
Dividing Line between Decidable PDA’s and Undecidable Ones

Yuxi Fu and Qiang Yin

BASICS, Department of Computer Science, Shanghai Jiao Tong University

Abstract. Sénizergues has proved that language equivalence is decidable for disjoint ε-deterministic
PDA. Stirling has showed that strong bisimilarity is decidable for PDA. On the negative side Srba
demonstrated that the weak bisimilarity is undecidable for normed PDA. Later Jančar and Srba es-
tablished the undecidability of the weak bisimilarity for disjoint ε-pushing PDA and disjoint ε-popping
PDA. These decidability and undecidability results are extended in the present paper. The extension
is accomplished by looking at the equivalence checking issue for the branching bisimilarity of several
variants of PDA.

1 Introduction

“Is it recursively unsolvable to determine if L1 = L2 for arbitrary deterministic languages
L1 and L2?”

– Ginsburg and Greibach, 1966

The above question was raised in Ginsburg and Greibach’s 1966 paper [4] titled Deterministic
Context Free Languages. The equality referred to in the above quotation is the language equivalence
between context free grammars. It is well known that the context free languages are precisely those
accepted by pushdown automata (PDA) [7]. A PDA extends a finite state automaton with a memory
stack. It accepts an input string whenever the memory stack is empty. The operational semantics
of a PDA is defined by a finite set of rules of the following form

pX
a−→ qα or pX

ε−→ qα.

The transition rule pX
a−→ qα reads “If the PDA is in state p with X being the top symbol of

the stack, then it can accept an input letter a, pop off X, place the string α of stack symbols onto
the top of the stack, and turn into state q”. The rule pX

ε−→ qα describes a silent transition that
has nothing to do with any input letter. It was proved early on that language equivalence between
pushdown automata is undecidable [7]. A natural question asks what restrictions one may impose
on the PDA’s so that language equivalence becomes decidable. Ginsburg and Greibach studied
deterministic context free languages. These are the languages accepted by deterministic pushdown
automata (DPDA) [4].

A deterministic pushdown automaton enjoys disjointness and determinism properties. The de-
terminism property is the combination of A-determinism and ε-determinism. These conditions are
defined as follows:

Disjointness. For all state p and all stack symbol X, if pX can accept a letter then it cannot
perform a silent transition, and conversely if pX can do a silent transition then it cannot
accept any letter.
A-Determinism. If pX

a−→ qα and pX
a−→ q′α′ then q = q′ and α = α′.

ε-Determinism. If pX
ε−→ qα and pX

ε−→ q′α′ then q = q′ and α = α′.

These are strong constraints from an algorithmic point of view. It turns out however that the
language problem is still difficult even for this simple class of PDA’s. One indication of the difficulty
of the problem is that there is no size bound for equivalent DPDA configurations. It is easy to design
a DPDA such that two configurations pY and pXnY accept the same language for all n.

It was Sénizergues who proved after 30 years that the problem is decidable [20,22]. His orig-
inal proof is very long. Simplified proofs were soon discovered by Sénizergues [23] himself and
by Stirlng [30]. After the positive answer of Sénizergues, one wonders if the strong constraints
(disjointness+A-determinism+ε-determinism) can be relaxed. The first such extension was given
by Sénizergues himself [21]. He showed that strong bisimilarity on the collapsed graphs of the dis-
joint ε-deterministic pushdown automata is also decidable. In the collapsed graphs all ε-transitions
are absorbed. This result suggests that A-nondeterminism is harmless as far as decidability is con-
cerned. The silent transitions considered in [21] are ε-popping. A silent transition pX

ε−→ qα is
ε-popping if α = ε. In this paper we shall use a slightly more liberal definition of this terminology.

ε-Popping PDA. A PDA is ε-popping if |α| ≤ 1 whenever pX
ε−→ qα.

ε-Pushing PDA. A PDA is ε-pushing if |α| ≥ 1 whenever pX
ε−→ qα.

A disjoint ε-deterministic PDA can be converted to an equivalent disjoint ε-popping PDA in the
following manner: Without loss of generality we may assume that the disjoint ε-deterministic PDA
does not admit any infinite sequence of silent transitions. Suppose pX

ε−→ . . .
ε−→ qα and qα

cannot do any silent transition. If α = ε then we can redefine the semantics of pX by pX
ε−→ qε;

otherwise we can remove pX in favour of qZ with Z being the first symbol of α. So under the
disjointness condition ε-popping condition is weaker than ε-determinism.

A paradigm shift from a language viewpoint to a process algebraic viewpoint helps see the issue
in a more productive way. Groote and Hüttel [5,9] pointed out that as far as BPA and BPP are
concerned the bisimulation equivalence à la Milner [18] and Park [19] is more tractable than the
language equivalence. The best way to understand Senizergues’ result is to recast it in terms of
bisimilarity. Disjointness and ε-determinism imply that all silent transitions preserve equivalence.
It follows that the branching bisimilarity [31] of the disjoint ε-deterministic PDA’s coincides with
the strong bisimilarity on the collapsed graphs of these PDA’s. So what Senizergues has proved is
that the branching bisimilarity on the disjoint ε-deterministic PDA’s is decidable.

The process algebraic approach allows one to use the apparatus from the process theory to
study the equivalence checking problem for PDA. Stirling’s proof of the decidability of the strong
bisimilarity for normed PDA (nPDA) [26,27] exploits the tableau method [10,8]. Later he extended
the tableau approach to the study of the unnormed PDA [29]. Stirling also provided a simplified
account of Senizergues’ proof [21] using the process method [30]. The proof in [30], as well as the
one in [21], is interesting in that it turns the language equivalence of disjoint ε-deterministic PDA
to the strong bisimilarity of correlated models. Another advantage of bisimulation equivalence is
that it admits a nice game theoretical interpretation. This has been exploited in the proofs of neg-
ative results using the technique of Defender’s Forcing [15]. Srba proved that weak bisimilarity on
nPDA’s is undecidable [24]. Jančar and Srba improved this result by showing that the weak bisim-
ilarity on the disjoint nPDA’s with only ε-popping transitions, respectively ε-pushing transitions,
is already undecidable [15]. In fact they proved that the problems are Π0

1 -complete. Recently Yin,
Fu, He, Huang and Tao have proved that the branching bisimilarity for all the models above either
the normed BPA or the normed BPP in the hierarchy of process rewriting system [17] are undecid-
bale [33]. This general result implies that the branching bisimilarity on nPDA is undecidable. The
idea of Defender’s Forcing can also be used to prove complexity bound. An example is Benedikt,

2

PDA nPDA

∼ Decidable [21,29]
Non-Elementary [1]

Decidable [26,27]
Non-Elementary [1]

' Undecidable [33] Undecidable [33]

≈ Σ1
1 -Complete [15]

Undecidable [24]
Σ1

1 -Complete [15]
Undecidable [24]

Fig. 1. Decidability of PDA

ε-Popping nPDA/PDA ε-Pushing nPDA ε-Pushing PDA

' ? ? ?

≈ Π0
1 -Complete [15] Π0

1 -Complete [15] Σ1
1 -Complete [15]

Fig. 2. More on Decidability of PDA

Moller, Kiefer and Murawski’s proof that the strong bisimilarity on PDA is non-elementary [1]. A
summary of the decidability/undecidability results mentioned above is given in Fig. 1 and Fig. 2,
where ∼ stands for the strong bisimilarity, ' the branching bisimilarity, and ≈ the weak bisimilarity.

The decidability of the strong bisimilarity and the undecidability of the weak bisimilarity still
leaves a number of questions unanswered. A conservative extension of the language equivalence for
DPDA is neither the strong bisimilarity nor the weak bisimilarity. It is not the former because lan-
guage equivalence ignores silent transitions. It is not the latter since the whole point of introducing
the disjointness and ε-determinism conditions is to force all silent transitions to preserve equiva-
lence. To investigate the possibility of extending the decidability result of DPDA, one should really
start with the branching bisimilarity. This is what we are going to do in this paper. Since Senizer-
gues’ result can be stated as saying that the branching bisimilarity on the disjoint ε-deterministic
PDA is decidable, we will look at the situations in which either the disjointness condition is dropped
and/or the ε-determinism condition is weakened/removed. It turns out that both the decidability
result and the undecidability about PDA can be strengthened.

The contributions of this paper are summarized as follows.

1. Technically we will provide answers to some of the open problems raised in literature. The main
results are the following.
– The branching bisimilarity on the ε-popping PDA is decidable.
– The branching bisimilarity on the ε-pushing nPDA is decidable.
– The branching bisimilarity on the ε-pushing PDA is Σ1

1 -complete.
2. At the model theoretical level we propose a model that strictly extends the classical PDA model.

The new model gets rid of the notion of stack in favour of a structural definition of processes.
The structural definition helps simply the proofs of our results significantly.

The rest of the paper is organised as follows. Section 2 introduces an extended PDA model.
Section 3 reviews the basic properties of the branching bisimilarity. Section 4 confirms that the
finite branching property hold for both the ε-pushing nPDA and the ε-popping PDA. Section ??
establishes the decidability of the ε-popping PDA. Section 5 points out that the proofs given in
Section ?? can be repeated for the ε-pushing nPDA. Section 6 applies the Defender’s Forcing
technique to show that ε-nondeterminism is highly undecidable. Section 7 concludes with remark
on future work.

