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Abstract. A value-passing calculus is a process calculus in which the
contents of communications are values chosen from some data domain,
and the propositions appearing in the conditionals are formulas con-
structed from a logic. Previous studies treat the domain models, as well
as the logic theories, as unspecified oracles. The open-ended approach
leaves open some fundamental issues unanswered. The paper provides
a more formal account of the value-passing calculi. The new treatment
is self-contained in that the logic theory a value-passing calculus refers
to is formally defined. A value-passing calculus consists of a complete
first order theory with an operational model that makes use of the terms
and the boolean expressions of the theory. A systematic investigation
into the theory of the value-passing calculi is carried out. A particular
value-passing calculus, VPC, is shown to be the least expressive among
all Turing complete value-passing calculi.

1 Introduction

Process calculus offers one approach to study interactions between computing ob-
jects. The process models can be classified by the type of the entities exchanged
over interactions. The pioneering process calculus, the CCS of Milner [Mil89a],
abstracts away the contents of communications. For this reason, it serves as a
benchmark model for process. Although the pure CCS falls short of being a
very interesting model from the point of view of expressiveness [Fu12b], the ba-
sic theory of CCS does generalize to many process calculi. The value-passing
CCS [Mil89a] adds to CCS the capacity to pass data values between processes.
In addition to the simple mechanism of synchronization, communications of val-
ues render it possible to control the interaction flow by testing the received data
values. This additional control power significantly enhances the expressive power
of the value-passing calculi. The name-passing calculus of Milner, Parrow and
Walker [MPW92], the π-calculus, adopts the policy that the messages sent and
received in communications can only be channel names. The exclusive focus on
the names has achieved both simplicity and expressiveness. It is difficult to ex-
tend the name-passing mechanism to get a strictly stronger model. The process-
passing calculi, or the higher order calculi [San93, Tho89, Tho93, Tho95], have
typically processes as the contents of communications. This seemingly power-
ful communication mechanism turns out to be much less expressive than the
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π-calculus [Fu12b]. To make use of what have been received through communi-
cations, variables (value variables, name variables, process variables) have to be
introduced to act as placeholders.

From a logic point of view, the name-passing calculi and the process-passing
calculi are preferable since they are closed models in the sense that the syntax
and the semantics of these calculi are independent of any models or logics. In
contrary the value-passing calculi, with strong motivation from practice, are
distinguished by the fact that they must refer to an ‘oracle’, be it a domain
model or a logic theory. The traditional treatment to the value-passing calculi
are not self-contained. The attentions have largely been on the process aspect of
the story. The oracles have never been formally defined. The under-specification
of the value domain is not welcome from a foundational viewpoint, nor is it really
useful in practice.

The lightweight treatment of the oracle models/logics is an obstacle to both
theoretical study and application. We mention three immediate consequences.

1. Deep theoretical investigations are inevitably hindered by the open-ended
approach. For example it is not always possible to compare the expressiveness
of a value-passing calculus to another concurrent model. An encoding of
the former into the latter would require that the value terms and the logic
expressions be fully specified.

2. For the same reason there is no way to implement a value-passing calculus,
no matter what is meant by an implementation.

3. An equivalence checking algorithm is out of the question since the existence
of such an algorithm depends on the algorithmic aspect of the oracle model
and/or the oracle logic, which is not available in the open-ended framework.

Apart from these problems, there are also a number of related subtleties that
have to be taken into account when designing a value-passing calculus. Let’s
illustrate these points by scrutinizing the process M(x) defined by the following
recursive equality.

M(x) = if ϕ(x) then a(f(t)) elseM(x+ 1). (1)

There are at least five questions one may ask about the process defined in (1).
The first is concerned with the nature of the oracle. Where are ϕ(x) and t coming
from? There are basically two answers.

1. The first answer is model theoretical. The value term t and the logical ex-
pression ϕ(x) are constructed from the elements of the universe of a model,
the functions and the relations on the universe, and the variables that range
over the universe. The logical expression ϕ must be evaluated in the model
before process (1) fires an action. If ϕ contains free variables, the evaluation
is done with respect to an assignment. Under the model theoretical interpre-
tation, one expects that the process expression if y = y then P else Q can be
immediately put into action. On the other hand the behavior of the process
expression if y = z then P else Q depends on particular assignments.
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2. The second answer is proof theoretical. The value term t is defined induc-
tively from a vocabulary and the logical expression ϕ is legitimate in a first
order theory on top of the vocabulary. The process expression in (1) can fire
if ϕ is a theorem of the theory.

In principle, a proof theoretical approach to oracle design should definitely be
preferred. The point is that all implementations of an oracle are proof theoretical
in nature. As the Incompleteness Theorem of Gödel [G3̈1] tells us, the set of
the statements true in a model is far from being recursively enumerable. But an
implemented system can only generate a recursively enumerable set of theorems.
The proof theoretical approach fits very well with the operational nature of
process calculi.

The second question is about the expressiveness of the logical expressions
appearing in the value-passing processes. Since the set of the theorems of a
first order theory is typically creative [Cut80], there is in general no effective
procedure to decide the theoremhood of a formula. If a theory is reasonably
expressive, there exists some first order logical expression ψ such that neither ψ
nor ¬ψ is provable. This is definitely unacceptable from a programming point
of view. To avoid the embarrassment caused by the Incompleteness Theorem,
one looks for decidable theories in which a sentence is either provably true or
provably false. In implementation one actually asks for more than decidability.
It has been shown that validity checking for a decidable theory could be super
exponential in complexity [FR74, Opp78]. So normally the logical expressions
admitted in a value-passing calculus are confined to the quantifier free formulas.
But this restriction does not entirely eliminate the problem. If ϕ contains the free
variables x1, . . . , xn, then proving ϕ is equivalent to proving ∀x1. . . . ∀xn.ϕ. There
are situations, for example in equivalence checking algorithm, where formulas
with free variables must be dealt with. This suggests to look for first order
theories that are considerably weaker than say Peano Arithmetic.

The third question is about the expressive power of the value terms admitted
in a value-passing calculus. Our value-passing calculus would be too strong if
the f appearing in (1) could be a non-computable function. The Church-Turing
Thesis asserts that all the functions definable in a value-passing calculus are
computable functions if the functions produced by the oracles are computable.
It would be reasonable to disown those oracles that are capable of delivering non-
computable functions. Now here is the twist, if all the recursive functions can
be defined within a value-passing calculus, is it necessary to have an oracle that
produces functions short-cutting the role of the definable functions? A negative
answer would imply that the oracle should only supply constructors for the value
terms; it should not introduce any functions that compute on the value terms.

The fourth question is about the functional separation between the calculi and
the oracles. The standard semantics of the value-passing calculi demands that the
value term f(t) must be calculated to a canonical value before it is exported at
the name a. This additional calculating machinery is not very appealing from the
point of view of an interaction model. In process calculi all calculations should
be achieved by interactions. In other words, the procedure of the calculation
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should be explicitly specified in a process, not implicitly done by an oracle. It
is interesting to notice that the negative answer to the previous question is also
an answer to the present question since it trivializes the issue.

The fifth question is about the level of abstraction of the value-passing calculi.
If n is the least natural number such that ϕ(n) holds according to an oracle,
then M(0) emits f(t) at the channel named a; otherwise M(0) is inactive. If
M(0) ever interacts, it need to consult the oracle for a finite number of times. If
M(0) never interacts, it must consult the oracle to evaluate ϕ(0), ϕ(1), ϕ(2), . . .
consecutively in a non-stop fashion. This phenomenon is familiar to higher order
programming languages, it is however alien to process calculi. The processM(0)
has abstracted away too many computational and interactional activities, the
explicit descriptions of which are precisely what is expected of a process calculus.
If M(0) never interacts, the execution of M(0) in a higher order programming
language would result in a loop, a computational behaviour that is quite different
from that of the command skip. However in the standard semantics of the value-
passing calculi M(0) is strongly bisimilar to 0. In a basic model processes like
(1) should be banned.

The above discussions lead to the following design principle. A value-passing
calculus consists of a first order theory and a labeled transition system. The
former provides both the value terms and the boolean expressions. The latter
defines the semantics of the value-passing processes. The calculus is designed by
taking the following into consideration.

1. To make sure that the first order theory provides a right support to the
operational semantics, the theory is supposed to be complete for the set of
the quantifier free theorems.

2. To guarantee that the first order theory does not interfere with the compu-
tations/interactions defined by the labeled transition system, the formulas
admissible in a value-passing calculus should only contain constructors that
generate the universe of values; they should not contain any functions that
compute on the elements of the universe.

3. To keep the value-passing calculi at the right level of abstraction, it would
be better not to define recursions by recursive definitions parameterized over
value variables. The replication operator is sufficient.

The aim of this paper is to develop a rigid theory of the value-passing calculi
designed with the above remarks in mind. The theory is general enough so that
it can be readily applied to any particular value-passing calculus. It is also formal
enough so that many questions about the value-passing calculi can be addressed.

