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Abstract9

The theory of chi processes with the mismatch operator is studied. Four congruence relations
are investigated. These are late open congruence, early open congruence, ground congruence and11
barbed congruence. The late and early open congruence relations are the chi calculus counterparts
of the weak late and early congruence relations of pi calculus. Both turn out to be special cases13
of the ground congruence and the barbed congruence. The ground congruence is essentially
the open congruence. Complete systems are given for all the four congruence relations. These15
systems use some interesting tau laws unknown from previous studies of the chi calculus without
the mismatch combinator. The results of this paper point out that the mismatch operator changes17
the algebraic semantics of chi calculus dramatically. They also correct some common mistakes
in literature.19
c© 2002 Published by Elsevier Science B.V.

Keywords: Process algebra; Chi process; Bisimulation; Axiomatization21

1. Introduction

In recent years several publications have focused on a class of new calculi of mobile23
processes. These models include �-calculus [4–8,12], update calculus [27] and fusion
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calculus [28]. In a uniform terminology they are respectively �-calculus, asymmetric1
�-calculus and polyadic �-calculus. The �-calculus has its motivation from proof theory.
In process algebraic model of classical proofs there has been no application of the3
mismatch operator. The �-calculus studied so far contains no mismatch operator. On the
other hand the update and fusion calculi get the motivation from concurrent constraint5
programming. When applying process calculi to model real programming problems
one Gnds very handy the mismatch operator. For that reason the full update and fusion7
calculi always come with the mismatch combinator. Strong bisimulation congruence
has been investigated for each of the three models. It is basically the strong open9
congruence. A fundamental diHerence between �-like calculi and �-like calculi [24]
is that all names in the former are subject to update whereas bound names in the11
latter are never changed. In terms of the algebraic semantics, it says that open style
congruence relations are particularly suitable to �-like process calculi. Several weak13
observational equivalence relations have been examined. Fu studied in [5] weak open
congruence and weak barbed congruence. It was shown that a sensible bisimulation15
equivalence on �-processes must be closed under substitution in every bisimulation
step. In �-like calculi closure under substitution amounts to the same thing as closure17
under parallel composition and restriction. This is the property that led Fu to introduce
L-congruences [6]. These congruence relations form a lattice under inclusion order.19
It has been demonstrated that L-congruences are general enough so as to subsume
familiar bisimulation congruences. The open congruence and the barbed congruence21
for instance are respectively the bottom and the top elements of the lattice. This is
also true for the asymmetric �-calculus [8]. Complete systems have been discovered23
for L-congruences on both Gnite �-processes [6] and Gnite asymmetric �-processes [8].
An important discovery in the work of axiomatizing �-processes is that Milner’s tau25
laws are insu@cient for open congruences. Another basic tau law called T4

�: P = �:(P + [x = y]�: P)27

is necessary to deal with the dynamic aspect of name update. Parrow and Victor have
worked on completeness problems for fusion calculus [29]. The system they provide29
for the weak hypercongruence for sub-fusion calculus without the mismatch operator
is deGcient because it lacks of the axiom T4. However their main eHort in the above31
mentioned paper is on the full fusion calculus with the mismatch operator. This part
of work is unfortunately more problematic. To explain what we mean by that we need33
to take a closer look at hyperequivalence.
Process equivalence is observational in the sense that two processes are deemed to35

be equal unless an environment can detect a diHerence between the two processes. It
follows that process equivalences must be closed under, among other things, parallel37
composition. Weak hyperequivalence is basically an open equivalence. This relation is
Gne with the sub-fusion calculus without the mismatch combinator. It is however a bad39
equivalence for the full fusion calculus for the reason that it is not closed under parallel
composition. A simple counter example is as follows: Let ≈h be the hyperequivalence.41
Now for distinct names x; y it holds that

(x)ax:[x �= y]�: P ≈h (x)ax:[x �= y]�: P + (x)ax: P:43
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This is because the transition1

(x)ax:[x �= y]�: P + (x)ax: P
a(x)→ P:

can be simulated by3

(x)ax:[x �= y]�: P
a(x)→ �→P:

However5

Nay | (x)ax:[x �= y]�: P �≈h Nay | ((x)ax:[x �= y]�: P + (x)ax: P)

for the transition Nay | ((x)ax:[x �=y]�: P + (x)ax: P) �→ 0 |P{y=x} cannot be matched up7
by any transitions from Nay | (x)ax:[x �=y]�: P. For similar reason

ax:[x �= y]�: P ≈h ax:[x �= y]�: P + [x �= y]ax: P9

but

Nay | ax:[x �= y]�: P �≈h Nay | (ax:[x �= y]�: P + [x �= y]ax: P):11

So the theory of weak equivalence of fusion calculus need be overhauled.
It should be pointed out that the failure of the weak hyperequivalence has nothing to13

do with the property of closure under substitution or the lack of it. Although the weak
hyperequivalence is by deGnition closed under substitution, it still admits the counter15
examples. A well prepared reader should realize immediately that neither counter ex-
ample is aHected by substitution. On the other hand, the failure does have a lot to17
do with the mismatch operator. From a programming point of view the role of the
mismatch combinator is to terminate a process at run time. This is a useful function in19
practice and yet realizable in neither CCS nor calculi of mobile processes without the
mismatch combinator. The eHect of the mismatch operator on the operational semantics21
is well-known: Transitions are no longer stable under name instantiations. It is also
well-known that this phenomenon renders the algebraic theory di@cult. The mismatch23
operator often creates a ‘now-or-never’ situation in which if an action does not hap-
pen right now it might never be allowed to happen. In the calculi with the mismatch25
operator processes are more sensible to the timing of actions. This reminds one of the
diHerence between the early and late semantics.27
The early=late dichotomy is well known in the semantic theory of �-calculus [24].

The weak late congruence is strictly contained in the weak early congruence in29
�-calculus whether the mismatch combinator is present or not. For some time it was
taken for granted that there is no early and late distinction in weak open congruence.31
At least this is true for the calculus without the mismatch combinator. Very recently
the present authors discovered to their surprise that early and late approaches give33
rise to two diHerent weak open congruences in the �-calculus in the presence of the
mismatch combinator [13]. This has led them to realize the problem with the weak35
hyperequivalence.
We are therefore forced to reexamine the algebraic theory of �-like calculi with37

the mismatch combinator. In this paper we study the bisimulation congruence relations
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for �-calculus with the mismatch operator. Our main focus will be on the barbed1
congruence and the ground congruence. The barbed approach is a widely applicable tool
to give an observational equivalence relation for a process calculus. When applied to the3
�-calculus with the mismatch operator, it gives rise to a very subtle equivalence. The
ground congruence can be seen as a rectiGcation of the hyperequivalence. It is equal to5
the largest congruence relation contained in the hyperequivalence. As it turns out the
ground congruence is very similar to the barbed congruence. In order to give complete7
systems for the barbed congruence and the ground congruence, one need to have a
‘complete’ understanding of the intrinsic properties of the two relations. We do this9
by providing alternative characterizations of the two relations. These characterizations
have the virtue that they are given purely in terms of the actions a process can perform11
without any reference to context. It is these alternative characterizations that pinpoint
the precise relationship between the two congruences. We will also take a look at the13
late and early congruence relations. The attention we pay to them serves two purposes.
Firstly, since the weak late congruence and the weak early congruence are two main15
equivalence relations for the �-calculus, the corresponding relations in the �-calculus
should be studied and compared to the barbed congruence and the ground congruence.17
Secondly the late and the early congruence relations are much simpler than the barbed
and ground congruence relations. A warming up exercise with the former two would19
make smooth the transition to the study of the latter two.
The main contributions of this paper are as follows:21

• We initiate a study of �-like calculi with the mismatch combinator. We point out that
the algebraic theory of the �-calculus with the mismatch combinator is very diHerent23
from that of the �-calculus without the mismatch operator. All previous works on
the algebraic theory of �-like calculi with the mismatch operator have fundamental25
mistakes. Even the very deGnition of hyperequivalence has to be abandoned.

• We study the counterparts of the weak early congruence and the weak late congru-27
ence of �-calculus in the framework of �-calculus with the mismatch combinator.
Complete systems are given for both the relations. At the same time we points29
out that these two equivalence relations do not play as much important role in the
�-calculus as in the �-calculus.31

• We study the barbed congruence. Many unknown equalities are discovered. A com-
plete system for the weak barbed congruence is provided. The new tau laws used33
to establish the completeness result are surprisingly complex.

• We study what we call ground congruence. A complete system for the ground con-35
gruence is given. The relationship between the ground congruence and the barbed
congruence is revealed.37
The structure of the paper is as follows: Section 2 summarizes some background

material on the calculus. Section 3 deGnes two weak open congruences: weak early39
and late open congruences. Section 4 gives an equivalent account of the weak barbed
congruence. Examples are provided to give the reader a glimpse of the complexity41
of the relation. Section 5 studies a rectiGcation of the hyperequivalence: the ground
open congruence. The diHerence between the ground open congruence and the weak43
barbed congruence is pointed out. Section 6 discusses some basic equational laws for
the calculus. Section 7 proposes four new tau laws to handle tau preGxes under other45
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preGx combinators. Section 8 establishes all the completeness results. Section 9 locates1
the barbed bisimilarity and the ground bisimilarity in bisimulation lattice and shows
that, to a certain extent, they are the only bisimilarities for the calculus. Some comments3
are made in the Gnal section.
Extended abstracts of this work have been published in [11,12].5

2. The full �-calculus with mismatch

The �-calculus has been shown to be a powerful language for concurrent computa-7
tion. From the algebraic point of view, the model is slightly inconvenient due to the
presence of two classes of bound names. The input preGx operator a(x) introduces9
the bound name x to be instantiated by an action induced by the preGx operator. On
the other hand the restriction operator (y) in (y)P forces the name y to be bound11
in P, which will never be instantiated. Semantically these two bound names are very
diHerent. The following two examples su@ce to make the point clear:13

a(x):(P | [x = y]Q) | Nay: R �→(P{y=x} | [y = y]Q{y=x}) |R; (1)

a(x):(P | [x = y]Q) | (z) Naz: R �→(z)((P{z=x} | [z = y]Q{z=x}) |R): (2)15

In (1) the subprocess Q{y=x} can be Gred after the internal communication whereas
in (2) the component [z=y]Q{z=x} will remain inactive forever since the bound name17
z will never be identiGed with any other name.
The �-calculus can be seen as obtained from the �-calculus by unifying the two19

classes of bound names. The approach is to unify the input preGx and the output
preGx. In �-calculus a preGx takes the form of �x: P, where � stands for either a name21
a or a coname Na. The most important thing is that the explicit x in �x: P is a free
name. In �-calculus the above two reductions become the following ones:23

(x)ax:(P | [x = y]Q) | Nay: R �→(P{y=x} | [y = y]Q{y=x}) |R; (3)

(x)ax:(P | [x = y]Q) | (z) Naz: R �→(z)((P{z=x} | [z = y]Q{z=x}) |R): (4)25

In (3) the eHect of the communication is to substitute the free name y for the bound
name x throughout the process over which the restriction operator (x) applies. In (4)27
the communication identiGes two bound names. The diHerence between (2) and (4)
is that in the latter the component [z=y]Q{z=x} could be activated since further com-29
munication might replace the bound name z by y. This is because in �-calculus the
eHect of a communication is delimited not by preGx operations, as in the �-calculus,31
but by the restriction operator. This is clear from the following examples:

(x)(ax: P | [x = y]Q) | Nay: R �→(P{y=x} | [y = y]Q{y=x}) |R; (5)33

(x)(ax: P | [x = y]Q) | (z) Naz: R �→(z)((P{z=x} | [z = y]Q{z=x}) |R): (6)
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Another distinguished property of the �-calculus is that communications are symmetric.1
This can already been seen from (6) since we could equally have substituted x for z
as in3

(x)(ax: P | [x = y]Q) | (z) Naz: R �→(x)((P | [x = y]Q) |R{x=z}):
A symmetric version of (5) is5

(x)( Nax: P | [x = y]Q) | ay: R �→(P{y=x} | [y = y]Q{y=x}) |R:
So the restriction operator in the �-calculus plays a more important role than in the7
�-calculus.
There is also a polyadic version of the �-calculus of course [28]. It is di@cult to9

describe the operational semantics of this calculus using a labeled transition system.
The following examples of communication should help to explain why11

(x)(b)(axy: P | Naab:Q) �→P{a=x}{y=b} |Q{a=x}{y=b}; (7)

(x)(b)(axx: P | Naab:Q) �→P{a=x}{a=b} |Q{a=x}{a=b}: (8)13

In (7) either of the two preGx operators induces both an input action and an output
action in the traditional sense. In (8) the communication instantiates the bound name x15
by the free name a and at the same time the bound name b should be identiGed with
x. But since the bound name to which b is identiGed is to be replaced by a, it might17
as well to replace b by a too.
The algebraic theory of �-calculus has been systematically studied. In [6] a class19

of bisimulation equalities called L-bisimilarities were proposed and investigated. In [8]
similar study has been carried out for the asymmetric �-calculus. When restricted to21
Gnite processes, the congruence relations derived from these bisimilarities have all been
axiomatized. So the initial work about the �-calculus has all been done. However our23
knowledge about the �-calculus with the mismatch operator is almost nil.
The calculus studied in this paper is the �-calculus extended with the mismatch25

operator. This language will be referred to as the � �=-calculus in the rest of the paper.
We will write C for the set of � �=-processes deGned by the following grammar:27

P := 0 | �x: P |P |P | (x)P | [x = y]P | [x �= y]P |P + P;

where �∈N∪ NN. Here N is the set of names ranged over by small case letters. The29
set {Nx | x∈N} of conames is denoted by NN. We have left out replication processes
since we will be focusing on axiomatization of equivalences on Gnite processes. The31
name x in (x)P is bound. A name is free in P if it is not bound in P. The free names,
the bound names and the names of P, as well as the notations fn(P), bn(P) and n(P),33
are used in their standard meanings. In sequel we will use the functions fn( ), bn( )
and n( ) without explanation. We write N� for Na if �= a and for a if �= Na.35
The following labeled transition system deGnes the operational semantics:

Sequentialization:37

�x: P �x→P
Sqn:
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Composition:1

P
�→P′ bn(�) ∩ fn(Q) = ∅

P |Q �→P′ |Q
Cmp0;

P
y=x→P′

P |Q y=x→P′ |Q{y=x}
Cmp1:

Communication:3

P
�(x)→ P′ Q

N�y→Q′

P |Q �→P′{y=x} |Q′Cmm0;
P

�(x)→ P′ Q
N�(x)→ Q′

P |Q �→(x)(P′ |Q′)
Cmm1;

P �x→P′ Q
N�y→Q′ x �= y

P |Q y=x→P′{y=x} |Q′{y=x}
Cmm2;

P �x→P′ Q N�x→Q′

P |Q �→P′ |Q′ Cmm3:
5

Restriction:

P �→P′ x �∈ n(�)

(x)P �→(x)P′
Loc0;

P �x→P′ x �∈ {�; N�}
(x)P

�(x)→ P′
Loc1;

P
y=x→P′

(x)P �→P′ Loc2:7

Condition:

P �→P′

[x = x]P �→P′
Mtch;

P �→P′ x �= y

[x �= y]P �→P′
Mismtch:

9

Summation:

P �→P′

P + Q �→P′
Sum:

11

We have omitted all the symmetric rules. In the above rules the letter � ranges over
the set {�(x); �x | �∈N∪ NN; x∈N}∪ {�} of non-update actions and the letter � over13
the set {�(x); �x; y=x | �∈N∪ NN; x; y∈N}∪ {�} of all actions. There are four kinds
of actions:15
• The label �(x) represents a bound action that exchanges the bound name x at channel

�. The x in �(x) is bound.17
• The label �x stands for a free action that exchanges the free name x at channel �.
The x in �x is free.19

• The label y=x indicates an update action, an incomplete communication so to speak,
that replaces x by y half way through a communication. The x; y in y=x are free.21

• The label � as usual stands for a communication.
The process Q{y=x} appeared in the above labeled transitional system is obtained by23
substituting y for x throughout Q. A substitution {y1=x1; : : : ; yn=xn} is a function from
N to N that maps xi onto yi for i∈{1; : : : ; n} and x onto itself for x �∈{x1; : : : ; xn}.25
Substitutions are usually denoted by !; !′ etc. The empty substitution, that is the identity
function on N, is written as { }. The result of applying ! to P is denoted by P!.27
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Notice that a substitution ! may disable an action of P. So P ax−−→P′, say, does not imply1
P!