3

2 PDA and its Extension

A pushdown automaton (or simply PDA) Γ = (Q,V,L,R) consists of

– a finite set of states Q = {p1, . . . , pq} ranged over by o, p, q, r, s, t,
– a finite set of symbols V = {X1, . . . , Xn} ranged over by X,Y, Z,
– a finite set of letters L = {a1, . . . , as} ranged over by a, b, c, d, and
– a finite set of transition rules R.

If we think of a PDA as a process we may interpret a letter in L as an action label. The set L∗
of words is ranged over by u, v, w. Following the convention in language theory a silent action
will be denoted by ε. The set A = L ∪ {ε} of actions is ranged over by `. The set A∗ of action
sequence is ranged over by `∗. The set V∗ of strings of symbols is ranged over by small Greek letters.
By overloading notation the empty string is also denoted by ε. We identify both εα and αε to α
syntactically. The length of α is denoted by |α|.

A pushdown process, or PDA process, is an interactive object with a syntactical tree structure.
To emphasize the structural aspect, our pushdown processes are defined with the help of simple
constants. For a PDA with q states a simple constant is a q-ary tuple of PDA processes. The
inductive definition is given below.

P := 0 | pε | pXC[q],

C[q] := (P1, . . . , Pq).

A process is either the nil process 0, or an accepting process pε, or a sequential process pXC[q]. If
C[q] = (P1, . . . , Pq) then we impose the equality piεC[q] = Pi. Throughout this paper the equality
symbol “=” stands for grammar equality. So piεC[q] is syntactically identified to Pi. For simpli-
fication we often omit the subscript in C[q]. To make evident the relationship between the PDA
defined in the standard fashion and our PDA we introduce the auxiliary notation pαC[q] as well as
the notation pα. Here is the structural definition.

piεC = Pi, if C = (P1, . . . , Pq),

pXβC = pX(p1βC, . . . , pqβC),

pα = pα(p1ε, . . . , pqε)

In this way a standard PDA process pα can be seen as an abbreviation of a pushdown process in
our model.

The transition set R of a PDA contains rules of the form pX
`−→ qα. The semantics of the

PDA processes is defined by the following structural rules:

pX
`−→ qα ∈ R

pX
`−→ qα

pX
`−→ qα

pXC
`−→ qαC

(1)

We shall use the standard notations
`∗−→ and =⇒ and

`∗
=⇒. A process P accepts a word w if P

w
=⇒ pε

for some p. A process P is normed, or P is an nPDA process, if P
`∗−→ pε for some `∗, p. A PDA

Γ = (Q,V,L,R) is normed, or Γ is an nPDA, if pX is normed for all p ∈ Q and all X ∈ V. The
notation PDAε− will refer to the variant of PDA with ε-popping transitions, and nPDAε+ to the
variant of nDPA with ε-pushing transitions.

4

2.1 Recursive Constant

To help study the recursive behavours of PDA processes, it is convenient to introduce a special class
of constants called recursive constants. To define these constants we find it convenient to work in
an extended PDA model. Formally the set of the extended PDA terms and the set of the constants
admitted by a PDA Γ are generated from the following BNF:

P := 0 | pε | l | pXC[n],

C[n] := (P1, . . . , Pn) | V[n].

Instead of having only q-ary constants as in the PDA model, in the extended model we have n-ary
term constant for all n ≥ 0. An n-ary term constant C[n] is either an n-tuple of terms (P1, . . . , Pn) or
an n-ary recursive constant V[n]. An alternative notation for (P1, . . . , Pn) is (Pi)i∈[n]. The notation
V[n] stands for an n-ary recursive constant. An n-ary recursive constant is also an n-tuple. For each
i ∈ [n] we write C[n](i) for its i-th component. A 0-ary constant is identified with 0 syntactically.
We omit the subscript in C[n] when no confusion may arise. In the above definition, l ranges over
the set N of positive integer and [n] denotes the set {1, 2, . . . , n}. We will call l a selector. The reason
that we use the terminologies “term” and “term constant” is that they may contain selectors.

The main purpose of introducing selectors is to facilitate the definition of a meta operation.
The composition between a simple term P and an n-ary (term) constant C[n], notation PC[n], is
obtained by simultaneously substituting C[n](1), . . . , Cn respectively for the selectors 1, . . . , n
appearing in P . The composition must be well typed in the sense that sl(P) ⊆ [n], where sl(P) is
the set of the selectors appearing in P . When there are consecutive applications of the composition
operation, association is to the left. So PCC ′ is (PC)C ′. By definition PC = P if sl(P) = ∅.

Definition 1. A recursive constant V[n] is defined by an equality of the form V[n] = (P1, . . . , Pn)V[n]
such that the following statements are valid for each i ∈ [n]:

1. sl(Pi) ⊆ [n].
2. Pi is a simple term.

We say that V[n] is undefined at i, notation V[n](i)↑, if V[n](i) = i.

The single equality V[n] = (P1, . . . , Pn)V[n] stands for n grammar equalities V[n](1) = P1V[n], . . . ,
Vn = PnV[n]. The constant V[n] can be imagined as a stack that has recursive behaviour. The
simplest n-ary recursive constant I[n] is defined by I[n] = (1, . . . , n)I[n]. According to our definition
of the meta operation, PiV[n] does not contain any occurrence of selector. Consequently sl(V[n]) = ∅.

The semantics of the extended PDA terms is also defined by the rules given in (1).

Definition 2. A term (constant) is finite if all recursive constants it contains are of the form V[n](i)
that is undefined. An extended PDA process P is an extended PDA term such that sl(P) = ∅. A
constant (P1, . . . , Pn) in an extended PDA is a term constant such that

⋃
i∈[n] sl(Pi) = ∅.

From now on PDA refers to the extended PDA unless otherwise specified. Accordingly PDA
processes means the extended PDA processes, and a PDA constant is either a recursive constant
or a term constant that does not contain any selectors.

The terminologies ‘simple constant’ and ‘recursive constant’ are introduced in Stirling’s work [26].
The constants introduced in this paper are more general and are more convenient when de-
scribing decomposition property. In the sequel we will write L,M,N,O, P,Q,R, S for processes,
A[n], B[n], C[n], D[n] for constants, U[n] for simple constant, and V[n] for recursive constant.

5

2.2 Decomposition

At a more intuitive level a process can be identified to a finite-branching labeled tree with an
internal node labeled by pX for some p ∈ Q, X ∈ V and a leaf labeled by either the nil process 0
or an accepting process. For the purpose of this paper we need to talk about decomposition of a
process/constant at k-th level. Let P be a process and k > 0. The decomposition of P at the k-th
level consists of a simple term P �k, called a k-prefix of P , and a constant �kP , called a k-residue of
P . To help define the decomposition we define the residue set <k(P) by the following.

<k(0) = ∅,
<k(pε) = ∅,

<k(V[n](i)) = ∅, if V[n](i)↑,

<k(pX(P1, . . . , Pn)) =

{
{P1, . . . , Pn}, if k = 1,⋃
i∈[n]<k−1(Pi), if k > 1.

The operation <k() can be applied to constants by defining <k((P1, . . . , Pn)) =
⋃
i∈[n]<k(Pi) and

<k(V[n]) =
⋃
i∈[n]<k(V[n](i)). It should be clear that a residue set is finite. Suppose <k(P) contains

m elements. Let  be a bijection from [m] to <k(P). The function associates a unique number to
each element of <k(P). Given such a bijection , the k-residue of P is defined by

�kP = ((1), . . . , (m)).

The k-prefix P �k of P is defined as follows, where −1 is the inverse function of .

0�k = 0,

pε�k = pε,

V[n](i)�k = V[n](i), if V[n](i)↑,

(pX(P1, . . . , Pn))�k =

{
pX(−1(P1), . . . , 

−1(Pn)), if k = 1,
pX(P1�k−1, . . . , Pn�k−1), if k > 1.

The operation ()�k can be applied to a constant, which is defined in the following obvious way:

(P1, . . . , Pn)�k = (P1�k, . . . , Pn�k),

V[n]�k = (V[n](1)�k, . . . , Vn�k).

By definition P = (P �k)(�
kP) for some bijection . We can decompose a constant D to (D�k)(�

kD)
in a similar fashion. We shall not mention any bijection when we talk about a decomposition.

The k-prefix of a process P or a constant D is at most of size k. The size of a finite term
is defined by the following induction: (i) |0| = |pε| = |l| = 0, (ii) |V[n](i)| = 0 if V[n](i)↑, and
(iii) |pX(P1, . . . , Pn)| = 1 + max1≤i≤n{|Pi|}. The size of a finite term constant (P1, . . . , Pn) is
max{|P1|, . . . , |Pn|}.

Lemma 1. For each process P and constant D the sets
⋃
k>0 �

kP and
⋃
k>0 �

kD are finite.

Proof. The set of the sub-terms of a term is finite. ut

Consider a finite constant C = (p1X1(V[n](i), p2X2(P,0)), q1Y1(q2Y2(qε,Q),0)) and a recursive
constant V[n] defined in a PDA such that V[n](i)↑. Diagrammatically C can be depicted as the
following two trees, where the diagrams for P,Q are not given.

6

P 0 qε Q

V[n](i) p2X2 q2Y2 0

p1X1 q1Y1

(1)

(2)

Two decompositions are given below.

(1) C�1 = (p1X1(1, 2), q1Y1(3, 4)) and �1C = (V[n](i), p2X2(P,0), q2Y2(qε,Q),0);

(2) C�2 = (p1X1(V[n](i), p2X2(1, 2)), q1Y1(q2Y2(3, 4),0)) and �2C = (P,0, qε,Q).

The decompositions are indicated by the dashed lines in the above diagrams.