The paper is structured as follows. Section 2 reviews the relevant terminologies
in mathematical logic. Section 3 studies the operational and the observational
semantics of the value-passing calculi. Section 4 takes a look at symbolic approx-
imation to the absolute equality. Section 5 provides a proof system for the finite
terms. Section 6 discusses the expressiveness requirement for the value-passing
calculi. Section 7 applies the methodology to the value-passing calculus VPC de-
fined over the Peano Arithmetics. Section 8 concludes with discussions on future
research.
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BA P{P1/X1, . . . , Pn/Xn} P is a tautology

EQ1 t = t
EQ2 s = t ⇒ t = s
EQ3 r = s ∧ s = t ⇒ r = t

CG1
∧k
i=1 ti = t′i ⇒ f(t1, . . . , tk) = f(t′1, . . . , t

′
k) f is a k-ary function

CG2
∧k
i=1 ti = t′i ⇒ r(t1, . . . , tk) ⇒ r(t′1, . . . , t

′
k) r is a k-ary relation

FO1 ∀x.φ⇒ φ{t/x}
FO2 φ⇒ ∀x.φ x not in φ
FO3 (∀x.(ϕ⇒ ψ)) ⇒ (∀x.ϕ⇒ ∀x.ψ)

Fig. 1. Logical Axioms of Σ

2 Decidable Theory

Let N be the set of natural numbers. A vocabulary Σ = (F,R, a) consists of two
disjoint nonempty countable sets and one function: F is a finite set of function
symbols; R is a finite set of relation symbols; and a : F ∪ R → N is an arity
function that maps an element of F onto a natural number and an element of R
onto a nonzero natural number. A symbol in F ∪ R is k-ary if it is mapped onto
k under a. A constant is a 0-ary function symbol. It is always assumed that F
contains at least one constant and that R contains the equality relation =.

For each vocabulary Σ there is a countable set VΣ = {x, y, z, . . .} of Σ-
variables. The set TΣ of Σ-terms, ranged over by r, s, t, is defined as follows:

– VΣ ⊆ TΣ .
– If f is a k-ary function symbol and t1, . . . , tk are Σ-terms, then f(t1, . . . , tk)

is a Σ-term.

A Σ-term is closed if it does not contain any Σ-variable, it is open otherwise.
The set of closed Σ-terms is denoted by T0

Σ .
The set EΣ of Σ-expressions, ranged over by φ, ϕ, ψ, is defined as follows:

– The logical false ⊥ is a Σ-expression.
– If r is a k-ary relation symbol and t1, . . . , tk are Σ-terms, then r(t1, . . . , tk)

is an atomic Σ-expression.
– If ϕ, ψ are Σ-expressions, then ϕ⇒ ψ is a Σ-expression.
– If φ is a Σ-expression and x is a Σ-variable, then ∀x.φ is a Σ-expression,

where ∀ is the universal quantifier.

The Σ-variable x in ∀x.φ is bound. A Σ-variable is free if it is not bound. A
Σ-sentence is a Σ-expression that does not contain any free Σ-variables. The
set of Σ-sentences is denoted by E0

Σ . A boolean Σ-expression is a quantifier
free Σ-expression. In sequel we shall freely use the derived logical connectives
�,¬,∧,∨,⇔, ∃.

The first order logic over Σ is the recursive set of the first order logical axioms
defined in Fig. 1. The axiom schema BA actually stands for a recursive set of
boolean axioms, each obtained from a boolean tautology by instantiating all the
propositional variables. The EQ-axioms are about the equivalence property, and
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PA1 ∀x.(s(x) �= 0)
PA2 ∀xy.(s(x) = s(y) ⇒ x = y)
PA3 ∀x.(x = 0 ∨ ∃y.s(y) = x)
PA4 ∀x.(x < s(x))
PA5 ∀xy.(x < y ⇒ s(x) ≤ y)
PA6 ∀xy.(¬(x < y) ⇔ y ≤ x)
PA7 ∀xy.((x < y) ∧ (y < z) ⇒ x < z)

Fig. 2. First Order Theory PA

the CG-axioms formalize the congruence property. The FO-axioms state the
provability of the universally quantified Σ-expressions. In both BA and FO1 the
meta operation substitution is used.

Given a recursive set Γ of Σ-expressions, a proof of ψ from Γ is a finite
sequence (φ1, . . . , φn) of Σ-expressions such that φn is ψ and one of the following
properties holds for each i ≤ n:

– φi is a logical axiom;
– φi ∈ Γ ;
– There are two Σ-expressions ϕ and ϕ⇒ φi in the proof (φ1, . . . , φi−1).

A Σ-expression ψ is a Γ -theorem, notation Γ � ψ, if there is a proof of ψ from Γ ,
and it is a theorem, notation � ψ, if Γ is the empty set. A set Γ of Σ-expressions
is inconsistent if Γ � ⊥; it is consistent otherwise. We sometimes write s =Γ t
for Γ � s = t.

A first order theory over Σ is a consistent recursive set Th of Σ-sentences, the
elements of Th are called nonlogical axioms.

In the context of present paper the most useful first order theory is Presburger
Arithmatic [Pre29]. This is what one gets if the multiplication operator ‘×’ is
removed from the Peano Arithmetic. For the reasons explained in Section 1 we
shall also leave out the addition operator ‘+’. The axioms of our theory PA are
given in Fig. 2, in which x �= y stands for ¬(x = y) and x ≤ y for x = y ∨ x < y.
For a natural number i, let i denote the numeral

s(s(. . . s
︸ ︷︷ ︸

i times

(0) . . .)).

Similarly we write si(x) for the open ΣPA-term

s(s(. . . s
︸ ︷︷ ︸

i times

(x) . . .)).

Presburger [Pre29] proved that remarkably his arithmetic, and consequently the
theory PA defined in Fig. 2, is decidable. This is the foundation for the value-
passing calculi studied in the rest of the paper.

Theorem 1. PA is decidable.
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3 Value-Passing Calculus

According to our discussions in Section 1, we shall focus on the value-passing
calculi defined in terms of decidable first order theories. Throughout this paper
we assume that Th is a decidable first order theory of type Σ. The value-passing
calculus defined on top of Th is denoted by VPCTh. If Th is PA, the subscript in
VPCTh is omitted. The abbreviation will be justified in Section 7.

All process calculi are defined in terms of names. The set N of names is
ranged over by a, b, c, d, e, f, g, h. The set N of conames is {a | a ∈ N}. A
substitution is a partial map σ : VΣ ⇀ TΣ whose domain of definition is finite.
An assignment is a partial map ρ : VΣ ⇀ T0

Σ whose domain of definition is
cofinite. A substitution is often denoted explicitly by {t1/x1, . . . , tn/xn}. The
notations ρ[x←t] and σ[x←t] are understood in the standard interpretation.

The set TVPCTh
of the VPCTh-terms, ranged over by R,S, T and their decorated

forms, is defined by the following BNF:

T :=
∑

i∈I
ϕia(x).Ti |

∑

i∈I
ϕia(ti).Ti | T |T ′ | (c)T | ϕT | !a(x).T | !a(t).T,

where ϕi is a boolean Σ-expression, and I is a finite indexing set. The nota-
tion

∑

i∈{1,...,n} ϕiλi.Ti stands for either
∑

i∈I ϕia(x).Ti or
∑

i∈I ϕia(ti).Ti. The
prefix a(x) is an input primitive that binds the Σ-variable (henceforth just vari-
able) x, and the prefix a(t) is an output primitive. We write fv( ), respectively
bv( ), for the function that returns the set of the free variables, respectively the
bound variables; and let v( ) be fv( ) ∪ bv( ). A VPCTh-term is closed if it does
not contain any free variables. Otherwise it is called an open VPCTh-term. A
closed VPCTh-term is also called a VPCTh-process. We write PVPCTh

for the set of
the VPCTh-processes, ranged over by L,M,N,O, P,Q. For clarity we shall write

A(x, y)
def
= T for instance to indicate that A(x, y) is a shorthand for T with x, y

as the only free variables. The notation A(s, t) denotes T {s/x, t/y}. The com-
position T |T ′ and the localization (c)T are standard constructions. We write
∏

1≤i≤n Ti for the composition T1 |T2 | . . . |Tn. The VPCTh-term
∑

i∈I ϕiλi.Ti
is a conditional guarded choice, and for each i ∈ I the component ϕiλi.Ti is
a summand. The condition ϕi is often omitted if it is �. There is essentially a
unique guarded choice, noted 0, whose index set is the empty set. Often we write
ϕ1λ1.T1 + . . . + ϕnλn.Tn for

∑

i∈{1,...,n} ϕiλi.Ti. It should be remarked that in
∑

i∈I ϕiλi.Ti the constructor is
∑

i∈I ϕiλi. . The conditional ϕT is often written
as if ϕ then T . The two leg conditional if ϕ then S else T can be defined by
ϕS | ¬ϕT . The VPCTh-term !ν.T is a guarded replication. We shall freely use the
guarded fixpoint terms of the form μX.E where X is a process variable whose
occurrences in E are all under some prefixes. The fixpoint construction μX.E
can be encoded by (c)(E{c(z).0/X} | !c(r).E{c(z).0/X}), where c is fresh and
r is a closed term. So the guarded fixpoint operator does not introduce extra
expressive power [FL10]. A VPCTh-term is finite if it does not contain any oc-
currences of the replication operator; it is a finite control term if it contains only
the conditional guarded choice operator and the fixpoint operator.
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Action

∑
i∈I ϕia(x).Ti

a(t)−→ Ti{t/x}

i ∈ I,
t ∈ T0

Σ ,
Th � ϕi. ∑

i∈I ϕia(ti).Ti
a(ti)−→ Ti

i ∈ I,
ti ∈ T0

Σ ,
Th � ϕi.