!(a)!(x)−−−→P′!. But if ! does not disable the action ax, then P!
!(a)!(x)−−−→P′! follows.

Most of the operational rules are straightforward. For someone familiar with the3
�-calculus, only the rules Cmp1, Cmm2, Cmm3 and Loc2 need explanation. The rule
Cmm2 introduces an update action. An update action can be seen as an incomplete5
communication. In a structural labeled transitional semantics for �-calculus, update ac-
tions have to be introduced. An update action has side eHect on neighboring processes.7
This explains the rule Cmp1. The rule Cmm3 is a matter of design decision. It permits
the following communication9

ax: P | Nax:Q �→P |Q:

We could have worked with the �-calculus that bans the above reduction. But the11
present version slightly simpliGes the algebraic theory.
Suppose Y is a Gnite set {y1; : : : ; yn} of names. The notation [y �∈Y ]P will stand13

for [y �=y1] : : : [y �=yn]P, where the order of the mismatch operators is immaterial.
We will write # and  , called conditions, to stand for sequences of match and mis-15
match combinators concatenated one after another, % for a sequence of match oper-
ators, and & for a sequence of mismatch operators. Consequently we write  P, %P17
and &P. When the length of  (%; &) is zero,  P (%P; &P) is just P. The notation
#⇒  says that # logically implies  and #⇔  that # and  are logically equiva-19
lent. In what follows we will often use a substitution that draws a particular relation-
ship with a condition. Some of these relationships are made precise in the following21
deGnition.

De�nition 1. A substitution ! respects  if  ⇒ x=y implies !(x)= !(y) and  ⇒ x23
�=y implies !(x) �= !(y). Dually  respects ! if !(x)= !(y) implies  ⇒ x=y and
!(x) �= !(y) implies  ⇒ x �=y. The substitution ! agrees with  , and  agrees with25
!, if they respect each other. The substitution ! is induced by  if it agrees with  
and n(!)⊆n( ).27

Intuitively a substitution ! is induced by  if it maps all the elements of an equiv-
alence class induced by  onto a representative of the class.29

The notation ⇒ stands for the rePexive and transitive closure of �→ and �⇒ for the
composition ⇒ �→ ⇒. The relation �̂⇒ is the same as �⇒ if � �=� and is ⇒ otherwise.31
A sequence x1; : : : ; xn of names will be abbreviated to x̃. So (x̃)P stands for (x1) : : :
(xn)P. When the length of x̃ is zero (x̃)P is simply P. We will use three induced preGx33
operators, update preGx, tau preGx and bound preGx, deGned as follows:

〈y|x〉: P def= (a)( Nay | ax: P);

�: P def= (b)〈b|b〉: P;

�(x): P def= (x)�x: P;35
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where a; b are fresh. Notice that the update preGx can perform two symmetric update1
actions:

〈y|x〉: P y=x→ P{y=x};

〈y|x〉: P x=y→ P{x=y}:
In what follows we will overload the use of � by letting it also range over the set3
{�(x); �x; 〈y|x〉 | �∈N∪ NN; x; y∈N}∪ {�} of extended preGxes.
The notion of context is very important to the algebraic theory of process calculus.5

So we give a formal deGnition as follows.

De�nition 2. Contexts are deGned inductively as follows:7
(i) [ ] is a context;
(ii) If C[ ] is a context then �x:C[ ], C[ ] |P, P |C[ ], (x)C[ ] and [x=y]C[ ] are9

contexts.
Full contexts are those contexts that satisfy additionally:11

(iii) If C[ ] is a context then C[ ] + P, P + C[ ] and [x �=y]C[ ] are contexts.

3. Early and late bisimilarities13

Many observational equivalence relations have been proposed for calculi of mobile
processes. The most well-known of them include the early equivalence [24], the late15
equivalence [24], the barbed equivalence [25,30], the open equivalence [31] and the
testing equivalence [3]. The Grst four are bisimulation equivalence relations whereas17
the last one is not. All these relations are closed under substitutions in order for the
relations to be closed under preGx operations. But there is a notable diHerence. The open19
equivalence is a bisimulation equivalence closed under substitution of names in every
simulating step. On the other hand the other four equivalence relations are closed under21
substitution only on the very beginning of simulations. In our view the most natural
bisimulation equivalence for mobile processes is the open equivalence introduced by23
Sangiorgi [31]. The open approach assumes that the environments are dynamic in
the sense that after each computation step, the environment might be totally diHerent.25
As a matter of fact the very idea of bisimulation is to ensure that no operational
diHerence can be detected by any dynamic environment. So closure under substitution27
is a reasonable requirement.
A naive deGnition of weak open bisimulation for � �=-calculus would go as follows:29
A binary relation R on C is a weak open bisimulation if it is symmetric and

closed under substitution such that whenever PRQ and P �→P′ then Q �̂⇒Q′RP′31
for some Q′.

This deGnition is good for the �-calculus without the mismatch operator. But as it33
turns out it is not closed under the parallel composition operation for processes with
the mismatch operator. Counter examples are given in the introduction. The problem35
here is that the instantiation of names is delayed for any period of time. This is
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not always possible in � �=-calculus since the instantiation might falsify an inequality1
condition. This problem does not occur in the �-calculus because an instantiation only
validates, but never invalidates, an equality condition.3
There could be many ways to rectify the above deGnition. In this section we seek to

correct it in a most straightforward manner. Since the problem is caused by the delay5
of instantiation of names, we insist that name instantiations should take place in the
earliest possible occasion. This brings us to the familiar early and late frameworks.7

De�nition 3. Let R be a binary symmetric relation on C. It is called an early open
bisimulation if it is closed under substitution and whenever PRQ then the following9
properties hold:
(i) If P �→P′ then Q′ exists such that Q⇒Q′RP′.11

(ii) If P
y=x→P′ then Q′ exists such that Q

y=x⇒Q′RP′.
(iii) If P �x→P′ then for every y some Q′; Q′′ exist such that Q⇒ �x→Q′′ and13

Q′′{y=x}⇒Q′RP′{y=x}.
(iv) If P

�(x)→ P′ then for every y some Q′; Q′′ exist such that Q⇒ �(x)→ Q′′ and15
Q′′{y=x}⇒Q′RP′{y=x}.

The early open bisimilarity ≈e
o is the largest early open bisimulation.17

Clause (iv) is easy to understand. Its counterpart for weak bisimilarity of �-calculus
is familiar. Clause (iii) calls for some explanation. In � �=-calculus free actions can also19
incur name updates in suitable contexts. Suppose P �x→P′′. Then (x)(P | N�y:Q) �→P′′{y=
x} |Q{y=x}. Even if P′′ ⇒P′, one does not necessarily have P′′{y=x}⇒P′{y=x}. Had21
we replaced clause (iii) by (iii′) If P �x→P′ then some Q′ exists such that Q �x⇒Q′RP′

then we would have obtained the problematic equation involving mismatch in Section 1.23
The similarity of clause (iii) and clause (iv) exhibits once again the uniformity of the
names in �-like calculi.25
Analogously we can introduce late open bisimilarity.

De�nition 4. Let R be a binary symmetric relation on C. It is called a late open27
bisimulation if it is closed under substitution and whenever PRQ then the following
properties hold:29
(i) If P �→P′ then Q′ exists such that Q⇒Q′RP′.

(ii) If P
y=x→P′ then Q′ exists such that Q

y=x⇒Q′RP′.31
(iii) If P �x→P′ then Q′′ exists such that Q⇒ �x→Q′′ and for every y some Q′ exists

such that Q′′{y=x}⇒Q′RP′{y=x}.33

(iv) If P
�(x)→ P′ then Q′′ exists such that Q⇒ �(x)→ Q′′ and for every y some Q′ exists

such that Q′′{y=x}⇒Q′RP′{y=x}.35
The late open bisimilarity ≈l

o is the largest late open bisimulation.

It is clear that ≈l
o⊆≈e

o. The following example shows that inclusion is strict:37

ax:[x = y]�: P + ax:[x �= y]�: P ≈e
o ax:[x = y]�: P + ax:[x �= y]�: P + ax: P
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but not1

ax:[x = y]�: P + ax:[x �= y]�: P ≈l
o ax:[x = y]�: P + ax:[x �= y]�: P + ax: P

since the action3

ax:[x = y]�: P + ax:[x �= y]�: P + ax: P ax→P

cannot be matched by any action from ax:[x=y]�: P + ax:[x �=y]�: P in the late ap-5
proach.
The next lemma assures that both the early open bisimilarity and the late open7

bisimilarity are closed under parallel operation.

Lemma 5. Both ≈e
o and ≈l

o are closed under the restriction and composition opera-9
tions.

Proof. We prove the lemma for ≈e
o. The proof for ≈l

o is similar. Let R be the following11
relation:

{((x̃)(P |R); (x̃)(Q |R)) |P ≈e
o Q}:13

We prove that R is an early open bisimulation. It is clear that R is closed under
substitution. Now suppose P≈e

o Q. Consider two cases:15

• Suppose that (x̃)(P |R) �(x)→ (x̃′)(P′ |R′) is caused by P �x→P′ such that x∈{x̃}. By
deGnition we get that, for every y, there exist Q′; Q′′ such that Q⇒ �x→Q′′ and17

Q′′{y=x}⇒Q′ ≈e
o P

′{y=x}. So (x̃)(Q |R) �(x)→ (x̃′)(Q′′ |R′) and

(x̃′)(Q′′{y=x} |R′{y=x})⇒ (x̃′)(Q′ |R′{y=x})

R (x̃′)(P′{y=x} |R′{y=x}):

• Suppose that (x̃)(P |R) �→ (x̃′)(y)(P′{y=x} |R′{y=x}) is caused by P �x→P′, for some19

x∈{x̃}, and R
�(y)→ R′. Then there exist Q′; Q′′ such that Q⇒ �x→Q′′ and q′′{Y=X }⇒

Q′ ≈E
O p′{Y=X }. It follows that21

(x̃)(Q |R)⇒ (x̃′)(y)(Q′′{y=x} |R′{y=x})

⇒ (x̃′)(y)(Q′ |R′{y=x})

R (x̃′)(y)(P′{y=x} |R′{y=x}):
Conclude that ≈e

o is closed under restriction and parallel composition.

Neither ≈e
o nor ≈l

o is closed under the choice combinator and the mismatch operator.23
For instance neither P + Q≈e

o �: P + Q nor [x �=y]P≈e
o [x �=y]�: P necessarily holds,

although P≈e
o �: P is valid. To obtain the largest congruence relation contained in ≈e

o25
(≈l

o), we apply the standard approach [22]. This standard approach was originally
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proposed to close up a weak equivalence under the choice combinator. As it turns out1
the relation thus obtained is also closed under the mismatch operator.

De�nition 6. Two processes P and Q are early open congruent, notation P�e
o Q, if3

P≈e
o Q and, for each substitution !, the following conditions are satisGed:

(i) If P! �→P′ then Q′ exists such that Q! �⇒Q′ and P′ ≈e
o Q

′.5
(ii) If Q! �→Q′ then P′ exists such that P! �⇒P′ and P′ ≈e

o Q
′.

The late open congruence �l
o is deGned similarly.7

It is clear that �e
o is deGned in terms of ≈e

o. The diHerence between the two is that
the former requires a Grst tau action of P be simulated by a nonempty sequence of9
tau moves from Q whereas the latter requires a Grst tau action of P be simulated by a
sequence, possibly an empty sequence, of tau moves from Q. The stronger requirement11
of �e

o is to make sure that things are closed under the choice operator as well as the
mismatch operator. For early open bisimilarity it could be that Q + P �≈e

o Q + �: P,13
although P≈e

o �: P. The DeGnition 6 rules out situation like this for �e
o. The properties

(i) and (ii) should hold for every substitution ! for otherwise �e
o would not be closed15

under preGx operation. For instance a Grst tau action of P | [x=y]�:Q, where x and
y are distinct, can be simulated by a Grst tau action of P | [x=y]Q since no actions17
from either [x=y]�:Q or [x=y]Q are allowed. But a(x):(R + P | [x=y]�:Q) is not
early open bisimilar to a(x):(R+ P | [x=y]Q) because after the Grst computation step19
the name x might be identiGed to y.

Lemma 7. Both �e
o and �l

o are congruence relations.21

Proof. The proof that �e
o and �l

o are equivalent is routine.

Suppose P�e
o Q. Let C[ ] be a context and ! be a substitution. If C[P!] �→C′[P!′]23

is caused by an action induced by the context C[ ] then C[Q!] �→C′[Q!′] matches up

the action. If C[P!]
a(x)→ C′[P′] is caused by an action induced by P!

a(x)→ P′ then for25

each y some Q′ and Q′′ exist such that Q!⇒ a(x)→ Q′′ and Q′′{y=x}⇒Q′ �e
o P

′{y=x}.
Consequently C[Q!]⇒ a(x)→ C′[Q′′] and C′{y=x}[Q′′{y=x}]⇒C′{y=x}[Q′]�e

o C
′{y=x}27

[P′{y=x}].
The reader can easily check out the rest of the cases.29

It is easy to check that P�e
oQ (P�l

oQ) if and only if C[P]≈e
o C[Q] (C[P]≈l

o C[Q])
for every full context C[ ]. As a matter of fact the implication from the left to the31
right is given by Lemma 7. For the reverse implication, simply let C[ ] be + Naa for
a fresh name a.33

4. Barbed bisimilarity

The barbed equivalence, introduced by Milner and Sangiorgi in [25], is often quoted35
as a universal equivalence relation for process algebra. The deGnition of barbed equiv-
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alence is often based on a reduction semantics introduced by Berry and Boudol [2] and1
Milner [23]. The reduction based algebraic semantics has also been studied by Honda
and Yoshida [16]. For a speciGc process calculus barbed equivalence immediately gives3
rise to an observational equivalence. For two process calculi barbed equivalence can
be used to compare the semantics of the two models. The barbed approach has been5
quite successful in the study of a number of oHsprings of the �-calculus. Examples
include the higher order �-calculus [30], the asynchronous �-calculus [1,19] and object7
calculus [14,15].
Despite the universal nature, barbed equivalence may enjoy quite diHerent properties9

in diHerent process calculi. In this section we demonstrate that the barbed equivalence
for the � �=-calculus is even more diHerent. A characterization theorem for the barbed11
bisimilarity on � �=-processes is provided. Some illustrating pairs of barbed equivalent
processes are given. First we introduce the notion of barbedness.13

De�nition 8. A process P is strongly barbed at a, notation P ↓ a, if P
�(x)→ P′ or P �x→P′

for some P′ such that a∈{�; N�}. P is barbed at a, written P ⇓ a, if some P′ exists such15
that P⇒P′ ↓ a. A binary relation R is barbed if ∀a∈N: P ⇓ a⇔Q ⇓ a whenever PRQ.

