
context. These are the rules:

∆ a kinding context, X : K ∈ ∆ ⇒ ∆ ` X : K

∆ a kinding context ⇒ ∆ ` ?> : >
∆ ` Ci : Ki for i = 1, 2 ⇒ ∆ ` 〈C1, C2〉 : K1×K2

∆ ` C : K1×K2 ⇒ ∆ ` πiC : Ki for i = 1, 2
∆, x : K1 ` C : K2 ⇒ ∆ ` λx :K1.C : K1→K2

∆ ` F : K1→K2, ∆ ` C : K1 ⇒ ∆ ` FC : K2

∆ a kinding context ⇒ ∆ ` 1 : Type

∆ ` A : Type, ∆ ` B : Type ⇒ ∆ ` A×B : Type

∆ ` A : Type, ∆ ` B : Type ⇒ ∆ ` A→B : Type

∆, X : K ` A : Type ⇒ ∆ ` ∀X:K.A : Type.

Constructors of kind Type are called types.

A typing context Γ is a set of statements of the form x : A indicating that A is the type of the free variable
x. Let Γ be [x1 : A1, . . . , xn : An]. Then Γ, x : A denotes the typing context [x1 : A1, . . . , xn : An, x : A].
At the second level we have rules concerning objects. In these rules Γ `∆ a : A presupposes that Γ is
well defined under ∆ and ∆ ` A : Type. Here a typing context [x1 : A1, . . . , xn : An] is well defined
under ∆ if ∆ ` A1 : Type, · · ·, ∆ ` An−1 : Type and ∆ ` An : Type. Here are the rules:

Γ well defined under ∆, x : A ∈ Γ ⇒ Γ `∆ x : A

Γ well defined under ∆ ⇒ Γ `∆ ?1 : 1
Γ `∆ ai : Ai for i = 1, 2 ⇒ Γ `∆ 〈a1, a2〉 : A1×A2

6



Γ `∆ c : A1×A2 ⇒ Γ `∆ πic : Ai for i = 1, 2
Γ, x : A `∆ b : B ⇒ Γ `∆ λx :A.b : A→B

Γ `∆ f : A→B, Γ `∆ a : A ⇒ Γ `∆ fa : B

Γ `∆,X:K c : C, X /∈ Γ ⇒ Γ `∆ ΛX:K.c : ∀X:K.C

Γ `∆ F : ∀X:K.C, ∆ ` D : K ⇒ Γ `∆ FD : C[D/X],

where X 6∈ Γ means that the constructor variable X does not appear in any type in Γ. The set of
equations is standard:

(ΛX:K.F )C
β2

= F [C/X]

ΛX:K.FX
η2

= F

(λx :A.f)a
β
= f [a/x]

λx :A.fx
η
= f

π1〈t1, t2〉
π1= t1

π2〈t1, t2〉
π2= t2

〈π1t, π2t〉
δ= t

u
!>= ?>

v
!1= ?1

where u is of kind >, v is of type 1 and t for example is either of type A1×A2 or of kind K1×K2.

We can construct a split fibration Lω : T ω−→Cω from the terms of the higher order λ-calculus: the
objects and morphisms of Cω are kinding contexts and realizations respectively; an object over ∆ is a
typing judgement ∆ ` A : Type and a morphism from ∆1 ` A1 : Type to ∆2 ` A2 : Type is a pair
(∆1

r−→ ∆2,`∆1 f : A1→A2[r]), where A2[r] is obtained from A2 by applying to A2 the substitution
prescribed by r. The functor Lω sends (∆1

r−→ ∆2,`∆1 f : A1→A2[r]) onto ∆1
r−→ ∆2. There is an

internal category in T ω constructed as follows:

Cω
0

def= X : Type ` 1 : Type

Cω
1

def= X, Y : Type ` X→Y : Type

Cω
2

def= X, Y, Z : Type ` (X→Y )×(Y→Z) : Type

dω
0

def= ([X, Y : Type]
(X)−→ [X : Type],`X,Y :Type λf :X→Y.?1 : (X→Y )→1)

dω
1

def= ([X, Y : Type]
(Y )−→ [Y : Type],`X,Y :Type λf :X→Y.?1 : (X→Y )→1)

Πω
0

def= ([X, Y, Z : Type]
(X,Y )−→ [X, Y : Type],`X,Y,Z:Type λf :(X→Y )×(Y→Z).π1f)

Πω
1

def= ([X, Y, Z : Type]
(Y,Z)−→ [Y, Z : Type],`X,Y,Z:Type λf :(X→Y )×(Y→Z).π2f)

idω def= ([X : Type]
(X,X)−→ [X, Y : Type],`X:Type λz:1.λx:X.x)

γω def= ([X, Y, Z : Type]
(X,Z)−→ [X, Y : Type],`X,Y,Z:Type λf :(X→Y )×(Y→Z).λx:X.(π2f)(π1fx))

It can be readily shown that there is a pullback as shown by the diagram:

T ω

Cω

[Cω]

T ω

Lω

>ω

Hω

domCω

?

-

?
-

where >ω sends ∆ onto ∆ ` 1 : Type. This means that Lω is internally definable in T ω by Cω.

7



Now we come to the central definition of this paper.

Definition 3.4 Suppose both fibrations p1 : E1 −→ B1 and p2 : E2 −→ B2 are split. Then p1 is said
to be internally codable (definable) in p2 (notation p1 / (∝)p2) by L via I if (i) p1 is internally codable
(definable) in B2 by L via I and (ii) there is a full embedding functor L : [L] −→ E2 that is cartesian
from domL to p2.

E1

B1

[L]

B2

E2

p1

I

H

domL

L

p2

?

-

?
-

-

�
�

�
�

�	

We call the cartesian map (H, I) the interpretation map.

For typed λ-calculi L1 and L2, if their term models are split fibrations L1 and L2 respectively, then L1

is the internal typed calculus coded (defined) (notation L1 / (∝)L2) in L2 by L via I if L1 is internally
coded (defined) in L2 by L via I. When L1 ∝ L2, we say that L2 is a frame language for L1.

The internal definability results to be established in section 8 all possess some additional properties.
Typically, the fibration p1 has a fibred categorical structure S, say a fibred cartesian closed structure,
and the internal category L is induced by a generic morphism and is equipped with explicit internal
categorical structure S; besides the interpretation map (H, I) preserves the fibred structure S. The
structure S is different in each application. To avoid criticism of being imprecise, we refrain from giving
a stronger definition.

Example 3.5 (continued from example 3.3) There is a set Dω of display maps such that codω a Iω a
domω : T ω/Dω−→T ω form a D-category. The set Dω consists of all the maps in T ω of the form
(Id∆,`∆ π1 : A×B→A) : (∆ ` A×B : Type)−→(∆ ` A : Type). The functor Iω sends an object
∆ ` A : Type in T ω onto the object (Id∆,`∆ π1 : A×>→A) in T ω/Dω. It can be readily shown that
Cω is an internal full subcategory of codω : T ω/Dω−→T ω. So Lω is internally definable by Cω in the
fibration codω : T ω/Dω−→T ω. For a categorical account of this example and more, see [?].

When the notion of internal definability is employed in this paper, p2 is typically a D-category. Having
a D-categorical structure allows one to switch between fibre category and base category. For example,
if the base category of a D-category has an internal category, then that internal category can be passed
to the fibre category, and vice versa. We are going to prove a result about the relationship between
the internal definability in the base category of a fibration and that in the fibre category of the same
fibration. The next two lemmas will be used to prove the result.

Lemma 3.6 Suppose I : B −→ E is a full embedding functor and U is an internal category in B. If I
preserves finite limits, then there is a pullback diagram as shown below and (K, I) is a strict cartesian
map from domU to domIU.

8



[U]

B

[IU]

E

domU

I

K

domIU

?

-

?
-

Proof : K sends an object X
α→ U0 onto IX

Iα−→ IU0, a morphism (X
f→ Y, X

m→ U1) onto (IX
If−→

IY, IX
Im−→ IU1) and so on. 2

Lemma 3.7 Suppose the left exact functor F : C −→ D is left adjoint to G : D −→ C. Let U be an
internal category in D. Then the externalization fibration of domGU : [GU] −→ C is the pullback of the
fibration domU : [U] −→ D along F : C −→ D and the pullback forms a strict cartesian map from domGU

to domU.

Proof : Because G is a right adjoint and thus preserves limits, GU is an internal category in C. First we
need to define a functor K : [GU] −→ [U] such that the following square commutes.

[GU]

C

[U]

D

domGU

F

K

domU

?

-

?
-

For X
f→ GY ∈ C and FX

g→ Y ∈ D, write f̂ and g to denote respectively their transposes across

the adjunction. K sends an object Γ
f→ GU0 to FΓ

f̂−→ U0 and a morphism (Γ r→ ∆,Γ m→ GU1) to
(FΓ Fr→ F∆, FΓ m̂→ U1). It can be easily seen that K preserves identities. Suppose (Γ r→ ∆,Γ m→ GU1) :
σ → τ and (∆ s→ Θ,∆ n→ GU1) : τ → δ are composable morphisms in [GU]. Their composition is
(r; s, 〈m, r;n〉0;Gγ〉). This morphism is mapped onto (F (r; s), ̂〈m, r;n〉0; γ) by K. On the other hand we
can first apply K and then compose. What we get is (Fr;Fs, 〈m̂, r̂;n〉0; γ). So the problem is reduced
to showing that if Γ m1→ GU1 and Γ m2→ GU1 are composable then ̂〈m1,m2〉0 = 〈m̂1, m̂2〉0. By definition,̂〈m1,m2〉0 is F 〈m1,m2〉0; εU2 . The map F 〈m1,m2〉0 is 〈Fm1, Fm2〉0 because F preserves limits. By the
naturality of ε and a diagram-chasing, we have εU2 = εU1×0εU1 . Thereforê〈m1,m2〉0 = 〈Fm1, Fm2〉0; εU2

= 〈Fm1; εU1 , Fm2; εU1〉0
= 〈m̂1, m̂2〉0.

Conclude that K is a functor. It is easily seen that K renders the square commutative.

Next we must show that it is a pullback. Suppose M ;F = N ; domU.

[GU]

C

[U]

D

domGU

F

K

B domU

M

N
H
@

@I

�
�	

�
��

?

-

?
-

9



The functor H : B −→ [GU] is defined as follows

X 7−→ MX
NX−→ GU0,

X
f→ Y 7−→ (Mf,Nf)

where we have confused notationally Nf with its second component. H so defined clearly preserves
identities. For morphisms X

f→ Y and Y
g→ Z in B, the composition of Nf and Ng is

(FM(f ; g), 〈Nf, FMf ;Ng〉0; γ).

So H(f ; g) = (M(f ; g), 〈Nf, FMf ;Ng〉0;Gγ). On the other hand

H(f);H(g) = (M(f);M(g), 〈Nf,Mf ;Ng〉0;Gγ)
= (M(f ; g), 〈Nf, FMf ;Ng〉0;Gγ).

So it is reduced to showing that if FA
σ→ U1 and FA

τ→ U1 are composable, then 〈σ, τ〉0 = 〈σ, τ〉0. But

〈σ, τ〉0 = 〈ηA;Gσ, ηA;Gτ〉0
= ηA; 〈Gσ,Gτ〉0
= ηA;G〈σ, τ〉0 G preserves limits
= 〈σ, τ〉0

Finally, we mention that (K, F ) is a strict cartesian map from domGU to domU because it sends a canonical

cartesian lifting Γ α→ ∆ σ→ GU0
G(id)−→ GU1 onto the canonical cartesian lifting FΓ Fα→ F∆ σ̂→ U0

id→ U1. 2

Theorem 3.8 Suppose p1 : E1 −→ B1 is a split fibration and p2 a I a G : E2 −→ B2 is a split D-
category. Then p1 is internally codable (definable) in B2 via I : B1 −→ B2 iff it is internally codable
(definable) in E2 via I; I : B1 −→ E2.