Composition

S
λ−→ S′

S |T λ−→ S′ |T
S

a(t)−→ S′ T
a(t)−→ T ′

S |T τ−→ S′ |T ′

Localization

T
λ−→ T ′

(c)T
λ−→ (c)T ′

c is not in λ.

Condition

T
λ−→ T ′

ϕT
λ−→ T ′

Th � ϕ.

Recursion

!a(x).T
a(t)−→ T{t/x} | !a(x).T

t ∈ T0
Σ .

!a(t).T
a(t)−→ T | !a(t).T

t ∈ T0
Σ .

Fig. 3. Concrete Semantics

3.1 Concrete Semantics

In this section we define the so-called concrete semantics, which is given by the
labeled transition system in Fig. 3, where the symmetric versions of two compo-
sition rules have been omitted. Although the semantics is defined for all VPCTh-
terms, only the behaviors of the VPCTh-processes are completely characterized.
If Th is the Peano Arithmetic PA, then under our semantics the VPCTh-term
if 0 ≤ x then a(0) can perform an action, but the obviously equivalent VPCTh-
term if x = 0 then a(0) else a(0) cannot do anything.

The reader must have noticed that the rule for the output prefix in our con-
crete semantics appears different from the standard treatment. In the value-
passing calculi defined in terms of a model [Mil89a], the term in an output prefix
must be calculated to a value, an element of the universe, before it is exported.
In our approach however the Σ-term is exported as it is. There are two reasons.
One is that at our abstract model, there is no way to talk about calculation of
terms. But the much more important reason, alluded in Section 1, is that the
functional power of the oracle is undesirable. The first order theory provides a
universe of values, whereas the value-passing calculus does the calculation. If we
maintain a separation between the Σ-terms and the calculations of the Σ-terms,
there is no need to calculate any closed Σ-terms since every closed Σ-term is
already a ‘value’.
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Let us see two examples. Let A be (a)(a(0) |μX.a(x).(a(s(x)) | (τ.X + b(x)))).

A typical action sequence of A is A
τ−→ τ−→ . . .

τ−→ τ−→
︸ ︷︷ ︸

2n+1 times

b(n)−→ 0, where n ≥ 0. As

this example shows, the calculation of the numeral is explicitly demonstrated.
The second example is about the encoding of the minimization operator. It is
given by (a)(a(0) |μX.a(x).(a(s(x)) | if ϕ then b(x) else τ.X)). Notice that if no
numerals satisfy ϕ then the process diverges.

We write =⇒ for the reflexive and transitive closure of
τ−→, and

λ
=⇒ for the

composition =⇒ λ−→=⇒.

3.2 Absolute Equality

A first attempt to define the bisimulations for VPCTh is to reiterate the definition

from the theory of CCS for all VPCTh-terms. This would require that S
λ−→ S′

should be bisimulated by T
̂λ

=⇒ T ′ whenever S is bisimilar to T . Consider
however the VPC-terms a(0).S and if x = 0 then a(0).S else a(0).S. Intuitively

these two VPC-terms are equivalent. But the action a(0).S
a(0)−→ S cannot be

simulated by any action of if x = 0 then a(0).S else a(0).S. There are two ways
to bypass the problem. One is to confine our attention to processes. This would
be a reasonable choice if the operational semantics is formulated in a concrete
manner. The other is to apply a symbolic approach, which would of course fit
very well with the symbolic operational semantics. Before we take a look at
these two solutions, we shall apply to VPCTh the model independent approach
developed in [Fu12b]. The equality so obtained provides not only the intuition,
but also a standard to compare against.

Process equivalences are observational. A process is observable if it may in-
teract with another process.

Definition 1. A process P is observable, notation P⇓, if ∃λ, P ′. P =⇒ λ−→ P ′.

Now whatever an observational equivalence is, it must not identify an observable
process with an unobservable process. Hence the next definition.

Definition 2. A binary relation R is equipollent if P⇓ ⇔ Q⇓ whenever PRQ.

Now suppose two processes P,Q are observationally equivalent. A third process,
say O, cannot detect any difference between P,Q by interacting with them. If
we think of it, the fact that O cannot tell P,Q apart is best interpreted as
saying that P |O and Q |O are observationally equivalent. Now trivially, P and
Q cannot be distinguished by any process that does not interact at a particular
channel name, say c. If one looks at the same thing from another angle, one
easily sees that (c)P must be observationally equivalent to (c)Q as well.

Definition 3. A relation R is extensional if the following hold: (i) If LRM and
PRQ then (L |P ) R (M |Q). (ii) If PRQ then (c)P R (c)Q for all c ∈ N .
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If two processes are equivalent, they should be able to maintain the equivalence
after one thousand years. The minimal condition making sure that this can
be achieved is the bisimulation property of Milner [Mil89a] and Park [Par81].
Following the idea of Fu [Fu12b], we actually will use a stronger version of
the bisimulation introduced by van Glabbeek and Weijland [vGW89]. In the
following definition, the notation R−1 stands for the inverse of R.

Definition 4. A binary relation is a bisimulation if the following hold:

1. If QR−1P
τ−→ P ′ then one of the following statements is valid.

(a) Q =⇒ Q′R−1P ′ and Q′R−1P for some Q′.
(b) Q =⇒ Q′′R−1P for some Q′′ such that Q′′ τ−→ Q′R−1P ′ for some Q′.

2. If PRQ τ−→ Q′ then one of the following statements is valid.
(a) P =⇒ P ′RQ′ and P ′RQ for some P ′.
(b) P =⇒ P ′′RQ for some P ′′ such that P ′′ τ−→ P ′RQ′ for some P ′.

A basic assumption in the theory of computation is that a divergent computation
is different from a computation that terminates. Often time the probability for
a real program to diverge is zero. For such a program, divergence is a potential,
not an inevitability. A condition that takes into account of this potentiality while
upholding the bisimulation property is what we call codivergence requirement.
It was first proposed by Priese [Pri78].

Definition 5. A relation R is codivergent if the following statements are valid:

– If PRQ τ−→ Q1
τ−→ · · · τ−→ Qn

τ−→ · · · is an infinite internal action
sequence, then there must be some k ≥ 1 and P ′ such that P

τ
=⇒ P ′ R Qk.

– If QR−1P
τ−→ P1

τ−→ · · · τ−→ Pn
τ−→ · · · is an infinite internal action

sequence, then there must be some k ≥ 1 and Q′ such that Q
τ

=⇒ Q′ R Pk.

We have introduced four conditions for the equivalences on evolving processes,
which are minimal from the point of view of interaction and computation. We
turn these minimal conditions into defining properties of process equality.

Definition 6. The absolute equality =Th is the largest reflexive, equipollent,
extensional, codivergent bisimulation on PVPCTh

.

The well-definedness of Definition 6 is due to the fact that its defining proper-
ties are stable under set unions. The definition is completely model independent
as long as we only consider those models that have the composition and local-
ization operators and enjoy a dichotomy between the internal actions and the
external interactions. From the point of view of equality reasoning, the absolute
equality is too abstract. It would be very helpful to work out an external char-
acterization of the absolute equality. This is what we are going to do next for
VPCTh. Before that, we state a useful lemma about computation, the Bisimula-
tion Lemma [Fu12b]. The property stated in the lemma is called X-property by
De Nicola, Montanari and Vaandrager [DNMV90].

Lemma 1. If P =⇒ P ′ =Th Q and Q =⇒ Q′ =Th P , then P =Th Q.
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Once the equality relation has been defined, a formal classification of the internal
actions can be given. We say that S evolves to T in a computation step, notation
S → T , if S

τ−→ T and S =Th T , and that S evolves to T in a change-of-state
internal action, notation S

ι−→ T , if S
τ−→ T and S �=Th T . The reflexive and

transitive closure of → will be denoted by →∗.
The bisimulation property can now be defined in a more informative way.

If P =Th Q
τ−→ Q′, then the simulation by P could be vacuous if Q =Th Q

′;
otherwise it must take the form P →∗ P ′′ ι−→ P ′ such that P ′′ =Th Q and

P ′ =Th Q
′. Similarly if P =Th Q

a(t)−→ Q′, then the simulation of the output

action must take the form P →∗ P ′′ a(t)−→ P ′ such that P ′′ =Th Q and P ′ =Th Q
′.

This is the external bisimulation property we shall define in the next section.

3.3 External Bisimulation

External bisimulations are meant to give an alternative characterization of the
absolute equality in terms of explicit simulation of every action. In addition
to the property of Definition 4, external bisimulations must explain how the
external actions are bisimulated.

Definition 7. A codivergent bisimulation R on PVPCTh
is a VPCTh-bisimulation

if the following statements are valid for every λ �= τ .