From the point of view of barbed equivalence an observer cannot see the content of a17
communication. What an observer can detect is the ability of a process to communicate
at particular channels. Two processes are identiGed if they can simulate each other in19
terms of this ability.

De�nition 9. Let R be a barbed symmetric relation on C. The relation R is a barbed21
bisimulation if whenever PRQ and P �→P′ then Q⇒Q′RP′ for some Q′. The barbed
bisimilarity ≈b is the largest barbed bisimulation closed under context.23

Some explanation is called for. The barbed bisimilarity deGned above is diHerent
from the popular one since ≈b is required to be closed under context. We have adopted25
this deGnition since barbed bisimilarity is a bisimulation equivalence. Like any other
bisimulation equivalence, it should be tested against dynamic environments. In other27
words, it must be closed under all contexts at each bisimulation step. This version of
barbed congruence was initially studied by Honda and Yoshida in [16]. Recent works29
on barbed congruence are increasingly using this version. For example Sangiorgi and
Walker have related this version of barbed congruence to quasi-open congruence [32].31
The trade-oH of the simplicity of the above deGnition is that it provides little in-

tuition about equivalent processes. We know that it is weaker than most bisimulation33
equivalences. But we want to know how much weaker it is. One way to understand the
barbed bisimilarity is that the observing power of environments are so weak that they35
can only detect the e5ects of the actions performed by the observees. In other words,
two processes are equivalent if they can always exert same eHects on environments.37
Now suppose that P≈b Q and that P wants to exchange the name x for the name y
from an environment at channel � by performing P �x→P′. For the exchange to happen39
the environment must be able to perform an observing action which is N�y. In this41
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case in order for Q to deliver the same eHect as the action �x could, Q can do one of1
the following things:
• Q⇒ �x→Q′′ and Q′′{y=x}⇒Q′ ≈b P′{y=x}. This means that Q does absolutely the3

same thing.

• Q⇒ �(z)→ Q′′ and Q′′{y=z} y=x⇒Q′ ≈b P′{y=x}. In this case Q receives the name y at5
channel � and then cheats on the environment by delivering the eHect of the exchange
of x for y through incurring the exchange on its own.7

• Q
�y⇒ y=x⇒Q′ ≈b P′{y=x}. Here the Grst thing Q does is to exchange y for y at channel

�, which is nothing but to take in as it were the observing action of the environment.9
Then it incurs an exchange of x for y on its own, achieving the same eHect on the
environment.11

• Q
y=x⇒ �y⇒Q′ ≈b P′{y=x}. The situation is similar to the one in previous case. But now

the cheating happens even before the consumption of the observing action.13

• Q
y=x⇒ �(z)→ Q′′ and Q′′{y=z}⇒Q′ ≈b P′{y=x}. Like in previous case, here the observee

delivers the eHect Grst, but then Gnds another way to consume the observing action.15
From the point of view of a mobile process, its interaction with an environment consists
of two ingredients: One is the consumption of the observing move of the environment;17
the other is the delivery of the eHect of the interaction. In �-calculus the two things
always go together. In �-calculus however they may happen at diHerent points of the19
interaction.
With above observation in mind, we now give some examples of barbed equivalent21

processes that substantiate our intuition. Most of the examples in this paper involve

long expressions. To make things more readable, we will write A def= P R (A + Q)23
for P R (P + Q), where R is a binary relation on processes. The Grst example of
equivalent pair is this:25

A1
def= �x:(P1 + [x=y1]�:Q) + �x:(P2 + [x �= y1]�:Q) ≈b A1 + �x:Q: (9)

If the component �x:Q on the right hand side is involved in a communication in which27
x is replaced by y1 then �x:(P1 + [x=y1]�:Q) can simulate the action. Otherwise
�x:(P2 + [x �=y1]�:Q) would do the job. The role of the tau preGx is to remove the29
match or the mismatch operator. The second example is more interesting:

A2
def= �(z):(P1 + [z = y2]〈z|x〉:Q) + �x:(P2 + [x �= y2]�:Q{x=z})

≈b A2 + �x:Q{x=z}: (10)

The communication N�y2 | (x)(A2 + �x:Q{x=z}) �→ 0 |Q{x=z}{y2=x} for instance can be31
matched up by the following communication:

N�y2 | (x)A2
�→ 0 | (x)(P1{y2=z}+ [y2 = y2]〈y2|x〉:Q{y2=z}) �→ 0 |Q{y2=z}{y2=x}:33

For a name w distinct from y2 the action

N�w | (x)(A2 + �x:Q{x=z}) �→ 0 |Q{x=z}{w=x}35
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can be matched by1

N�w | (x)A2
�→ 0 |P2{w=x}+ [w �= y2]�:Q{x=z}{w=x} �→ 0 |Q{w=z}{w=x}:

Another possibility arises when the name y2 is bound. In this case the communication3

(y2)( N�y2 | (A2 + �x:Q{x=z})) �→ 0 |Q{x=z}{x=y2}
for instance is matched by5

(y2)( N�y2 |A2)
�→(y2)(0 | (P1 + [y2 = y2]〈y2|x〉:Q{y2=z})) �→ 0 |Q{y2=z}{x=y2}:

The third example is unusual:7

A3
def= �y3:(P1 + 〈y3|x〉:Q) + �x:(P2 + [x �= y3]�:Q) ≈b A3 + �x:Q: (11)

If the component �x:Q participates in a communication in which x exchanges for y39
then its role can be simulated by �y3:(P1 + 〈y3|x〉:Q). For instance

(x)((A3 + �x:Q) | N�y3)
�→Q{y3=x} | 011

is simulated by the following reduction:

(x)(�y3:(P1 + 〈y3|x〉:Q) | N�y3)
�→(x)((P1 + 〈y3|x〉:Q) | 0) �→Q{y3=x} | 013

The fourth example, given below, is similar to the third one:

A4
def=〈y4|x〉:(P1 + �y4:Q) + �x:(P2 + [x �= y4]�:Q) ≈b A4 + �x:Q: (12)15

If for example (x)((A4 + �x:Q) | N�y4:O) �→Q{y4=x} |O{y4=x} then the simulation is as
follows:17

(x)(A4 | N�y4:O) �→(P1{y4=x}+ �y4:Q{y4=x}) | N�y4:O{y4=x} �→Q{y4=x} |O{y4=x}
The Gfth example is the combination of (10) and (12):19

A5
def= 〈y5|x〉:(P1 + �(z):(P′

1 + [z = y5]�:Q)) + �x:(P2 + [x �= y5]�:Q{x=z})

≈b A5 + �x:Q{x=z}: (13)

Notice that the component 〈y5|x〉:(P1 + �(z):(P′
1 + [z=y5]�:Q)) is operationally the

same as the following process: 〈y5|x〉:(P1 + �(z):(P′
1 + [z=y5]〈z|x〉:Q)).21

In the above examples, all the explicit mismatch operators contain the name x. In
general there could be other conditions. The treatment of the match operator is easy.23
The mismatch operator is however nontrivial. Suppose & is a sequence of mismatch
operators such that all names in & are diHerent from both x and z. An example more25
general than (9) is this:

A′
1
def= �x:(P1 + &[x = y1]�:Q) + �x:(P2 + &[x �= y1]�:Q)

≈b A′
1 + [x �∈ n(&)]&�x:Q: (14)
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We need to explain the mismatch sequence in [x �∈n(&)]&�x:Q. The & before �x:Q is1
necessary for otherwise an action of ([x �∈n(&)]�x:Q)! may not be simulated by any
action from A′

1! when ! invalidates &. The condition [x �∈n(&)] is necessary because3
otherwise (14) would not be closed under substitution. A counter example is given by
the pair of processes:5

�x:[y �= z][x = y1]�:Q + �x:[y �= z][x �= y1]�:Q

and7

�x:[y �= z][x = y1]�:Q + �x:[y �= z][x �= y1]�:Q + [y �= z]�x:Q:

If we substitute x for z in the two processes we get the following two processes:9

�x:[y �= x][x = y1]�:Q{z=x}+ �x:[y �= x][x �= y1]�:Q{z=x}
and11

�x:[y �= x][x = y1]�:Q{z=x}+ �x:[y �= x][x �= y1]�:Q{z=x}+ [y �= x]�x:Q{z=x}
which are not barbed bisimilar. This is because the communication13

(D + [y �= x]�x:Q{z=x}) | N�y �→Q{z=x}{y=x};
where D is �x:[y �= x][x=y1]�:Q{z=x}+�x:[y �= x][x �=y1]�:Q{z=x}, cannot be simulated15
by D | N�y in general. Similarly example (10) can be generalized to the following:

A′
2
def= �(z):(P1 + [x �∈ n(&)]&[z = y2]〈z|x〉:Q) + �x:(P2 + &[x �= y2]�:Q{x=z})

≈b A′
2 + [x �∈ n(&)]&�x:Q{x=z}; (15)

where z �∈ n(&)∪{x}. Here the mismatch sequence [x �∈ n(&)] in the Grst summand of17
A′
2 can be removed without aHecting the validity of (15). But (15) as it stands is more

general. The general form of (11) is more delicate:19

A′
3
def= [x �= y3]�y3:(P1 + [x �∈ n(&)]&〈y3|x〉:Q) + �x:(P2 + &[x �= y3]�:Q)

≈b A′
3 + [x �= y3][x �∈ n(&)]&�x:Q: (16)

In both [x �=y3]�y3:(P1 + [x �∈ n(&)]&〈y3|x〉:Q) and [x �=y3][x �∈ n(&)]&�x:Q there is the
mismatch [x �=y3]. If this operator is removed from (16) one has21

B′
3
def= �y3:(P1 + [x �∈ n(&)]&〈y3|x〉:Q) + �x:(P2 + &[x �= y3]�:Q)

�≈b B′
3 + [x �∈ n(&)]&�x:Q:

The inequality is clearer if one substitutes x for y3 in the above:

C′
3
def= �x:(P1 + [x �∈ n(&)]&〈x|x〉:Q) + �x:(P2 + &[x �= x]�:Q)

�≈b C′
3 + [x �∈ n(&)]&�x:Q:



UNCORRECTED P
ROOF

TCS4447

ARTICLE IN PRESS
Y. Fu, Z. Yang / Theoretical Computer Science ( ) – 17

The component [x �∈ n(&)]&�x:Q may be involved in a communication in which x is1
replaced by a name in &. This action cannot be simulated by C′

3. The general forms
of (12) and (13) are as follows:3

A′
4
def= 〈y4|x〉:(P1 + &�y4:Q) + �x:(P2 + &[x �= y4]�:Q)

≈b A′
4 + [x �∈ n(&)]&�x:Q; (17)

A′
5
def= 〈y5|x〉:(P1 + �(z):(P′

1 + &[z = y5]�:Q)) + �x:(P2 + &[x �= y5]�:Q{x=z})

≈b A′
5 + [x �∈ n(&)]&�x:Q{x=z}: (18)

If we replace in (14) the second summand �x:(P2 + &[x �=y1]�:Q) of A′
1 by

�(z):(P2 + [x �∈ n(&)]&[z �= y1]〈z|x〉:Q)5

and Q by Q{x=z}, where z �∈ n(&)∪{x}, we get an interesting variant of (14) as follows:

A′′
1

def= �x:(P1 + &[x = y1]�:Q{x=z}) + �(z):(P2 + [x �∈ n(&)]&[z �= y1]〈z|x〉:Q)

≈b A′′
1 + [x �∈ n(&)]&�x:Q{x=z}: (19)

If for instance w is distinct from y1 then N�w | (x)(A′′
1 + [x �∈ n(&)]&�x:Q{x=z}) �→ 0 |7

Q{x=z}{w=x} is matched by N�w | (x)A′′
1

�→ 0 | (P2+[x �∈ n(&)]&[w �=y1]〈w|x〉:Q{w=z}) �→ 0 |
Q{w=z}{w=x}. The bisimilar pairs (15)–(18) have similar variants:9

A′′
2

def= �(z):(P1 + [x �∈ n(&)]&[z = y2]〈z|x〉:Q)

+ �(z):(P2 + [x �∈ n(&)]&[z �= y2]〈z|x〉:Q)

≈b A′′
2 + [x �∈ n(&)]&�x:Q{x=z}; (20)

A′′
3

def= [x �= y3]�y3:(P1 + [x �∈ n(&)]&〈y3|x〉:Q{x=z})

+ �(z):(P2 + [x �∈ n(&)]&[z �= y3]〈z|x〉:Q)

≈b A′′
3 + [x �= y3][x �∈ n(&)]&�x:Q{x=z}; (21)

A′′
4

def= 〈y4|x〉:(P1 + &�y4:Q{x=z}) + �(z):(P2 + [x �∈ n(&)]&[z �= y4]〈z|x〉:Q)

≈b A′′
4 + [x �∈ n(&)]&�x:Q{x=z}; (22)

A′′
5

def= 〈y5|x〉:(P1 + �(z):(P′
1 + &[z = y5]�:Q{z=x}))

+ �(z):(P2 + [x �∈ n(&)]&[z �= y5]〈z|x〉:Q)

≈b A′′
5 + [x �∈ n(&)]&�x:Q{x=z}: (23)
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The most complicated situation arises when all the Gve possibilities as described by1
(19) through (23) happen at one go:

A def= �(z):(P2 + [x �∈ n(&)]&[z �∈ {y1; y2; y3; y4; y5}]〈z|x〉:Q)

+ �x:(P1 + &[x = y1]�:Q{x=z})

+ �(z):(P1 + [x �∈ n(&)]&[z = y2]〈z|x〉:Q)

+ [x �= y3]�y3:(P1 + [x �∈ n(&)]&〈y3|x〉:Q{x=z})

+ 〈y4|x〉:(P1 + &�y4:Q{x=z})

+ 〈y5|x〉:(P1 + �(z):(P′
1 + &[z = y5]�:Q{z=x}))

≈b A+ [x �= y3][x �∈ n(&)]&�x:Q{x=z}:
Similarly examples (14)–(18) can be combined into one as follows:3

A′ def= �x:(P2 + &[x �∈ {y1; y2; y3; y4; y5}]�:Q{x=z})

+ �x:(P1 + &[x = y1]�:Q{x=z})

+ �(z):(P1 + [x �∈ n(&)]&[z = y2]〈z|x〉:Q)

+ [x �= y3]�y3:(P1 + [x �∈ n(&)]&〈y3|x〉:Q{x=z})

+ 〈y4|x〉:(P1 + &�y4:Q{x=z})

+ 〈y5|x〉:(P1 + �(z):(P′
1 + &[z = y5]�:Q{z=x}))

≈b A′ + [x �= y3][x �∈ n(&)]&�x:Q{x=z}:
Having seen so many bisimilar pairs of processes, the reader might wonder how we
have discovered them. As a matter of fact these examples are all motivated by an5
alternative characterization of the barbed bisimilarity. This characterization is given by
an open bisimilarity as deGned below.7

De�nition 10. Let R be a binary symmetric relation on C closed under substitution.
The relation R is a barbed open bisimulation if the following properties hold for P9
and Q whenever PRQ:

(i) If � is an update or a tau and P �→P′ then Q′ exists such that Q �̂⇒Q′RP′.11
(ii) If P �x→P′ then one of the following properties holds:

• Q′ exists such that Q �x⇒Q′RP′;13

• Q′ and Q′′ exist such that Q⇒ �(z)→ Q′′ and Q′′{x=z}⇒Q′RP′;
and, for each y diHerent from x, one of the following properties holds:15
• Q′ and Q′′ exist such that Q⇒ �x→Q′′ and Q′′{y=x}⇒Q′RP′{y=x};
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• Q′ and Q′′ exist such that Q⇒ �(z)→ Q′′ and Q′′{y=z} y=x⇒Q′RP′{y=x};1

• Q′ exists such that Q
�y⇒ y=x⇒Q′RP′{y=x};

• Q′ exists such that Q
y=x⇒ �y⇒Q′RP′{y=x};3

• Q′ and Q′′ exist such that Q
y=x⇒ �(z)→ Q′′ and Q′′{y=z}⇒Q′RP′{y=x}.