3 Branching Bisimilarity

The definition of branching bisimilarity is due to van Glebbeek and Weijland [32]. Our definition
of branching bisimilarity for PDA is similar to Stirling’s definition given in [26].

Definition 3. A binary relation R on PDA terms is a branching simulation if the following state-
ments are valid for R:

1. If PRQ a−→ Q′ then P =⇒ P ′′
a−→ P ′RQ′ and P ′′RQ for some P ′, P ′′.

2. If PRQ ε−→ Q′ then either PRQ′ or P =⇒ P ′′
ε−→ P ′RQ′ for some Q′, Q′′ such that P ′′RQ.

3. If PRQ = pε then P ′ =⇒ pε whenever P =⇒ P ′.
4. If PRQ = l then P ′ =⇒ l whenever P =⇒ P ′.
5. If PRQ = V (i)↑ then P ′ =⇒ V (i) whenever P =⇒ P ′.

The relation is a branching bisimulation if both R and R−1 are branching simulation. The branch-
ing bisimilarity ' is the largest branching bisimulation. Two n-ary (term) constants C[n], D[n] are
branching bisimilar, notation C[n] ' D[n], if C[n](i) ' D[n](i) for all i ∈ [n].

We write 'nPDAε+ for example for the branching bisimilarity on nPDAε+ processes.

Proposition 1. The relation ' is a congruence.

Proof. The condition 3 and condition 4 in Definition 3 guarantee that ' is closed under prefix
operation and composition operation. ut

Condition 5 in Definition 3 forces V (i) 6' 0, which might appear too strong. But if we think of
it, it is consistent with the condition 4. The fact that V (i) is essentially only equivalent to itself
has technical advantage when we discuss algorithms for the branching bisimilarity. Notice that this
phenomenon does not have any effect on our results since the translation of the classical PDA into
our PDA does not involve any recursive constant, and consequently two classical PDA processes
are branching bisimilar if and only if their translations are equivalent in the sense of Definition 3.

A technical lemma that plays an important role in the study of branching bisimilarity is the
Computation Lemma [32,3].

7

Lemma 2. If P0
ε−→ P1

ε−→ . . .
ε−→ Pk ' P0, then P0 ' P1 ' . . . ' Pk.

The next lemma is basic to our decidability algorithm.

Lemma 3. In nPDAε+ the problem {P | ∃Q.(|Q| = 0) ∧ (P ' Q)} is decidable.

Proof. In nPDAε+ it is clear that P ' Q for some |Q| = 0 if and only if P = Q. ut

A silent transition P
ε−→ P ′ is state-preserving, notation P → P ′, if P ' P ′. It is a change-

of-state, notation P
ι−→ P ′, if P 6' P ′. We write →∗ for the reflexive and transitive closure of →.

The notation P 9 stands for the fact that P 6' P ′ for all P ′ such that P
ε−→ P ′. Let  range

over L ∪ {ι}. We will find it necessary to use the notation
−→. The transition P

−→ P ′ refers to

either P
a−→ P ′ for some a ∈ L or P

ι−→ P ′. Lemma 2 implies that if P0
−→ P1 is bisimulated by

Q0
ε−→ Q1

ε−→ . . .
ε−→ Qk

−→ Qk+1, then Q0 → Q1 → . . . → Qk. This property of the branching
bisimilarity will be used extensively.

Given a PDA process P , the norm of P , denoted by ‖P‖, is a function from N to N ∪ {⊥},
where ⊥ stands for undefinedness, such that the following holds:

– ‖P‖(h) = ⊥ if and only if there does not exist any `∗ such that P
`∗−→ phε.

– ‖P‖(h) is the least number i such that ∃1 . . . i. P →∗
1−→ . . .→∗ i−→→∗ phε.

The set def ‖P‖ = {h | ‖P‖(h) 6= ⊥} is finite. A process P is normed if def ‖P‖ 6= ∅. It is unnormed
otherwise. For normed process P we introduce the following notations.

min ‖P‖ = min{‖P‖(h) | h ∈ def ‖P‖},
max ‖P‖ = max{‖P‖(h) | h ∈ def ‖P‖}.

We shall use the following convention in the rest of the paper.

r = max
{
|η|
∣∣∣ pX `−→ qη ∈ R for some p, q ∈ Q, X ∈ V

}
,

m = max {max ‖pX‖ | p ∈ Q, X ∈ V} .

Suppose {V[nk] = (L1
nk
, . . . , Lnknk)V[nk]}k∈K is the finite set of recursive constants defined in a PDA.

Let v be defined as follows:

v = max
{

max
{
|Ljnk | | k ∈ K, j ∈ [nk]

}
, r
}
.

The values r, m and v can be effectively calculated. By definition ‖pX‖(i) ≤ m for all p,X and all
i ∈ def ‖pX‖.

3.1 Bisimulation Game

In the proofs to be given later we need to use the game theoretical interpretation of bisimulation. A
bisimulation game [28,15] for a pair of processes (P0, P1), called a configuration, is played between
Attacker and Defender in an alternating fashion. It is played according to the following rules:
Suppose (P0, P1) is the current configuration.

– |Pi| > 0 or Pi = 0 for each i ∈ {0, 1}.

8

1. Attacker picks up some Pi, where i ∈ {0, 1}, to start with and chooses some Pi
`−→ P ′i .

2. Defender must respond in the following manner:
(a) Do nothing. This option is available if ` = ε.

(b) Choose a transition sequence P1−i
ε−→ P 1

1−i
ε−→ . . .

ε−→ P k−11−i
`−→ P k1−i.

3. If case 2(a) happens the new configuration is (P ′i , P1−i). If case 2(b) happens Attacker
chooses one of {(Pi, P 1

1−i), . . . , (Pi, P
k−1
1−i), (P ′i , P

k
1−i)} as the new configuration.

4. The game continues with the new configuration.
– Pi = pε or Pi = l or Pi = V[n](j) with V[n](j)↑ for either i = 0 or i = 1.

1. Attacker chooses some Pi−1 =⇒ P ′i−1 for some P ′i−1.
2. Defender must respond with P ′i−1 =⇒ Pi.

Attacker wins a bisimulation game if Defender gets stuck in the game. Defender wins a bisimulation
game if Attacker cannot win the game. Attacker/Defender has a winning strategy if it can win no
matter how its opponent plays. The effectiveness of the bisimulation game is enforced by the
following lemma.

Lemma 4. P ' Q if and only if Defender has a winning strategy for the bisimulation game starting
with the configuration (P,Q).

The above lemma is the basis for game theoretical proofs of process equality. It is also the basis
for game constructions using Defender’s Forcing.

4 Finite Branching Property

Generally bisimilarity is undecidable for models with infinite branching transitions. For the branch-
ing bisimilarity the finite branching property can be described by the following statement:

For each P there is a finite set of processes {Pi}i∈I such that whenever P →∗ `−→ P ′ there
is some i ∈ I such that P ′ ' Pi.

We prove in this section that both nPDAε+ and PDAε− enjoy the finite branching property. Let’s
take a look at the former first.

Lemma 5. In nPDAε+, |α| ≤ min ‖pαC‖ holds for all pαC.

Proof. Only an external action can remove a symbol from an nPDAε+ process. ut

Using the simple property stated in Lemma 5, one can show that there is a constant bound for
the length of the state-preserving transitions in nPDAε+.

Lemma 6. If qXC → q1β1C → . . .→ qkβkC for an nPDAε+ process qXC, then k < qnr(m+ 1)q.

Proof. Now suppose qXC → q1Z1δ1C. Let k1 = min ‖q1Z1δ1C‖ and let

q1Z1δ1C →∗
11−→ . . .→∗

1j1−→→∗ r1εC →∗
1j1+1−→ . . .→∗

1jk1−→→∗ ph1ε

be a transition sequence of minimal length that empties the stack. Clearly j1 ≤ rm. Now suppose
q1Z1δ1C →∗ q2Z2δ2δ1C such that

rm < |Z2δ2δ1| ≤ r(m + 1). (2)

9

Let k2 = min ‖q2Z2δ2δ1C‖ and let

q2Z2δ2δ1C →∗
21−→ . . .→∗

2j2−→→∗ r2εC →∗
2j2+1−→ . . .→∗

2jk2−→→∗ ph2ε

be a transition sequence of minimal length that empties the stack. One must have j2 > j1 according
to (2). By iterating the above argument one gets from

q1Z1δ1C →∗ q2Z2δ2δ1C

→∗ . . .
→∗ qi+1Zi+1δi+1δi . . . δ1C

→∗ . . .
→∗ qq+1Zq+1δq+1δq . . . δ1C

with rm(m + 1)i−1 < |Zi+1δi+1δi . . . δ1| ≤ r(m + 1)i for all i ∈ [q], some states r1, . . . , rq+1, some
numbers k1 < . . . < kq+1 and h1, . . . , hq+1. For each i ∈ [q + 1] there is some transition sequence

qiZiδi . . . δ1C →∗
i1−→ . . .→∗

iji−→→∗ riεC →∗
iji+1−→ . . .→∗

ijki−→→∗ phiε

where ki = min ‖qiZiδi . . . δ1C‖. Since there are only q states, there must be some t1, t2 such that
0 < t1 < t2 ≤ q + 1 and rt1 = rt2 . It follows from the minimality that jkt1 − jt1 = jkt2 − jt2 . But
jt2 > jt1 . Consequently jkt1 < jkt2 . This inequality contradicts to the fact that qt1Zt1δt1 . . . δ1C '
qt2Zt2δt2 . . . δ1C. We conclude that if qXC →∗ q′γC then |γ| < r(m + 1)q. It follows from our
convention that k < qnr(m + 1)q. ut

A proof of the following corollary can be read off from the above proof.