1. If QR−1P
λ−→ P ′ then Q =⇒ Q′′ λ−→ Q′R−1P ′ and PRQ′′ for some Q′, Q′′.

2. If PRQ λ−→ Q′ then P =⇒ P ′′ λ−→ P ′RQ′ and P ′′RQ for some P ′, P ′′.

The VPCTh-bisimilarity �Th is the largest VPCTh-bisimulation.

By constructing the relation inductively from �Th that closes up under compo-
sition and localization, one can easily prove the following lemma.

Lemma 2. The external bisimilarity �Th is extensional.

The above lemma and the Bisimulation Lemma is the only thing we need to
establish Proposition 1, which proves the correctness of Definition 7.

Proposition 1. The relation �Th coincides with the absolute equality =Th.

Proof. The inclusion �Th⊆=Th is immediate from Lemma 2. The proof of the
reverse inclusion is standard using Bisimulation Lemma. Processes of the form
a(x).if x = then c( ) else d( ) and of the form a( ) + a( ).c( ), with the names
c, d chosen properly, are crucial to deriving the external bisimulation property.
A detailed proof of a similar result in π-calculus is given in [FZ11]. ��
Both the absolute equality and the external bisimilarity are relations on the
processes. They can be extended to the VPCTh-terms in the standard manner.

Definition 8. S �Th T if and only if Sρ �Th Tρ for every assignment ρ whose
domain of definition is disjoint from bv(S |T ).
A standard argument suffices to show that the relation �Th, and consequently
the relation =Th as well, is closed under all the process operations.

Proposition 2. The absolute equality is equivalent and congruent.
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Action

∑
i∈I ϕiλi.Ti

λi−→ϕi Ti

i ∈ I.

Composition

S
λ−→ϕ S

′

S |T λ−→ϕ S
′ |T

S
a(x)−→ϕ S

′ T
a(t)−→ψ T

′

S |T τ−→ϕψ S
′{t/x} |T ′

Localization

T
λ−→ϕ T

′

(c)T
λ−→ϕ (c)T ′

c is not in λ.

Condition

T
λ−→ϕ T

′

φT
λ−→φϕ T

′

Recursion

!a(x).T
a(x)−→� T | !a(x).T !a(t).T

a(t)−→� T | !a(t).T

Fig. 4. Symbolic Semantics

4 Symbolic Semantics

The absolute equality is not very convenient. Hennessy and Lin [HL95] address
the issue by introducing symbolic bisimulations. The advantage of the symbolic
approach is that it allows one to make full use of the decidable fragments of
the logics of the value-passing calculi when constructing equivalence checking
algorithms. In [HL95] the symbolic bisimilarity is defined as general as possible
so that a coincidence result could be achieved. We shall be less ambitious in this
paper. Symbolic bisimilarity is in our opinion a decidable approximation of the
absolute equality. Our motivation for the symbolic bisimilarity is two folds: (i)
the symbolic bisimilarity should be sound, meaning that it should be a subset
of the absolute equality; (ii) ideally the symbolic bisimilarity is complete on the
decidable subsets of the absolute equality. The latter is much more difficult to
come by than the former.

To define the symbolic bisimulations, we need to introduce the symbolic op-
erational semantics. This would not be a big issue had we dropped the con-
ditionals. So the key is to define for instance the semantics of the VPCTh-term
if ϕ then a(0) else b(0) where the boolean Σ-expression ϕ contains free variables.
The symbolic semantics [HL95, HL96] solves the problem by introducing condi-
tional actions. The syntax of a transition in the symbolic semantics is a tuple

of the form T
λ−→ϕ T

′, formalizing the idea that T may perform the action λ
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under the condition that the boolean Σ-expression ϕ is a Th-theorem. The set
of the action labels for the symbolic semantics is

{a(x), a(t) | a ∈ N , x ∈ VΣ , t ∈ TΣ} ∪ {τ},

also ranged over by λ. The labeled transition system is defined in Fig. 4. Again
the symmetric versions of the composition rules have been omitted. The treat-
ment of the input prefix is in a late style, which is better suited for algorithmic
investigations. The symbolic semantics is stable under substitution in the sense
of the following lemma.

Lemma 3. If S
λ−→ϕ T then Sσ

λσ−→ϕσ Tσ for every substitution σ. On the

other hand, if Sσ
λ′
−→ϕ′ T ′ for some substitution σ, then there must exist some

λ, ϕ, T such that λ′ = λσ, ϕ′ = ϕσ, T ′ ≡ Tσ and S
λ−→ϕ T .

We will abbreviate
τ−→ϕ1 . . .

τ−→ϕn to =⇒ϕ1...ϕn , and =⇒ϕ
λ−→ϕ′=⇒ϕ′′ to

λ
=⇒ϕϕ′ϕ′′ . We remark that T =⇒� T .

It’s time to look at some examples. The following three terms are in VPC:

L(y)
def
= if 0 ≤ y then b(0),

M(y)
def
= (a)(a(0) |μX.a(x).(a(s(x)) | (τ.X + if y = x then b(0)))),

N(y)
def
= (a)(a(0) |μX.a(x).(a(s(x)) | (τ.X + if y = x then b(y)))).

The process L(y) may perform only one action L(y)
b(0)−→0≤y 0. The processM(y)

has an interesting action sequence M(y)
τ

=⇒�
b(0)−→y=n 0. Similarly N(y) has a

similar action sequence N(y)
τ

=⇒�
b(y)−→y=n 0. In the second and third examples

the set of possible conditions is {y=0, y=1, y=2, . . . , y=n, . . .}. What the second
example tells us is that even with a finite description and a finite set of potential
external actions, the set of the conditions that enable an action of a VPC-term,
like b(0), could be infinite.

The symbolic semantics is a correct extension of the concrete semantics. This
is established in the next two lemmas whose proofs are simple induction on
derivation.

Lemma 4. The symbolic semantics is sound with respect to the concrete seman-
tics in the following sense:
(i) If S

τ−→ϕ T for some Th-theorem ϕ then S
τ−→ T .

(ii) If S
a(t)−→ϕ T for some Th-theorem ϕ and some t ∈ T0

Σ then S
a(t)−→ T .

(iii) If S
a(x)−→ϕ T for some Th-theorem ϕ then S

a(t)−→ T {t/x} for every t ∈ T0
Σ.

Lemma 5. The symbolic semantics is complete with respect to the concrete se-
mantics in the following sense:
(i) If S

τ−→ T then S
τ−→ϕ T for some Th-theorem ϕ.
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(ii) If S
a(t)−→ T then S

a(t)−→ϕ T for some Th-theorem ϕ.

(iii) If S
a(t)−→ T then S

a(x)−→ϕ T ′ for some Th-theorem ϕ and some x, T ′ such
that T ≡ T ′{t/x}.

4.1 Symbolic Bisimulation

In the symbolic approach, is it reasonable to require that S
τ−→ϕ S

′ be simulated
by T =⇒ϕ′ T ′ for bisimilar S and T such that Th � ϕ⇒ ϕ′? Again let’s take a
look at the VPC-terms ϕτ.S and if x = 0 then ϕτ.S else ϕτ.S, where x �∈ fv(ϕ).
The two VPC-terms are equivalent by all reasonable criteria. But ϕτ.S

τ−→ϕ S
cannot be simulated by if x = 0 then ϕτ.S else ϕτ.S in the above required
manner since in the latter term the τ -action can only be fired under a condition
strictly stronger than ϕ. But notice that (x = 0) ∧ ϕ ∨ (x �= 0) ∧ ϕ ⇔ ϕ is a
PA-theorem. Under either (x = 0) ∧ ϕ or (x �= 0) ∧ ϕ the VPC-term if x =
0 then ϕτ.S else ϕτ.S may evolve into S. This leads to the idea of finding a
collection of boolean expressions such that the disjunction of the collection is
weaker than ϕ. If under each of the conditions the simulation can be done, then
there is a simulation. A first attempt to define a symbolic counterpart of the
Milner-Park bisimilarity could be as follows:

A symmetric relation R on TVPCTh
is a ?-bisimulation if the following

condition is met whenever SRT :
If S

λ−→ϕ S′ then there is a class {T
̂λi=⇒ϕi T

′
i}i∈I such that

Th � ϕϕi ⇒ λ = λi and (ϕϕiS
′, ϕϕiT ′

i ) ∈ R for every i ∈ I.
Let �? be the largest ?-bisimulation.

In the above definition, λ = λi stands for � if λ, λi are syntactically the same;
it is t = t′ if λ ≡ a(t) and λi ≡ a(t′) for some name a; otherwise λ = λi
stands for ⊥. The relation �? is not very useful. Consider the VPC-processes
R(y), S(y), T (y) defined as follows:

R(y)
def
= (b)(b(y) |μX.b(z).r(z).if 0 < z then (b(p(z)) |X)),

S(y)
def
= τ.T (y) + if 0 ≤ y then τ.R(y),

T (y)
def
= (a)(a(0) |μX.a(x).(a(s(x))
| (τ.X + if 0 ≤ y ≤ x then τ.(if y = x then τ.R(y) else e(0))))).

In the definition of R(y) the term p(z) is the predecessor of z. The predecessor
function can be implemented in VPC. The details can be found in Section 6.
The behavior of R(y) is captured by the following action sequence:

R(n)
τ−→�

r(n)−→�
τ

=⇒0<n
r(n−1)
−→ �

τ
=⇒0<n−1 . . .