(iii) If P
�(x)→ P′ then Q′ exists such that Q

�(x)⇒ Q′ ≈b
o P

′ and, for each y distinct from5
x, one of the following properties holds:

• Q′ and Q′′ exist such that Q⇒ �(x)→ Q′′ and Q′′{y=x}⇒Q′RP′{y=x};7
• Q′ exists such that Q

�y⇒Q′RP′{y=x}.
The barbed open bisimilarity ≈b

o is the largest barbed open bisimulation.9

With a deGnition as complex as DeGnition 10, it is not very clear that the relation it
introduces is well behaved. The next lemma gives one some conGdence on the barbed11
open bisimilarity.

Lemma 11. ≈b
o is closed under context.13

Proof. Let R be {((x̃)(P |R); (x̃)(Q |R)) |P≈b
o Q}∪≈b

o. We prove that R is a barbed

open bisimulation. Suppose (x)(P |R) �(x)→ P′ |R is induced by P �x→P′. Since P≈b
o Q,15

one has, for each y, the following cases:
• If Q′ and Q′′ exist such that Q⇒ �x→Q′′ and Q′′{y=x}⇒Q′ ≈b

o P
′{y=x} then (x)17

(Q |R)⇒ �(x)→ Q′′ |R and Q′′{y=x} |R{y=x}⇒ (Q′ |R{y=x})R(P′{y=x} |R{y=x}).
• If Q′ and Q′′ exist such that Q⇒ �(z)→ Q′′ and Q′′{y=z} y=x⇒Q′ ≈b

o P
′{y=x} then (x)19

(Q |R)⇒ �(z)→ (x)(Q′′ |R) and (x)(Q′′{y=z} |R)⇒ (Q′ |R{y=x})R(P′{y=x} |R{y=x}).
• If Q′ exists such that Q

�y⇒ y=x⇒Q′ ≈b
o P

′{y=x} then21

(x)(Q |R) �y⇒(Q′ |R{y=x})R(P′{y=x} |R{y=x}):

• If Q′ exists such that Q
y=x⇒ �y⇒Q′ ≈b

o P
′{y=x} then23

(x)(Q |R) �y⇒(Q′ |R{y=x})R(P′{y=x} |R{y=x}):

• If Q′ and Q′′ exist such that Q
y=x⇒ �(z)→ Q′′ and Q′′{y=z}⇒Q′RP′{y=x} then (x)25

(Q |R) �⇒ �(z)→ Q′′ |R{y=x} and Q′′{y=z}|R{y=x}⇒(Q′ |R{y=x})R(P′{y=x}|R{y=x}).
The proofs of other cases are similar.27
The fact that ≈b

o is closed under match and preGx operations follow immediately
from the closure under substitution.29

Now we need to show that ≈b
o and ≈b coincide. First we state and prove a technical

lemma.31

Lemma 12. If P≈b Q and P
y=x→P′, then there exists Q′ such that Q

y=x⇒Q′ ≈b P′.
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Proof. Suppose P≈b Q and P
y=x→P′. Let c be a fresh name. Then (x)(P | ([x=y]cc |1

Ncc)) �→ �→P′ | (0 | 0). It follows from P≈b Q that (x)(Q | ([x=y]cc | Ncc))⇒Q′ | (0 | 0)≈b

P′ | (0 | 0) for some Q′. This is possible only if Q
y=x⇒Q′ ≈b P′.3

Theorem 13. ≈b
o and ≈b coincide.

Proof. The inclusion ≈b
o⊆≈b holds by Lemma 11 and the fact that ≈b

o is barbed. Now5
we show that ≈b⊆≈b

o. By deGnition ≈b is symmetric and closed under substitution.

Suppose P≈b Q and P �→P′.7
• If � is a tau then it is matched up by Q⇒Q′ ≈b P′ by deGnition.

• If � is an update action y=x then it is matched up by Q
ŷ=x⇒Q′ ≈b P′ according to9

Lemma 12.
• If � is a free action �x then P | ( N�y + 〈a|b〉) y=x→P′{y=x} | 0 for fresh a and b. It11
follows from P≈b Q and Lemma 12 that

Q | ( N�y + 〈a|b〉) y=x⇒Q′ | 0 ≈b P′{y=x} | 013

for some Q′. There are the following cases:
◦ Q′′ exists such that Q⇒ �x→Q′′ and Q′′{y=x}⇒Q′.15

◦ Q′′ exists such that Q⇒ �(z)→ Q′′ and Q′′{y=z} y=x⇒Q′.

◦ Q
�y⇒ y=x⇒ Q′.17

◦ Q
y=x⇒ �y⇒Q′.

◦ Q′′ exists such that Q
y=x⇒ �(z)→ Q′′ and Q′′{y=z}⇒Q′.19

Therefore the evolution from Q to Q′ must take one of the Gve forms laid down in
the deGnition of barbed open bisimulation. When y is x only the Grst two cases are21
possible. They can be restated as follows:
◦ Q �x⇒Q′.23

◦ Q′′ exists such that Q⇒ �(z)→ Q′′ and Q′′{x=z}⇒Q′.
• If � is a bound action �(x) then P | ( N�y + 〈a|b〉) �→P′{y=x} | 0 for fresh a and b. It25
follows from P≈b Q that

Q | ( N�y + 〈a|b〉) ⇒ Q′ | 0 ≈b P′{y=x} | 027

for some Q′. So either Q
�y⇒Q′ or Q⇒ �(x)→ Q′′ and Q′′{y=x}⇒Q′ for some Q′′. If

y does not appear in Q then the only possibility is that Q
�(x)⇒ Q′.29

Therefore ≈b is a barbed open bisimulation. We conclude that ≈b
o and ≈b

coincide.31

The congruence �b
o is deGned from ≈b

o in the manner of DeGnition 6.
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5. Ground bisimilarity1

The most straightforward bisimulation equivalence for mobile calculi is the open
bisimilarity. As we have seen in the introduction the standard deGnition of open bisim-3
ilarity gives rise to a bad relation. In order to modify the deGnition to obtain a sen-
sible equivalence relation, we have provided in Section 3 two alternative deGnitions.5
Although these two deGnitions give rise to two reasonable equivalence relations, they
appear to be ad hoc. In some sense the early and the late congruence relations are too7
strong. In Section 4 we have seen many barbed equivalent pairs of processes. Most of
these pairs are identiGed neither by the early congruence nor by the late congruence.9
We need a canonical version, so to speak, of the open congruence for � �=. One way
to achieve this is to take the largest subrelation of the hyperequivalence that is closed11
under the parallel composition operator. It is then easy to get a congruence in the
manner of DeGnition 6. However we can arrive at the same relation in a cleaner way.13

De�nition 14. Let R be a symmetric binary relation on C. It is called a bisimulation15

if whenever PRQ and P �→P′ then some Q′ exists such that Q �̂⇒Q′RP′.

Using this auxiliary relation, we can get the desired bisimilarity.17

De�nition 15. The ground bisimilarity ≈g is the largest bisimulation closed under
context.19

As in the barbed case, we will now give an equivalent characterization of ≈g in the
style of open semantics.21

De�nition 16. Let R be a binary symmetric relation on C closed under substitution.
The relation R is a ground open bisimulation if the following properties hold for P23
and Q whenever PRQ:

(i) If � is an update or a tau and P �→P′ then Q′ exists such that Q �̂⇒Q′RP′.25
(ii) If P �x→P′ then Q′ exists such that Q �x⇒Q′RP′ and, for each y diHerent from x,

one of the following properties holds:27
• Q′ and Q′′ exist such that Q⇒ �x→Q′′ and Q′′{y=x}⇒Q′RP′{y=x};
• Q′ and Q′′ exist such that Q⇒ �(z)→ Q′′ and Q′′{y=z} y=x⇒Q′RP′{y=x};29

• Q′ exists such that Q
�y⇒ y=x⇒Q′RP′{y=x};

• Q′ exists such that Q
y=x⇒ �y⇒Q′RP′{y=x};31

• Q′ and Q′′ exist such that Q
y=x⇒ �(z)→ Q′′ and Q′′{y=z}⇒Q′RP′{y=x}.

(iii) If P
�(x)→ P′ then Q′ exists such that Q

�(x)⇒ Q′ ≈b
o P

′ and, for each y distinct from33
x, one of the following properties holds:

• Q′ and Q′′ exist such that Q⇒ �(x)→ Q′′ and Q′′{y=x}⇒Q′RP′{y=x};35
• Q′ exists such that Q

�y⇒Q′RP′{y=x}.
The ground open bisimilarity ≈g

o is the largest ground open bisimulation.37
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According to the deGnition, the ground open bisimilarity is very similar to that of1
the barbed open bisimilarity. There is only a subtle diHerence in the treatment of free
actions. In the barbed case the action P �x→P′ can be matched by either Q �x⇒Q′ for3

some Q′ or by Q⇒ �(z)→ Q′′ and Q′′{x=z}⇒Q′ for some Q′′ and Q′. In the ground case
however the action P �x→P′ can always be matched by Q �x⇒Q′ for some Q′ since this5
is declared in DeGnition 15.
The proof of Lemma 11 is su@cient to establish the following lemma.7

Lemma 17. ≈g
o is closed under context.

Using Lemma 17 the proof of Theorem 13 can be reiterated to prove the following9
theorem.

Theorem 18. ≈g
o and ≈g coincide.11

By deGnition the ground open bisimilarity is contained in the barbed open bisim-
ilarity. The inclusion is strict because equality (10) is not valid for ≈g

o. It follows13
from Theorem 13 and Theorem 18 that the inclusion ≈g⊆≈b is also strict. It is also
easy to see that the early open bisimilarity is strictly contained in the ground open15
bisimilarity.
The ground congruence �g

o is deGned in the fashion of DeGnition 6.17

6. Basic laws

An interesting question about a congruence relation is if there is a Gnite set of sound19
equation schemes and inference rules such that all congruent pairs can be derived from
these equation schemes and rules. Sometimes one has to be less ambitious and be21
contented with a recursively enumerable set of those. Such a set is called a complete
equational system for the congruence. The procedure of Gnding such a complete system23
is called axiomatization. A complete system for an observational equivalence on the
Gnite processes of a process calculus represents a milestone in our understanding of25
the equivalence.
In [6] completeness theorems are proved for L-bisimilarities on �-processes without27

the mismatch operator. The proofs of these completeness results use essentially the
inductive deGnitions of L-bisimilarities. In the presence of the mismatch operator, the29
method used in [6] should be modiGed. The modiGcation is done by incorporating ideas
from [26]. In this section we give a complete axiomatic system for each of the four31
congruence relations using the modiGed approach.
The proofs of completeness theorems use the fact that all processes can be transferred33

to those in normal forms. The deGnition of normal form for the � �=-calculus is diHerent
from that of normal form for the �-calculus. The former deGnition makes use of the fact35
that the mismatch operator makes it possible for us to deal exclusively with complete
conditions in the following sense.37
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De�nition 19. Let V be a Gnite set of names. We say that  is complete on V1
if n( )=V and for each pair x; y of names in V it holds that either  ⇒ x=y or
 ⇒ x �=y.3

Suppose  is complete on V and n(#)⊆V . Then it should be clear that either
 #⇔  or  #⇔⊥. In sequel this fact will be used implicitly.5

Lemma 20. If # and  are complete on V and both agree with ! then #⇔  .

We now begin to describe four axiomatic systems that are complete for the respective7
congruence relations. Let AS denote the system consisting of the rules and laws in
Fig. 1 plus the following expansion law:9

P |Q=
∑
i

#i(x̃)�i:(Pi |Q) +
�i=aixi∑
�j=bjyj

#i j(x̃)(ỹ)[ai = bj]〈xi|yj〉:(Pi |Qj)

+
∑
j

 j(ỹ)�j:(P |Qj) +
�i=aixi∑
�j=bjyj

#i j(x̃)(ỹ)[ai = bj]〈xi|yj〉:(Pi |Qj)

where P is
∑

i #i(x̃)�i: Pi, Q is
∑

j  j(ỹ)�j:Qj, and �i and �j range over {�x | �∈N∪
NN; x∈N}. In the expansion law, the summand11

�i=aixi∑
�j=bjyj

#i j(x̃)(ỹ)[ai = bj]〈xi|yj〉:(Pi |Qj)

contains #i j(x̃)(ỹ)[ai = bj]〈xi|yj〉:(Pi |Qj) as a summand whenever �i = aixi and13
�j =bjyj.
The system AS is essentially the complete system of Parrow and Victor [28] for the15

strong hyperequivalence. AS is complete for the strong open bisimilarity of
� �=-calculus. The strong open bisimilarity is equal to the strong hyperequivalence. So17
the completeness follows from Parrow and Victor’s result.
We write AS �P=Q to indicate that the equality P=Q can be inferred from AS.19

When R1; : : : ; Rn are the major axioms used to derive P=Q, we write P
R1;:::; Rn
= Q.

Some important derived laws of AS are given in Fig. 2.21
It can be shown that AS is complete for the strong open bisimilarity on � �=-processes.

This fact will not be proved here. Our attention will be conGned to the completeness23
problems of the four weak open congruence relations.
Using axioms in AS, a process can be converted to a process that contains no25

occurrence of composition operator. The latter process is of special form as deGned
below.27

De�nition 21. A process P is in normal form on V ⊇fn(P) if P is of the form∑
i∈I1

#i�ixi: Pi +
∑
i∈I2

#i�i(x): Pi +
∑
i∈I3

#i〈zi |yi〉: Pi29
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E1 P = P
E2 P =Q if Q=P
E3 P = R if P=Q and Q=R
C1 �x: P = �x:Q if P=Q
C2 (x)P = (x)Q if P=Q
C3a [x=y]P = [x=y]Q if P=Q
C3b [x �=y]P = [x �=y]Q if P=Q
C4 P + R=Q + R if P=Q
C5 P0 |P1 =Q0 |Q1 if P0 =Q0 and P1 =Q1

L1 (x)0= 0
L2 (x)�y: P = 0 x ∈ {�; N�}
L3 (x)�y: P = �y:(x)P x �∈ {y; �; N�}
L4 (x)(y)P = (y)(x)P
L5 (x)[y= z]P = [y= z](x)P x �∈ {y; z}
L6 (x)[x=y]P = 0 x �=y
L7 (x)(P + Q) = (x)P + (x)Q
L8 (x)〈y|z〉: P = 〈y|z〉:(x)P x �∈ {y; z}
L9 (x)〈y|x〉: P = �: P{y=x} y �= x
M1 #P =  P if # ⇔  
M2 [x=y]P = [x=y]P{y=x}
M3a [x=y](P + Q) = [x=y]P + [x=y]Q
M3b [x �=y](P + Q) = [x �=y]P + [x �=y]Q
M4 P = [x=y]P + [x �=y]P
M5 [x �= x]P = 0
S1 P + 0= P
S2 P + Q=Q + P
S3 P + (Q + R) = (P + Q) + R
S4 P + P = P
U1 〈y|x〉: P = 〈x|y〉: P
U2 〈y|x〉: P = 〈y|x〉:[x=y]P
U3 〈x|x〉: P = �: P

Fig. 1. The axiomatic system AS.

such that the following conditions are satisGed:1
1. #i is complete on V for each i∈ I1 ∪ I2 ∪ I3;
2. Pi is in normal form on V for i∈ I1 ∪ I3;3
3. Pi is in normal form on V ∪{x} for i∈ I2 and x does not appear in P.
Here I1, I2 and I3 are pairwise disjoint Gnite indexing sets.5

Suppose P is in normal form and ! is a substitution. The following observations
about P! are useful:7
• If P! �x→Q then there is a summand #�′x′: P′ of P such that P′!≡Q; �′!= �; !(x′)

= x and that ! validates #.9
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LD1 (x)〈x|x〉: P = 〈y|y〉:(x)P U3 and L8
LD2 (x)[y �= z]P = [y �= z](x)P L5, L7 and M4
LD3 (x)[x �=y]P = (x)P L6, L7 and M4
MD1 [x=y]0= 0 S1, S4 and M4
MD2 [x= x]P = P M1
MD3 #P =#(P!) where ! is induced by # M2
SD1 #P + P = P S-laws and M4
UD1 〈y|x〉: P = 〈y|x〉: P{y=x} U2 and M2

Fig. 2. Some laws derivable from AS.