Proof : One direction is established by lemma 3.6.

E1

B1

[GU]

B2

[U]

E2

p1

I

J

domGU

K

domU

I

?

-

?
-

-

?
-

Suppose (H, I; I) is a strict cartesian map from p1 to domU. By lemma 3.7, the right square in the above
diagram is a pullback. So H factors as J ;K for some J : E1 ↪→ [GU]. If the outer rectangle is a pullback,
then the left square is a pullback. If H sends a canonical cartesian lifting to the canonical cartesian
lifting (IM

Iα→ IN, Iα;σ; id), then J must send the former cartesian lifting to the canonical cartesian
lifting (M α→ N,α;σ;G(id)). That is (J, I) is a strict cartesian map from p1 to domGU. 2

4 Introducing λTT

The purpose of the first two subsections is to refresh our memory on ELF and Martin-Löf’s logical
framework. In order to compare our logical framework to these two languages, we will give a complete
presentation of both of the languages. It is our hope that by analyzing these calculi at an elementary
level, we can bring out the point and the advantage of λTT . Having reviewed the two languages, we will
then introduce our logical framework λTT .

10



4.1 Martin-Löf’s Logical Framework

Martin-Löf’s logical framework ([?]) has the following rules with the definitional equality being exten-
sional. Since the language is only used for comparison, we omit the details of the judgemental equality
rules. This comment also applies to the presentation of ELF given below.

Context

〈〉 valid
Empty Context

Γ ` A type x fresh
Γ, x : A valid

Context Extension

Assumption
Γ, x : A,Γ′ valid
Γ, x : A,Γ′ ` x : A

Variable

Type
Γ ` A type Γ, x : A ` B type

Γ ` (x :A)B type
Prod

Construction

Γ, x : A ` b : B
Γ ` (x)b : (x :A)B Abs

Γ ` f : (x :A)B Γ ` a : A
Γ ` f(a) : B[a]

App

Set
Γ valid

Γ ` Set type
Set

Γ ` S : Set
Γ ` El(S) type

Reflection

Conversion
Γ ` a : A Γ ` A = B

Γ ` a : B
Conv

Using this framework, the Π-types in Martin-Löf’s monomorphic type theory can be defined as follows:

Π : (X :Set)(Y : (x :El(X))Set)Set

Λ : (X :Set)(Y : (x :El(X))Set)(f: (x :El(X))El(Y (x)))El(Π(X, Y ))
• : (X :Set)(Y : (x :El(X))Set)(f :El(Π(X, Y )))(x :El(X))El(Y (x)).

The computational rule can be described as

•(A,B,Λ(A,B, f), a) = f(a) : El(B(a))

where we assume

A : Set

B : (x :El(A))Set

f : (x :El(A))El(B(x))
a : El(A).

We finish this section by pointing out an important feature of Martin-Löf’s framework:

In Martin-Löf’s logical framework, the definitional equalities of type theories (object lan-
guages) are identified with the definitional equality of the framework.

We will call this the equality convention.

11



4.2 The Edinburgh LF

ELF is based on the idea of Martin-Löf’s logical framework. Its purpose is to code up a whole range
of logics instead of just one group of them as in the case of Martin-Löf’s framework. The system is
structured into three levels: objects, constructors and kinds. The top level kinds provide the mechanism
to introduce different universes. In any particular application, a fixed number of constants are introduced,
which form a signature. These are the rules of ELF:

Valid Signatures

〈〉 Empty Sig
Σ Sig `Σ K a fresh

Σ, a : K Sig
Kind Sig

Σ Sig `Σ A : Type c fresh
Σ, c : A Sig

Type Sig

Valid Contexts

Σ Sig
`Σ 〈〉 Empty Ctxt

`Σ Γ Γ `Σ A : Type x fresh
`Σ Γ, x : A

Type Ctxt

Valid Kinds
`Σ Γ

Γ `Σ Type
Type Kind

Γ, x : A `Σ K
Γ `Σ Πx :A.K

Pi Kind

Valid Constructors

`Σ Γ c : K ∈ Σ
Γ `Σ c : K

Cst Con
Γ, x : A `Σ B : Type
Γ `Σ Πx :A.B : Type

Pi Con
Γ, x : A `Σ B : K

Γ `Σ λx :A.B : Πx :A.K
Abs Con

Γ `Σ A : Πx :B.K Γ `Σ M : B
Γ `Σ AM : K[M/x]

App Con
Γ `Σ A : K Γ `Σ K ′ Γ `Σ K ' K ′

Γ `Σ A : K ′ Conv Con

Valid Objects

`Σ Γ c : A ∈ Σ
Γ `Σ c : A

Const Obj
`Σ Γ x : A ∈ Γ

Γ `Σ x : A
Var Obj

Γ, x : A `Σ M : B
Γ `Σ λx :A.M : Πx :A.B

Abs Obj

Γ `Σ M : Πx :A.B Γ `Σ N : A
Γ `Σ MN : B[N/x]

App Obj
Γ `Σ M : A Γ `Σ A′ Γ `Σ A ' A′

Γ `Σ M : A′
Conv Obj.

To give an idea of how encodings in ELF look like, we present a fragmentary encoding of simply typed λ-
calculus. A complete formalization should include encodings of the equation rules for lambda abstraction
and application. The signature should contain at least the following constants, where =τ stands for = (τ):

U : Type

T : U→Type

= : Πσ :U.T (σ)→T (σ)→Type

⇒ : U→U→U

abs : Πσ :U.Πτ :U.[T (σ)→T (τ)]→T (σ⇒τ)
app : Πσ :U.Πτ :U.T (σ⇒τ)→T (σ)→T (τ)

β : Πσ :U.Πτ :U.Πf :T (σ)→T (τ).Πx :T (σ).[app(σ, τ)(abs(σ, τ)(f), x) =τ fx].

We should remark that in ELF equalities in object languages are ‘internalized’ by appropriate construc-
tors. Following Martin-Löf’s logical framework, ELF employs the following principle:

Variables of object languages are identified with the variables in the logical framework.

We will call it the variable convention.

12



4.3 λTT : A Framework for Defining Type Theories

A typed calculus can only be a framework for a certain collection of typed calculi3. Some logics can be
faithfully represented in such a framework because they have type theoretical formulations via Curry-
Howard isomorphism. Some other logics can be mimicked in the framework because some aspects of
them can be captured type theoretically and these aspects are considered to be important. A well-
known example that can not be coded up in ELF is relevant logic. Moving to a stronger type system is
not necessarily a good idea. As far as logical frameworks are concerned, the priority should always be
with simplicity and good meta-theoretical properties. So as long as one’s logical framework is a typed
calculus, what one can code up in this framework are some other typed calculi; and that is all. It is for
this reason that we think of λTT as a framework for defining type theories. It should be emphasized that
λTT is not meant to be a stronger logical framework. It is meant to be a manifestation of our view that
a logical framework is a setting for defining frame languages.

The language λTT is designed with the following goals in mind: it should incorporate ideas from both ELF
and Martin-Löf’s logical framework; it should simplify model theoretical investigations; and it should
have a built-in mechanism that formalizes processes to define internally definable typed calculi. There
are several design decisions one has to make. Let’s mention two of them: (i) we decide that λTT should
have finite product types and (ii) we decide that λTT should be an explicit language. Both decisions are
in line with the second goal mentioned above. As for pragmatics, we adopt the well-established variable
convention and the well-behaved equality convention.

There are usually two ways to present a typed calculus. In both approaches, one first defines the abstract
syntax of the entities of the calculus and then gives rules defining the well-formed entities. A type theorist
would go on to formulate reduction rules and define the definitional equality in terms of reduction. The
notion of reduction is essential in proof-theoretical studies ([?, ?]). A mathematician on the other hand
prefers to define the definitional equality via judgemental equality given by judgemental equational rules
([?, ?]). This latter approach is favoured in semantical investigations as it renders no proof-theoretical
problems when forming term models. Our logical framework λTT as used in this paper will be given in
the second style for the obvious reason.

The abstract syntax for types and objects in λTT is described by the following grammar:

Types A ::= C | U | 1 | A×A′ | Πx :A.A′ | tU (M)
Objects M ::= c | x | ? | 〈M,M ′〉 | π1M | π2M | λx :A.M | M(M ′)

where C is a type constant declared in a signature, U a universe declared in a universe declaration,
c an object constant declared in a signature and x an object variable. Types of the form tU (M) are
nonstandard. The role of the type constructor t will be explained after the rules. λTT has assertions of
the following forms:

• Ω Uni—Ω is a list of special types called universes. A universe is a type whose inhabitants can be
lifted to types.

• `Ω Σ Sig—Σ is a list of constant types and/or constant objects whose types may contain universes
declared in Ω.

• `Ω;Σ Γ Con—Γ is a well-formed context under Ω and Σ.

• `Ω;Σ Th Theory—Th is a finite set of definitional equations under Ω and Σ.

• The other assertions are obvious.

Substitutions into terms are defined as usual in metalanguage. The only case that is worth mentioning
is

tU (M)[M ′/x] def= tU (M [M ′/x]).
3We only consider languages where there is a notion of variable.

13



The rules concerning the well-formed entities of λTT are as follows:

Universe

` 〈〉 Uni
Empty Universe

` Ω Uni U fresh
` Ω, U Uni

Universe Intro

Signature

` Ω Uni
`Ω 〈〉 Sig

Empty Sig
`Ω Σ Sig C fresh

`Ω Σ, C Sig
Sig-Type

[] `Ω;Σ A Type c fresh
`Ω Σ, c : A Sig

Sig-Obj

Context
`Ω Σ Sig
`Ω;Σ [] Con

Empty Context
Γ `Ω;Σ A Type
`Ω;Σ Γ, x : A Con

Context Intro

Type
`Ω;Σ Γ Con U in Ω

Γ `Ω;Σ U Type
U-Type

`Ω;Σ Γ Con C in Σ
Γ `Ω;Σ C Type

C-Type

`Ω;Σ Γ Con
Γ `Ω;Σ 1 Type

Unit
Γ `Ω;Σ A Type Γ `Ω;Σ B Type

Γ `Ω;Σ A×B Type
Prod

Γ, x : A `Ω;Σ B Type
Γ `Ω;Σ Πx :A.B Type

Π-Prod
Γ `Ω;Σ M : U U in Ω
Γ `Ω;Σ tU (M) Type

Reflection

Object
`Ω;Σ Γ Con c : C in Σ

Γ `Ω;Σ c : C
C-Obj

`Ω;Σ Γ Con x : A in Γ
Γ `Ω;Σ x : A

V-Obj

Γ, x : A `Ω;Σ M : B
Γ `Ω;Σ λx :A.M : Πx :A.B

Abs
Γ `Ω;Σ M : Πx :A.B Γ `Ω;Σ N : A

Γ `Ω;Σ MN : B[N/x]
App

`Ω;Σ Γ Con
Γ `Ω;Σ ? : 1

Singleton
Γ `Ω;Σ M : A Γ `Ω;Σ N : B

Γ `Ω;Σ 〈M,N〉 : A×B
Pair

Γ `Ω;Σ M : A×B
Γ `Ω;Σ π1M : A

L-Proj
Γ `Ω;Σ M : A×B
Γ `Ω;Σ π2M : B

R-Proj

Conversion
Γ `Ω;Σ M : A Γ `Ω;Σ B Type Γ `Ω;Σ A = B

Γ `Ω;Σ M : B
Conv.

The set of judgemental equational rules contains the following extensional rules

Γ `Ω;Σ M : 1
Γ `Ω;Σ M = ? : 1

Γ `Ω;Σ M : Πx :A.B Γ, x : A `Ω;Σ B Type
Γ `Ω;Σ λx :A.Mx = M : Πx :A.B

Γ `Ω;Σ M : A×B Γ `Ω;Σ A Type Γ `Ω;Σ B Type
Γ `Ω;Σ 〈π1M,π2M〉 = M : A×B

and the rule that reflects the judgemental equality between objects of a universe to that between the
corresponding types

Γ `Ω;Σ M = N : U U in Ω
Γ `Ω;Σ tU (M) = tU (N) .