Corollary 1. Suppose P is an nPDAε+ process. There is a computable bound on the size of any
nPDAε+ process pα such that pα ' P .

Using Lemma 6 one can define for nPDAε+ the approximation relation 'n, the branching
bisimilarity up to depth n ≥ 0, in the standard fashion. The infinite approximation'0⊆'1⊆'2⊆ . . .
approaches to ' in the sense that

⋂
i≥0 'i coincides with ' on nPDAε+ processes. The following

theorem follows from the fact that 6'i is decidable for all i ≥ 0.

Theorem 1. The relation 6'nPDAε+ is semidecidable.

In PDAε− one could have equality like pY ' qXnY where an action of pY is bisimulated by a
sequence of transitions whose length depends on the size of qXnY . However the finite branching
property clearly holds for the normed PDAε− processes. For an unnormed PDAε− process pX
notice that due to the restriction on the silent transitions and our convention, the silent transition
sequences pX can induce must be of the form pX

ε−→ q1Y1
ε−→ . . .

ε−→ qmYm with m bounded
by nq. We conclude that all PDAε− processes enjoy the finite branching property. By introducing
the infinite approximation sequence for 'PDAε− , we can prove the following theorem by the same
argument.

Theorem 2. The relation 6'PDAε− is semidecidable.

10

5 Decidability of nPDAε+

The basic idea of our proof of the decidability of nPDAε+ is drawn from Stirling’s proof for the
strong bisimilarity on PDA [26,27,29]. To explain the key technical tool of Stirling’s proof, it is
helpful to recall the proof of the semidecidability of the strong bisimilarity of BPA [10]. To check
if Xα ∼ Y β, we decompose the goal Xα = Y β into say subgoals α = γβ and Xγβ = Y β derivable
from the bisimulation property. The latter can be simplified to Xγ = Y by cancellation. Now the
size of γ is small as it were because γ is derived in a computationally bounded number of steps. It
follows that the subgoal Xγ = Y is small and the subgoal α = γβ is smaller than Xα = Y β in the
sense that α is smaller than Xα and the size of γ is under control. Using this ‘smallness’ property
we can build a finite tree of subgoals, called a tableau, in an organized fashion. A semidecidable
procedure is then designed by enumerating all finite tableaux and checking if any one of them giving
rise to a strong bisimulation. The unnormed BPA processes enjoy the following weak cancellation
property: If there is an infinite family of pairwise nonbisimilar BPA processes {δi}i∈N such that
αδi ∼ βδi for all i ∈ N, then α ∼ β. This weak cancellation guarantees that in a tree of subgoals
there cannot be a path containing an infinite number of subgoals {αδi ∼ βδi}i∈N, where α 6∼ β,
without producing equivalent subgoals. It follows from König that only finite tableaux need be
considered. So the same semidecidable procedure works for the unnormed BPA.

Given BPA processes α, β with α 6∼ β, we say that {γi}i∈I is a minimal set of fixpoints for α, β
if the following hold:

– For each i ∈ I the process γi is a fixpoint for α, β, i.e. αγi ∼ βγi.
– For all i, j ∈ I if i 6= j then γi 6∼ γj .
– αγ ∼ βγ if and only if αγi ∼ βγi for some i ∈ I.

Both the strong and the weak cancellation properties of BPA can be reiterated in the following
more enlightening manner.

Lemma 7. Let α, β be BPA processes. If α 6∼ β then the minimal set of fixpoints for α, β is finite.

The property described in Lemma 7, called the finite representation property in this paper, is
the prime reason for the semidecidability of ∼ on BPA. Stirling’s remarkable observation is that
the property described in Lemma 7 is also valid for the strong bisimilarity on PDA. What is
subtle about PDA is that the fixpoints are stacks rather than processes due to the nonstructural
definition of PDA processes. In fact they must be extended stacks if they are able to code up
recursive behaviours, hence the recursive constants.

What we will prove in this section is that the property described in Lemma 7 continues to be
valid for the branching bisimilarity on nPDAε+ and that the cancellation property stated in the
lemma is sufficient for us to design a semidecidable procedure for the equivalence checking problem.

5.1 Finite Representation

Lemma 8. If pXA ' MD and |M | = m, then there is a simple constant U[q] such that |U[q]| ≤
qnr2(m + 1)(q+1) and A(i) ' U[q](i)D for all i ∈ def‖pX‖.

Proof. If i /∈ def‖pX‖ we let U[q](i) be 0. Otherwise let

pXA→∗ 1−→→∗ . . .→∗ k−→→∗ A(h) (3)

11

be a sequence reaching A(h) with minimal k. Since ' is closed under composition, k cannot be
greater than m. The action sequence (3) must be bisimulated by MD in the following manner:

MD →∗ 1−→ Q1D →∗
2−→ Q2D . . .→∗ k−→ QhD. (4)

Since M is thick enough as it were, D remains intact throughout the transitions in (4). Moreover
|Qh| ≤ qnr2(m + 1)(q+1). Let U[q](h) = Qh. It is clear that A(i) ' U[q](i)D for all i ∈ def‖pX‖. ut

We now establish for nPDAε+ the finite representation property. In the following lemma the
equivalence (5) is the fixpoint property while the equivalence (6) is the minimality property.

Lemma 9. Let P,Q be finite nPDAε+ terms, sl(P), sl(Q) ⊆ [n] and {C[n] | PC[n] ' QC[n]} 6= ∅.
A finite set of recursive constant

{
V k
[n] = (Lk1, . . . , L

k
n)V k

[n]

}
k∈K

exists such that

PV k
[n] ' QV

k
[n] (5)

for all k ∈ K and for each D[n] satisfying PD[n] ' QD[n] there is some k ∈ K rendering true the
following equivalence.

D[n] ' (Lk1, . . . , L
k
n)D[n]. (6)

Proof. Suppose PD[n] ' QD[n]. We will construct V k
[n] by induction such that at each step (6) is

maintained. Let V 0 be I[n]. Thus V 0 is defined by V 0 = (1, . . . , n)V 0. The finite constant (1, . . . , n)
trivially validates (6). If it also satisfies (5), we are done. Otherwise we refine V 0 to some V 1 by
the following induction. Suppose V d = (Ld1, . . . , L

d
n)V d has been constructed such that

PV d 6' QV d,

D[n] ' (Ld1, . . . , L
d
n)D[n]. (7)

Let m be the least number such that PV d 6'm QV d. We refine V d to V d+1 by exploring the
mismatch between the following equality and inequality:

PD[n] ' QD[n], (8)

PV d 6'm QV d. (9)

It follows from (9) that some transition PV d −→ P ′V d exists such that for all transition sequence

QV d ε−→ O1V
d ε−→ . . .

ε−→ OeV
d −→ O′V d at least one of the following inequalities is valid:

PV d 6'm−1 O1V
d,

· · ·
PV d 6'm−1 Oe−1V d, (10)

PV d 6'm−1 OeV d,

P ′V d 6'm−1 O′V d.

According to (8) however the transition PD[n]
−→ P ′D[n] must be matched by some transition

sequence QD[n]
ε−→ Q1D[n]

ε−→ . . .
ε−→ Qe′D[n]

−→ Q′D[n] such that PD[n] ' Q1D[n], . . . ,
PD[n] ' Qe′D[n] and

P ′D[n] ' Q′D[n]. (11)

12

Suppose for this particular transition sequence, the valid inequality of (10) is

P ′V d 6'm−1 Q′V d. (12)

The above construction takes us from (8,9) to (11,12). By repeating the construction, we eventually
get the following equality and inequality for some L:

D[n](i) ' LD[n], (13)

V d(i) 6'm′ LV d. (14)

We continue the construction by examining the shape of L.

– L = j ∈ [n]. If i < j then let

V d+1 = (Ld1, . . . , L
d
j−1, i, L

d
j+1, . . . , L

d
n)V d+1.

Otherwise let
V d+1 = (Ld1, . . . , L

d
i−1, j, L

d
i+1, . . . , L

d
n)V d+1.

Clearly V d+1 validates (7).

– |L| > 0 or L = 0. In this case let V d+1 = (Ld1, . . . , L
d
i−1, L, L

d
i+1, . . . , L

d
n)V d+1, where for each

j ∈ {i + 1, . . . , n} the process Ldj is defined as follows: If there are j1 > . . . > jg > i such that

V d(j) = j1, V
d(j1) = j2, . . . , V d(jg) = i, then Ldj = L; otherwise Ldj = Ldj . Again V d+1 trivially

validates the equivalence (7).

The construction must stop after at most n(n−1)
2 steps. Eventually we get some V = (L1, . . . , Ln)V .

Modify the definition of V as follows: For each i ∈ [n] let V (i) = i if V (i) is a number. What we
get is the required V k

[n]. Starting with I[n] there are only finitely many such V k
[n] one can construct

in n(n−1)
2 steps due to the finite branching property. We are done. ut

Lemma 8 allows one to create common suffix by introducing a constant, whereas Lemma 9 helps
to substitute a recursive constant for the suffix. We get a more useful result if we combine these
two lemmas.