• If P!
�(x)→ Q then there is a summand #�′(x): P′ of P such that P′!≡Q; �′!= � and1

that ! validates #.

• If P!
y=x→Q then there is a summand #〈y′|x′〉: P′ of P such that P′!{y=x}≡Q,3

!(x′)= x, !(y′)=y and that ! validates #.
• If P! �→Q then there is a summand #〈y′|x′〉: P′ of P such that P′!≡Q, !(x′)= !(y′)5

and that ! validates #.
The depth of a process measures the maximal length of nested extended preGxes in7
the expansion of the process. The structural deGnition goes as follows:

d(0) def= 0

d(�x: P) def= 1 + d(P)

d(P |Q) def= d(P) + d(Q)

d((x)P) def= d(P)

d([x = y]P) def= d(P)

d([x �= y]P) def= d(P)

d(P + Q) def= max{d(P); d(Q)}:
9

Lemma 22. For a process P and a 9nite set V of names such that fn(P)⊆V there is
a normal form Q on V such that d(Q)6d(P) and AS �Q=P.11

Proof. The proof is carried out by structural induction. If for example the outer most
combinator of a process is a restriction operator then there are three cases: (i) The13
process is equal to 0; (ii) It is equal to a process of the form �(x): P such that x �∈ {�; N�};
(iii) Otherwise the restriction operator can be pushed inside. Use M4 if necessary to15
expand the outer most condition operators so that they are complete on V . It is obvious
that this conversion procedure does not increase the depth of the process.17
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T1 P + �: P = �:(P +  �: P)
T2 �x:�: P = �x: P
T3 �x:(P + &�:Q) = �x:(P + &�:Q) + [x �∈ n(&)]&�x:Q
T4 TT4 = TT4 + [x �∈ n(&)]&�x:Q
T5 TT5 = TT5 + [x �∈Y3][x �∈ n(&)]&�x:Q{x=z} z �∈ n(&)
T6 TT6 = TT6 + [x �∈Y3][x �∈ n(&)]&�x:Q{x=z} z �∈ n(&)

Fig. 3. The tau laws.

7. Tau laws1

The complete systems for the weak relations are obtained from AS by adding some
tau laws. The tau laws used in this paper are given in Fig. 3. Some explanations of3
these tau laws are as follows:
• T1 is diHerent from the other tau laws in that it is purely for tau preGx. If we let  5
be false, say [x �= x], then it becomes

P + �: P = �: P7

which is Milner’s second tau laws. It follows immediately that

�: P = �:(P +  �: P)9

which was proposed by the Grst author to axiomatize weak open congruences. The
necessity of this law has been established in [9], see also [13]. Observe that T1 has11
an equivalent formulation as follows:

�: P = P + �:(P +  �: P):13

By induction the law also implies

�: P = �:
(
P +

n∑
i=1

 i �: P
)

15

See [13] for a proof.
• T2 is Milner’s Grst tau law.17
• T3 is a nontrivial extension of Milner’s third tau law. The condition [x �∈ n(&)] is
important for otherwise the preGx �x in the summand [x �∈ n(&)]&�x:Q could incur19
an action that invalidates &, which makes it impossible for �x:(P+&�:Q) to simulate
the action.21

• In T4 the summand TT4 is
∑

y∈Y �x:(Py +&[x=y]�:Q)+�x:(P+&[x �∈Y ]�:Q). Here
Py and Py′ could be diHerent for distinct y and y′ in Y . More explicitly T4 can be23
formulated as follows:∑

i=1;:::;n
�x:(Pi + &[x = yi]�:Q) + �x:(P + &[x �∈ Y ]�:Q)

=
∑

i=1;:::;n
�x:(Pi + &[x = yi]�:Q) + �x:(P + &[x �∈ Y ]�:Q) + [x �∈ n(&)]&�x:Q;25
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where Y is {y1; : : : ; yn}. When Y is a singleton set the law becomes1

�x:(P1 + &[x = y]�:Q) + �x:(P2 + &[x �= y]�:Q)

= �x:(P1 + &[x = y]�:Q) + �x:(P2 + &[x �= y]�:Q) + [x �∈ n(&)]&�x:Q:

It does not seem possible to derive the general form of T4 from this simple equal-
ity. It should be pointed out that the condition x �∈ n(&) has been internalized in the3
law. It cannot be placed as a side condition, like in T5 and T6, because x appears
free in the law. A substitution may well invalidates the condition.5

• The laws T5 and T6 are equational formalizations of the last two examples given
in Section 4. In T5, TT5 abbreviates7

�x:(P + &[x �∈ Y ]�:Q{x=z}) + ∑
y∈Y1

�x:(Py + &[x = y]�:Q{x=z})

+
∑
y∈Y2

�(z):(Py + [x �∈ n(&)]&[z = y]〈z|x〉:Q)

+
∑
y∈Y3

[x �= y]�y:(Py + [x �∈ n(&)]&〈y|x〉:Q{x=z})

+
∑
y∈Y4

〈y|x〉:(Py + &�y:(P′
y + &�:Q{x=z}))

+
∑
y∈Y5

〈y|x〉:(Py + &�(z):(P′
y + &[z = y]�:Q));

where Y is Y1 ∪Y2 ∪Y3 ∪Y4 ∪Y5. In T5 the side condition z �∈ n(&) is safe because
z appears as a bound name in the law. No substitution could invalidate the side9
condition because no substitution could identify a bound name to a free name. The
same remark can be made to T6.11

• In T6, TT6 stands for

�(z):(P + [x �∈ n(&)]&[z �∈ Y ]〈z|x〉:Q)

+
∑
y∈Y1

�x:(Py + &[x = y]�:Q{x=z})

+
∑
y∈Y2

�(z):(Py + [x �∈ n(&)]&[z = y]〈z|x〉:Q)

+
∑
y∈Y3

[x �= y]�y:(Py + [x �∈ n(&)]&〈y|x〉:Q{x=z})

+
∑
y∈Y4

〈y|x〉:(Py + &�y:(P′
y + &�:Q{x=z}))

+
∑
y∈Y5

〈y|x〉:(Py + &�(z):(P′
y + &[z = y]�:Q));

13
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T1a �: P = P + �: P
T1b �: P = �:(P +

∑n
i=1  i�: P)

T2a �:�: P = �: P
T3a �(x):(P + &�:Q) = �(x):(P + &�:Q) + &�(x):Q x �∈ n(&)
T3b 〈y|x〉:(P + &�:Q) = 〈y|x〉:(P + &�:Q) + [x �∈ n(&)]&〈y|x〉:Q
T4a TT4a= TT4a+ &�(x):Q x �∈ n(&)
T5a TT5a= TT5a+ &�(x):Q x �∈ n(&)

Fig. 4. Some derived tau laws.

where Y is Y1 ∪Y2 ∪Y3 ∪Y4 ∪Y5. Notice that1

�(z):(P + 〈z|x〉:Q) = �(z):(P + 〈z|x〉:Q) + �x:Q{x=z} (24)

is a special case of T6, which does not hold for the ground congruence since the3
right hand can perform a free action but the left hand cannot. In �-calculus (24)
distinguishes the barbed congruence from the open congruence [6].5

The tau laws T1, T3, T4, T5 and T6 are new. It is worth remarking that T3, T4,
T5 and T6 are of the same type. They all deal with tau preGxes under the preGx �x.7
Notice that all of them trivialize to

�x:(P + �:Q) = �x:(P + �:Q) + �x:Q9

which is Milner’s third tau law when we remove the mismatch operators. Notice also
that T2, T3, T4, T5 and T6 are only formulated for free preGxes. The bound preGx11
and update preGx versions of these laws are derivable.

Lemma 23. (i) AS ∪{T4} �T3. (ii) AS ∪{T5} �T4.13

Proof. T3 is the special case of T4 when Y is empty. T4 is the special case of T4
when Y2, Y3, Y4 and Y5 are all empty.15

Some derived tau laws are given in Fig. 4. In T4a of Fig. 4 the shorthand notation
TT4a is for17 ∑

y∈Y
�(x):(Py + &[x = y]�:Q) + �(x):(P + &[x �∈ Y ]�:Q)

and in T5a the abbreviation TT5a stands for19

∑
y∈Y1

�y:(Py + &�:Q{y=x}) + ∑
y∈Y2

�(x):(Py + &[x = y]�:Q)

+ �(x):(P + &[x �∈ Y1 ∪ Y2]�:Q)
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Lemma 24. The following properties hold:1
(i) AS ∪{T1} �T1a; AS ∪{T1} �T1b.
(ii) AS ∪{T2} �T2a3
(iii) AS ∪{T3} �T3a; AS ∪{T3} �T3b.
(iv) AS ∪{T4} �T4a.5
(v) AS ∪{T5} �T5a.

Proof. (iii) T3a is derived by using the L-laws. For T3b, observe that7

〈y|x〉:(P + &�:Q) = (a)( Nay | ax:(P + &�:Q))

T3= (a)( Nay | (�x:(P + &�:Q) + [x �∈ n(&)]&�x:Q))

= 〈y|x〉:(P + &�:Q) + [x �∈ n(&)]&〈y|x〉:Q;

where the third equality holds by the expansion law.
(iv) By T4 and C2 we get that9

AS ∪ {T4} � TT4a = (x)(TT4 + [x �∈ n(&)]&ax:Q)

= TT4a+ (x)[x �∈ n(&)]&ax:Q

LD3= TT4a+ (x)&ax:Q

LD2= TT4a+ &a(x):Q

(v) Let Y2; Y4; Y5 in TT5 be empty. Then by T5 one gets that

AS ∪ {T5} � (x)TT5 = (x)(TT5 + [x �∈ Y3][x �∈ n(&)]&�x:Q)

= (x)TT5 + (x)[x �∈ Y3][x �∈ n(&)]&�x:Q

LD3= (x)TT5 + (x)&�x:Q

LD2= (x)TT5 + &�(x):Q:

It is routine to show that AS � (x)TT5=TT5a using L9.11

There are two major uses of tau laws. One is to equate processes with related oper-
ational behaviours. The other is to identify processes indistinguishable by an algebraic13
semantics. The former is to do with saturation properties whereas the latter with promo-
tion properties. As a matter of fact one can classify the tau laws according to whether15
they are used to establish saturation and=or promotion properties. For instance T1 is
typically related to promotion properties whereas T3, T4, T5, T6 with saturation prop-17
erties. The classiGcation is not so clear-cut because a law may be crucial in the proofs
of both properties.19
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Fig. 5. ClassiGcation of V by #.

8. Completeness1

In the proofs of this section, we need a careful analysis of the requirement ‘# is
complete on V ’. Here are some observations about the requirement and notations used3
to analyse the requirement:
• Since # is complete on V , it groups the elements of V into several disjoint classes.5
Assume that these classes are [x]; [a1]; : : : ; [ar].
◦ Let #= be the sequence of match operators induced by the equivalence classes7
[a1]; : : : ; [ar].

◦ Let #=x be the sequence of match operators induced by the equivalence class [x].9
◦ Let # �= be the sequence of mismatch combinators constructed as follows:

a �= b is in #�= if and only if a∈ [ap] and b ∈ [aq] for some 16p; q6r11
such that p �= q.

◦ Let #�=x be the sequence of mismatch combinators constructed as follows:13
a �= x is in #�=x if and only if a∈ [a1]∪ · · · ∪ [ar].

Clearly #⇔#=#= x# �=# �=x. The set V can be divided into two subsets:15

V �=x def= {y |y∈V; # ⇒ y �= x} = [a1] ∪ · · · ∪ [ar];

V=x def= {y |y∈V; # ⇒ y = x} = [x]:

Fig. 5 helps one understand the induced conditions.
• If y∈V �=x then we deGne #�=x

\[y] as follows:17

a �= x is in #�=x
\[y] if and only if a∈V �=x \ [y].

It is important to observe that19

#=#=x# �=# �=x
\[y][x = y]

is complete on V and induces !{y=x}. Also notice that21

#�= ⇒ #�=x
\[y]{y=x}; (25)

# �=x ⇔ [x �∈ n(# �=)] ⇔ [x �∈ V �=x]: (26)23
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system rules and laws
ASl

o AS ∪{T1; T2; T3}
ASe

o AS ∪{T1; T2; T4}
ASg

o AS ∪{T1; T2; T5}
ASb

o AS ∪{T1; T2; T5; T6}

Fig. 6. Four axiomatic systems in � �=-calculus.

In the proofs of the saturation and promotion lemmas, we need to use the following1
equality schemes:

#(: : : #=#=x# �=# �=x
\[y][x = y] : : :) = #(: : : #�=[x = y] : : :) (27)3

#(: : : # : : :) = #(: : : [x �∈ n(#�=)]# �= : : :): (28)

These can be proved as follows:5

#(: : : #=#=x# �=# �=x
\[y][x = y] : : :) M2= #(: : : #�=# �=x

\[y][x = y] : : :)

M1= #(: : : #�=(# �=x
\[y]{y=x})[x = y] : : :)

(25)
= #(: : : #�=[x = y] : : :)

and

#(: : : # : : :) = #(: : : #=#=x# �=# �=x : : :)

M2= #(: : : #�=# �=x : : :)

(26)
= #(: : : [x �∈ n(# �=)]# �= : : :):

Now we have enough machinery to do proofs.7
We have provided enough laws to construct the required axiomatic systems. Fig. 6

deGnes four such systems. For instance ASb
o is deGned to be the system AS ∪{T1; T2;9

T5; T6}. These systems will be shown to be complete respectively for the four con-
gruence relations.11
We will follow by now the standard strategy to prove the completeness. First we

establish two lemmas stating the saturation properties. The Grst is a general prop-13
erty held by all the four systems. The second is for individual systems. Based upon
these lemmas, a promotion lemma is proved that lifts a pair of observational equiv-15
alent processes to a pair of proof theoretical equal processes. The promotion lemma
plays the role of Hennessy Lemma which does not hold for mobile processes. A17
proof of the promotion lemma is a proof of the completeness theorem if all the refer-
ences to induction hypothesis in the proof is replaced by references to the promotion19
lemma!
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Lemma 25 (saturation 1). Suppose Q is in normal form on V , # is complete on V ,1
and ! is a substitution induced by #. Then the following properties hold:
(i) If Q! �⇒Q′ then AS ∪{T1; T2; T3} �Q=Q + #�:Q′.3
(ii) If Q!⇒ �x→Q′ then AS ∪{T1; T2; T3} �Q=Q + #�x:Q′.