We omit the rest of the rules since they are well-known.

14



In order to have an external view on equations in object languages we need equational contexts:

`Ω Σ Sig
`Ω;Σ 〈〉 Theory

Empty Theory

Γ `Ω;Σ M : A Γ `Ω;Σ N : A `Ω;Σ Th Theory
`Ω;Σ Th[Γ ` M = N : A] Theory

Theory Introduction.

An equational context is just a finite list of definitional equations. When `Ω;Σ Th Theory, we write
Γ `Ω;Σ M =Th N : A if Γ `Ω;Σ M = N : A is derived from the equations in Th as well as the definitional
equations of λTT .

A careful reader must have noticed that by eliminating the higher order structure in ELF we have
collapsed rules about valid constructors and those about valid objects into one group.

A prominent feature of λTT , as compared to ELF, is that there is a built-in operator tU , for each universe
U , that reflects an object M of the universe to a type tU (M). To appreciate this operator, one must
first of all understand the rule played by the kinds in ELF. The basic fact about the kinds in ELF is that
they are all of the form Πx1 :A1. · · ·Πxn :An.T ype where A1, · · · , An are types. In ELF it is legitimate
to declare a constant constructor of a closed kind in a signature; but it is banned to declare a variable
constructor of any kind in a context. It follows that ELF is not a full-scale higher order language. In
ELF one never quantifies over a kind. The purpose of kinds is to introduce constant families of types
indexed over types. This is the only place where genuine dependent types come into the language. It
is this property that enables us to imitate ELF by a first order language λTT through the use of the
lifting operator t. The role of Πx1 : A1. · · ·Πxn : An.T ype is now played by Πx1 : A1. · · ·Πxn : An.U in
λTT where U is a universe. This is possible because in ELF we never talk about variables of a kind. The
type Πx1 :A1. · · ·Πxn :An.U classifies the families of names of types indexed over types A1, . . . , An.

In true type theoretical spirit, λTT is an extension of Martin-Löf’s logical framework. The additional
features are product types and universe declaration4. The universe declaration is the best way of getting
rid of higher order operators like those in ELF while retaining all the expressive power. The product
types are a compromise between having Σ-types, which is troublesome, and having only Π-types, which
sometimes does not produce encodings in the way we want (the problem is even more serious when we
have universe declaration). For instance, in ELF the plus operator + : N→N→N has a drawback: +(n)
usually does not correspond to anything in object language. In λTT we can declare + to be of type
N×N→N . The problem now disappears.

There are at least three questions concerned with λTT :

1. If we forget about the equational contexts of λTT , we get a sublanguage we call λLF . Is λLF

confluent and strongly normalizing? More generally, is λLF decidable?

2. How do we carry out meta-theoretical investigations into a typed calculus formulated in λTT ?

3. What is the proper notion of semantics of λTT ?

The answer to 1 is believed to be yes. But so far its combinatorial complexity has defeated all attempts
to prove it. The problem is that the proof of subject reduction and that of Church-Rosser property are
heavily interwined. No trick has been invented to break the cycle. Our intuition tells us that λLF is a
kind-free formulation of ELF with finite product types. Unfortunately, we haven’t been able to give a
reversible translation between them.

Question 2 is harder. It can not be tackled before the proof theory of λTT has been fully understood.
Suppose we have defined a language L in λTT and want to show that a property P holds of L. Suppose
further that P holds of λTT . From that we need to prove that P holds of the extended language λTT +L.

4As we have seen, Martin-Löf deals exclusively with only one universe Set.

15



So the problem is closely related to that of compositional understanding of type theory—an issue that has
not yet been properly addressed (To our knowledge, the proof theory of the monomorphic Martin-Löf’s
type theory is unknown.).

This paper attempts to give an answer to question 3.

5 Coding Object Languages

In this section we give four examples of how to encode typed calculi and logics in λTT . The reader is
encouraged to compare examples 5.1 and 5.3 to those given in sections 4.1 and 4.2. In sequel, we often
use subscript for application. For instance, appσ,τ stands for app(σ)(τ).

Example 5.1 Throughout the rest of this paper, we fix a simply typed λ-calculus with a finite number
of constant types. The following is a formulation of this calculus in λTT .

Ωλ is U

Σλ is

∧ : U×U→U
⇒ : U×U→U
� : U
♥ : tU (�)

abs : Πσ :U.Πτ :U.[tU (σ)→tU (τ)]→tU (σ⇒τ)
app : Πσ :U.Πτ :U.tU (σ⇒τ)×tU (σ)→tU (τ)
pair : Πσ :U.Πτ :U.tU (σ)×tU (τ)→tU (σ∧τ)
pr1 : Πσ :U.Πτ :U.tU (σ∧τ)→tU (σ)
pr2 : Πσ :U.Πτ :U.tU (σ∧τ)→tU (τ)

Thλ is

`Ω;Σ [σ : U, τ : U, f : tU (σ)→tU (τ), x : tU (σ) ` appσ,τ (absσ,τ (f), x) = fx : tU (τ)]
`Ω;Σ [σ : U, τ : U, f : tU (σ⇒τ) ` absσ,τ (λx :tU (σ).appσ,τ (f, x)) = f : tU (σ ⇒ τ)]
`Ω;Σ [σ : U, τ : U, x : tU (σ), y : tU (τ) ` (pr1)σ,τ (pairσ,τ (x, y)) = x : tU (σ)]
`Ω;Σ [σ : U, τ : U, x : tU (σ), y : tU (τ) ` (pr2)σ,τ (pairσ,τ (x, y)) = y : tU (τ)]
`Ω;Σ [σ : U, τ : U, z : tU (σ∧τ) ` pairσ,τ ((pr1)σ,τz, (pr2)σ,τz) = z : tU (σ ∧ τ)]
`Ω;Σ [x : tU (�) ` ♥ = x : tU (�)]

Here � codes up the unit type in the simply typed λ-calculus; ♥ provides an inhabitant of the type
tU (�); and the accompanying definitional equality forces this inhabitant to be unique. Eλ will stand for
this encoding. We do not give the encoding of the constants since it is apparent. The same remark also
applies to the following examples. 2

Example 5.2 Again fix a higher order polymorphic λ-calculus with a finite number of constant types.
To formulate the language in λTT , one must have an operator that transforms higher order functionals
to types. So in addition to the encoding for the simply typed λ-calculus, we need to add constants and
equations that deal with kinds and constructors.

The encoding goes as follows:

ΩPL is U,K

16



ΣPL is

∧̇ : K×K→K
⇒̇ : K×K→K
�̇ : K
T : K

♥̇ : tK(�̇)
˙abs : Πκ :K.Π% :K.[tK(κ)→tK(%)]→tK(κ⇒̇%)
˙app : Πκ :K.Π% :K.tK(κ⇒̇%)×tK(κ)→tK(%)
˙pair : Πκ :K.Π% :K.tK(κ)×tK(%)→tK(κ∧̇%)

ṗr1 : Πκ :K.Π% :K.tK(κ∧̇%)→tK(κ)
ṗr2 : Πκ :K.Π% :K.tK(κ∧̇%)→tK(%)
in : tK(T )→U

out : U→tK(T )
∧ : tK(T )×tK(T )→tK(T )
⇒ : tK(T )×tK(T )→tK(T )
� : tK(T )
∀̇ : Πκ :K.(tK(κ)→tK(T ))→tK(T )
♥ : tU (in(�))

abs : Πσ :tK(T ).Πτ :tK(T ).[tU (in(σ))→tU (in(τ))]→tU (in(σ⇒τ))
app : Πσ :tK(T ).Πτ :tK(T ).tU (in(σ⇒τ))×tU (in(σ))→tU (in(τ))
pair : Πσ :tK(T ).Πτ :tK(T ).tU (in(σ))×tU (in(τ))→tU (in(σ∧τ))
pr1 : Πσ :tK(T ).Πτ :tK(T ).tU (in(σ∧τ))→tU (in(σ))
pr2 : Πσ :tK(T ).Πτ :tK(T ).tU (in(σ∧τ))→tU (in(τ))
Abs : Πκ :K.ΠF :tK(κ)→tK(T ).(Πσ :tK(κ).tU (in(Fσ)))→tU (in(∀̇κ(F )))
App : Πκ :K.ΠF :tK(κ)→tK(T ).tU (in(∀̇κ(F )))→Πσ :tK(κ).tU (in(Fσ))

ThPL is

`Ω;Σ [κ : K, % : K, f : tK(κ)→tK(%), x : tK(κ) ` ˙appκ,%( ˙absκ,%(f), x) = fx : tK(%)]
`Ω;Σ [κ : K, % : K, f : tK(κ⇒̇%) ` ˙absκ,%(λx :tK(κ). ˙appκ,%(f, x)) = f : tK(κ⇒̇%)]
`Ω;Σ [κ : K, % : K, x : tK(κ), y : tK(%) ` (ṗr1)σ,τ ( ˙pairσ,τ (x, y)) = x : tK(κ)]
`Ω;Σ [κ : K, % : K, x : tK(κ), y : tK(%) ` (ṗr2)σ,τ ( ˙pairσ,τ (x, y)) = y : tK(%)]
`Ω;Σ [κ : K, % : K, z : tK(κ∧̇%) ` ˙pairσ,τ ((ṗr1)σ,τz, (ṗr2)σ,τz) = z : tK(κ∧̇%)]
`Ω;Σ [x : tK(�̇) ` ♥̇ = x : tK(�̇)]
`Ω;Σ [x : tK(T ) ` out(in(x)) = x : tK(T )]
`Ω;Σ [x : U ` in(out(x)) = x : U ]
`Ω;Σ [κ : K, F : tK(κ)→tK(T ), x : Πσ :tK(κ).tU (in(Fσ))

` Appκ,F (Absκ,F (x)) = x : Πσ :tK(κ).tU (in(Fσ))]
`Ω;Σ [κ : K, F : tK(κ)→tK(T ), x : tU (in(∀̇κ(F )))

` Absκ,F (Appκ,F (x)) = x : tU (in(∀̇κ(F )))]
`Ω;Σ [σ : tK(T ), τ : tK(T ), f : tU (in(σ))→tU (in(τ)), x : tU (in(σ))

` appσ,τ (absσ,τ (f), x) = fx : tU (in(τ))]
`Ω;Σ [σ : tK(T ), τ : tK(T ), f : tU (in(σ⇒τ))

` absσ,τ (λx :tU (in(σ)).appσ,τ (f, x)) = f : tU (in(σ ⇒ τ))]
`Ω;Σ [σ : tK(T ), τ : tK(T ), x : tU (in(σ)), y : tU (in(τ))

` (pr1)σ,τ (pairσ,τ (x, y)) = x : tU (in(σ))]
`Ω;Σ [σ : tK(T ), τ : tK(T ), x : tU (in(σ)), y : tU (in(τ))

` (pr2)σ,τ (pairσ,τ (x, y)) = y : tU (in(τ))]
`Ω;Σ [σ : tK(T ), τ : tK(T ), z : tU (in(σ∧τ))

` pairσ,τ ((pr1)σ,τz, (pr2)σ,τz) = z : tU (in(σ ∧ τ))]
`Ω;Σ [x : tU (in(�)) ` ♥ = x : tU (in(�))]

In the above encoding, K is the universe of kinds; the constant �̇ codes up the unit kind, T the kind Type
of all types. The map in helps to code up the objects. Notice that the map out and the two accompanying
equations, which forces in and out to be inverse to each other, are unnecessary from the proof theoretical
point of view. They are included in the encoding to achieve a better categorical description. We will
refer to the entire encoding of this higher order polymorphism as EPL. 2

17



Example 5.3 We now give an encoding of Martin-Löf’s type theory built upon a finite number of
constants. The encoding should look familiar. In this example, we leave out the subscript in tSet and
abbreviate the context [A : Set,B : t(A)→Set] to Γ.