Lemma 10. Suppose pXAC[n] ' MC[n] for some A,C[n] such that |M | ≥ m. A finite family{
V k
[n] = (Lk1, . . . , L

k
n)V k

[n]

}
k∈K

of recursive constant exists such that for every pair (A,D[n]) satisfy-

ing sl(A) ⊆ [n] and pXAD[n] 'MD[n], there is some k ∈ K rendering true the following.

pXAV k
[n] 'MV k

[n], (15)

D[n] ' (Lk1, . . . , L
k
n)D[n]. (16)

Proof. By the proof of Lemma 8 there is a finite set
{
U j = (Gj1, . . . , G

j
q)
}
j∈J

such that for each

pair A,D[n] with sl(A) ⊆ [n] and pXAD[n] ' MD[n] there is some U j = (Gj1, . . . , G
j
q) validating

the following.

pXU jD[n] 'MD[n], (17)

A(i)D[n] ' G
j
iD[n] for every i ∈ def‖pX‖. (18)

13

For each j ∈ J let ∇j be the set of pairs A,D[n] that satisfy sl(A) ⊆ [n] and pXAD[n] 'MD[n] and
(17) and (18). It follows from (17) and Lemma 9 that there is a finite family of recursive constants{
V k
[n] = (Lk1, . . . , L

k
n)V k

[n]

}
k∈K

such that for each pair A,D[n] in ∇j there is some k ∈ K rendering

true the following.

pXU jV k
[n] 'MV k

[n], (19)

D[n] ' (Lk1, . . . , L
k
n)D[n]. (20)

It remains to show pXAV k
[n] 'MV k

[n], and by (19) it is sufficient to show

A(i)V k
[n] ' G

j
iV

k
[n] for every i ∈ def‖pX‖. (21)

Now for each i ∈ def‖pX‖, consider the bisimulation game of A(i)V k
[n] ' GjiV

k
[n]. The Defender

simply copycats the Defender’s strategy of the game (18), invoking the Defender’s strategy of the
game (20) whenever necessary. What we have described is a winning strategy for the Defender. We
conclude that (21) is valid. ut

What Lemma 10 says is that the order of an application of Lemma 8 followed by an immediate
application of Lemma 9 can be swapped without sacrificing the finite representation property. The
reordering is important in guaranteeing the termination of of our equivalence checking algorithms.

5.2 Tableau System

A straightforward way to prove bisimilarity between two processes is to construct a finite binary
relation containing the pair of processes that can be extended to a bisimulation. Such a finite
relation is called a bisimulation base, originally due to Caucal [2]. The tableau approach [10,8] can
be seen as an effective way of generating a bisimulation base. Lemma 8 and Lemma 10 suggest the
first two tableau rules for nPDAε+ given in Figure 3. To define the third tableau rule, we need the
notion of match. A match for an equality P = Q is a finite set {Pi = Qi}ki=1 containing those and
only those equalities accounted for in the following statements:

1. For each transition P
`−→ P ′, one of the following holds:

– ` = ε and P ′ = Q ∈ {Pi = Qi}ki=1;

– there is a transition sequence Q
ε−→ Q1

ε−→ . . .
ε−→ Qn

`−→ Q′ such that {P = Q1, . . . , P =
Qn, P

′ = Q′} ⊆ {Pi = Qi}ki=1.

2. For each transition Q
`−→ Q′, one of the following holds:

– ` = ε and P = Q′ ∈ {Pi = Qi}ki=1;

– there is a transition sequence P
ε−→ P1

ε−→ . . .
ε−→ Pn

`−→ P ′ such that {P1 = Q, . . . , Pn =
Q,P ′ = Q′} ⊆ {Pi = Qi}ki=1.

We remark that a match could be empty.
Decmpε+ decomposes the left hand side of the goal into a form that matches the right hand side,

creating a common suffix. Cancelε+ harnesses the complexity by introducing a recursive subgoal.
The Matchε+ rule is standard. We note a simple observation that if both side of a goal has a
recursive constant V as their tail, then V either persist in its subgoals or it is replaced by another
recursive constant.

Lemma 11. All the rules defined in Fig. 3 are both sound and backward sound with respect to '.

14

Decmpε+ rXA = MD
{A(i) = GiD}i∈def ‖rX‖ rXUD = MD

0 < |M | ≤ m;
U = (G1, . . . , Gq),

|U | ≤ qnr2(m + 1)(q+1).

Cancelε+
NCD[n] = MD[n]

{LiD[n] = D[n](i)}i∈[n] NCV[n] = MV[n]

V[n] = (Li)i∈[n] V[n]

Matchε+
P = Q

P1 = Q1 . . . Pl = Ql
{P1 = Q1, . . . , Pl = Ql} is a match for P = Q.

Fig. 3. Tableau Rules for nPDAε+

5.3 Subtableau

A subtableau is a building block for tableau. Its chief role is to help to reduce a goal to a finite
number of subgoals of controlled size. A goal can be reduced in many ways. It is important that
there are only a finite number of subtableaux that can be constructed for every goal. A subtableau
is manufactured using a strategy that applies Dcmpε+ and Cancelε+ in an orderly manner. Notice
that Matchε+ is never used in the construction of any subtableaux. The strategy is described by
the nondeterministic algorithm defined in Fig. 4. The construction of a subtableau must meet the
following condition:

(‡) For each pair of finite terms P,Q a unique constant V is introduced such that PV = QV .

The construction of a branch of a subtableau ends in either a leaf, or a small goal, or a potentially
successful node. A node labelled P = Q is a leaf if |P |= 0 ∨ |Q|= 0. A leaf labeled by P = Q is
successful if P ' Q and is unsuccessful if P 6' Q. A node labeled by P = Q is potentially successful
if one of its ancestors is also labelled P = Q. Fig. 5 gives a diagrammatic illustration. Our definition
of leaves is justified by Lemma 3.

The key question about the construction of a subtableau using the above strategy is if it always
terminates. This is answered by the next lemma.

Lemma 12. Every subtableau is finite.

Proof. We argue that each of the three steps in the algorithm can only be executed for a finite
number of times.

– Step 1 is crucial for the termination of the algorithm. If the left hand side can be reduced to
a process of size 0, then it is a leaf; otherwise Case 1(a)i applies. Case 1(a)iA is reduced to
Case 1(a)iB. The termination of the latter depends on the termination of Step 2. Recursive
invocation of 1(a)iC must terminate because the left hand side keeps shrinking. The crucial
observation is that since the distance between A(i) = GiD and A(i) = G′iD

′ has a computable
bound, both |Gi| and |G′i| have computable bound. So the number of steps 1(a)iC executes is
computationally bounded. It follows that when Step 2 is invoked with r′X ′C1D1 = M1D1, the
size of C1 is computationally bounded.

– Step 2 is algorithmically simple. The subgoal rXCV = MV is small because |M | is bounded
by m and C has a computable bound. The termination of Step 2 depends on the termination
of Step 3.

15

Guess a finite set of recursive constants.

1. Apply Decmpε+ to rXA = MD. We get two classes of subgoals.
(a) A(i) = GiD. If either |A(i)| = 0 or |GiD| = 0, it is a leaf; otherwise there are two cases.

i. A is a recursive constant and there is an ancestor of the form A(i) = G′iD
′. In this case reduce A(i) = GiD

to the subgoal G′iD
′ = GiD. Now G′iD

′ = GiD must be of the form G1D
′′ = G2D

′′, where D′′ is the
common suffix of G′iD

′ and GiD.
A. |G1| ≤ m. Reduce G1D

′′ = G2D
′′ to G2D

′′ = G1D
′′. Go to Step 1(a)iB.

B. |G2| ≤ m. Let M1 = (G2D
′′)�m and D1 = �m(G2D

′′). Accordingly G1D
′ is decomposed as some

r′X ′C1D1. Go to Step 2.
C. If neither Case 1(a)iA nor Case 1(a)iB applies, then repeatedly apply Decmpε+ until Case 1(a)iA or

Case 1(a)iB applies.
ii. Otherwise repeat Step 1 inductively.

(b) rXUD = MD. Go to Step 2.
2. Apply Cancelε+ to rXCD = MD, where C has a computable bound. Two types of subgoals are generated.

(a) LiD = D(i). Go to Step 3.
(b) rXCV = MV . This is a small goal.

3. LiD = D(i). If it coincides with one of its ancestors, it is a small goal; otherwise there are following subcases.
(a) |Li| = 0. This is a leaf.
(b) |Li| > 0 and |D| ≤ m. We take LiD = D(i) as a small goal.
(c) |Li| > 0 and |D| > m. Guess a decomposition of D(i), say D(i) = M0D′, such that 0 < |M0| ≤ m. Let D2

be defined by D2(j) = D�m(j) if j 6= i and D2(i) = M0. Suppose D = D2D1. It is clear that D(i) = M0D1.
Now apply Cancelε+ to LiD

2D1 = M0D1. We get two types of subgoal.
i. LiD

2V ′ = M0V ′. This is a small goal.
ii. L1

jD
1 = D1(j). Repeat Step 3 inductively.

Fig. 4. A Nondeterministic Algorithm for Constructing Subtableaux in nPDAε+

– Step 3 cannot be repeated infinitely often. In 3a, if Li is not a selector, then LiD = Li and the
node is a leaf. If Li is a selector, it must be i, and consequently the leaf must be D(i) = D(i)
and is successful. In 3b, the size of the subgoal is computationally bounded. So it is small. In
case 3(c)i a small goal is introduced. Notice that the size of the subgoal is m plus the size of
two recursive constants referred to in the subgoal. In case 3(c)ii if the size of the right hand side
continues to decrease during the successive recursive call of Step 3, eventually a leaf or a small
goal is reached. If this is not the case then a repetition will occur for the following reasons: (i)
by Lemma 1 the D’s are finite in number; and (ii) the bounds we have derived in the above and
the property (‡) imply that the recursive constants introduced in the construction are finite in
number. So we have a potentially successful node.