(iii) If Q!⇒ �(x)→ Q′ then AS ∪{T1; T2; T3} �Q=Q + #�(x):Q′.5

(iv) If Q!
y=x⇒Q′ then AS ∪{T1; T2; T3} �Q=Q + #〈y|x〉:Q′.

Proof. The proof of (i)–(iii) are routine using induction. Here we only give a proof of7

(iv). If Q!
y=x→Q′ then it is routine to show that AS ∪{T1; T2; T3} �Q=Q+#〈y|x〉:Q′.

By the observations made right after DeGnition 21, we may assume without loss of9

generality that Q!
y=x⇒Q′ is of the following form:

Q! �⇒Q1!
y=x→Q2!{y=x} �⇒Q′:11

Since x �=y the equivalence induced by # contains at least two distinct elements [x]
and [y]. Using the notations just deGned, one has the following equality reasoning:13

Q
(i)
= Q + #�:Q1!

MD3= Q + #�:Q1

IH= Q + #�:(Q1 + #〈y|x〉:Q2!{y=x})
T1a= Q + #〈y|x〉:Q2!{y=x}
MD3= Q + #〈y|x〉:Q2{y=x}
UD1= Q + #〈y|x〉:Q2

(i)
= Q + #〈y|x〉:(Q2 + #=#=x# �=# �=x

\[y][x = y]�:Q′)

(27)
= Q + #〈y|x〉:(Q2 + # �=[x = y]�:Q′)

UD1= Q + #〈y|x〉:(Q2 + # �=�:Q′)

T3b= Q + #〈y|x〉:(Q2 + # �=�:Q′) + #[x �∈ n(# �=)]# �=〈y|x〉:Q′

= Q + #[x �∈ n(# �=)]# �=〈y|x〉:Q′

(26)
= Q + ## �=x# �=〈y|x〉:Q′

= Q + #〈y|x〉:Q′:

The last equality holds because #⇒# �=x# �=.
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Notice that unlike the situation in the �-calculus, the second and the third clauses1
of the above lemma cannot be strengthened to the following:
(ii′) If Q! �x⇒Q′ then AS ∪{T1; T2; T3} �Q=Q + #�x:Q′.3

(iii′) If Q !
�(x)⇒ Q′ then AS ∪{T1; T2; T3} �Q=Q + #�(x):Q′.

For instance ax:[x �= a]�:aa ax⇒ aa but not AS ∪{T1; T2; T3} � ax:[x �= a]�:aa= ax:[x �=5
a]�:aa+ ax:aa.
The next lemma describes some additional saturation properties for input actions.7

Lemma 26 (saturation 2). Suppose Q is a normal form on some V = {y1; : : : ; yk}⊇
fn(Q),  is complete on V , and ! is a substitution induced by  . If9

Q!⇒ �(x)→ Q′
1!, Q

′
1!{y1=x}⇒Q1,

Q!⇒ �(x)→ Q′
2!, Q

′
2!{y2=x}⇒Q2,11

...
Q!⇒ �(x)→ Q′

k!, Q
′
k!{yk=x}⇒Qk ,13

Q!⇒ �(x)→ Q′
k+1!⇒Qk+1

then the following properties hold:15
1. Q+ 

∑k
j=1 �(x):(�:Q′

j+ [x=yj]�:Qj)+ �(x):(�:Q′
k+1+ [x �∈V ]�:Qk+1) is provably

equal to Q in AS ∪{T1; T2; T3}.17
2. If Q′

1 ≡Q′; : : : ; Q′
k+1 ≡Q′ then Q +  �(x):(�:Q′ +  

∑k
j=1[x=yj]�:Qj +  [x �∈V ]

�:Qk+1) is provably equal to Q in AS ∪{T1; T2; T3}.19

Proof. We only prove the Grst equality. For every l∈{1; : : : ; k} there are two cases
for Q′

l!{yl=x}⇒Ql:21
• Q′

l!{yl=x}≡Ql. Then

�:Q′
l = �:Q′

l +  [x = yl]�:Q′
l

MD3= �:Q′
l +  [x = yl]�:Q′

l!{yl=x}

= �:Q′
l +  [x = yl]�:Ql:

• Q′
l!{yl=x} �⇒Ql. Clearly !{yl=x} agrees with  [yl = x] and  [yl = x] is complete23

on V ∪{x}. Hence
�:Q′

l = �:(Q′
l +  [x = yl]�:Ql)

= �:(Q′
l +  [x = yl]�:Ql) +  [x = yl]�:Ql

= �:Q′
l +  [x = yl]�:Ql:

By similar argument we get that �:Q′
k+1 = �:Q′

k+1 +  [x �∈V ]�:Qk+1. We are done by25
using (iii) of Lemma 25.

Now we come to the promotion lemma.27
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Lemma 27 (promotion). In � �=-calculus the following properties hold:1
(i) If P≈l

o Q then ASl
o � �: P= �:Q.

(ii) If P≈e
o Q then ASe

o � �: P= �:Q.3
(iii) If P≈g

o Q then ASg
o � �: P= �:Q.

(iv) If P≈b
o Q then ASb

o � �: P= �:Q.5

Proof. By Lemma 22 we may assume that P;Q are in normal form on V =fn(P |Q)=
{y1; y2; : : : ; yk}. Let P be7 ∑

i∈I1
#i�ixi: Pi +

∑
i∈I2

#i�i(x): Pi +
∑
i∈I3

#i〈zi|yi〉: Pi

and Q be9 ∑
j∈J1

 j�jxj:Qj +
∑
j∈J2

 j�j(x):Qj +
∑
j∈J3

 j〈zj|yj〉:Qj:

We prove this lemma by induction on the depth of P |Q. Suppose #i�i: Pi is a summand11
of P and ! is induced by #i.
(ii) P≈e

o Q. There are several cases:13

• �i! is an update preGx 〈y|x〉. It follows from P≈e
o Q that Q!

y=x⇒Q′ ≈e
o Pi{y=x}! for

some Q′. By induction hypothesis we have that ASe
o � �:Q′ = �: Pi!{y=x}. By (iv) of15

Lemma 25

Q=Q + #i〈y|x〉:Q′

=Q + #i〈y|x〉:�:Q′

=Q + #i〈y|x〉:�: Pi!{y=x}
=Q + #i〈y|x〉: Pi!{y=x}
=Q + #i〈y|x〉: Pi!

=Q + #i�i!:Pi!

=Q + #i�i:Pi:

• �i! is a bound action �(x). According to the deGnition of early open bisimilarity17
there are the following cases:

◦ For each l∈{1; : : : ; k}, Q′
il and Qil exist such that Q!⇒ �(x)→ Q′

il! and Q′
il!{yl=x}19

⇒Qil ≈e
o Pi!{yl=x}.

◦ Q′
ik+1

and Qik+1 exist such that Q!⇒ �(x)→ Q′
ik+1

!⇒Qik+1 ≈e
o Pi!.21

By induction hypothesis

ASe
o � �:Qil = �: Pi!{yl=x}23

for l∈{1; : : : ; k} and

ASe
o � �:Qik+1 = �: Pi!:25
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By Lemma 261

Q = Q +
k∑

l=1
#ia(x):(�:Q′

il + #i[x = yl]�:Qil)

+#ia(x):(�:Q′
ik+1

+ #i[x �∈ V ]�:Qik+1)

= Q +
k∑

l=1
#ia(x):(�:Q′

il + #i[x = yl]�: Pi!{yl=x})

+#ia(x):(�:Q′
ik+1

+ #i[x �∈ V ]�: Pi!)

= Q +
k∑

l=1
#ia(x):(�:Q′

il + #i[x = yl]�: Pi) + #ia(x):(�:Q′
ik+1

+ #i[x �∈ V ]�: Pi)

T4a= Q + #ia(x): Pi

= Q + #i�i: Pi:

• �i! is a free action �x. Similarly there are two cases:
◦ For each l∈{1; : : : ; k}, Q′

il and Qil exist such that Q!⇒ �x→Q′
il! and Q′

il!{yl=x}3
⇒Qil ≈e

o Pi!{yl=x}.
◦ Q′

ik+1
and Qik+1 exist such that Q!⇒ �x→Q′

ik+1
!⇒Qik+1 ≈e

o Pi!.5
By induction hypothesis

ASe
o � �:Qil = �: Pi!{yl=x}7

for l∈{1; : : : ; k} and

ASe
o � �:Qik+1 = �: Pi!:9

Since #i is complete on V , it groups the elements of V into several disjoint classes.
Assume that these classes are [x]; [a1]; : : : ; [ar].11
◦ If yl ∈V �=x then #=

i #=x
i # �=

i # �=x
i\[yl][x=yl] is complete on V and induces !{yl=x}.

By Lemma 2513

Q = Q + #i�x:Q′
il

= Q + #i�x:�:Q′
il

= Q + #i�x:(�:Q′
il + #=

i #
=x
i # �=

i #
�=x
i\[yl]

[x = yl]�:Qil)

(27)
= Q + #i�x:(�:Q′

il + # �=
i [x = yl]�:Qil):
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◦ Since #=
i #=x

i # �=
i # �=x

i is complete on V and induces !, one has by Lemma 25 that1

Q = Q + #i�x:Q′
ik

= Q + #i�x:�:Q′
ik

= Q + #i�x:(�:Q′
ik + #=

i #
=x
i # �=

i #
�=x
i �:Qik+1)

(28)
= Q + #i�x:(�:Q′

ik + [x �∈ n(# �=
i )]#

�=
i �:Qik+1)

(26)
= Q + #i�x:(�:Q′

ik + # �=
i [x �∈ V �=x]�:Qik+1):

Now

Q = Q +
∑

yl∈V �=x

#i�x:(�:Q′
il

+#�=
i [x = yl]�:Qil) + #i�x:(�:Q′

ik+1
+ # �=

i [x �∈ V �=x]�:Qik+1)

= Q +
∑

yl∈V �=x

#i�x:(�:Q′
il + # �=

i [x = yl]�: Pi!{yl=x})

+#i�x:(�:Q′
ik+1

+ # �=
i [x �∈ V �=x]�: Pi!)

= Q +
∑

yl∈V �=x

#i�x:(�:Q′
il + # �=

i [x = yl]�: Pi) + #i�x:(�:Q′
ik+1

+ # �=
i [x �∈ V �=x]�: Pi)

T4= Q + #i[x �∈ n(# �=
i )]#

�=
i �x:Pi

= Q + #i�x: Pi:

• �i! is a tau action. If the tau action is matched by Q! �⇒Q′ then it is easy to prove3
that ASe

o �Q=Q + #i�i: Pi. If the tau action is matched vacuously then ASe
o �Q +

#i�i: Pi =Q + #i�:Q.5

In summary we have ASe
o �P + Q=Q +

∑
i∈I ′ #i�:Q for some I ′⊆I . So by T1b we

get7

ASe
o � �:(P + Q) = �:

(
Q +

∑
i∈I ′

#i�:Q
)

= �:Q

Symmetrically we can prove ASe
o � �:(P + Q)= �: P. Hence ASe

o � �: P= �:Q.9
(i) P≈l

o Q. The proof is similar to that for ≈e
o. We consider only one case:

• �i! is a bound action �(x). It follows from P≈l
o Q that some Q′ exists such that11

the following hold:

◦ For each l∈{1; : : : ; k}, Q′ and Qil exist such that Q!⇒ �(x)→ Q′! and Q′!{yl=x}13
⇒Qil ≈l

o Pi!{yl=x}.
◦ Qik+1 exists such that Q!⇒ �(x)→ Q′!⇒Qik+1 ≈l

o Pi!.15
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By induction hypothesis,1

ASl
o � �:Qil = �: Pi!{yl=x}

for l∈{1; : : : ; k} and3

ASl
o � �:Qik+1 = �: Pi!:

By (ii) of Lemma 26 we get5

Q = Q + #i�(x):
(
�:Q′ + #i

k∑
l=1

[x = yl]�:Qil + #i[x �∈ V ]�:Qik+1

)

= Q + #i�(x):
(
�:Q′ + #i

k∑
l=1

[x = yl]�: Pi!{yl=x}+ #i[x �∈ V ]�: Pi!
)

= Q + #i�(x):
(
�:Q′ + #i

k∑
l=1

[x = yl]�: Pi + #i[x �∈ V ]�: Pi

)

= Q + #i�(x):(�:Q′ + #i�: Pi)

T3a= Q + #i�(x):Pi:

Then by a similar argument as in (i) we get that ASl
o � �: P= �:Q.

(iii) The proof is similar to that of (iv).7
(iv) Suppose P≈b

o Q and P!
�i!→Pi!. By assumption Q must be able to match this

action. There are several cases:9
• �i! is a bound action �(x)= �i!(x). In this case V could be divided into two parts

V1 and V2.11
◦ For each y∈V1⊆V , Q′′

y and Q′ exist such that Q!⇒ �y→Q′′
y!⇒Q′ ≈b

o Pi!{y=x}.
By induction hypothesis ASb

o � �:Q′ = �: Pi!{y=x}. Then by (i) and (ii) of13
Lemma 25,

Q = Q + #i�y:Q′′
y

= Q + #i�y:(Q′′
y + #i�:Q′)

= Q + #i�y:(Q′′
y + #i�: Pi!{y=x})

MD3= Q + #i�y:(Q′′
y + #i�: Pi{y=x})

= Q + #i�y:(Q′′
y + #=

i #
=x
i # �=

i #
�=x
i �: Pi{y=x})

(28)
= Q + #i�y:(Q′′

y + [x �∈ n(#=
i )]#

=
i �: Pi{y=x}):15
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◦ For each y∈V2, Q′′
y and Q′ exist such that Q!⇒ �(x)→ Q′′

y! and1

Q′′
y!{y=x} ⇒ Q′ ≈b

o Pi!{y=x}:

By induction hypothesis ASb
o � �:Q′ = �: Pi!{y=x}. Then by (iii) of Lemma 25 and3

the fact that [x=y]#i induces !{y=x} and is complete on V ∪{x}, one has

Q = Q + #i�(x):Q′′
y

= Q + #i�(x):(Q′′
y + #i[x = y]�:Q′)

= Q + #i�(x):(Q′′
y + #i[x = y]�: Pi!{y=x})

= Q + #i�(x):(Q′′
y + #i[x = y]�: Pi)

= Q + #i�(x):(Q′′
y + #=

i #
=x
i # �=

i #
�=x
i [x = y]�: Pi)

(28)
= Q + #i�(x):(Q′′

y + [x �∈ n(#=
i )]#

=
i [x = y]�: Pi):

◦ Q′′
y and Q′ exist such that Q!⇒ �(x)→ Q′′

y! and Q′′
y!⇒Q′ ≈b

o Pi!. By induction hy-5
pothesis ASb

o � �:Q′ = �: Pi!. Then by (iii) of Lemma 25 and the fact that [x �∈V ]#i

induces ! and is complete on V ∪{x}, we can prove in similar manner that7

ASb
o � Q = Q + #i�(x):(Q′′

y + [x �∈ n(#=
i )]#

=
i [x �∈ V ]�: Pi):

Putting together all the equalities we have obtained, one has9

Q = Q + #i�(x):(Q′′ + [x �∈ n(#=
i )]#

=
i [x �∈ V ]�: Pi)

+#i
∑

y∈V1

�y:(Q′′
y + [x �∈ n(#=

i )]#
=
i �: Pi{y=x})