τ
=⇒0<1

r(1)−→� . . . .

It is obvious that R(n) and R(n′) are inequivalent whenever n �= n′. The pro-

cesses S(y) and T (y) are bisimilar since the action S(y)
τ−→0≤y R(y) can be
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U(y)
def
= τ.W (y) + if 0 ≤ y ≤ m then τ.R(y),

V (y)
def
= τ.W (y) + if y = 0 then τ.R(y) + . . .+ if y = m then τ.R(y),

W (y)
def
= if 0 = y then τ.(if y = 0 then τ.R(y) else e(0))

+ if 0 ≤ y ≤ 1 then τ.(if y = 1 then τ.R(y) else e(0))

+ . . .

+ if 0 ≤ y ≤ m then τ.(if y = m then τ.R(y) else e(0)).

Fig. 5. Non-transitivity of ?

simulated by T (y) as long as y is instantiated by a numeral. On the other hand
it is easy to see that S(y) ��? T (y). The only way to simulate the action is by

the collection {T (y) τ
=⇒0≤y≤n if y = n then τ.R(y) else e(0)}n∈N. But notice

that if 0 ≤ y ≤ n then R(y) is not bisimilar to if 0 ≤ y ≤ n then (if y =
n then τ.R(y) else e(0)). The relation �? has to be abandoned because it is
not transitive! Fig. 5 offers a counter example. One has U(y) �? V (y) and
V (y) �? W (y) but not U(y) �? W (y). It follows that U(y) ��? W (y).

The symbolic bisimulations need be defined in a more subtle way. The key idea
of Hennessy and his collaborators is that the partition of the condition under
which the simulated action is fired should not depend on the conditions under
which the simulations are done. In their definition a partition of ψ is a collection
{ψi}i∈I such that ψ ⇔

∨

i∈I ψi, where the indexing set I could be as large as the
size of the model. The reason that they may resort to the all-powerful operator
∨

is that they are using a meta logic about the oracle model. We will use a more
restricted approach. We insist that the symbolic semantics of a value-passing
calculus should only make use of the first order logic by which the logical theory
of the calculus is defined.

Definition 9. Suppose Th is a theory over Σ, V is a finite set of variables,
and fv(ϕ) ⊆ V . A boolean Th-partition of ϕ on V is a finite set of boolean
Σ-expressions {ϕi}i∈I such that fv(

∨

i∈I ϕi) ⊆ V , Th � ϕi ∧ ϕj ⇒ ⊥ if i �= j,
and Th � ϕ⇔

∨

i∈I ϕi.

LetK(y) = (a)(a(0) |μX.a(x).(X | if x ≤ y then a(s(x)))). It admits the following

infinite sequence K(y)
τ−→�

τ−→0≤y
τ−→1≤y . . .

τ−→n≤y . . .. Although every finite
subset of {�, 0 ≤ y, 1 ≤ y, . . . , n ≤ y, . . .} is consistent, the infinite sequence is a
fake. For every numeral n the processK(n) terminates. From the point of view of
the model N, no assignment can satisfy all the ΣPA-expressions in {�, 0 ≤ y, 1 ≤
y, . . . , n ≤ y, . . .}. From the point of view of the first order logic, no satisfiableΣPA-
expression implies all the ΣPA-expressions in {�, 0 ≤ y, 1 ≤ y, . . . , n ≤ y, . . .}.
A faithful symbolic interpretation of divergence would make use of the infinite
conjunction, which as we have argued, is not in line with the philosophy of the
symbolic approach. To get a glimpse of the complication of codivergence, take a
look at H(y) = (a)(a(0) |μX.a(x).(X | if y ≤ x then a(s(x)))), which is a slight
modification of the previous VPC-term. This term also admit an infinite sequence
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of τ -actionsH(y)
τ−→�

τ−→y≤0
τ−→y≤1 . . .

τ−→y≤n . . .. The infinite sequence is not
real forH(1),H(2),H(3), . . . . But it is real forH(0). These examples suggest that
it is difficult to give a nice symbolic description of the codivergence property at
a general level. It should be remarked though that divergence is intrinsically
an undecidable property. If our interest in symbolic semantics is confined to
automatic verification, the codivergence condition has to be dropped.

Definition 10. A symmetric relation R on TVPCTh
is a symbolic bisimulation if

the following hold whenever SRT and V = fv(S |T ):

1. If S
τ−→ϕ S

′ and Th∪{ϕ} is consistent, then there are a boolean Th-partition
{ϕi}i∈I of ϕ on V and a collection {T =⇒ψi Ti}i∈I such that, for each i ∈ I,
Th � ϕi ⇒ ψi and ϕiS R ϕiTi, and one of the following properties holds:
(a) ϕiS

′ R ϕiTi;

(b) Ti
τ−→ψ′

i
T ′
i for some ψ′

i, T
′
i such that Th � ϕi ⇒ ψ′

i, and ϕiS
′ R ϕiT

′
i .

2. If S
a(t)−→ϕ S

′ and Th∪{ϕ} is consistent, then there are a boolean Th-partition

{ϕi}i∈I of ϕ on V and a collection {T =⇒ψi Ti
a(ti)−→ψ′

i
T ′
i}i∈I such that

Th � (ϕi ⇒ ψiψ
′
i) ∧ (ϕi ⇒ t = ti), and moreover ϕiSRϕiTi and ϕiS′RϕiT ′

i

for every i ∈ I.
3. If S

a(x)−→ϕ S
′ and Th∪{ϕ} is consistent, then there are a boolean Th-partition

{ϕi}i∈I of ϕ on V ∪{x} and a collection

{

T =⇒ψi Ti
a(x)−→ψ′

i
T ′
i

}

i∈I
such that

Th � ϕi ⇒ ψiψ
′
i, ϕiSRϕiTi and ϕiS′RϕiT ′

i for all i ∈ I.

The symbolic bisimilarity �sTh is the largest symbolic bisimulation.

In the above definition the requirement that Th ∪ {ϕ} being consistent is im-
portant. Without the condition the VPC-term if x �= x then a(0) would be
wrongfully distinguished from 0.

The main algebraic properties of �sTh are summarized in the next proposition.

Proposition 3. The following statements about �sTh are valid.

1. The relation �sTh is an equivalence.
2. The relation �sTh is a congruence.
3. If S �sTh T then Sσ �sTh Tσ for every substitution σ.

Proof. (1) The proof of transitivity is routine and tedious. (2) The proof of the
congruence property is standard after demonstrating that, for every boolean
expression ϕ, S �sTh T implies ϕS �sTh ϕT . (3) Using Lemma 3 it is easy to
show that {(Sσ, Tσ) | S �sTh T } is a symbolic bisimulation. We need to make
use of a meta theoretical result asserting that Th � ϕσ for every substitution σ
whenever Th � ϕ, which is an easy consequence of FO1 and FO2. ��

The next technical lemma, whose simple proof is omitted, helps understand
the above definition. It is the symbolic version of the Stuttering Lemma of van
Glabbeek and Weijland [vGW89].
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Lemma 6. Suppose T
τ−→ϕ1 T1

τ−→ϕ2 T2 . . .
τ−→ϕn Tn and ϕ ⇒ ϕ1 . . . ϕn.

Then ϕT �sTh ϕTn implies ϕT1 �sTh ϕT2 �sTh . . . �sTh ϕTn.

Now let’s take a look at some examples. Consider the following VPC-terms:

E(y)
def
= μX.if y = 0 ∨ y = 1 then b(y).X,

A(y)
def
= E(y) | if y = 0 then b(y),

B(y)
def
= E(y) | if y = 1 then b(y).

It is clear that A(y) �sTh B(y). The action A(y)
b(y)−→y=0 E(y) is simulated by

the single action B(y)
b(y)−→y=0∨y=1 E(y) | if y = 1 then b(y). This example shows

that the condition Th � ϕi ⇒ ψi in say (1) of Definition 10 should not be
strengthened to Th � ϕi ⇔ ψi.

The finiteness of partition is a genuine restriction. Let’s see a counter example.
Consider the following VPC-terms:

F (y)
def
= μX.a(x).(a(s(x)) | if y=x then b(x) else X),

C(y)
def
= if 0 ≤ y then b(y),

D(y)
def
= (a)(a(0) |F (y)).

Typically D has the action sequence D(y)
τ

=⇒y 	=0∧...∧y 	=n−1
b(n)−→y=n. It is not

difficult to see that C(y) =Th D(y). The action C(y)
b(y)−→0≤y 0 is simulated by

the infinite collection {D(y)
τ

=⇒y 	=0∧...∧y 	=n−1
b(n)−→y=n}n∈N. There is no finite

collection that can simulate C(y)
b(y)−→0≤y 0. So the symbolic bisimilarity �sTh

cannot coincide with the absolute equality =Th even if divergence is ignored. It
is however a correct approximation of the absolute equality.

Theorem 2. Let S, T be finite VPCTh-terms. Then S =Th T if S �sTh T .

Proof. Let R be the following binary relation

{

(Sρ, Tρ)

∣

∣

∣

∣

S, T are finite, S �sTh T and
ρ is an assignment such that bv(S |T ) ∩ dom(ρ) = ∅

}

.