So every branch of a subtableau ends. By König lemma the subtableau is finite. ut

5.4 Tableau

We are now in a position to explain how to produce a tableau for a goal P = Q that satisfies |P | > 0
and |Q| > 0. To start with we construct a subtableau for P = Q. For each leaf of the subtableau
that is neither successful nor unsuccessful, we apply Matchε+. If it turns out that Matchε+ is not
applicable, then the leaf is an unsuccessful leaf of the tableau. If Matchε+ is applicable and the
resulting match is an empty set, then the leaf is a successful leaf of the tableau; otherwise we
repeat the subtableau construction for each subgoal of Matchε+. In this way we obtain a quasi
tableau for P = Q. The construction of a subtableau ends on a leaf F of a subtableau if either it
is a successful/unsuccessful leaf of the subtableau or it is potentially successful in that it coincides

16

rXA=MD

A(i)=GiD rXUD=MD◦ ◦
...

...

.

LiD=D(i) rXUV=MV◦ ◦
...

...
◦

◦
A′(i)=G′iD

′

A′(i)=G′′iD
′′

G′iD
′=G′′iD

′′

.

...

...

.

L1
jD

1=D1(j) LiD
2V ′ = M0V ′◦ ◦

.

L1
jD

1 = D1(j) ◦
...

L1
jD

3V ′′ = M1V ′′
.

...

...
...

Fig. 5. Subtableau Construction for nPDAε+

with the leaf F ′ of an ancestor subtableau with F ′ staying in the path from the root of the quasi
tableau to F .

Definition 4. A tableau is a quasi tableau that satisfies (‡). A tableau is successful if its leaves
are either successful or potentially successful.

The following lemma follows immediately from the proof of Lemma 12.

Lemma 13. Every tableau is finite.

Lemma 13 guarantees that a tableau is either successful or unsuccessful.

Lemma 14. If |P |, |Q| > 0, then P ' Q if and only if P = Q has a successful tableau.

Proof. If P ' Q, then a successful tableau can be constructed by enumeration using the algorithm
described in Fig. 4. The correctness of the construction is guaranteed by Lemma 9, Lemma 10,
Lemma 11 and Lemma 13. To prove the converse implication, assume that all the leaves of a
successful tableau for P = Q are sound for 'k. If a potentially successful leaf is sound for 'k, it
must be sound for 'k+1. This is because all the rules are backward sound and there is at least one
application of Matchε+ between a subtableau and its parent subtableau. It follows from induction
that all the equalities appearing in the tableau are sound for 'k for all k. ut

Lemma 14 provides the following semidecidable procedure for checking ' on nPDAε+ processes:
Given input P,Q, check if |P | > 0 and |Q| > 0 using Lemma 3. If the answer is negative, we can
easily decide if P ' Q. Otherwise we enumerate all the tableaux for P = Q and at the same time
check if any of them is successful. Together with Theorem 2 we get the main result of the section.

Theorem 3. The branching bisimilarity on nPDAε+ processes is decidable.

17

6 High Undecidability of ε-Nondeterminism

In this section we show that the branching bisimilarity is highly undecidable on PDAε+. This is
done by a reduction from a Σ1

1 -complete problem. A nondeterministic Minsky counter machine M
with two counters c1, c2 is a program of the form 1 : I1; 2 : I2; . . . ; n−1 : In−1; n : halt, where
for each i ∈ {1, . . . , n− 1} the instruction Ii is in one of the following forms, assuming 1 ≤ j, k ≤ n
and e ∈ {1, 2}.

– ce := ce + 1 and then goto j.
– if ce = 0 then goto j; otherwise ce := ce − 1 and then goto k.
– goto j or goto k.

The problem rec-NMCM asks if M has an infinite computation on (c1, c2) = (0, 0) such that I1 is
executed infinitely often. We shall use the following fact from [6].

Proposition 2. rec-NMCM is Σ1
1-complete.

Following [15] we transform a nondeterministic Minsky counter machine M with two coun-
ters c1, c2 into a machine M′ with three counters c1, c2, c3. The machine M′ makes use of a new
nondeterministic instruction of the following form.

– i : ce := ∗ and then goto j.

The effect of this instruction is to set ce by a nondeterministically chosen number and then go to Ij .
Every instruction “i : Ii” of M is then replaced by two instructions in M′, with respective labels
2i−1 and 2i.

– 1 : I1 is replaced by
1 : c3 := ∗ and goto 2;
2 : I1.

– i : Ii, where i ∈ {2, . . . , n}, is replaced by
2i− 1 : if c3 = 0 then goto 2n; otherwise c3 := c3 − 1 and goto 2i;
2i : Ii

– Inside each Ii, where i ∈ {1, . . . , n}, every occurrence of “goto j” is replaced by “goto 2j − 1”.

It is easy to see thatM′ has an infinite computation if and only ifM has an infinite computation
that executes the instruction I1 infinitely often. Our goal is to construct a PDAε+ system G =
{Q,L,V,R} in which we can define two processes p1X⊥ and q1X⊥ that render true the following
equivalence.

p1X⊥ ' q1X⊥ if and only if M′ has an infinite computation.

The system G = {Q,L,V,R} contains the following key elements:

– Two states pi, qi ∈ Q are introduced for each instruction Ii.
– L = {a, b, c, c1, c2, c3, f, f ′}.
– Three stack symbols C1, C2, C3 ∈ V are introduced for the three counters respectively. A bottom

symbol ⊥ ∈ V is also introduced.

Our construction borrows ideas from [16,15,33], making use of the game characterization of branch-
ing bisimulation and Defender’s Forcing technique. A configuration of M′ that consists of instruc-
tion label i and counter values (c1, c2, c3) = (n1, n2, n3) is represented by the game configuration
(piXC

n1
1 Cn2

2 Cn3
3 ⊥, qiXC

n1
1 Cn2

2 Cn3
3 ⊥). In the rest of the section we shall complete the definition of

G and explain its working mechanism.

18

– tC1
c1−→ t, tC2

c2−→ t, tC3
c3−→ t;

– t(e,+)Cj
cj−→ t(e,+) if j < e, t(e,+)Cj

ce−→ tCj if j ≥ e, t(e,+)⊥ ce−→ t⊥;

t′(e,+)Cj
cj−→ t;

– t(e, ∗)C1
c1−→ t(e, ∗), t(e, ∗)C2

c2−→ t(e, ∗), t(e, ∗)C3
b−→ t⊥;

t′(e, ∗)C1
c1−→ t(e, ∗), t′(e, ∗)C2

c2−→ t(e, ∗), t′(e, ∗)C3
b−→ t⊥;

– t(e,−)Cj
cj−→ t;

t′(e,−)Cj
cj−→ t′(e,−) if j < e, t′(e,−)Cj

ce−→ tCj if j ≥ e, t′(e,−)⊥ ce−→ t⊥;

– t(e, 0)Cj
cj−→ t(e, 0) if j 6= e, t(e, 0)Ce

f−→ t(e, 0);

t′(e, 0)Cj
cj−→ t′(e, 0) if j 6= e, t′(e, 0)Ce

f ′−→ t(e, 0);

– t(e, 1)Cj
cj−→ t(e, 1) if j < e, t(e, 1)Ce

ce−→ t, t(e, 1)Cj
f−→ t if j > e; t(e, 1)⊥ f−→ t⊥;

t′(e, 1)Cj
cj−→ t′(e, 1) if j < e, t′(e, 1)Ce

ce−→ t, t′(e, 1)Cj
f ′−→ t if j > e; t′(e, 1)⊥ f ′−→ t⊥;

– p⊥ b−→ t⊥ for every p ∈ {t, t′, t(e,+), t′(e,+), t(e,−), t′(e,−), t(e, 0), t′(e, 0), t(e, 1), t′(e, 1)}.

Fig. 6. Test on Counter

6.1 Test on Counter

We need some rules to carry out testing on the counters. In the rules given in Fig. 6, j and e range
over the set {1, 2, 3}. These rules are straightforward. The following proposition summarizes the
correctness requirement on the equality test, the successor and predecessor tests, and the zero test.
Its routine proof is omitted.

Proposition 3. Let α = Cn1
1 Cn2

2 Cn3
3 and β = Cm1

1 Cm2
2 Cm3

3 . The following statements are valid.

1. tα⊥ ' tβ⊥ if and only if ne = me for e = 1, 2, 3.

2. t(3, ∗)α⊥ ' t′(3, ∗)β⊥ if and only if ne = me for e = 1, 2.

3. t(e,+)α⊥ ' t′(e,+)β⊥ if and only if ne + 1 = me and nj = mj for j 6= e.

4. t(e,−)α⊥ ' t′(e,−)β⊥ if and only if ne = me + 1 and nj = mj for j 6= e.

5. t(e, 0)α⊥ ' t′(e, 0)β⊥ if and only if nj = mj for j = 1, 2, 3 and ne = 0.

6. t(e, 1)α⊥ ' t′(e, 1)β⊥ if and only if nj = mj for j = 1, 2, 3 and ne > 0.

7. pα⊥ ' pα⊥β for all p ∈ Q and all α, β ∈ V∗.