ΩML is Set

ΣML is

π : ΠX :Set.(t(X)→Set)→Set
σ : ΠX :Set.(t(X)→Set)→Set
Λ : ΠX :Set.ΠY :t(X)→Set.Πf : (Πx :t(X).t(Y (x))).t(π(X, Y ))
• : ΠX :Set.ΠY :t(X)→Set.Πf :t(π(X, Y )).Πx :t(X).t(Y (x))

pair : ΠX :Set.ΠY :t(X)→Set.Πx :t(X).Πy :t(Y (x)).t(σ(X, Y ))
P1 : ΠX :Set.ΠY :t(X)→Set.Πf :t(σ(X, Y )).t(X)
P2 : ΠX :Set.ΠY :t(X)→Set.Πf :t(σ(X, Y )).Y (P1(X, Y, f))

ThML is

`Ω;Σ [Γ, f : (Πx :t(A).t(B(x))), a : t(A) ` •(A,B,Λ(A,B, f), a) = f(a) : t(B(a))]
`Ω;Σ [Γ, f : t(π(A,B)) ` Λ(A,B, λx :t(A). • (A,B, f, x)) = f : t(σ(A,B))]
`Ω;Σ [Γ, a : t(A), b : t(B(a)) ` P1(A,B,pair(A,B, a, b)) = a : t(A)]
`Ω;Σ [Γ, a : t(A), b : t(B(a)) ` P2(A,B,pair(A,B, a, b)) = b : t(B(a))]
`Ω;Σ [Γ, f : t(σ(A,B)) ` pair(A,B,P1(A,B, f),P2(A,B, f)) = f : t(σ(A,B))]

We denote this encoding by EML. 2

The examples given above are all about encodings of typed calculi. That does not mean that λTT can
not describe logics within it. In fact, λTT can deal with logics just as well as ELF. In the following
example, we only give fragmentary encodings. The reader is advised to compare them with those given
in [?].

Example 5.4 When formulating an object language in λTT , the first thing one has to decide is wether
a syntactical class is coded by a universe in Ω or a constant type in Σ. The general principle is that
if an entity of a syntactical class is itself inhabited by other entities, then that syntactical class should
be coded up by a universe. For instance, in first order logic, there are a class of terms and a class of
formulas. As formulas are inhabited by proofs, the latter syntactical class is encoded by a universe

% in Ω.

The other syntactical class is coded by
κ in Σ.

Some of the constants in Σ are:

0 : κ

s : κ→κ

+ : κ×κ→κ

= : κ×κ→%

¬ : %→%

∨ : %×%→%

∀ : (κ→%)→%

RAA : Πp :%.t%(¬¬p)→t%(p)
ALL− E : ΠF :κ→%.Πx :κ.t%(∀(F ))→t%(Fx).

The last two code up reductio ad absurdum rule and the elimination rule for the universal quantifier
respectively. The situation in the case of higher order logic is however slightly different. We still have
the universe

% in Ω,

18



but it no longer works to interpret the syntactical class of terms as a constant type in Σ. In order to
code up higher order quantifications uniformly, the class of terms and the ‘name’ of % must be encoded
by the constants of the same type. So we have in Σ

κ : H

%̇ : H

⇒ : H×H→H

where
H is in Ω.

Also in the Σ are

0 : tH(κ)
succ : tH(κ)→tH(κ)

+ : tH(κ)×tH(κ)→tH(κ)
≤ : tH(κ)×tH(κ)→tH(%̇)
⊃ : tH(%̇)×tH(%̇)→tH(%̇)
= : Πσ :H.tH(σ)×tH(σ)→tH(%̇)
∀ : Πσ :H.(tH(σ)→tH(%̇))→tH(%̇)
in : tH(%̇)→%

All− I : Πσ :H.ΠF :tH(σ)→tH(%̇).(Πx :tH(σ).t%(in(Fx)))→t%(in(∀σ(F ))).

In the full encoding, there should be application and abstraction constants and the accompanying defini-
tional equations which ensure that tH(σ1→σ2) and tH(σ1)→tH(σ2) are ‘isomorphic’. As in example 5.2,
the constant in helps to code up the logical rules. 2

6 Internal Categories in λTT

What does it mean to code up an object language in λTT ? Since the term model of λTT is a fibration, we
can rephrase the question as this: how do we say “coding-up” in the language of fibrations? Our view,
which is motivated by the example given in section 3, is that a coding-up process amounts to defining
an internal category (internal categories). In λTT there should be a routine way of constructing internal
categories. It is the purpose of this section to show that λTT has a built-in mechanism for defining
internal categories.

Let E be an encoding in λTT . We can build a term model (λTT , E) from the constants in the universe
declaration and the signature of E using the equational contexts in E ([?, ?]). It is common knowledge
that the term model forms a fibration (λTT , E) : T −→ C. Here C is the category of contexts and context
realizations. A context realization r : Γ −→ [x1 : A1, . . . , xn : An] is a tuple (a1, a2, . . . , an) such that

Γ ` a1 : A1

Γ ` a2 : A2[a1/x1]
...

Γ ` an : An[a1/x1, . . . , an−1/xn−1].

The objects of T are types. For instance Γ ` A is an object in T (We have left out the meta-symbol
type). A morphism from Γ ` A to ∆ ` B is a pair (r, f) where Γ ` r : ∆ is a context realization and
Γ ` f : A→B[r]. Notice that strictly speaking f should be the equivalence class [f ]. We will however
always confuse an equivalence class with one of its representatives. The functor (λTT , E) : T −→ C takes
Γ ` A to Γ and (r, f) to r.

19



There is a collection D of display maps in C. A realization Γ r−→ ∆ is in D iff it is of the form

[x1 : A1, . . . , xn : An, xn+1 : An+1]
(x1,...,xn)−→ [x1 : A1, . . . , xn : An]. It is readily seen that T (λT T ,E)−→ C is

essentially the same as the fibration C/D cod−→ C.

In category theory, there is a well-known technique of constructing an internal category from a generic
morphism T

G−→ U ([?, ?]). In type theory this generic morphism becomes a generic type judgement
x : U ` G type. Not every type U has this property. We have called universes those which have this
property. Suppose a universe U is declared in the encoding E . A distinguished feature of λTT is that T
contains an internal category U constructed from U . This is made possible by the lifting operator tU .
Using de Bruijn’s notation, the components of this small category can be defined as follows:

U0
def= U ` 1

U1
def= U2 ` tU (1)→tU (2)

U2
def= U3 ` [tU (1)→tU (2)]×[tU (2)→tU (3)]

d0
def= (π1, U

2 ` λw : [tU (1)→tU (2)].?) π1 is [x : U, y : U ]
(x)−→ [x : U ]

d1
def= (π2, U

2 ` λw : [tU (1)→tU (2)].?) π2 is [x : U, y : U ]
(y)−→ [y : U ]

Π0
def= ((π1, π2), U3 ` λw : [tU (1)→tU (2)]×[tU (2)→tU (3)].π1w)

Π1
def= ((π2, π3), U3 ` λw : [tU (1)→tU (2)]×[tU (2)→tU (3)].π2w)

id
def= (δU , U ` λw :1.λv :tU (1).v) δU is [x : U ]

(x,x)−→ [x1 : U, x2 : U ]
γ

def= ((π1, π3), U3 ` λw : [tU (1)→tU (2)]×[tU (2)→tU (3)].λv :tU (1).(π2w)((π1w)v)).

In the above definition, U2 is the context [x1 : U, x2 : U ]; the pair (π1, π2) is the context realization

[x1 : U, x2 : U, x3 : U ]
(x1,x2)−→ [x : U, y : U ]; and U2 ` tU (1)→tU (2) for instance is x1 : U, x2 : U `

tU (x1)→tU (x2).

Lemma 6.1 The above data form an internal category in the fibre category T of the fibration (λTT , E) :
T −→ C associated with the encoding E.

Proof : Routine. Let’s just mention two things. First it can be easily checked that the following di-
agram is a pullback. Here ! is λx : A.? for appropriate A. The objects p1 and p2 are U3 ` λw :
[tU (1)→tU (2)]×[tU (2)→tU (3)].π1w : tU (1)→tU (2) and U3 ` λw : [tU (1)→tU (2)]×[tU (2)→tU (3)].π2w :
tU (2)→tU (3) respectively.

U3 ` [tU (1)→tU (2)]×[tU (2)→tU (3)]

U2 ` tU (1)→tU (2)

U2 ` tU (1)→tU (2)

U ` 1

((π1, π2), p1)

(π2, !)

((π2, π3), p2)

(π1, !)

?

-

?
-

Second, to prove that compositions are associative one needs to form an object U3. It is the type
U4 ` ([tU (1)→tU (2)]×[tU (2)→tU (3)])×[tU (3)→tU (4)] of course. 2

Apart from (λTT , E), there are another two obvious functors. The functor { ` 1} : C −→ T embeds C
in T by sending a context Γ to Γ ` 1. The functor { [ ]} : T −→ C on the other hand is basically the
context extension. Its actions on objects and morphisms are defined as follows:

Γ ` A 7−→ Γ, x : A,

(r, f) : (Γ ` A)→(∆ ` B) 7−→ (r, fx) : (Γ, x : A)→(∆, y : B)

To our knowledge, the following fact was first observed by Ehrhard ([?]).

20



Lemma 6.2 (λTT , E) a { ` 1} a { [ ]} form a D-category.

It is a direct consequence of lemma 6.2 that if we apply the functor { [ ]} to U we get an internal category
U̇ in C. This U̇ is isomorphic to the following internal category:

U′0
def= [x : U ]

U′1
def= [x1 : U, x2 : U, f : tU (x1)→tU (x2)]

U′2
def= [x1 : U, x2 : U, x3 : U, f : tU (x1)→tU (x2), g : tU (x2)→tU (x3)]

d′0
def= (x1) : U′1→U′0

d′1
def= (x2) : U′1→U′0

id′
def= (x, x, λy :tU (x).y)

Π′0
def= (x1, x2, f) : U′2→U′1

Π′1
def= (x2, x3, g) : U′2→U′1

γ′
def= (x1, x3, λy :tU (x1).g(fy)) : U′2→U′1.

From now on, we take U̇ to be this internal category.

Proposition 6.3 U̇ is an internal full subcategory of C, relative to D, induced by the display map

[x : U, y : tU (x)]
(x)−→ [x : U ].

[U̇] C/D T

C

H ∼=

domU̇ cod (λTT , E)

?

�
�

�
�

�	

@
@

@
@
@R

- -

Proof : In the above diagram, H sends an object (a) : Γ −→ [x : U ] onto the display map Γ, z : tU (a) −→
Γ; it sends a morphism (a, b, f) : Γ −→ [x : U, y : U, z : tU (x) → tU (y)] in the fibre dom−1

U̇
(Γ) onto the

morphism (IdΓ, fz) : (Γ, z : tU (a) → Γ) −→ (Γ, z : tU (b) → Γ). It is full and faithful by η-rule. The fact

that U̇ is induced by [x : U, y : tU (x)]
(x)−→ [x : U ] is also routine to check. 2

Since C/D cod−→ C is isomorphic to T (λT T ,E)−→ C, it makes sense to say that U̇ is an internal full subcategory

of T (λT T ,E)−→ C.

If there are more than one universes declared in an encoding, then for each universe one can construct
an internal full subcategory.

More light can be casted on the above result if we look at it from a proof theoretical point of view.
Suppose E encodes L. As in ELF , variables of the encoded version of L in λTT are identified with those
in λTT . What is the model theoretical implication of this decision? Suppose Γ `Ω,Σ a : U . Then a
‘variable’ of a in the encoded language is an indeterminate of the object (a, ?) in the fibre [Γ, U̇]. On
the other hand, a ‘variable’ of a in λTT is an indeterminate of the object Γ ` tU (a) in (λTT , E)−1(Γ).
If we are to identify a variable in the encoded language with the corresponding variable in λTT , then
[Γ, U̇] should be a full subcategory of (λTT , E)−1(Γ). We therefore conclude that the result stated in
proposition 6.3 is the categorical counterpart of the variable convention. This categorical explanation
has a feedback to type theory: the variable convention forces a conservative extensionality relationship
between an encoded calculus and the framework λTT .