Suppose S �sTh T and Sρ
a(t)−→ P for some t ∈ T0

Σ and some assignment ρ such

that bv(S |T ) ∩ dom(ρ) = ∅. Let V be fv(S |T ). By Lemma 5, Sρ
a(x)−→ϕ′ S′

for some Th-theorem ϕ′ and some x, S′ such that P ≡ S′{t/x}. By Lemma 3,

there exist some ϕ, S1 such that ϕ′ ≡ ϕρ, S′ ≡ S1ρ and S
a(x)−→ϕ S1. By the

definition of symbolic bisimulation there are a boolean Th-partition {ϕi}i∈I of ϕ

on V ∪{x} and a collection

{

T =⇒ψi Ti
a(x)−→ψ′

i
T ′
i

}

i∈I
such that Th � ϕi ⇒ ψiψ

′
i,
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ϕiSRϕiTi and ϕiS
′RϕiT ′

i for all i ∈ I. Now Th � ϕiρ[x ← t] for some i ∈ I,
which in turn implies Th � ψiψ′

iρ[x← t], SρRTiρ and S′ρ[x← t] R T ′
iρ[x← t].

At the meantime notice that Tρ =⇒ Tiρ
a(t)−→ T ′

iρ[x ← t] by Lemma 3 and
Lemma 4. Conclude that R is a bisimulation. The relation is also extensional by
Proposition 3. It is equipollent since the external actions are bisimulated. ��

5 Proof System

When confined to the finite VPCTh-processes, one expects that the equality
can be mechanically checked. Often such an algorithm is based on a complete
equational system. For most value-passing calculi defined in literature a self-
contained decidable procedure for equivalence checking is out of the question
since the logics/models are undecidable. For example, to check if ϕa(t).S =
ϕa(t′).S holds, one has to check if ϕ⇒ t = t′ is valid. An algorithm for checking
the equivalence of finite processes has to make use of an oracle that answers
every question on the validity of a logical formula. For a value-passing calculus
VPCTh studied in this paper, equivalence checking algorithms do exist.

In studying proof systems, a standard treatment is to remove the composition
operator using expansion law [HM85, Mil89a]. This is done at the expense of
introducing the unguarded choice operator ‘+’ whose semantics is defined by

S
λ−→ϕ S

′

S + T
λ−→ϕ S

′

T
λ−→ϕ T

′

S + T
λ−→ϕ T

′

The operator destroys the congruence property of process equalities. As a con-
sequence additional complication is introduced to produce a congruence. We
avoid the complication by not using the congruence relation. In this section the
notation

∑

i∈I ϕiλi.Si stands for a mixed choice [Pal03, FL10].
Suppose S ≡

∑

i∈I ϕiλi.Si and T ≡
∑

j∈J ψjλj .Tj. The expansion law is
formulated by the following equality:

S |T =
∑

i∈I
ϕiλi.(Si |T ) +

λi=a(x)
∑

λj=a(tj)

ϕiψjτ.(Si{tj/x} |Tj)

+
∑

j∈J
ψjλj .(S |Tj) +

λj=b(y)
∑

λi=b(ti)

ϕiψjτ.(Si |Tj{ti/y}).

Our equational system ASTh consists of the first order logic axioms defined in
Fig. 1, the nonlogical axioms of Th, the equational axioms defined in Fig. 6 and
the expansion law. We write ASTh � S = T if the equality S = T can be derived

within ASTh, and S
R
= T if R is the major law used to derive the equality S = T .

Most of the laws are variants of the axioms proposed in previous studies on
the value-passing calculi [IL01] and the name-passing calculi [PS95]. The law S6
is a generalization of the following law proposed by Parrow and Sangiorgi [PS95]:

a(x).S + a(x).T = a(x).S + a(x).T + a(x).(ϕS + ¬ϕT ). (2)
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S1 T + 0 = T
S2 S + T = T + S
S3 R+ (S + T ) = (R + S) + T
S4 T + T = T
S5 ϕT + ϕ′T = (ϕ ∨ ϕ′)T
S6

∑
i∈I φia(x).(¬ϕiTi + ϕiτ.T ) = ϕa(x).T +

∑
i∈I φia(x).(¬ϕiTi + ϕiτ.T )

if Th � ϕi ⇒ φi for all i ∈ I and
Th � ϕ ⇔ ∨

i∈I ϕi.
C1 [⊥]T = 0
C2 [�]T = T
C3 ϕa(t).T = ϕa(t′).T , if Th � ϕ ⇒ t = t′

C4 ϕλ.T = ϕλ.ϕT
C5 φ(T + T ′) = φT + φT ′,
C6 ϕT = ψT , if Th � ϕ⇔ ψ
C7 ϕ(ψT ) = (ϕψ)T

L1 (c)0 = 0
L2 (c)λ.T = 0, if c is in λ
L3 (c)λ.T = λ.(c)T , if c is not in λ
L4 (c)(T + T ′) = (c)T + (c)T ′

L5 (c)ϕT = ϕ(c)T

B λ.(S + T ) = λ.(τ.(S + T ) + T )

Fig. 6. Axiom for Finite VPCTh-Term

As pointed out in [PS95], this is the law that tells apart the early equivalence
and the late equivalence [MPW92]. The combination of the S-laws has powerful
consequences, two of which are given by the following lemmas.

Lemma 7. ASTh � ψλ.T = ϕλ.T+ψλ.T if Th � ϕ⇒ ψ.

Lemma 8. ASTh � ϕ(λ.T ){t/x} = ϕ(λ.T ){t′/x} if Th � ϕ⇒ t = t′.

The B-law is due to van Glabbeek and Weijland [vGW89]. It implies Milner’s
first tau law λ.τ.T = λ.T and a weaker form τ.(T + ϕτ.T ) = τ.T of Milner’s
second tau law [Mil89a].

The verification of soundness property of ASTh is routine.

Lemma 9. If ASTh � S = T then S �sTh T .

A nice property of a proof system is that it allows one to focus on terms in some
special form.

Definition 11. A finite VPCTh-term is a normal form if it is either 0 or of the
form

∑

i∈I ϕiλi.Ti such that Ti is a normal form for every i ∈ I.

Using L4 and L5 one can pull all the localization operations in a term to the
very front. Then one may remove all the composition operations by applying
the expansion law. And finally one removes the localization operations using the
L-axioms. What one gets is a normal form term. Hence the following lemma.
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Lemma 10. For each finite VPCTh-term T there is some normal form T ′ such
that ASTh � T = T ′.

In the rest of the section the following Completeness Theorem is proved.

Theorem 3. S �sTh T if and only if ASTh � τ.S = τ.T .

Proof. A sequence T
τ

=⇒ϕ T
′ is maximal with regards to φ if (i) Th � φ ⇒ ϕ,

(ii) φT �sTh φT ′′, and (iii) there does not exist any T ′′ such that T ′ τ−→ϕ′ T ′′,
Th � φ ⇒ ϕ′ and φT �sTh φT ′′. Intuitively T τ

=⇒ϕ T
′ is maximal if T ′ cannot

evolve to another state that stays equal to T under the condition φ.
We confine our attention to the normal forms. Suppose S �sTh T and S, T are

the normal forms
∑

i∈I ϕiλi.Si and
∑

j∈J ψjλj .Tj respectively. We shall prove
that the following properties hold for the normal forms:

(S) If Th � φ ⇒ ϕ, φT �sTh φT ′ and T τ
=⇒ϕ T

′ is maximal with regards to φ,
then ASTh � τ.T = τ.(T + φT ′).

(P) If φT �sTh φS, then ASTh � φτ.T = φτ.(T + S) = φτ.S.

Let’s write dep(T ) for the maximal nested depth of prefixing operation of T .
Our proof strategy will be as follows:

1. Prove (S) assuming that (S) and (P) hold for terms with depths less than i.
2. Prove (P) assuming that (P) holds for terms whose depths are less than i

and that (S) holds for terms whose depths are less than or equal to i.

The inductive proof of (S) is given as follows: Suppose T is a normal form of

depth i and T
τ−→ϕ1 T1

τ−→ϕ2 . . . Tn−1
τ−→ϕn Tn is maximal with regards to

ϕ with ϕT1 �sTh ϕTn and ϕ = ϕ1 . . . ϕn. Then ϕT1 �sTh ϕT2 �sTh . . . �sTh ϕTn
by Lemma 6. By the induction hypothesis on (P), ASTh � ϕτ.T1 = ϕτ.Tn. By
Lemma 7, ASTh � τ.T = τ.(T + ϕ1τ.T1) = τ.(T + ϕτ.T1) = τ.(T + ϕτ.Tn). Since

T
τ−→ϕ1 T1

τ−→ϕ2 . . . Tn−1
τ−→ϕn Tn is maximal, the action of each summand

ψjλj .Tj of T can be simulated by a set of summands of Tn using induction
hypothesis, and consequently ψjλj .Tj can be assimilated by Tn. We conclude
that ASTh � ϕτ.Tn = ϕτ.(Tn + T ). Consequently

ASTh � τ.T = τ.(T + ϕτ.(Tn + T ))
S5
= ϕτ.(T + ϕτ.(Tn + T )) + ¬ϕτ.(T + ϕτ.(Tn + T ))

C laws
= ϕτ.(T + τ.(Tn + T )) + ¬ϕτ.T
B
= ϕτ.(T + Tn) + ¬ϕτ.(T + ϕTn)
S5
= ϕτ.(T + ϕTn) + ¬ϕτ.(T + ϕTn)
S5
= τ.(T + ϕTn).