6.2 Operation on Counter

There are three basic operations on counters, the increment operation, the decrement operation and
the nondeterministic assignment operation. Our task is to encode these operations in the branching
bisimulation game G. To do that we use a technique from [33], which is a refinement of Defender’s
Forcing technique [15], taking into account of the subtlety of the branching bisimulation. The idea
can be explained using the following system.

1. P
a−→ P ′, P

ε−→ Q0. The latter is the only silent transition of P .

2. Q
ε−→ Q0. This is the only transition Q may perform. Hence Q ' Q0.

3. Q0 ' Q whenever Q0 =⇒ Q.

19

– u(e, o, j)X
a−→ u1(e, o, j)X, u(e, o, j)X

ε−→ r′(e, o, j)X;
u′(e, o, j)X

ε−→ r′(e, o, j)X;

– r′(e, o, j)X
ε−→ g′(e, o, j)X⊥;

g′(e, o, j)X
ε−→ g′(e, o, j)X3;

g′(e, o, j)X3
ε−→ g′(e, o, j)X3C3, g′(e, o, j)X3

ε−→ g′(e, o, j)X2;
g′(e, o, j)X2

ε−→ g′(e, o, j)X2C2, g′(e, o, j)X2
ε−→ g′(e, o, j)X1;

g′(e, o, j)X1
ε−→ g′(e, o, j)X1C1, g′(e, o, j)X1

ε−→ r′(e, o, j)X;

– g′(e, o, j)X1
a−→ u′1(e, o, j)X;

– u1(e, o, j)
a−→ u2(e, o, j)X, u1(e, o, j)X

c−→ t(e, o);
u′1(e, o, j)

a−→ u′2(e, o, j)X, u′1(e, o, j)X
c−→ t′(e, o);

– u2(e, o, j)X
ε−→ r(e, o, j)X;

u′2(e, o, j)X
ε−→ r(e, o, j)X, u′2(e, o, j)X

a−→ u′3(e, o, j)X;

– r(e, o, j)X
ε−→ g(e, o, j)X⊥; g(e, o, j)X

ε−→ g(e, o, j)X3;
g(e, o, j)X3

ε−→ g(e, o, j)X3C3, g(e, o, j)X3
ε−→ g(e, o, j)X2;

g(e, o, j)X2
ε−→ g(e, o, j)X2C2, g(e, o, j)X2

ε−→ g(e, o, j)X1;
g(e, o, j)X1

ε−→ g(e, o, j)X1C1, g(e, o, j)X1
ε−→ r(e, o, j)X;

– g(e, o, j)X1
a−→ u3(e, o, j)X;

– u3(e, o, j)X
a−→ pjX, u3(e, o, j)X

c−→ t;
u′3(e, o, j)X

a−→ qjX, u′3(e, o, j)X
c−→ t.

Fig. 7. Operation on Counter

Condition 1 and condition 2 guarantee that P ' Q if and only if P ' Q0. So the effectiveness of
the Defender’s Forcing the copycat rules P

ε−→ Q0, Q
ε−→ Q0 intend to achieve depends on how we

define Q0. Condition 3 is forced upon us by the previous two conditions. A standard approach to
meet the requirement 3 is to make sure that everything that has been done to derive Q0 =⇒ Q can
be undone. In our setting this is accomplished by starting all over again with the help of the bottom
symbol ⊥. Once we know that condition 3 is indeed satisfied, the argument for the correctness of
the bisimulation game can be simplified in the following sense: In the game of (P,Q) Attacker would
play P

a−→ P ′. Defender’s optimal response must be of the following form

Q
ε−→ Q0

ε−→ Q1
ε−→ Q2

ε−→ . . .
ε−→ Qk

a−→ Q′.

For both players only the configuration (P ′, Q′) need be checked.

With the above remark in mind we turn to the part of the game that implements the basic
operations. Let e range over {1, 2, 3}, o over {+,−, ∗}, and j over {1, . . . , 2n}. For each triple (e, o, j)
we introduce the rules given in Fig. 7. The following lemma identifies some useful state preserving
silent transitions.

Lemma 15. P ' r(e, o, j)X⊥ for all P such that r(e, o, j)X⊥ =⇒ P . Similarly Q ' r′(e, o, j)X⊥
for all Q such that r′(e, o, j)X⊥ =⇒ Q.

Proof. Suppose r(e, o, j)X⊥ =⇒ P . Then P =⇒ r(e, o, j)X⊥α for some α. By (7) of Proposition 3
one has r(e, o, j)X⊥ ' r(e, o, j)X⊥α. Consequently r(e, o, j)X⊥ ' P . ut

The next lemma states the soundness property of the rules defined in Fig. 7, in which we write
11, 12 and 13 respectively for (1, 0, 0), (0, 1, 0) and (0, 0, 1).

20

Lemma 16. Suppose α = Cm1
1 Cm2

2 Cm3
3 . The following statements are valid.

1. In the bisimulation of (u(e,+, j)Xα⊥, u′(e,+, j)Xα⊥), Defender, respectively Attacker, has
a strategy to win or at least push the game to (P,Q) such that P ' pjXC

n1
1 Cn2

2 Cn3
3 ⊥ and

Q ' qjXCn1
1 Cn2

2 Cn3
3 ⊥ and (n1, n2, n3) = (m1,m2,m3)+1e.

2. If me > 0 then in the bisimulation game of (u(e,−, j)Xα⊥, u′(e,−, j)Xα⊥), Defender, re-
spectively Attacker, has a strategy to win or at least push the game to (P,Q) such that P '
pjXC

n1
1 Cn2

2 Cn3
3 ⊥ and Q ' qjXCn1

1 Cn2
2 Cn3

3 ⊥ and (n1, n2, n3) = (m1,m2,m3)−1e.

3. Suppose n ≥ m3. In the bisimulation game of (u(3, ∗, j)Xα⊥, u′(3, ∗, j)Xα⊥), Defender has
a strategy to win or at least push the game to (P,Q) such that P ' pjXC

n1
1 Cn2

2 Cn3
3 ⊥ and

Q ' qjXCn1
1 Cn2

2 Cn3
3 ⊥ and (n1, n2, n3) = (m1,m2,m3) + (n−m3) · 13.

Proof. We prove the first statement. The proof for the other two is similar. Let β = Cn1
1 Cn2

2 Cn3
3

such that (n1, n2, n3) = (m1,m2,m3)+1e. In what follows we describe Defender and Attacker’s
step-by-step optimal strategy in the bisimulation game of (u(e,+, j)Xα⊥, u′(e,+, j)Xα⊥).

(i) By Defender’s Forcing, Attacker plays u(e,+, j)Xα⊥ a−→ u1(e,+, j)Xα⊥. Defender responds
with

u′(e,+, j)Xα⊥ ε
=⇒ g′(e,+, j)X1β⊥α⊥

a−→ u′1(e,+, j)Xβ⊥α⊥.

According to Lemma 15, Attacker’s optimal move is to continue the game from

(u1(e,+, j)Xα⊥, u′1(e,+, j)Xβ⊥α⊥).

(ii) It follows from Proposition 3 that t(e,+)Xα⊥ ' t′(e,+)Xβ⊥α⊥. If Attacker plays an action
labeled c, Defender wins. Attacker’s optimal move is to play an action labeled a. Defender then
follows suit, and the game reaches the configuration (u2(e,+, j)Xα⊥, u′2(e,+, j)Xβ⊥α⊥).

(iii) Attacker’s next move is u′2(e,+, j)Xβ⊥α⊥
a−→ u′3(e,+, j)Xβ⊥α⊥. This is optimal by Propo-

sition 3. Defender responds with

u2(e,+, j)Xα⊥
ε

=⇒ g(e,+, j)X1β⊥α⊥
a−→u3(e,+, j)Xβ⊥α⊥.

By an argument similar to the one given in (i) Attacker would choose

(u3(e,+, j)Xβ⊥α⊥, u′3(e,+, j)Xβ⊥α⊥)

as the next configuration.

(iv) If Attacker plays an action labeled c, Defender wins by Proposition 3. So Attacker’s best bet
is to play an action labeled by a. The game reaches the configuration (pjXβ⊥α⊥, qjXβ⊥α⊥).

The above argument shows that the configuration (pjXβ⊥α⊥, qjXβ⊥α⊥) is optimal for both
Attacker and Defender. We are done. ut

6.3 Control Flow

We now encode the control flow of M′ by the rules of the bisimulation game. We will introduce a
number of rules for each instruction in M′.

21

1. The following rules are introduced in the game G for an instruction of the form “i : ce := ce + 1
and then goto j”.

piX
a−→ u(e,+, j)X, qiX

a−→ u′(e,+, j)X.

2. For each instruction of the form “i : ce := ∗ and then goto j” the following two rules are added
to R.

piX
a−→ u(e, ∗, j)X, qiX

a−→ u′(e, ∗, j)X.

3. For each instruction of the form “i : goto j or goto k”, we have the following.

– piX
a−→ p1iX, piX

a−→ q1iX, piX
a−→ q2iX;

qiX
a−→ q1iX, qiX

a−→ q2iX;

– p1iX
a−→ pjX, p1iX

a−→ pkX;

q1iX
a−→ qjX, q1iX

a−→ pkX;

q2iX
a−→ pjX, q2iX

a−→ qkX.

These rules embody precisely the idea of Defender’s Forcing [15]. It is Defender who makes the
choice.

4. For each instruction of the form

“i : if ce = 0 then goto j; otherwise ce = ce − 1 and then goto k”

we construct a system defined by the following rules.