21



7 Structures of Universes

We have not told the full story about the internal categories discussed in section 6. When defining a
typed calculus in λTT , we force those internal categories to have specific structures. In this section we
show that the internal categories induced by the universes declared in the first three examples in section 5
have the necessary categorical structures that are usually associated with the categorical models of the
three typed calculi respectively. More specifically, we will show that in the encoding of the simply
typed λ-calculus, the internal full subcategory U̇ induced by the universe U is equipped with explicit
cartesian closed structure. The internal categories U̇ and K̇ induced by the universes in the encoding of
the polymorphic λ-calculus also possess the same structure. In addition, U̇ has explicit products over
the encoded kinds. For the encoding of Martin-Löf type theory, one can show that the internal full
subcategory ˙Set induced by the universe Set has appropriate explicit internal structure which, when
externalized, gives rise to the left and right adjoints to weakening functors. We will omit an account of
the Martin-Löf case since the proofs are similar to those in the polymorphic case. In this section, we
omit systematically the subscript in `Ω;Σ.

Lemma 7.1 The equations in Thλ imply that the following diagrams are pullbacks in the base category
of the fibration (λTT , Eλ), where ⊗ is ⇒ (or ∧) and ⊗̇ is → (or ×); m is absx1,x2(f) when ⊗ is ⇒ and
is pairx1,x2

(f) when ⊗ is ∧.

[]

[]

[x : U, y : tU (x)]

[x : U ]

()

(�)

(�,♥)

(x)

?

-

-
?

[x1 : U, x2 : U, f : tU (x1)⊗̇tU (x2)]

[x1 : U, x2 : U ]

[x : U, y : tU (x)]

[x : U ]

(x1, x2)

(x1⊗x2)

(x1⊗x2,m)

(x)

?

-

?
-

Proof : Routine. Suppose we have a commuting diagram like this

Γ

[x1 : U, x2 : U ]

[x : U, y : tU (x)]

[x : U ]

(a, b)

(x1⇒x2)

(x)

(c, f)

?

-

?
-

Clearly c = a⇒b and Γ ` f : tU (a⇒b). Let (a, b, ?) be the mediating morphism. Then

absa,b(?) = f.

Therefore
?z = appa,b(absa,b(?), z) = appa,b(f, z).

It follows that
? = λz :tU (a).appa,b(f, z).

The proofs for the other cases are similar. 2

The categorical implication of lemma 7.1 is obvious once we notice the facts in the next lemma:

Lemma 7.2 (i) Both [x : tU (�)] and [] are terminal objects. (ii) [x1 : U, x2 : U ] is the product of [x : U ]

and [x : U ]. (iii) [x1 : U, x2 : U, y : tU (xi)]
(x1,x2)−→ [x1 : U, x2 : U ] is the pulling-back of [x : U, y :

22



tU (x)]
(x)−→ [x : U ] along the projection [x1 : U, x2 : U ]

(xi)−→ [x : U ]. (iv) [x1 : U, x2 : U, f : tU (x1)×tU (x2)]
(or [x1 : U, x2 : U, f : tU (x1)→tU (x2)]) is the product (or exponential) of [x1 : U, x2 : U, y : tU (x1)] and
[x1 : U, x2 : U, y : tU (x2)] in the fibre over [x1 : U, x2 : U ].

We conclude that the internal full subcategory U̇ has explicit cartesian closed structure.

In the case of EPL, this property holds for both U̇ and K̇. But now the diagram associated with U̇ need
be modified as follows: in the first diagram, � should be replaced by in(�); in the second diagram, when
⊗̇ is →, ⊗ is in(out(x1)⇒ out(x2)) and m is absout(x1),out(x2)(f); when ⊗̇ is ×, ⊗ is in(out(x1)∧ out(x2))
and m is pairout(x1),out(x2)(f). In addition we have

Lemma 7.3 In the encoding EPL of the higher order λ-calculus, the following is a pullback in the base
category of the fibration (λTT , EPL) for any `Ω;Σ κ : K.

[x : tK(κ)→U ]

[x : tK(κ)→U, z : Πy:tK(κ).tU (xy)]

[x : U ]

[x : U, y : tU (x)]

(in(∀̇κ(out ◦ x)))

(in(∀̇κ(out ◦ x)),Absκ,out◦x(z))

(x) (x)
?

-

-
?

Proof : Suppose the following diagram commutes.

Γ

[x : tK(κ)→U ]

[x : U, y : tU (x)]

[x : U ]

(F )

(in(∀̇κ(out ◦ x)))

(G, t)

(x)
?

-

?
-

Clearly G = in(∀̇κ(out ◦ F )). Assume the mediating morphism is (F, ?). Then we have

Absκ,out◦F (?) = t : tU (in(∀̇κ(out ◦ F ))).

So
? = Appκ,out◦F (Absκ,out◦F (?)) = Appκ,out◦F (t).

This completes the proof. 2

Lemma 7.4 (i) [x : tK(κ)→U ] is the exponential of [x : tK(κ)] and [x : U ]. (ii) [x : tK(κ)→U, y :

tK(κ)] is the product of [x : tK(κ)→U ] and [x : tK(κ)]. (iii) [x : tK(κ)→U, y : tK(κ)]
(xy)−→ [x : U ]

is the evaluation map. (iv) [x : tK(κ)→U, y : tK(κ), z : tU (xy)]
(x,y)−→ [x : tK(κ)→U, y : tK(κ)] is the

pulling-back of [x : U, y : tU (x)]
(x)−→ [x : U ] along the evaluation map in (iii). (v) [x : tK(κ)→U, z :

Πy:tK(κ).tU (xy)]
(x)−→ [x : tK(κ)→U ] is obtained by applying to [x : tK(κ)→U, y : tK(κ), z : tU (xy)]

(x,y)−→
[x : tK(κ)→U, y : tK(κ)] the right adjoint to the relabelling functor over [x : tK(κ)→U, y : tK(κ)]

(x)−→
[x : tK(κ)→U ].

In summary, lemma 7.3 and lemma 7.4 together say that the internal category U̇ has explicit products
over types lifted from ‘kinds’.

We can generalize what is embodied in the above examples: If a collection of certain entities in an object
language is represented by a universe in λTT , then to code up the operators associated with the collection
is to equip the internal full subcategory, induced by the universe, with explicit categorical structures.

23



8 Syntactic Adequacy and Internal Definability

This section reveals the close tie between syntactic adequacy, a linguistic notion, and internal definability,
a semantic notion. This is done by examining the encodings defined in section 5. We should point out that
in order to demonstrate the relationship, we need not know if the encodings are syntactically adequate,
nor do we have to know any specific proof theoretical properties of λTT .

In this section there are two kinds of models we are interested in: the closed term models and the open
term models. In the former we consider only closed terms whereas in the latter we consider terms with
free variables. For instance the closed term model of a simply typed λ-calculus is a cartesian closed
category [?]; on the other hand the open term model of the same calculus is a fibration Lλ : Tλ −→ Cλ.
Here Cλ is the category of contexts and their realizations; a morphism over Γ ∈ Cλ is an equivalence class
of terms Γ ` f : A→B. In the case of dependent typed calculi however we always talk about open term
models.

Because of the presence of the equational contexts, the syntactic adequacy as is used in this paper is
slightly different from that defined in [?, ?].

8.1 Adequacy of Eλ and Definability of Simply Typed λ-Calculus

Let Lλ and Lλ : Tλ −→ Cλ be the closed term model and the open term model of the simply typed
λ-calculus respectively. Here Lλ has types as objects. A morphism from A to B is a closed term of type
A→B. The category Cλ is the category of contexts and context realizations. An object in Tλ is a pair
(Γ, A) of a context and a type. A morphism in Tλ is a pair (r, f) : (Γ, A)→(∆, B) such that Γ r−→ ∆ is
a context realization and Γ ` f : A→B. The functor Lλ is the first projection. The canonical cartesian
lifting over Γ r−→ ∆ with respect to (∆, B) is (r, λx :B.x). The fibration Lλ has a fibred cartesian closed
structure. For example, the product and exponential of the objects (Γ, A) and (Γ, B) in the fibre over Γ
are (Γ, A×B) and (Γ, A→B) respectively.

The encoding Eλ provides us with a translation from a type A in the simply typed λ-calculus to a closed
term Â of type U in λTT and from a judgement

x1 : A1, . . . , xn : An ` a : A (1)

in the simply typed λ-calculus to a judgement (In this section, we are not going to distinguish notationally
the universes (signatures) defined in the examples given in section 5.)

x1 : tU (Â1), . . . , xn : tU (Ân) `Ω;Σ â : tU (Â) (2)

in λTT . We now define the translation inductively as follows:

1̂ def= �
Â×B

def= Â∧B̂

Â→B
def= Â⇒B̂

x̂
def= x

?̂
def= ♥

(f : A→B, a : A) f̂a
def= appÂ,B̂(f̂ , â)

(b : B) ̂λx:A.b
def= absÂ,B̂(λx:tU (Â).b̂)

(a : A, b : B) ̂〈a, b〉 def= pairÂ,B̂(â, b̂)

(c : A×B) π̂1c
def= (pr1)Â,B̂(ĉ)

(c : A×B) π̂2c
def= (pr2)Â,B̂(ĉ).

24



The syntactical adequacy for the encoding Eλ consists of the following statements:

1. The map that sends a type A to its translation Â prescribes a bijective correspondence between
types in the simply typed λ-calculus and judgements of the form x1 : tU (Â1), . . . , xn : tU (Ân) `Ω;Σ

M : U in λTT (with the encoding Eλ) for any fixed types A1, . . . , An in the λ-calculus. Strictly
speaking, M should be an equivalence class, where the equivalence relation is induced by the
definitional equality of λTT . Notice that intuitively x1 : tU (Â1), . . . , xn : tU (Ân) `Ω;Σ M : U if
and only if `Ω;Σ M : U . But that belongs to the proof theory of λTT .

2. The map that sends (1) onto (2) is a bijection between the judgements of the form (1) and the
judgements of the form x1 : tU (Â1), . . . , xn : tU (Ân) `Ω;Σ M : tU (Â). Strictly speaking, M should
be an equivalence class, where the equivalence relation is induced by the definitional equality of
λTT .

3. x1 : A1, . . . , xn : An ` a = b : A if and only if x1 : tU (Â1), . . . , xn : tU (Ân) `Ω;Σ â =Thλ
b̂ : tU (Â).

4. The translation is compositional, i.e. ̂a[b/x] is syntactically the same as â[b̂/x].

Proposition 8.1 If Eλ is syntactically adequate, then both Lλ and Lλ are internally definable by U̇ in
(λTT , Eλ). In addition the two interpretation maps send the fibred cartesian closed structures of Lλ and
Lλ respectively onto the fibred cartesian closed structure of domU̇ induced by the explicit cartesian closed
structure of U̇.

Proof : Condition (ii) in the definition 3.4 is satisfied according to proposition 6.3. This fact will not be
mentioned in the proofs of propositions 8.2 and 8.3 given below.

(i) Let’s explain the functors I and H in the following diagram.

Tλ

Cλ

[U̇]

C

Lλ

I

H

domU̇

?

-

?
-

I sends a context [x1 : A1, . . . , xn : An] in Cλ onto the context [x1 : tU (Â1), . . . , xn : tU (Ân)], the
existence of which is guaranteed by 1. A morphism r : [x1 : A1, . . . , xn : An] −→ [y1 : B1, . . . , ym : Bm]
consists of

x1 : A1, . . . , xn : An ` b1 : B1,
...

x1 : A1, . . . , xn : An ` bm : Bm.