We turn to the inductive proof of (P). By the C-laws we only have to prove
the special case when φ = �. Consider a summand ϕiλi.Si of S. The action
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∑

i∈I ϕiλi.Si
λi−→ϕi Si must be simulated by the term

∑

j∈J ψjλj .Tj. There are
three cases according to the shape of λi. We only consider the case λi = a(x).
By definition there are a boolean Th-partition {ϕki }k∈K of ϕi on fv(S |T )∪{x}
and a collection {T =⇒ψk

Tk
a(x)−→ψ′

k
T ′
k}k∈K such that Th � ϕki ⇒ ψkψ

′
k for all

k ∈ K, and ϕki S �sTh ϕki Tk, ϕki Si �sTh ϕki T ′
k for every k ∈ K. We assume that for

each k ∈ K, T =⇒ψk
Tk is maximal with regards to ϕki . By induction on (P),

ASTh � ϕki τ.S = ϕki τ.Tk, (3)

ASTh � ϕki τ.Si = ϕki τ.T
′
k (4)

for every k ∈ K. Since {T + S =⇒ψk
Tk

a(x)−→ψ′
k
T ′
k}k∈K , we could have the

following rewriting that makes use of the inductive hypothesis on (S).

τ.(T + S)
I.H.
= τ.

⎛

⎝T + S +
∑

k∈K

ψkTk

⎞

⎠

= τ.

⎛

⎝T + S +
∑

k∈K

ψk(Tk + ψ′
ka(x).T

′
k)

⎞

⎠

C5
= τ.

⎛

⎝T + S +
∑

k∈K

ψkTk +
∑

k∈K

ψkψ
′
ka(x).T

′
k

⎞

⎠

B
= τ.

⎛

⎝T + S +
∑

k∈K

ψkTk +
∑

k∈K

ψkψ
′
ka(x).τ.T

′
k

⎞

⎠

S5
= τ.

⎛

⎝T + S +
∑

k∈K

ψkTk +
∑

k∈K

ψkψ
′
ka(x).(¬ϕk

i τ.T
′
k + ϕk

i τ.T
′
k)

⎞

⎠

(4)
= τ.

⎛

⎝T + S +
∑

k∈K

ψkTk +
∑

k∈K

ψkψ
′
ka(x).(¬ϕk

i τ.T
′
k + ϕ

k
i τ.Si)

⎞

⎠

S6
= τ.

⎛

⎝T +
∑

i′∈I\{i}
ϕi′λi′ .Si′ +

∑

k∈K

ψkTk +
∑

k∈K

ψkψ
′
ka(x).(¬ϕk

i τ.T
′
k + ϕk

i τ.Si)

⎞

⎠

= τ.

⎛

⎝T +
∑

i′∈I\{i}
ϕi′λi′ .Si′ +

∑

k∈K

ψkTk

⎞

⎠

I.H.
= τ.

⎛

⎝T +
∑

i′∈I\{i}
ϕi′λi′ .Si′

⎞

⎠ .

It follows from induction that τ.(T +S) = τ.
(

T +
∑

i∈I′ φiτ.T
)

for some I ′ ⊆ I
and soem {φi}i∈I′ . Let φ =

∨

i∈I′ φi. Then

τ.(T + S)
S5
= τ. (T + φτ.T )

S5,C2
= φτ. (T + φτ.T ) + ¬φτ. (T + φτ.T )

C laws,B
= φτ.T + ¬φτ.T

S5,C2
= τ.T.

Symmetrically ASTh � τ.(S + T ) = τ.S. We are done. ��



The Value-Passing Calculus 187

6 Turing Completeness

The value-passing calculi are rudimentary process models. The question con-
cerning their expressiveness has to be settled. Which value-passing calculi are
for instance complete in the sense that all recursive functions [Rog87] are defin-
able? To answer the question we need to make it clear how the natural numbers
are defined in a value-passing calculus. From the operational point of view, a nat-
ural number system is not just an infinite set of pairwise distinct closed Σ-terms,
but also an effective way of generating these Σ-terms.

Definition 12. A numeric system for VPCTh consists of a countable subset
{̂0,̂1,̂2, . . . , n̂, . . .} of T0

Σ and a VPCTh-term Sd(x) that satisfy the followings:

1. The variable x is the only free variable appearing in Sd(x).
2. Th � p̂ �= q̂ for all p, q ∈ N such that p �= q.

3. Every action sequence of Sd(n̂) is of the form Sd(n̂) =⇒
d(n̂+1)−→ =Th 0.

It is clear from (3) of Definition 12 that every action sequence of Sd(n̂) is actually

of the form Sd(n̂)→∗d(n̂+1)−→ =Th 0 and Sd(n̂) =Th d(n̂+ 1).
Using a numeric system, we may talk about functions in a value-passing cal-

culus. The predecessor function p for instance can be defined in such a calculus.
Suppose we would like to have the VPC-process a(x).b(p(x)). It can be defined
by a(x).(c)(c(0) | !c(y).if x = s(y) then b(y) else c(s(y))). The process diverges
when given the input 0. As is demonstrated by this example, each application of
the predecessor function is implemented by an additional VPC-term. In sequel
we shall make use of the predecessor function without worrying about how a
particular occurrence of the function is implemented.

An n-ary partial function f(x1, . . . , xn) is definable in VPCTh with respect to
the numeric system 〈{̂0,̂1,̂2, . . . , n̂, . . .}, Sd(x)〉 if, for all names a1, . . . , an, b, there
is a process I(a1, . . . , an, b) of the form a1(x1)....an(xn).T such that (i) if f(p1, . . . ,
pn) is defined, then all the action sequences of T {p̂1/x1, . . . , p̂n/xn} are finite and
are of the following form T {p̂1/x1, . . . , p̂n/xn} =⇒ b(p̂)−→ T ′ =Th 0, where p =
f(p1, . . . , pn); and (ii) if f(p1, . . . , pn) is undefined, then T {p̂1/x1, . . . , p̂n/xn} can
only perform τ -action sequences and all its τ -action sequences are divergent. We
say that f(x1, . . . , xn) is defined by I(a1, . . . , an, b) at a1, . . . , an, b. A set of partial
functions is definable with respect to a numeric system if every member of the set
is definable with respect to the numeric system. A set of partial functions is de-
finable in VPCTh if it is definable with respect to some numeric system of VPCTh.

If a function is definable in VPCTh with respect to 〈{̂0,̂1,̂2, . . . , n̂, . . .}, Sd(x)〉,
we can design a procedure that, upon receiving the natural numbers p1, . . . , pn,
traverses the derivation tree of T {p̂1/x1, . . . , p̂n/xn}. This is well defined since
every VPCTh-term is finite branching. The procedure terminates with the result
p if T {p̂1/x1, . . . , p̂n/xn} export p̂ at some b. It diverges otherwise. According
to the Church-Turing Thesis, this procedure defines a recursive function. We
conclude that all functions definable in a value-passing calculus are recursive.
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The opposite question asks if all the recursive functions can be defined in a
value-passing calculus. This amounts to asking if the value-passing calculus is
Turing complete.

Definition 13. A value-passing calculus VPCTh is Turing complete if all the
recursive functions are definable in VPCTh.

The next proposition provides a basic fact about the expressiveness of the value-
passing calculi.

Proposition 4. A value-passing calculus VPCTh is Turing complete if and only
if it has a numeric system.

Proof. The implication in one direction is clear. Now suppose VPCTh has a
numeric system 〈{̂0,̂1,̂2, . . . , n̂, . . .}, Sd(x)〉. We show that the recursive func-
tions [Rog87] are definable in VPCTh. We consider only two cases.

– Suppose G(c1, . . . , cn, d, e, b)) and H(c1, . . . , cn, b) are the interpretations of
two recursive functions. The interpretation F (a1, . . . , an+1, b) of the recur-
sion function at a1, .., an, an+1, b is

a1(x1). · · · .an+1(xn+1).(f)(f (̂0,̂1, xn+1,̂0) | (c̃)(!c1(x1) | · · · | !cn(xn) |Rec)),

where Rec stands for the following process

!f(y, y′, z, v).if ̂0 = y = z then H(c1, . . . , cn, b)

else if ̂0 = y ∧ y′ ≤ z then (e)(H(c1, . . . , cn, e) | e(v).f(̂0,̂1, z, v))
else if ̂0 < y ∧ y′ = z then (d)(d′)(G(c1, . . . , cn, d, d′, b) | d(y) | d′(v))
else if ̂0 < y ∧ y′ < z then (d)(d′)(e)(G(c1, . . . , cn, d, d′, e) | d(y) | d′(v)
| e(v).f(Sd(y), Sd(y′), z, v).