+#i
∑

y∈V2

�(x):(Q′′
y + [x �∈ n(#=

i )]#
=
i [x = y]�: Pi)

T5a= Q + #i[x �∈ n(#=
i )]#

=
i �(x): Pi

= Q + #i�(x): Pi

= Q + #i�i!(x): Pi

= Q + #i�i(x): Pi:

• �i! is a free action �x= !(�i)!(xi). As in the proof of (ii) we deGne the equivalent
classes [x]; [a1]; : : : ; [ar] and the notations #=

i , #=x
i , # �=

i , # �=x
i , V=x and V �=x. Now11

V �=x could be divided into at most Gve disjoint subsets V1; V2; V3; V4; V5 according to
how Q! simulates the free action.13
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◦ For each y∈V1, Q′′
y and Q′ exist such that Q!⇒ �x→Q′′

y! and Q′′
y!{y=x}⇒Q′ ≈b

o1

Pi!{y=x}. By induction hypothesis ASb
o � �:Q′ = �: Pi!{y=x}. Now #=

i #=x
i # �=

i # �=x
i\[y]

[x=y] is complete on V and induces !{y=x}. Therefore3

Q = Q + #i�x:Q′′
y

= Q + #i�x:(Q′′
y + #=

i #
=x
i # �=

i #
�=x
i\[y][x = y]�:Q′)

(27)
= Q + #i�x:(Q′′

y + # �=
i [x = y]�:Pi):

◦ For each y∈V2, Q′′
y and Q′ exist such that Q!⇒ �(z)→ Q′′

y! and Q′′
y!{y=z}

y=x⇒Q′

≈b
o Pi!{y=x}. By induction hypothesis ASb

o � �:Q′ = �: Pi!{y=x}. Since #i[z=y] is5
complete on V ∪{z} and induces !{y=z}, one has

Q = Q + #i�(z):Q′′
y

= Q + #i�(z):(Q′′
y + #i[z = y]〈y|x〉:Q′)

= Q + #i�(z):(Q′′
y + #i[z = y]〈y|x〉:�:Q′)

= Q + #i�(z):(Q′′
y + #i[z = y]〈y|x〉:�: Pi!{y=x})

= Q + #i�(z):(Q′′
y + #i[z = y]〈y|x〉: Pi!{y=x})

= Q + #i�(z):(Q′′
y + #i[z = y]〈y|x〉: Pi)

(28)
= Q + #i�(z):(Q′′

y + [x �∈ n(# �=
i )]#

�=
i [z = y]〈z|x〉: Pi):

◦ For each y∈V3, Q′′
y and Q′ exist such that Q!⇒ ay→Q′′

y!
y=x⇒Q′ ≈b

o Pi!{y=x}. By7
induction hypothesis ASb

o � �:Q′ = �: Pi!{y=x}.

Q = Q + #i�y:Q′′
y

= Q + #i�y:(Q′′
y + #i〈y|x〉:Q′)

= Q + #i�y:(Q′′
y + #i〈y|x〉:�:Q′)

= Q + #i�y:(Q′′
y + #i〈y|x〉:�: Pi!{y=x})

= Q + #i�y:(Q′′
y + #i〈y|x〉:Pi!{y=x})

= Q + #i�y:(Q′′
y + #i〈y|x〉:Pi)

(28)
= Q + #i�y:(Q′′

y + [x �∈ n(# �=
i )]#

�=
i 〈y|x〉: Pi)

= Q + #i[x �= y]�y:(Q′′
y + [x �∈ n(# �=

i )]#
�=
i 〈y|x〉: Pi):
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◦ For each y∈V4, Q′′′
y , Q′′

y and Q′ exist such that Q!
y=x⇒Q′′

y!{y=x}
�y→Q′′′

y !{y=x}1
⇒Q′ ≈b

o Pi!{y=x}. By induction hypothesis ASb
o � �:Q′ = �: Pi!{y=x}. Now #=

i #=x
i

# �=
i # �=x

i\[y][x=y] is complete on V and induces !{y=x}. Therefore3

Q = Q + #i〈y|x〉:Q′′
y

= Q + #i〈y|x〉:(Q′′
y + #=

i #
=x
i # �=

i #
�=x
i\[y][x = y]�y:Q′′′

y )

(27)
= Q + #i〈y|x〉:(Q′′

y + # �=
i �y:Q

′′′
y )

= Q + #i〈y|x〉:(Q′′
y + # �=

i �y:(Q
′′′
y + #=

i #
=x
i # �=

i #
�=x
i\[y][x = y]�:Q′))

(27)
= Q + #i〈y|x〉:(Q′′

y + # �=
i �y:(Q

′′′
y + # �=

i �:Q
′))

= Q + #i〈y|x〉:(Q′′
y + # �=

i �y:(Q
′′′
y + # �=

i �: Pi!{y=x}))

= Q + #i〈y|x〉:(Q′′
y + # �=

i �y:(Q
′′′
y + # �=

i �: Pi)):

◦ For each y∈V5 there exist Q′′
y , Q′′′

y and Q′ such that Q!
y=x⇒Q′′

y!{y=x}⇒
�(z)→

Q′′′
y !{y=x} and Q′′′

y !{y=x}{y=z}⇒Q′ ≈b
o Pi{y=x}. In similar manner one shows5

that

Q = Q + #i〈y|x〉:(Q′′
y + # �=

i �(z):(Q
′′′
y + # �=

i [z = y]�: Pi)):7

◦ For name z �∈V �=x, it is clear that ! substitutes z for x. There are two possibilities:

9
1. Q′′ and Q′ exist such that Q!⇒ �x→Q′′! and Q′′!⇒Q′ ≈b

o Pi!. Then we get

Q = Q + #i�x:Q′′

= Q + #i�x:(Q′′ + #=
i #

=x
i # �=x

i # �=
i �:Q

′)

(28)
= Q + #i�x:(Q′′ + [x �∈ n(# �=

i )]#
�=
i �:Q

′)

= Q + #i�x:(Q′′ + [x �∈ n(# �=
i )]#

�=
i �: Pi);

where the last equality holds by induction hypothesis.11

2. Q′′ and Q′ exist such that Q!⇒ �(z)→ Q′′! and Q′′!{x=z}⇒Q′ ≈b
o Pi!. Then

Q = Q + #i�(z):Q′′

= Q + #i�(z):(Q′′ + #i[z = x]�:Q′)

= Q + #i�(z):(Q′′ + #i[z = x]�:Pi!)
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= Q + #i�(z):(Q′′ + #i[z = x]�:Pi)

(28)
= Q + #i�(z):(Q′′ + [x �∈ n(# �=

i )]#
�=
i [z = x]�: Pi)

= Q + #i�(z):(Q′′ + [x �∈ n(# �=
i )]#

�=
i [z = x]〈z|x〉: Pi);

where the third equality holds by induction hypothesis.1
If the subcase 1 holds, we can use T5 to conclude that

Q=Q + #i�x:(Q′′ + [x �∈ n(# �=
i )]#

�=
i �: Pi)

+#i
∑

y∈V1

�y:(Q′′
y + # �=

i [x = y]�: Pi{y=x})

+#i
∑

y∈V2

�(z):(Q′′
y + [x �∈ n(# �=

i )]#
�=
i [z = y]〈z|x〉: Pi)

+#i
∑

y∈V3

[x �= y]�y:(Q′′
y + [x �∈ n(# �=

i )]#
�=
i 〈y|x〉: Pi)

+#i
∑

y∈V4

〈y|x〉:(Q′′
y + # �=

i �y:(Q
′′′
y + # �=

i �: Pi))

+#i
∑

y∈V5

〈y|x〉:(Q′′
y + # �=

i �(z):(Q
′′′
y + # �=

i [z = y]�: Pi))

=Q + #i[x �∈ V3][x �∈ n(# �=
i )]#

�=
i �x: Pi

=Q + #i[x �∈ V3][x �∈ V �=x]# �=
i �x: Pi

=Q + #i�x: Pi

=Q + #i!(�i)!(xi): Pi

=Q + #i�ixi: Pi:

Otherwise subcase 2 must hold. Then we can use T6 to get Q=Q+#i�ixi: Pi using3
a similar derivation.

• �i! is an update action 〈y|x〉= 〈yi!|xi!〉. Then Q′ exists such that Q!
y=x⇒Q′ ≈b

o Pi5
!{y=x}. By induction hypothesis one has ASb

o � �:Q′ = �: Pi!{y=x}. By (iv) of Lemma
25 one gets7

Q=Q + #i〈y|x〉:Q′

=Q + #i〈y|x〉:�:Q′

=Q + #i〈y|x〉:�: Pi!{y=x}
=Q + #i〈y|x〉: Pi!{y=x}
=Q + #i〈y|x〉: Pi!
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=Q + #i〈yi!|xi!〉:Pi!

=Q + #i〈yi|xi〉:Pi

• �i! is a tau action. If the tau action is matched by Q! �⇒Q′ then it is easy to prove1
that ASb

o �Q=Q+#i�i: Pi. If the tau action is matched up by Q vacuously then we
can prove that ASb

o �Q + #i�i: Pi =Q + #i�:Q.3
In summary we have ASb

o �P + Q=Q +
∑

i∈I ′ #i�:Q for some I ′⊆I3. By Lemma 24
we get ASb

o � �:(P + Q)= �:(Q +
∑

i∈I ′ #i�:Q)= �:Q. Symmetrically we can prove5
ASb

o � �:(P + Q)= �: P. Hence ASb
o � �: P= �:Q.

The promotion lemma can now be used to prove the main result of this section.7

Theorem 28 (Completeness). In � �=-calculus the following completeness results hold:
(i) P�l

o Q if and only if ASl
o �P=Q.9

(ii) P�e
o Q if and only if ASe

o �P=Q.
(iii) P�g

o Q if and only if ASg
o �P=Q.11

(iv) P�b
o Q if and only if ASb

o �P=Q.

Proof. The implications from the right to the left are about soundness. The soundness13
of AS is subsumed by the soundness of Parrow and Victor’s system for the strong
hyperequivalence [29]. The veriGcations of the validity of the tau laws are routine and15
simple.
The implications from the left to the right are about completeness. By Lemmas 2517

and 27 one can prove the completeness in very much the same way the proof of
Lemma 27 is done.19

9. Bisimulation lattice

By deGnition observational equivalences place a lot of emphasis on observers. In21
process algebra, the role of the observers are played by the contexts. Two processes
are tested for equality by putting them in same contexts and then observing the conse-23
quences. This approach actually calls for a careful study of contexts. However working
with contexts are not always that easy. A formal treatment of contexts would deGnitely25
introduce a notion of equality between them, which conceivably depends on a notion
of equality for processes. The problem can be avoided by conGning our attention to27
processes. With the help of a labeled transition system, the bisimulation approach tries
to deGne equivalences between processes purely in terms of the actions the processes29
can perform, disregarding all contexts. This approach has been very successful with
CCS. For the �-calculus, the open bisimilarities can be deGned without referring to31
contexts, although a new deGning property, closure under substitution, is generally re-
quired. In the theory of �-calculus the bisimulation approach has also been successful.33
All the bisimulation equivalences proposed so far have equivalent characterizations in
terms of open style bisimulations. These characterizations also have the virtue that they35
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do not refer to contexts. We have seen in this paper that working without contexts is1
a great advantage as far as axiomatization is concerned.
But contexts do help to form intuitions. The deGnitions of the barbed bisimilarity and3

the ground bisimilarity are straightforward and conceptually clear. The great diHerence
between these equivalences and their open counterparts can only serve as a support for5
the simplicity of the two deGnitions. Now the question is if the contexts can help us
to Gnd other interesting equivalence relations.7
We will give a classiGcation of the bisimulation equivalences on � �=-processes in

terms of the bisimulation lattice introduced in [6]. The bisimulation lattice builds on9
a classiGcation of actions. In this paper we adopt the classiGcation given in [6]. Four
sets of actions are deGned as follows:11
• u is the set {y=x | x; y∈N} of updates.
• ba is the set {a(x) | x; a∈N} of bound actions with positive subject names.13
• ba is the set { Na(x) | x; a∈N} of bound actions with negative subject names.
• fa is the set {ax | x; a∈N} of free actions with positive subject names.15
• fa is the set { Nax | x; a∈N} of free actions with negative subject names.

Let L be {⋃ S | S⊆{u; ba; ba; fa; fa} ∧ S �= ∅}.17

De�nition 29. Suppose R is a symmetric binary relation on C closed under con-

texts and L∈L. It is called an L-bisimulation if whenever PRQ and P �→P′ for19

�∈L∪{�} then some Q′ exists such that Q �̂⇒Q′RP′. The L-bisimilarity ≈L is the
largest21
L-bisimulation.

Without further ado, we begin to discuss the order relationship of L-bisimilarities.23

Lemma 30. The following properties hold:
(i) ≈L⊆≈u for each L∈L.25
(ii) ≈L ⊆≈ba and ≈L ⊆≈ba for each L∈L.
(iii) ≈fa *≈fa; ≈fa *≈fa.27

Proof. (i) Suppose P≈L Q and P
y=x→P′. Let a; b; z be fresh and let A be

(aa+ Naa+ a(z) + Na(z) + 〈b|a〉) | [x = y](aa+ Naa+ a(z) + Na(z) + 〈b|a〉):29

Then (x)(P|A)⇒P′ | (0 | 0). Therefore (x)(Q|A)⇒Q′ | (0 | 0)≈L P′ | (0 | 0). It has to be

the case that Q
y=x⇒Q′ ≈L P′.31

(ii) Suppose P≈L Q and P
�(x)→ P′. Let a; b be fresh. Then P | N�x:〈a|b〉 �→ b=a→P′ | 0.

By (i) some Q′ exists such that Q | N�x:〈a|b〉 b=a⇒Q′ | 0≈L P′ | 0. It follows that Q
�(x)⇒ Q′33

≈L P′.
(iii) It is clear that35

a(z):(P + 〈z|x〉:Q) ≈fa a(z):(P + 〈z|x〉:Q) + ax:Q{x=z}:
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Fig. 7. The bisimulation lattice of � �=.

However1

fa(z):(P + 〈z|x〉:Q) �≈fa a(z):(P + 〈z|x〉:Q) + ax:Q{x=z}:

So ≈fa*≈fa. For similar reason ≈fa*≈fa.3

The above lemma implies that there are only four distinct L-bisimilarities. In Fig. 7
the relationship of the four L-bisimilarities are described in a diagram, in which5
an arrow indicates an inclusion and each node represents a class of equal
L-bisimilarities.7
If we assume that an observer can observe an action, say ax if and only if it can

also observe the complementary action, which is Nax in this case, then it makes sense9
to say that there are only two reasonable observational equivalences for � �=-calculus.
The next lemma says that these two equivalences are precisely the barbed bisimilarity11
and the ground bisimilarity.

Lemma 31. (i) ≈b is equal to ≈u. (ii) ≈g is the same as ≈fa∪fa.13

Proof. (i) Suppose P≈u Q and P⇒ cx→P′. Then P | Nc(y):〈a|b〉 b=a⇒P′′ for fresh a; b and

some P′′. By deGnition some Q′ exists such that Q | Nc(y):〈a|b〉 b=a⇒Q′ ≈u P′′. It follows15
that P ⇓ c. So ≈u⊆≈b. The reverse inclusion follows from Lemma 12.
(ii) It is obvious that ≈g⊆≈fa∪fa. The reverse inclusion is supported by the proofs17

of (i) and (ii) of Lemma 30.