2 says that we can define I(r) to be the realization consisting of

x1 : tU (Â1), . . . , xn : tU (Ân) `Ω;Σ b̂1 : tU (B̂1),
...

x1 : tU (Â1), . . . , xn : tU (Ân) `Ω;Σ b̂m : tU (B̂m).

4 means that I preserves composition. 3 ensures that I is well-defined as a functor and is faithful. 3
implies that it is full; and 1 says that it is injective on objects. So I is a full embedding functor.

Next let’s define the functor H. An object in the fibre L−1
λ ([x1 : A1, . . . , xn : An]) is a type A in the

simply typed λ-calculus. Define H(A) to be the realization (Â) : [x1 : tU (Â1), . . . , xn : tU (Ân)] −→

25



[x : U ], which is essentially the sequent [x1 : tU (Â1), . . . , xn : tU (Ân)] `Ω;Σ Â : U . But by the
syntactic adequacy, there is a correspondence between types in the simply typed λ-calculus and sequents
like [x1 : tU (Â1), . . . , xn : tU (Ân)] `Ω;Σ Â : U . So H establishes a bijection between the objects
of L−1

λ ([x1 : A1, . . . , xn : An]) and those in dom−1

U̇
([x1 : tU (Â1), . . . , xn : tU (Ân)]). A morphism in

L−1
λ ([x1 : A1, . . . , xn : An]) is a term [x1 : A1, . . . , xn : An] ` f : A→B. The syntactic adequacy implies

that it is in bijective correspondence with [x1 : tU (Â1), . . . , xn : tU (Ân)] `Ω;Σ f̂ : tU (Â⇒B̂). But the
latter is in bijective correpondence with [x1 : tU (Â1), . . . , xn : tU (Ân)] `Ω;Σ λw : tU (Â).appÂ,B̂(f̂ , w) :
tU (Â)→tU (B̂). Let H(f) be

[x1 : tU (Â1), . . . , xn : tU (Ân)]
(Â,B̂,λw:tU (Â).appÂ,B̂(f̂ ,w))

−→ [x : U, y : U, z : tU (x)→tU (y)].

Clearly H is full and faithful. It is routine to check the functoriality of I and H. Here we only show that H
preserves compositions. Suppose [x1 : A1, . . . , xn : An] ` f : A→B and [x1 : A1, . . . , xn : An] ` g : B→C

are two sequents in the simply typed λ-calculus. Then by the definition of H, the composition H(ĝ)◦H(f̂)
is

[x1 : tU (Â1), . . . , xn : tU (Ân)]
(Â,Ĉ,λw:tU (Â).appB̂,Ĉ(ĝ,appÂ,B̂(f̂ ,w)))

−→ [x : U, y : U, z : tU (x)→tU (y)].

whereas H(g ◦ f) is

[x1 : tU (Â1), . . . , xn : tU (Ân)]
(Â,Ĉ,λw:tU (Â).appÂ,Ĉ(ĝ◦f,w))

−→ [x : U, y : U, z : tU (x)→tU (y)].

But

appÂ,Ĉ(ĝ ◦ f, w) = appÂ,Ĉ( ̂λx :A.g(fx), w)

= appÂ,Ĉ(absÂ,Ĉ(λx :tU (Â). ̂g(fx)), w)

= (λx :tU (Â). ̂g(fx))w

= ̂g(fw)

= appB̂,Ĉ(ĝ, f̂w)

= appB̂,Ĉ(ĝ, appÂ,B̂(f̂ , w)).

We are done.

The diagram is also a pullback. Conclude that Lλ ∝ (λTT , Eλ).

The verification that the interpretation map sends the fibred cartesian closed structure of Lλ onto the
fibred cartesian closed structure of domU̇ induced by the explicit cartesian closed structure of U̇ is long
and routine. The following is a snapshot of it. In the fibre Lλ(Γ), (Γ, A→B) is the exponential of (Γ, A)

and (Γ, B). H sends (Γ, A→B) onto Γ̂
(Â⇒B̂)−→ [x : U ]. The latter is the exponential of Γ̂

(Â)−→ [x : U ] and

Γ̂
(B̂)−→ [x : U ] by lemma 7.1.

(ii) For the closed term model Lλ, a similar argument shows that the diagram below is a pullback,

Lλ

?

[U̇]

C

!

[]

H

domU̇

?

-

?
-

where ? is the terminal category and [] sends the only object to the empty context. 2

26



8.2 Adequacy of EPL and Definability of Polymorphic λ-Calculus

For higher order polymorphic λ-calculus, there are two open term models: that of kinds and constructors
LK

PL : T K
PL −→ CK

PL and that of types and objects over the empty kinding context LT
PL : T T

PL −→ CT
PL. An

object in CT
PL is a context x1 : A1, . . . , xn : An where [] ` A1, . . . , [] ` An. Let LPL : T PL −→ CPL be the

closed term model. Here the objects of CPL are closed kinds; a morphism from object K1 to object K2 is
a closed constructor F : K1→K2. An object in T PL over K is of the form x : K ` A : Type. A morphism
from x1 : K1 ` A1 : Type to x2 : K2 ` A2 : Type is a pair (F : K1→K2,`[x1:K1] f : A1→A2[Fx1/x2]).
Both LK

PL and LT
PL have a fibred cartesian closed structure. It is well-known that LPL is equipped with

a PL-categorical structure ([?]). Roughly, this amounts to saying that the base category CPL has a
cartesian closed staructure and LPL has a fibred cartesian closed structure; in addition the fibration has
right adjoints to weakening functors and these right adjoints satisfy the Beck-Chevalley condition.

We now define the translation inductively as follows:

• kind

>̂ def= �̇
T̂ ype

def= T̂K1×K2
def= K̂1∧̇K̂2̂K1→K2
def= K̂1⇒̇K̂2

• constructor

x̂
def= x

?̂>
def= ♥̇

(F : K1→K2, C : K1) F̂C
def= ˙appK̂1,K̂2

(F̂ , Ĉ)

(C : K2) ̂λx:K1.C
def= ˙absK̂1,K̂2

(λx:tK(K̂1).Ĉ)

(C : K1, D : K2) ̂〈C,D〉 def= ˙pairK̂1,K̂2
(Ĉ, D̂)

(C : K1×K2) π̂1C
def= ( ˙pr1)K̂1,K̂2

(Ĉ)

(C : K1×K2) π̂2C
def= ( ˙pr2)K̂1,K̂2

(Ĉ)

type (special constructor)

1̂ def= �
Â×B

def= Â∧B̂

Â→B
def= Â⇒B̂̂∀x:K.A
def= ∀̇K̂(λx:tK(K̂).Â)

• object

x̂
def= x

?̂1
def= ♥

(f : A→B, a : A) f̂a
def= appÂ,B̂(f̂ , â)

(b : B) ̂λx:A.b
def= absÂ,B̂(λx:tU ( ˆin(A)).b̂)

(a : A, b : B) ̂〈a, b〉 def= pairÂ,B̂(â, b̂)

(c : A×B) π̂1c
def= (pr1)Â,B̂(ĉ)

27



(c : A×B) π̂2c
def= (pr2)Â,B̂(ĉ)

(a : A) Λx:K.a
def= AbsK̂,λx:tK(K̂).Â(λx:tK(K̂).â)

(F : ∀x:K.A) F̂C
def= AppK̂,λx:tK(K̂).Â(F̂ , Ĉ).

The statements for the syntactical adequacy for EPL are similar to those for Eλ:

1. For any fixed kinds K1, . . . ,Kn, the map that sends a kind K to the judgement x1 : tK(K̂1), . . . , xn :
tK(K̂n) `Ω;Σ K̂ : K is a bijection between kinds and judgements of the form x1 : tK(K̂1), . . . , xn :
tK(K̂n) `Ω;Σ M : K .

2. For any fixed kinds K1, . . . ,Knand K, the map that sends a constructor judgement x1 : K1, . . . , xn :
Kn ` C : K to the judgement x1 : tK(K̂1), . . . , xn : tK(K̂n) `Ω;Σ Ĉ : tK(K̂) is a bijection between
the judgements of the form x1 : K1, . . . , xn : Kn ` C : K and the judgements of the form
x1 : tK(K̂1), . . . , xn : tK(K̂n) `Ω;Σ M : tK(K̂).

3. For any fixed kinds K1, . . . ,Knand K, x1 : K1, . . . , xn : Kn ` C = D : K iff x1 : tK(K̂1), . . . , xn :
tK(K̂n) `Ω;Σ Ĉ =ThP L

D̂ : tK(K̂).

4. For any fixed types A1, . . . , An valid under the kinding context [y1 : K1, . . . , ym : Km], the map
that sends a judgement y1 : K1, . . . , ym : Km ` A : Type to the judgement y1 : tK(K̂1), . . . , ym :
tK(K̂m), x1 : tU (in(Â1)), . . . , xn : tU (in(Ân)) `Ω;Σ Â : tK(T ) is a bijection between judgements of
the form y1 : K1, . . . , ym : Km ` A : Type and the judgements of the form y1 : tK(K̂1), . . . , ym :
tK(K̂m), x1 : tU (in(Â1)), . . . , xn : tU (in(Ân)) `Ω;Σ M : tK(T ).

5. For any fixed types A1, . . . , Anand A valid under the kinding context [y1 : K1, . . . , ym : Km], the
map that sends an object judgement x1 : A1, . . . , xn : An `[y1:K1,...,ym:Km] a : A to the judgement
y1 : tK(K̂1), . . . , ym : tK(K̂m), x1 : tU (in(Â1)), . . . , xn : tU (in(Ân)) `Ω;Σ â : tU (in(Â)) is a bijection
between judgements of the form x1 : A1, . . . , xn : An `[y1:K1,...,ym:Km] a : A and the judgements of
the form y1 : tK(K̂1), . . . , ym : tK(K̂m), x1 : tU (in(Â1)), . . . , xn : tU (in(Ân)) `Ω;Σ M : tU (in(Â)) .

6. For any fixed types A1, . . . , Anand A valid under the kinding context y1 : K1, . . . , ym : Km, we
have x1 : A1, . . . , xn : An `[y1:K1,...,ym:Km] a = b : A iff y1 : tK(K̂1), . . . , ym : tK(K̂m), x1 :
tU (in(Â1)), . . . , xn : tU (in(Ân)) `Ω;Σ â =ThP L

b̂ : tU (in(Â)).

7. The translation is compositional.

Proposition 8.2 If the encoding EPL is syntactically adequate, then (i) LT
PL and LK

PL are internally
definable in (λTT , EPL) by U̇ and K̇ respectively and the interpretation maps for both LT

PL and LK
PL

preserve fibred cartesian closed structure; (ii) LPL is internally definable in (λTT , EPL) by U̇ and the

interpretation map (H, I) from T PL LP L

−→ CPL to domU̇ preserves the PL-categorical structure.

Proof : (i) By proposition 8.1, both LK
PL and LT

PL are internally definable in (λTT , EPL) and the inter-
pretation maps preserve the fibred cartesian closed structures.

CK
PL

T K
PL

C

[K̇]

CT
PL

T T
PL

C

[U̇]

IK

HK

LK
PL domK̇

IT

HT

LT
PL domU̇

?

-

?
-

?

-

-
?

28



Notice that the assumption that the types and objects appearred in LT
PL do not contain constructor

variables is important; otherwise the situation would not be similar to the one described in the proof of
proposition 8.1.

(ii) First we need to show that we have a pullback diagram.

T PL

CPL

[U̇]

C

LPL

I

H

domU̇

?