– piX
a−→ pi(e, 0, j)X, piX

c−→ pi(e, 1, k)X;
qiX

a−→ qi(e, 0, j)X, qiX
c−→ qi(e, 1, k)X;

– pi(e, 0, j)X
a−→ v1(e, 0, j)X, pi(e, 1, k)X

a−→ v1(e, 1, k)X;
pi(e, 0, j)X

a−→ v2(e, 0, j)X, pi(e, 1, k)X
a−→ v2(e, 1, k)X;

pi(e, 0, j)X
a−→ v3(e, 0, j)X, pi(e, 1, k)X

a−→ v3(e, 1, k)X;

– qi(e, 0, j)X
a−→ v2(e, 0, j)X, qi(e, 1, k)X

a−→ v2(e, 1, k)X;
qi(e, 0, j)X

a−→ v3(e, 0, j)X, qi(e, 1, k)X
a−→ v3(e, 1, k)X;

– v1(e, 0, j)X
a−→ t(e, 1)X, v1(e, 0, j)X

a−→ pjX;

v2(e, 0, j)X
a−→ t′(e, 1)X, v2(e, 0, j)X

a−→ pjX;

v3(e, 0, j)X
a−→ t(e, 1)X, v3(e, 0, j)X

a−→ qjX;

– v1(e, 1, k)X
a−→ t(e, 0)X, v1(e, 1, k)X

a−→ u(e,−, k)X;
v2(e, 1, k)X

a−→ t′(e, 0)X, v2(e, 1, k)X
a−→ u(e,−, k)X;

v3(e, 1, k)X
a−→ t(e, 0)X, v3(e, 1, k)X

a−→ u′(e,−, k)X.

The idea of the above encoding is that Attacker must claim either “ce = 0” or “ce > 0”.
Defender can check the claim and wins if Attacker lies. If Attacker has not lied, Defender can
force Attacker to do what Defender wants.

5. For “2n : halt”, we add the rules

p2nX
f−→ p2n⊥, q2nX

f ′−→ q2n⊥.

So Attacker wins if the game ever terminates.

This completes the definition of G.
With the help of Proposition 3 and Lemma 16, it is a routine to prove the next lemma.

22

Lemma 17. M′ has an infinite computation if and only if p1X⊥ ' q1X⊥.

Branching bisimilarity on PDAε+ is in Σ1
1 for the following reason: For any PDAε+ processes P and

Q, P ' Q if and only if there exists a set of pairs that contains (P,Q) and satisfies the first order
arithmetic definable conditions prescribed in Definition 3. Together with the reduction justified by
Lemma 17 we derive the main result of the section.

Theorem 4. Branching bisimilarity on PDAε+ is Σ1
1-complete.

It has been proved in [33] that the branching bisimilarity is undecidable on normed PDA. The
reduction defined in the above can be constructed for nPDA too. This is because in nPDA the stack
can be reset by popping off all the symbols in the stack using ε-popping transitions and creating
new stack content using ε-pushing transitions, achieving the same effect as the bottom symbol ⊥
has achieved in PDAε+. The details are omitted.

Theorem 5. Branching bisimilarity on nPDA is Σ1
1-complete.

7 Conclusion

The structural definition of PDA plays an important role in simplifying our proof. After proving the
main results of this paper in the beginning of 2014, we became aware of the relationship between
our definition of PDA and Jančar’s notion of first order grammar [11]. In our opinion Jančar’s
approach is an abstraction of the issue at a more basic level. Recently Jančar has provided a quite
different proof for the decidability of the strong bisimilarity of first order grammar [13]. In the full
paper he also outlined an idea of how to extend his proof to take care of silent transitions.

Stirling proved that the language equivalence of DPDA is primitive recursive [25]. Benedikt,
Goller, Kiefer and Murawski showed that the strong bisimilarity on nPDA is non-elementary [1].
More recently Jančar observed that the strong bisimilarity of first-order grammar is Ackermann-
hard [12], a consequence of which is that the strong bisimilarity proved decidable by Sénizergues
in [21] is Ackermann-hard. It is an interesting research direction to look for tighter upper and lower
bounds on the branching bisimilarity of nPDAε+.

Acknowledgement. We thank the members of BASICS for their interest. We are grateful to
Prof. Jančar for his insightful discussion. The support from NSFC (61472239, ANR 61261130589,
91318301) is gratefully acknowledged.

References

1. M. Benedikt, S. Moller, S. Kiefer, and A. Murawski. Bisimilarity of Pushdown Automata is Nonelementary. In
LICS’13, pages 488–498, 2013.

2. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on Infinite Structures. In J. Bergstra, A. Ponse,
and S. Smolka, editors, Handbook of Process Algebra, pages 545–623. North-Holland, 2001.

3. Y. Fu. Checking Equality and Regularity for Normed BPA with Silent Moves. ICALP’13, Lecture Notes in
Computer Science 7966, 238–249, 2013.

4. S. Ginsburg and S. Greibach. Deterministic Context Free Languages. Information and Control, 9:620–648, 1966.
5. J. Groote and H. Hüttel. Undecidable Equivalences for Basic Process Algebra. Information and Computation,

115:354–371, 1994.
6. D. Harel. Effective Transformations on Infinite Trees, with Applications to High Undecidability, Dominoes, and

Fairness. J. ACM, 33:224–248, 1986.

23

7. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley
Publishing Company, 1979.

8. H. Hüttel. Silence is Golden: Branching Bisimilarity is Decidable for Context Free Processes. In CAV’91, pages
2–12. Lecture Notes in Computer Science 575, Springer, 1992.

9. H. Hüttel. Undecidable Equivalences for Basic Parallel Processes. In Theoretical Aspects of Computer Software,
Lecture Notes in Computer Science 789, pages 454–464, 1994.

10. H. Hüttel and C. Stirling. Actions Speak Louder than Words: Proving Bisimilarity for Context-Free Processes.
In LICS’91, pages 376–386, 1991.

11. P. Jančar. Decidability of DPDA Language Equivalence via First-Order Grammars. In LICS’12, page 415–424.
IEEE Computer Society, 2012.

12. P. Jančar. Equivalences of Pushdown Systems are Hard. Foundations of Software Science and Computation,
pages 1–28, 2014.

13. P. Jančar. Bisimulation Equivalence of First Order Grammars. In J. Esparza, P. Fraigniaud, T. Husfeldt, and
E. Koutsoupias, editors, ICALP’14, Lecture Notes in Computer Science 8573, pages 232–243, 2014.

14. P. Jančar. Bisimulation Equivalence of First Order Grammars. arXiv:1405.7923, 2014.
15. P. Jančar and J. Srba. Undecidability of Bisimilarity by Defender’s Forcing. Journal of ACM, 55(1), 2008.
16. E. Mayr. Undecidability of Weak Bisimulation Equivalence for 1-Counter Processes. In ICALP’03, Lecture Notes

in Computer Science 2719, page 570–583. Springer, 2003.
17. R. Mayr. Process Rewrite Systems. Information and Computation, 156:264–286, 2000.
18. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
19. D. Park. Concurrency and Automata on Infinite Sequences. In TCS’81, Lecture Notes in Computer Science 104,

pages 167–183. Springer, 1981.
20. G. Sénizergues. The Equivalence Problem for Deterministic Pushdown Automata is Decidable. In ICALP’97,

Lecture Notes in Computer Science 1256, pages 671–681. Springer-Verlag, 1997.
21. G. Sénizergues. Decidability of Bisimulation Equivalence for Equational Graphs of Finite Out-Degree. In

FOCS’98, pages 120–129. IEEE, 1998.
22. G. Sénizergues. L(a)=L(b)? Decidability Results from Complete Formal Systems. Theoretical Computer Science,

251(1-2):1–166, 2001.
23. G. Sénizergues. L(a)=L(b)? A Simplified Decidability Proof. Theoretical Computer Science, 281(1):555–608,

2002.
24. J. Srba. Undecidability of Weak Bisimilarity for Pushdown Processes. In CONCUR’02, Lecture Notes in Com-

puter Science 2421, pages 579–593. Springer-Verlag, 2002.
25. Stirling. Deciding DPDA Equivalence is Primitive Recursive. In ICALP’02, Lecture Notes in Computer Science

2380, pages 821–832. Springer, 2002.
26. C. Stirling. Decidability of Bisimulation Equivalence for Normed Pushdown Processes. In CONCUR’96, Lecture

Notes in Computer Science, pages 217–232. Springer-Verlag, 1996.
27. C. Stirling. Decidability of Bisimulation Equivalence for Normed Pushdown Processes. Theoretical Computer

Science, 195(2):113–131, 1998.
28. C. Stirling. The Joy of Bisimulation. In MFCS’98, Lecture Notes in Computer Science 1450, pages 142–151.

Springer, 1998.
29. C. Stirling. Decidability of Bisimulation Equivalence for Pushdown Processes. 2000.
30. C. Stirling. Decidability of DPDA Equivalence. Theoretical Computer Science, 255(1-2):1–31, 2001.
31. R. van Glabbeek and W. Weijland. Branching Time and Abstraction in Bisimulation Semantics. In Information

Processing’89, pages 613–618. North-Holland, 1989.
32. R. van Glabbeek and W. Weijland. Branching Time and Abstraction in Bisimulation Semantics. Journal of

ACM, 3:555–600, 1996.
33. Q. Yin, Y. Fu, C. He, M. Huang, and X. Tao. Branching Bisimilarity Checking for PRS. In J. Esparza,

P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, ICALP’14, Lecture Notes in Computer Science 8573,
pages 363–374, 2014.

24

	Dividing Line between Decidable PDA's and Undecidable Ones