De�nition 32. Suppose L∈L. Two processes P and Q are L-congruent,19
notation P�L Q, if P≈L Q and, for each substitution !, the following conditions are
satisGed:

21
(i) If P! �→P′ then Q′ exists such that Q! �⇒Q′ and P′ ≈L Q′.
(ii) If Q! �→Q′ then P′ exists such that P! �⇒P′ and P′ ≈L Q′.23
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We now discuss the completeness issues for L-congruences. By Lemmas 30 and 31,1
we only have to look at �fa and �fa. Now let T6+ be

TT6+ def= a(z):(P + [x �∈ n(&)]&[z �∈ Y ]〈z|x〉:Q)

+
∑
y∈Y1

ax:(Py + &[x = y]�:Q{x=z})

+
∑
y∈Y2

a(z):(Py + [x �∈ n(&)]&[z = y]〈z|x〉:Q)

+
∑
y∈Y3

[x �= y]ay:(Py + [x �∈ n(&)]&〈y|x〉:Q{x=z})

+
∑
y∈Y4

〈y|x〉:(Py + &ay:(P′
y + &�:Q{x=z}))

+
∑
y∈Y5

〈y|x〉:(Py + &a(z):(P′
y + &[z = y]�:Q))

= TT6+ + [x �∈ Y3][x �∈ n(&)]&ax:Q{x=z}

and let T6− be3

TT6− def= Na(z):(P + [x �∈ n(&)]&[z �∈ Y ]〈z|x〉:Q)

+
∑
y∈Y1

Nax:(Py + &[x = y]�:Q{x=z})

+
∑
y∈Y2

Na(z):(Py + [x �∈ n(&)]&[z = y]〈z|x〉:Q)

+
∑
y∈Y3

[x �= y] Nay:(Py + [x �∈ n(&)]&〈y|x〉:Q{x=z})

+
∑
y∈Y4

〈y|x〉:(Py + & Nay:(P′
y + &�:Q{x=z}))

+
∑
y∈Y5

〈y|x〉:(Py + & Na(z):(P′
y + &[z = y]�:Q))

= TT6− + [x �∈ Y3][x �∈ n(&)]& Nax:Q{x=z};

where Y is Y1 ∪Y2 ∪Y3 ∪Y4 ∪Y5 and z �∈ n(&). Using T6+ and T6− we can state the
following completeness theorem.5

Theorem 33. The following properties hold:

(i) AS ∪{T1; T2; T5; T6+} is sound and complete for �fa.7
(ii) AS ∪{T1; T2; T5; T6−} is sound and complete for �fa.
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Proof. The proof of this theorem is completely the same as that of Theorem 28,1
bearing in mind that for barbed congruence the free actions are not compared against
each other whereas for fa-congruence, respectively fa-congruence, the free actions3
with positive subject names, respectively negative subject names, are not compared
against each other.5

10. Remark

The Grst author of the paper has been working on �-calculus for some years. His7
attention had always been on the version of � without the mismatch combinator. By
the end of 1999 he started looking at testing congruence on �-processes. In order to9
axiomatize the testing congruence he was forced to introduce the mismatch operator.
This led him to deal with open congruences on � �=-processes, which made him aware11
of the fact that the open semantics for the �-calculus with the mismatch combinator
has not been investigated before. So he, together with the second author, began to13
work on the problem. Their investigation showed that the obvious deGnition of open
bisimilarity is not closed under the parallel composition. It is then a small step to15
realize the problem of the weak hyperequivalence.
The purpose of this paper is to provide solutions to the above problem. Historically17

the early and the late open bisimilarities [11] were proposed before the barbed and
ground bisimilarities [12]. The relationship between the early open bisimilarity and19
the late open bisimilarity strongly recalls that between the weak early equivalence
and the weak late equivalence [24]. It should be said however that both the early21
open bisimilarity and the late open bisimilarity are the obvious modiGcations with
motivation from �-calculus. They are not the open bisimilarity for the �-calculus with23
the mismatch operator. The deGnition of the ground bisimilarity is natural. Its open
counterpart is more general than the early and late open bisimilarities.25
The paper improves upon previous work in several directions:

• The subtlety of the mismatch operator is brought under light. For �-like process27
calculi the combinator changes the algebraic semantics dramatically. For other calculi
of mobile processes it has more or less the same dramatic eHect [13]. The approach29
and the techniques used in this paper should be relevant to the studies of a wide
range of mobile calculi.31

• The tau laws in this paper simpliGes those given in [12]. We have combined four
of the tau laws in [12] into two tau laws, T1 and T3, in this paper. And we have33
also dropped the following law present in [12]:

〈y|x〉:(P + &�:Q) = 〈y|x〉:(P + &�:Q) +  &〈y|x〉:Q: (29)35

This law comes with the following side condition:
If &⇒u �=v then either  ⇒ [x=u][y �=v] or  ⇒ [x=v][y �=u] or  ⇒ [y=u][x �=v]37
or  ⇒ [y=v][x �=u] or  ⇒ [x �=u][x �=v][y �=u][y �=v].
Notice that the side condition is internalized in (29) as  . In this paper we have39
found a way to bypass this law by using T3b that is derivable from T3. It is clear



UNCORRECTED P
ROOF

TCS4447

ARTICLE IN PRESS
Y. Fu, Z. Yang / Theoretical Computer Science ( ) – 47

that T3b is a special case of (29) and, by completeness, is equivalent to (29) in the1
system AS ∪{T1; T2; T3}.

• In [29] four tau laws are proposed for fusion calculus. Using the notations of [29]3
they can be written as follows:

�:1: P = �: P; (30)5

P + 1: P = 1: P; (31)

�:(P + M̃1:Q) = �:(P + M̃1:Q) + M̃�:Q; (32)7

=:(P + M̃>:Q) = =:(P + M̃>:Q) + M̃ = ∧ >:Q if ∀u; v:(M̃ ⇒ u �= v) ⇒ ¬(u=v); (33)
where � is a communication action, =; > are fusion actions, M̃ is a sequence of9
match=mismatch operators, and 1 is the tau preGx. Here are some observations on
these tau laws:11
◦ The laws (30) and (31) are two of the three of Milner’s tau laws.
◦ The ‘law’ (32) is not valid. The counterexample to (32) is given in the introduc-13
tion.

◦ The ‘law’ (33) is not valid either. The problem is too obvious to worth a comment.15
It is not even valid for hyperequivalence. Even the hyperequivalence is closed
under substitution. The equality (33), by its very deGnition, defeats the property17
of closure under substitution! The following is an instance of (33) since the side
condition is satisGed:19

{x = y}:(P + [u �= v]1:Q) = {x = y}:(P + [u �= v]1:Q) + [u �= v]{x = y}:Q:

But if we substitute u for x and v for y we get the equality21

{x = y}:(P + [x �= y]1:Q) = {x = y}:(P + [x �= y]1:Q) + [x �= y]{x = y}:Q
which is really wrong. The formula23

∀u; v:(M̃⇒u �= v)⇒¬(u=v)
is not the description of an internal condition due to the presence of a fusion action25
=. It is the confusion of two things that makes the above formula meaningless.

◦ The equality �: P= �:(P +  �: P) is not derivable, which means that none of the27
completeness results for weak congruences in [29] is correct. These weak systems
cannot prove �:[x=y]�= �, which is an instance of our T1.29

Our T3 is the correction of (32) and our T3b is a rectiGcation of (33). In order
for (33) to be valid, the side condition has to be internalized. Whether in Fusion31
Calculus a tau law like T3b is necessary or not depends on whether the fusion preGx
is a primitive preGx or an induced preGx.33

• In [33] two weak equivalences on fusion calculus were discussed. They are weak
hyperequivalence and weak barbed equivalence. The authors claimed that the two35
equivalences were the same. It was shown in [6] that this claim is false by set-
ting them in the framework of L-bisimilarities. The calculus studied in [6] is the37
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representative classes of equal bisimilarities corresponding system
≈u {≈L |∅ �=L⊆ba∪ u∪ ba} AS ∪{T1; T2; T5}
≈fa {≈L |fa⊆L⊆fa∪ ba∪ u∪ ba} AS ∪{T1; T2; T6−}
≈fa {≈L |fa⊆L⊆fa∪ ba∪ u∪ ba} AS ∪{T1; T2; T6+}

≈fa∪fa {≈L |fa∪fa⊆L⊆fa∪fa∪ ba∪ u∪ ba} AS ∪{T1; T2; T5; T6}

Fig. 8. Complete systems for L-congruences.

�-calculus without the mismatch operator. This paper improves our understanding1
by taking a close look at the L-bisimilarities for the �-calculus with the mismatch
operator. Moreover we have provided complete systems for all the L-congruences3
in present case. The L-congruences and their complete systems are summarized in
Fig. 8.5

Many questions about � �=-calculus awaits to be answered. We mention some of them:
• The calculus of this paper lacks of an important operator, the recursion operator.7
We have ignored it because it does not have any impact on the algebraic theory
discussed in this paper. But axiomatization of congruences on ‘inGnite processes’9
is feasible for Gnite state (Gnite control) processes. Research in this direction was
pioneered by Milner [20,21] in the setting of CCS and was followed up by Lin in11
the symbolic framework for �-calculus [17,18]. Investigation of similar problems for
�-calculus will deGnitely improve our understanding of the language.13

• The barbed bisimilarity studied in this paper is slightly diHerent from the barbed
equivalence studied in literature. It diHers from that of the barbed bisimilarity in that15
the latter is closed under context in every bisimulation step whereas the former is
closed under context only in the very beginning.17

De�nition 34. P and Q are barbed equivalent, notation P≈e
b Q, if for each full context

C[ ] there is some barbed bisimulation R such that C[P]RC[Q].19

It is clear that ≈b is contained in ≈e
b. The inclusion is strict as can be seen from

the following example:21

[x �= y]�:(P + �:[x �= y]�:(P + �)) ≈e
b [x �= y]�:(P + �)

but23

[x �= y]�:(P + �:[x �= y]�:(P + �)) �≈b [x �= y]�:(P + �):

Similarly we can deGne ground equivalence.25

De�nition 35. P and Q are ground equivalent, notation P≈e
g Q, if for each full context

C[ ] there is some bisimulation R such that C[P]RC[Q].27

The above pair of processes serve to distinguish ≈e
g from ≈g. So the inclusion

≈g⊆≈e
g is strict.29
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It is clear that both ≈e
b and ≈e

g are congruence relations. We have not carried out1
any study on the completeness problem for these two congruences.
• More generally, one can introduce L-equivalences as follows:3

De�nition 36. Suppose R is a symmetric binary relation and L∈L. It is called

a ground L-bisimulation if whenever PRQ and P �→P′ for �∈L∪{�} then some5

Q′ exists such that Q �̂⇒Q′RP′. The ground L-bisimilarity ≈̇L is the largest ground
L-bisimulation. Two processes P;Q are ground equivalent, notation P≈e

L Q, if C[P] ≈̇L7
C[Q] for each full context C[ ].

The order structure of the L-equivalences, the axiomatic systems of the L-equivalences9
and the relationship of L-equivalences to the barbed equivalence as well as the ground
equivalence are all open problems. The only thing we know is that L-congruences are11
strictly contained in the L-equivalences.

Proposition 37. For each L, the inclusion �L⊆≈e
L is strict.13

The strictness is supported by the preceding example.
• For the �-calculus without the mismatch operator the deGnition of L-bisimilarities15
can be slightly simpliGed as follows:

De�nition 38. The relation R is an L-bisimulation if whenever PRQ then for any17

process R and any sequence x̃ of names it holds that if (̃x)(P|R) #→P′ for #∈L∪{�}
then there exists some Q′ such that (̃x)(Q|R) #̂⇒Q′ and P′RQ′. The L-bisimilarity ≈L19
is the largest L-bisimulation.

In the above deGnition closure under preGx operation is not required. In [6] it is21
proved that the L-bisimilarities deGned in DeGnition 38 are closed under substitution
and consequently is also closed under preGx operation. In the �-calculus without the23
mismatch, the L-bisimilarities introduced in the above deGnition and those introduced
by DeGnition 29 coincide. For � �=-calculus the relationship is not known.25
Finally we take the opportunity to explain some of the design decisions we have

made in this paper:27
• Previous papers on �-calculus have used square brackets for free actions, update
actions, free preGx, update preGx, match and mismatch, and substitution. In this29
paper we liberate the square brackets from overloading, by using some standard
notations. In two places we deviate from Fusion’s notation. We use 〈y|x〉 for the31
update (fusion) preGx to make it more distinct from substitution. The symmetry
of 〈y|x〉, and the use of ‘|’, conveys the idea that the preGx can incur both a33
substitution of y for x and a substitution of x for y. The use of the notation y=x
for update action in preference to the notation {x=y} for fusion action is more35
technical. In algebraic theory, the update y=x is a lot nicer than the fusion {x=y}.
Take for instance the deGnition of ground bisimulation for the polyadic calculus. An37
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update action1

P
y1=x1 ;:::;yn=xn→ P′

is matched up by3

Q
y1
1=x

1
1 ;:::;y

1
n1
=x1n1⇒ · · · y

i
1=x

i
1 ;:::;y

i
ni
=xini⇒ Q′

SUCH THAT {y1
1 =x

1
1 ; : : : ; y

1
n1 =x

1
n1} : : : {yi

1=x
i
1; : : : ; y

i
ni =x

i
ni} = {y1=x1; : : : ; yn=xn}. On the5

other hand, a fusion action

P
{y1=x1 ;:::;yn=xn}→ P′7

is matched up by the following fusions:

Q ⇒ {y1
1=x11 ;:::;y

1
n1
=x1n1}−−−−−−−−−→ Q1

Q′
1 ⇒ {y2

1=x21 ;:::;y
2
n2
=x2n2}−−−−−−−−−→ Q2

...

Q′
i−2 ⇒

{yi−1
1 =xi−1

1 ;:::;yi−1
ni−1

=xini}−−−−−−−−−−−−−→Qi−1

Q′
i−1 ⇒ {yi

1=xi1 ;:::;y
i
ni
=xini}−−−−−−−−−→ Q′

such that the following conditions are satisGed:9
◦ There is some substitution !1 induced by {y1

1 = x11 ; : : : ; y
1
n1 = x1n1} such that Q1!1 ≡

Q′
1.11

◦ There is some substitution !i−1 induced by {yi−1
1 = xi−1

1 ; : : : ; yi−1
ni−1

= xi−1
ni−1

} such
that Qi−1!i−1 ≡ Q′

i−1.13
◦ The combined eHect of {y1

1 =x11 ; : : : ; y
1
n1 =x1n1} : : : {yi

1=xi1; : : : ; y
i
ni = xini} is the same

as that of {y1 = x1; : : : ; yn = xn}.15
What all these say is that fusion actions should achieve the same eHect as the

update actions. An update retains the message of symmetry since if P
y=x→P′ then17

P
x=y→P′{x=y}.

• The operational semantics deGned in this paper disallows updates like x=x. The19
alternative is to admit such updates and let the observational semantics to identify
x=x with �. We are not in favour of an operational identiGcation of x=x to � that21
uses the following rule:

P
x=x→P′

P �→P′ :23

In our opinion an operational semantics should avoid having rules like

P �→P′

P �′→P′25
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which adds nothing to the semantics apart from proposing an alias for an action.1
Nor do we favour a syntactical identiGcation of x=x with �. The identiGcation would
make one wonder if � contains a free name or not. Conceptually a tau indicates a3
communication that has been completed, whereas an update is a communication on
its way.5

• The tau preGx, the update preGxes and the bound preGxes are induced preGxes. This
has the nice consequence that many laws about these preGx operators are derivable.7
T3b is one example. If the algebraic properties of an induced operator are all deriv-
able from the properties of other operators, then it seems right to let it be an induced9
operator.
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