-

?
-

In the diagram, I sends an object K (a kind) to [x : tK(K̂)] and a map F : K1 → K2 onto [x :

tK(K̂1)]
( ˙appK̂1,K̂2

(F̂ ,x))
−→ [x : tK(K̂2)]. The functor H sends an object x : K ` A : Type onto [x :

tK(K̂)]
(in(Â))−→ [x : U ] and a map (F : K1→K2,`[x:K1] f : A1→A2[F ]) : (x : K1 ` A1 : Type) −→ (x :

K2 ` A2 : Type) onto a pair whose first component is

[x : tK(K̂1)]
( ˙appK̂1,K̂2

(F̂ ,x))
−→ [x : tK(K̂2)]

and whose second component is

[x :tK(K̂1)]
(in(Â1),in(Â2[F ]),λx:tU (in(Â)).app

Â1,Â2[F ]
(f̂ ,x))

−→ [x :U, y :U, z :tU (x)→tU (y)]).

The verification that (H, I) preserves fibred cartesian closed structure and that I preserves the cartesian
closed structure in the base category are routine. The proof that it preserves right adjoints to weakening
functors is similar to that in the proof of proposition 8.3 given below. 2

8.3 Adequacy of EML and Definability of Martin-Löf Type Theory

Let TML
LML−→ CML be the term model of the Martin-Löf type theory (see [?] for detail). Here CML is

the category of contexts. A morphism in TML is a pair (r, f) : (Γ ` A)−→(∆ ` B) where Γ r−→ ∆
is a context realization and Γ ` f : A→B[r]. A display map is a context realization of the form

[x1 : A1, . . . , xn+1 : An+1]
(x1,...,xn)−→ [x1 : A1, . . . , xn : An]. It is well-known that the fibration LML has

left and right adjoints to the reindexing functors over the display maps. These right adjoints satisfy the
Beck-Chevalley condition. For example, the right adjoint to the reindexing functor over Γ, x : A −→ Γ
sends the object Γ, x : A ` B onto Γ ` Πx:A.B.

The translation from Martin-Löf’s type theory to EML is defined inductively as follows:

• context

[̂] 7−→ []̂Γ, x : A 7−→ Γ̂, x : t(Â)

where Γ̂ `Ω;Σ Â : Set is the translation of Γ ` A;

• type

Γ ` Πx :A.B 7−→ Γ̂ `Ω;Σ π(Â, λx :t(Â).B̂) : Set

29



Γ ` Σx :A.B 7−→ Γ̂ `Ω;Σ σ(Â, λx :t(Â).B̂) : Set

Γ ` x : A 7−→ Γ̂ `Ω;Σ x : t(Â)

Γ ` fa : B[a/x] 7−→ Γ̂ `Ω;Σ •(Â, λx :t(Â).B̂, f̂ , â) : t( ̂B[a/x])

Γ ` λx :A.b : Πx :A.B 7−→ Γ̂ `Ω;Σ Λ(Â, λx :t(Â).B̂, λx :t(Â).b̂) : t(π(Â, λx :t(Â).B̂))

Γ ` 〈a, b〉 : Σx :A.B 7−→ Γ̂ `Ω;Σ pair(Â, λx :t(Â).B̂, â, b̂) : t(σ(Â, λx :t(Â).B̂))

Γ ` π1c : A 7−→ Γ̂ `Ω;Σ P1(Â, λx :t(Â).B̂, ĉ) : t(Â)

Γ ` π2c : B[π1c/x] 7−→ Γ̂ `Ω;Σ P2(Â, λx :t(Â).B̂, ĉ) : t(B̂[P1(Â, λx :t(Â).B̂, ĉ)/x]),

where f : Πx:A.B, a : A and c : Σx:A.B.

The syntactic adequacy consists of the following statements:

1. The map that sends Γ ` A onto Γ̂ `Ω;Σ Â : Set is a bijection between judgements of the form
Γ ` A and judgements of the form Γ̂ `Ω;Σ M : Set.

2. Γ ` A = B if and only if Γ̂ `Ω;Σ Â =ThML
B̂ : Set.

3. The map that sends Γ ` a : A onto Γ̂ `Ω;Σ â : t(Â) is a bijection between the judgements of the
form Γ ` a : A and the judgements of the form Γ̂ `Ω;Σ M : t(Â).

4. Γ ` a = b : A if and only if Γ̂ `Ω;Σ â =ThML
b̂ : t(Â).

5. The translation is compositional.

Proposition 8.3 If the encoding EML is syntactically adequate, then the term model is internally defin-
able in (λTT , EML) by ˙Set. In addition the interpretation map (M, I) preserves the left and right adjoints
along the display maps.

Proof : In the diagram below, the functor I is defined as in the previous two cases. The only difference
is that types are dependent in this case.

TML

CML

[ ˙Set]

C

LML

I

M

dom ˙Set

?

-

?
-

The functor M : TML −→ [ ˙Set] is defined as follows, bearing in mind that a map from Γ̂
(Â)→ Ŝet0 to

∆̂
(B̂)→ Ŝet0 is a pair (Γ̂ m−→ ∆̂, Γ̂ m′

−→ Ŝet1):

Γ ` A 7−→ Γ̂
(Â)−→ ˙Set0

(Γ ` A)
(r,f)−→ (∆ ` B) 7−→ (r̂, (Â, B̂[r], λx :t(Â). • (Â, λw :t(Â).B̂[r], f̂ , x)))

: (Γ̂
(Â)→ ˙Set0) −→ (∆̂

(B̂)→ ˙Set0)

where Γ̂ `Ω;Σ Â : Set, Γ̂ `Ω;Σ B̂[r] : Set, Γ̂ r̂−→ ∆̂ and Γ̂ `Ω;Σ f̂ : t(π(Â, λw : t(Â).B̂[r])). Syntactic
adequacy implies that M so defined is full, faithful and injective on objects; it also maps canonical
cartesian liftings to canonical cartesian liftings. It can be readily verified that the diagram is also a

30



pullback. We still need to show that M preserves left and right adjoints along display maps in CML. By
the translation we have given, the actions of M : TML −→ [ ˙Set] on Γ, x : A ` B and Γ ` Πx : A.B are
respectively as follows:

Γ, x : A ` B 7−→ Γ̂, x : t(Â)
(B̂)−→ ˙Set0

Γ ` Πx :A.B 7−→ Γ̂
(π(Â,λx:t(Â).B̂))−→ ˙Set0.

The following establishes a bijective correspondence between Γ̂ `Ω;Σ f : X→t(π(Â, λx : t(Â).B̂)) and
Γ̂, x : t(Â) `Ω;Σ g : X→t(B̂),

Γ̂ `Ω;Σ f : X→t(π(Â, λx :t(Â).B̂))
Γ̂, y : X `Ω;Σ fy : t(π(Â, λx :t(Â).B̂))

Γ̂, y : X, x : t(Â) `Ω;Σ •(Â, λx :t(Â).B̂, fy, x) : t(B̂)
Γ̂, x : t(Â), y : X `Ω;Σ •(Â, λx :t(Â).B̂, fy, x) : t(B̂)

Γ̂, x : t(Â) `Ω;Σ λy :X. • (Â, λx :t(Â).B̂, fy, x) : X→t(B̂)

and its inverse

Γ̂, x : t(Â) `Ω;Σ f : X→t(B̂)
Γ̂, x : t(Â), y : X `Ω;Σ fy : t(B̂)
Γ̂, y : X, x : t(Â) `Ω;Σ fy : t(B̂)

Γ̂, y : X `Ω;Σ λx :t(Â).fy : Πx :t(Â).t(B̂)
Γ̂, y : X `Ω;Σ Λ(Â, λx :t(Â).B̂, λx :t(Â).fy) : t(π(Â, λx :t(Â).B̂))

Γ̂ `Ω;Σ λy :X.Λ(Â, λx :t(Â).B̂, λx :t(Â).fy) : X→t(π(Â, λx :t(Â).B̂)) .

We conclude that M preserves right adjoints to reindexing functors over display maps. The fact that it
also preserves left adjoints to reindexing functors over display maps can be similarly established. 2

8.4 Conclusion

In all the three examples we have assumed that the number of constant types is finite. Let’s look at an
example where there is an infinite number of constant types. Forgetting the encoding of constant types,
Eλ as it stands is an encoding of simply typed λ-calculus with an infinite number of constant types. The
idea is to assume a bijective correspondence between the constant types and variables of type U . A type
A in the simply typed λ-calculus is now coded up by σ1 : U, . . . , σn : U `Ω;Σ Â : U where σ1, . . . , σn

correspond to the constant types occurred in A. It can be routinely checked that proposition 8.1 still
holds for Lλ. But the functor Cλ

I−→ C has to be redefined. It now sends [x1 : A1, . . . , xn : An] onto
[σ1 : U, . . . , σm : U, x1 : t(Â1), . . . , xn : t(Ân)] where σ1, . . . , σn correspond to the constant types occurred
in A1, . . . , Am and A.

The technique used above can be applied to the other two examples.

The general phenomenon is this: If the encoding EL of a typed calculus L in λTT is syntactically adequate,
then in a canonical way (determined by the translation of L into EL) L is internally definable in (λTT , EL)
(or, waving hand, L ∝ λTT ). In other words, a faithful encoding of L defines a frame language such that
L is an internal typed calculus definable in the frame language by the encoding via the translation of L
into the representation in λTT .

So to formulate an object language in λTT is to identify a frame language which contains an internal
version of the represented language. The richer the object language, the richer the frame language. A
correct formulation of the encoded language and the frame language involves a build-up of an internal
definability relationship between the two languages. The function of λTT is to provide a framework on
which this frame language is built. The good properties of λTT ensure that to design the frame language
is the same thing as to give an adequate representation of the object language in λTT .

31



9 The Notion of Models for Logical Frameworks

We now turn our attention to semantics. There are two levels of semantics. The model theory of λTT

has been well-established, see for instance [?]. A categorical model consists of a category B with finite
products and a collection D of display maps. The fibration B/D cod−→ B must be a fibred cartesian closed
category and be complete relative to D. A generic judgement x : U `Ω;Σ tU (x) must be interpreted as a
display map.

The proper model theory of logical frameworks is about the meanings of encodings and how to relate
the model theory of an object language to that of a framework. It is this aspect of semantics we have
been trying to understand. Suppose L is a typed calculus and E = (Ω,Σ, Th) is an adequate encoding
of L in λTT . There are two questions one can ask:

1. Given an interpretation of the frame language (λTT , E), what does the interpretation of E consti-
tute? Arguably, we are only interested in those interpretations whose restrictions to E constitute
internal models of L.

2. Given a model of L, can we fully embed it into a model of (λTT , E)?

A categorical interpretation of E = (Ω,Σ, Th) consists of a sound categorical interpretation of λTT and
an interpretation of constants in Ω and Σ. We say the interpretation of E is sound if it validates all
the definitional equations in Th. We say a sound interpretation of E is good if the denotations of the
constants in Ω and Σ under this interpretation form an internal model of L. We say the encoding E is
semantically adequate if every sound interpretation of E is good.

Proposition 9.1 If both Eλ and EPL are syntactically adequate, then both are semantically adequate.

Proof : Lemma 7.1 (7.3) holds for any sound interpretation of Eλ (EPL). The results follow. 2

Suppose [[ ]] is a sound categorical interpretation of λTT . Usually there are many ways of extending [[ ]] to
[[ ]]ΣΩ so that it also interprets the constants in both Ω and Σ. If the encoding E is syntactically adequate
then the translation ˆ : L −→ E gives rise to a map

sound interpretations of E −→ sound interpretations of L.

We say that the encoding E is semantically complete if the above map is surjective.

Proposition 9.2 If both Eλ and EPL are syntactically adequate, then both are semantically complete.

Proof : The semantic completeness for polymorphic λ-calculus is essentially the main result of [?]. The
result for the simply typed λ-calculus can be proved similarly. 2

10 Applications to Other Typed calculi

The central notion introduced in this paper is that of internal definability. We have seen the importance
of this notion to the analysis of the logical framework λTT . As a matter of fact, internal definability
(codability) can be found in a range of typed calculi. It is the purpose of this section to explain how
some proof theoretical questions can be rephrased in terms of internal definability or internal codability.

32



10.1 Polymorphic λ-Calculus, Continued

We have already seen in examples 3.3 and 3.5 that the higher order polymorphic λ-calculus is, roughly

speaking, internally definable in itself. For i ∈ {n ≥ 2 | n ∈ ω}, we can construct a term model T i Li

−→ Ci

for the i-th polymorphic λ-calculus. Similar to Lω, we have an internal category Ci in T i and a set
Di of display maps such that codi a Ii a domi : T i/D−→T i is a D-category and Ci is an internal full
subcategory of codi. Moreover the following diagram is a pullback.

T i

Ci

[Ci]

T i

Li

>i

Hi

domCi

?

-

?
-

Since the i-th polymorphic λ-calculus is a sublanguage of the (i + 1)-th polymorphic λ-calculus, there
is a natural cartesian map from Li to Li+1 that sends everything to itself, so to speak. This cartesian
map preserves all the relevant categorical structures. But is it full and faithful? In view of the above
pullback diagram, the question can be couched in more informative terms:

Is the i-th polymorphic λ-calculus internally definable in the (i+1)-th polymorphic λ-calculus
by Ci+1 via the natural interpretation map?

As far as we know, the question is open. Notice that Ci+1 has enough explicit categorical structures to
be a model of the i-th polymorphic λ-calculus.

10.2 Martin-Löf Type Theory

There are two ways of presenting Martin-Löf’s type theory. One approach is to define the type theory
in a metalanguage. Typed calculi so defined are often polymorphic in the sense that type constructors
in them are not fully specified. For instance in λx :A.b, b could be of any type. The other approach is
to define the type theory in Martin-Löf’s logical framework. In contrast to the polymorphic case, terms
in languages defined in Martin-Löf’s logical framework are fully specified; these languages are therefore
called monomorphic. As a monomorphic type theory is defined to be the encoding in Martin-Löf logical
framework, we have the obvious fact:

Monomorphic Martin-Löf type theories are internally definable in Martin-Löf logical frame-
work.

For a particular polymorphic Martin-Löf type theory, one can ask the question: is it the same as a
monomorphic Martin-Löf type theory? Putting it differently, the question asks if the polymorphic Martin-
Löf type theory can be adequately represented in Martin-Löf logical framework. In our terminology, the
question goes as follows:

Is the polymorphic Martin-Löf type theory internally definable in Martin-Löf logical frame-
work?

There are polymorphic Martin-Löf type theory that are not internally definable in Martin-Löf logical
framework. For example, type theories with “extensional equality types” are not internally definable in
Martin-Löf logical framework ([?]).

33



Suppose ML0 is a Martin-Löf type theory without universes and ML1 is a Martin-Löf type theory which
has a first universe U that reflects the type structures of ML0 on object level (ML1 must also contain
a copy of the type structures of ML0 on type level). We refer to [?] for a detailed account. The point
we would like to make here is that U induces an internal category in the category of contexts of ML1.
There is a structure-preserving cartesian map from the term model of ML0 to that of ML1 that sends
a type in ML0 to its reflection. A question about how faithful ML0 is reflected in ML1 is this: Does
ML1 equates more objects of ML0 than ML0? This question can be rephrased as:

Is ML0 internally codable in ML1 via the said cartesian map?

If there are enough type structures in ML0, then Peano’s fourth axiom is expressible in ML0 as a type.
This type is inhabited in ML1 but not in ML0 ([?]). So ML0 is in general not internally definable in
ML1. A natural question to ask is under what restrictions ML0 is internally definable in ML1.

10.3 Calculus of Constructions

There are many variants of calculus of constructions. Here we take the view that a calculus of construc-
tions is a Martin-Löf type theory with an encoded logic. The calculus of constructions we usually refer
to is the one with an intended encoding of Church’s higher order logic. To emphasize that the internal
logic in constructions can be seen as an encoded logic, we formulate the language in a slightly different
way.

The Ambient Calculus

[] valid
C1

Γ ` A type x /∈ FV (Γ)
Γ, x : A valid

C2
Γ, x : A,Γ′ valid
Γ, x : A,Γ′ ` x : A

Var

Γ ` A type Γ, x : A ` B type
Γ ` (x :A)B type

Prod
Γ ` M : (x :A)B Γ ` N : A

Γ ` MN : B[N/x]
App

Γ ` A type Γ, x : A ` B type Γ, x : A ` M : B
Γ ` (x :A)M : (x :A)B Abs

Small Type
Γ valid

Γ ` Type type
Type

Γ ` A : Type
Γ ` A type

Cum

Γ valid
Γ ` Obj : Type

Obj
Γ valid

Γ ` Prop : Type
Prop

Γ ` A : Type Γ, x : A ` B : Type
Γ ` Πx :A.B : Type

Π
Γ ` f : Πx :A.B Γ ` a : A

Γ ` fa : B[a/x]
app

Γ ` A : Type Γ, x : A ` B : Type Γ, x : A ` b : B
Γ ` λx :A.b : Πx :A.B

abs

Proposition

Γ ` P : Prop
Γ ` Prf(P ) : Type

Prf
Γ valid

Γ ` ∀ : (X:Type)(Y :X→Prop)Prop
∀

Γ valid
Γ ` Λ : (X:Type)(Y :X→Prop)(z:(x:X)Prf(Y (x)))Prf(∀(X, Y )) Λ

Γ valid
Γ ` • : (X:Type)(Y :X→Prop)(z:Prf(∀(X, Y )))(x:X)Prf(Y (x)) •

The definitional equality is defined in terms of the extensional reduction rules.

34



The following are the components of an internal category in the category of contexts.

C0
def= [P : Prop]

C1
def= [P,Q : Prop, f : Prf(P )→Prf(Q)]

C2
def= [P,Q,R : Prop, f : Prf(P )→Prf(Q), g : Prf(Q)→Prf(R)]

d0
def= (P ) : C1→C0

d1
def= (Q) : C1→C0

id
def= (P, P, λp :Prf(P ).p)

Π0
def= (P,Q, f) : C2→C1

Π1
def= (Q,R, g) : C2→C1

γ
def= (P,R, λx :Prf(P ).g(fx)) : C2→C1

In [?] the author gives a type theoretical formulation of Church’s higher order logic and shows that a
particular calculus of constructions is a conservative extension of the higher order logic. Notice that
conservativity as is used in [?] is at the level of provability. A stronger property is conservativity at the
level of proofs5. Is the calculus of constructions conservative over the higher order logic in this stronger
sense? The aim of our particular presentation of the calculus of constructions is to make the question
both precise and concise:

Is Church’s higher order logic6 internally definable by C in the calculus of constructions via
the obvious interpretation map?

The question adds another dimension to that of conservativity at the level of provability.

10.4 Edinburgh Logical Framework

In ELF, a constant type U : Type and a constant constructor t : U→Type in a signature of an encoding
also induce an internal category in the category of typing contexts over that signature. We can use
the notion of internal definability to give a categorical account of adequate encodings in ELF. But the
situation is less satisfactory due to the absence of equational contexts. The encodings in ELF definitely
do not have the categorical properties of the kind we have seen in section 7. But our intuition tells us
that still there is something to be said. The reason that an encoding of simply typed λ-calculus does
not have an explicit cartesian closed structure on the internal category induced by universe U in the
encoding is that the definitional equality of the object language is now represented by an internal map
=U : U× U → B. Consequently the diagrams in lemma 7.1 are not pullbacks (in fact they are not even
weak pullbacks). But the map =U induces an equivalence relation ∼ on each homset of the category of
typing contexts. If in the definition of pullbacks we replace the external equality = by ∼, then the above
mentioned diagrams are ‘pullbacks’. So what we need is a notion of relative categorical structures where
mediating morphisms are required to be unique up to an internal equality (Leibniz equality) rather than
up to the external equality =. This point needs further investigation.

The same can be said about λLF .
5We propose to call the conservativity of provability the logical conservativity and the conservativity of proofs the type

theoretical conservativity (or just conservativity).
6In this question, Church’s higher order logic is assumed to have extensional definitional equality.

35



11 Conclusions and Related Work

This paper attempts to give a model theoretical account of logical frameworks. We argue that the real
issues in the semantics of logical frameworks are about the meanings of encodings and how they are
related to the model theories of the object languages. We propose a logical framework that is well-suited
to model theoretical analysis. Examples are given to show how syntactic conditions force term models to
possess certain categorical properties. One important point taken in this paper is that a logical framework
is a setting for defining frame languages. According to this view, to code up an object language is to
search for a frame language within which the object language is internally definable. In the following
table, the right column contains the semantic counterparts of the corresponding syntactic notions in the
left column.

syntactical notion semantical notion
universes generic objects
encodings of object calculi internal categories
constants other than universes explicit structures on internal categories
variable convention internal full subcategories
syntactic adequacy internal definability

By characterizing the categorical properties of λTT and some encodings within it, we hope that we have
pointed out a sensible way of semantic investigations. It is our personal opinion that the general ideas
expressed in this paper are helpful when one designs a logical framework or tries to code up an object
language.

A selling point of logical frameworks is that non-constructive logics can also be treated. The point is
that whatever the object logic is, be it classical or intuitionistic, any assertion that holds in the logic
must be constructively verifiable. An assertion forms a range of significance. So by Russel’s principle,
it can be represented by a type and its inhabitants can be represented by its verifiers. In this paper we
have concentrated our attention on constructive logics. For a non-constructive language L, say Church’s
higher order logic ([?]), what we code up in a logical framework is the ‘image’ of L in a ‘constructive
mirror’. It is this aspect of L that is captured in an encoding. So in this case, the categorical properties
are characterizations of this ‘image’. In this way, one assigns denotations to classical proofs in suitable
categories. These categories are not degenerated in any sense as we have not imposed any equality on
proofs. An obvious question is that if we have any interesting model theory for classical proofs.

The development in [?] is at a more abstract level. There the author seeks a categorical setting within
which semantical constructions of typed calculi can be carried out. There are two issues: one is to search
for a semantic framework; the other is to study type theory semantically within the framework. The
dichotomy corresponds to the one we advocate in this paper. The difference is that we concentrate on
a particular typed calculus and its semantic description. Our approach emphasizes the importance of
internal categories in semantic studies of logical frameworks.

The language ELF+ investigated in [?] is a refined version of ELF. In addition to the kind Type, ELF+

introduces two new kinds: Judge and Sort. The basic idea is that in an encoding of an object language,
the basic judgements should be coded by inhabitants of Judge whereas sorts correspond to objects of
Sort. The purpose is to achieve a close correspondence between a language and its representation in
ELF+. We can modify λTT along this line. For instance a universe declaration can be broken into two
parts: one contains universes that encode judgements; the other consists of universes which represent
sorts. Sorts of course can also be represented in λTT by constant types in a signature.

[?] contains an observation similar to that in section 8. Because of the presence of Judge and Sort, the
author of [?] is able to prove that adequate encodings of a class of logics are essentially the same as
the logics themselves when both are viewed as indexed categories. This ‘isomorphism’ phenomenon is
implicit in our definition of internal definability. The nice thing about our approach is that it brings out

36



the internal categorical aspect of this phenomenon.

In this paper, the definitional equality of λTT is given by judgemental equality. If one is interested
in the proof theory of λTT , then one uses the version of λTT where definitional equality is defined in
terms of reduction. In this version we remove the unit type since it complicates the notion of reduction.
Now instead of equational contexts, we have in this version reduction contexts. Definitional equalities in
object languages are all supposed to be defined in terms of reductions and they are represented in λTT

by reduction contexts. This version of λTT is appropriate for the study of proof theory of encodings.

12 Acknowledgement

The material in this paper is taken from the author’s Ph.D thesis ([?]). My supervisor David Rydeheard
has been very helpful all the way over the last few years. He has read many previous versions of this paper
and suggested a lot of improvement. I would like to take this opportunity to express my appreciation to
what he has done for me as both a supervisor and a colleague.

I would also like to express my gratitude to two anonymous referees whose constructive suggestions and
criticism have helped me considerably to improve the quality of this paper.

37