– Suppose G(a1, · · · , an+1, b) is the interpretation of a recursive function. The
minimalization function is interpreted at a1, .., an, an+1, b by the process

a1(x1). · · · .an+1(xn+1).(a1 . . . an+1)(!a1(x1) | · · · | !an(xn) | f(̂0) | !f(z).Mu),

where Mu is the following process

an+1(z) | (c)(G(a1, · · · , an+1, c) | c(v).if v = ̂0 then b(z) else f(Sd(z))).

We are done. ��

Proposition 4 adds weight to Definition 12 since a numeric system is intuitively
a minimal requirement for a value-passing calculus to simulate all the recur-
sive functions. The VPCTh-term Sd(x) is nothing but an implementation of the
successor function.

7 VPC and Recursion Theory

The previous three sections have developed a rigorous theory for the value-
passing calculi. When applied to a particular decidable first order theory, this



The Value-Passing Calculus 189

general theory immediately generates an operational semantics and an obser-
vation theory for that calculus. We have studied only one decidable first order
theory, the theory PA defined in Fig. 2. So in this section we take a closer look
at the value-passing calculus defined on top of PA. We will write =VPC for the
absolute equality of VPC and �s

VPC
for the symbolic bisimilarity of VPC.

According to our general setting, VPC should have a number of virtues. Let’s
summarize its key features:

– VPC is Turing complete. So it is among the good value-passing calculi.
– The validity of the boolean propositions is known to be decidable. This is

the reason for us to see VPC as a programming language. Our familiarity
with the standard model N helps confidence in programming with VPC.

– The simplicity of our Peano theory offers a nice algebraic theory of VPC.
Formal comparison of VPC against other well known process calculi is not
only possible, but also instructive.

It is difficult to think of a value-passing calculus that is weaker than VPC but
is still expressive enough. We now elaborate on this point.

To start with observe that the binary relation < is not absolutely necessary
for VPC. The following proposition explains why.

Proposition 5. For each VPC-process P there is some VPC-process P ′ such
that P =VPC P

′ and that P ′ contains no occurrence of the relation symbol <.

Proof. The basic idea is that the boolean value of a closed atomic ΣPA-expression
t < t′ can be calculated within VPC. Given a VPC-process P , we can translate
it into an equal VPC-process P ′. The encoding is structural on composition,
localization and replication operators. The interpretation of the guarded choice
and the conditional are similar. We take a look at how the latter is translated.
Consider the VPC-term S

def
= if ϕ then T . The interpretation of S is given by

the following term
(c)(�ϕ�c | c(z).if z = 1 then T ′)

where T ′ is the interpretation of T and �ϕ�c is structurally defined as follows:

– If ϕ is t = t′, then �ϕ�c is if t = t′ then c(1) else c(0).
– If ϕ is t < t′, then �ϕ�c is the following term

d(t).e(t′) | !d(x).e(y).if y = 0 then c(0) else if x = 0 then c(1) else d(p(x)).e(p(y)).

– If ϕ is ϕ′ ∧ ϕ′′, then �ϕ�c is

(de)(�ϕ′�d | �ϕ′′�e | d(y).e(z).if y = 1 ∧ z = 1 then c(1) else c(0)).

– If ϕ is ϕ′ ∨ ϕ′′, then �ϕ�c is

(de)(�ϕ′�d | �ϕ′′�e | d(y).e(z).if y = 1 ∨ z = 1 then c(1) else c(0)).

The equality P =VPC P
′ holds in an obvious way. ��
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7.1 Minimality of VPC

In this section we prove that VPC plays an authentic role in all the Turing
complete value-passing calculi. Suppose 〈{̂0,̂1,̂2, . . . , n̂, . . .}, Sd(x)〉 is a numeric
system of a Turing complete model VPCTh. One could define a translation � �Th
from VPC to VPCTh using the ideas described in Fig. 7. The translation of the
action labels �λ�Th can be defined by

�λ�Th
def
=

⎧

⎨

⎩

τ, if λ = τ,
a(n̂), if λ = a(n),
a(n̂), if λ = a(n).

Three aspects of the encoding call for explanation.

– One is that we have identified the set of the term variables of VPCPA with
the term variables of VPCTh.

– The second is that the operation Dc( ) is defined as follows: for a term
t ≡ sk(x) with k > 0, Dc(t) is the following term

(c0)(c0(x) | c0(z0).(c1)(Sc1(z0) | c1(z1).(. . . ck−1(zk−1).Sc(zk−1) . . .))).

The idea is that the term sk(x), for k > 0, is translated to an element
of the numeric system 〈{̂0,̂1,̂2, . . . , n̂, . . .}, Sd(x)〉, achieved by counting the

elements from x up to k̂ + x using Sd(x).
– The third is that we have not given the encoding of choice term

∑

i∈I ϕiλi.Ti.
The reader can readily give it by himself/herself. It is simply a combination of
the encodings for the prefix terms and the conditional terms. The translation
of

∑

1≤i≤k ϕiλi.Ti takes the following form

(c̃)(
∏

1≤i≤n1

Dc1i
(t1i ) | . . . |

∏

1≤i≤nk

Dcki
(tki ) | c11(z11) . . . cknk (z

k
nk).

∑

1≤i≤k
�ϕiλi.Ti�Th),

where c̃ = c11 . . . c
k
nk .

It is easy to see that the translation is sound and complete with respect to the
operational semantics in the sense of the next proposition.

Proposition 6. Suppose P is a VPC-process that does not contain any occur-
rences of <. The following correspondences hold:

(i) If P
λ−→ P ′ then �P �Th →∗�λ�Th−→ P1 =VPCTh

�P ′�Th for some VPCTh-process
P1;

(ii) If �P �Th
λ−→ P1 then P

λ′
−→ P ′ for some VPC-process P ′ and some λ′ such

that P1 =VPCTh
�P ′�Th and �λ′�Th = λ.

It is possible to strengthen Proposition 6. In fact the composition of the
relation

{(P, �P �Th) | P is a VPC process}
with =Th is a subbisimilarity. A subbisimilarity is a generalization of the absolute
equality from a binary relation on one model to a binary relation from one
calculus to another. See [Fu12b] for details.
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�0�Th
def
= 0,

�τ.T �Th
def
= τ.�T �Th,

�a(x).T �Th
def
= a(x).�T �Th,

�a(t).T �Th
def
=

⎧
⎨

⎩

a(n̂).�T �Th, if t ≡ n,
a(x).�T �Th, if t ≡ x,
(c)(Dc(t) | c(z).a(z).�T �Th), if t ≡ sl(x) for some l > 0;

�S |T �Th
def
= �S�Th | �T �Th,

�(a)T �Th
def
= (a)�T �Th,

�if ϕ then T �Th
def
= (c1 . . . ck)

⎛

⎝
∏

1≤i≤k
Dci(ti) | c1(z1). · · · ck(zk).if ϕ′ then �T �Th

⎞

⎠ ,

where ϕ′ ≡ ϕ′′{n̂1/n1, . . . , n̂j/nj}, ϕ ≡ ϕ′′{t1/z1, . . . , tk/zk},
n1, . . . , nj are the numerals in ϕ, and t1, . . . , tk are the terms

in ϕ that are of the form sl(x) for some l > 0; we may regard

if ϕ′ then �T �Th as �if ϕ then T �Th;

�!a(x).T �Th
def
= !a(x).�T �Th,

�!a(t).T �Th
def
=

⎧
⎨

⎩

!a(n̂).�T �Th, if t ≡ n,
!a(x).�T �Th, if t ≡ x,

(c)(Dc(t) | c(z).!a(z).�T �Th), if t ≡ sl(x) for some l > 0.

Fig. 7. Encoding of VPC into Turing Complete VPCTh

Theorem 4. Suppose P,Q are VPC-processes that do not contain any occur-
rences of <. Then P =VPC Q if and only if �P �Th =VPCTh

�Q�Th.

Proof. In view of Proposition 1, we only have to prove the theorem for the
external bisimilarities. Let R be the following relation

⎧

⎪
⎪
⎨

⎪
⎪
⎩

((c̃)(P1 | . . . |Pk), (c̃)(Q1 | . . . |Qk))

∣

∣

∣

∣

∣

∣

∣

∣

c is c1, . . . , cj for some j; Pi is neither
a composition nor a localization; and
�Pi�Th →∗ Qi, where Qi is obtained
from �Pi�Th by resolving the Dc

′s.

⎫

⎪
⎪
⎬

⎪
⎪
⎭

.

Now R is a VPCTh-bisimulation up to strong bisimilarity [Mil89a]. Notice that
every VPC-process is equal to a process of the form (c̃)(P1 | . . . |Pk), where for
each i ∈ {1, . . . , k}, the process Pi is neither a composition nor a localization. ��

So the translation � �Th is correct for the VPC-processes that do not refer to
the relation ‘<’. The restriction can be removed according to Proposition 5. We
conclude that VPC is a submodel of every Turing complete VPCTh. In other
words it is the least expressive among all Turing complete value-passing calculi.
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8 Conclusion

The present approach emphasizes that a value-passing calculus should be a self-
contained model of computation and interaction. The formal treatment of the
logic of the model comes with the decidability requirement. It has taken some
time to reach this level of formality. The study of Milner [Mil89a] was conducted
at an ad hoc manner. The semantics of his value-passing CCS is defined by
translating the model into the pure CCS with arbitrary choice operator. Hoare’s
definition of his famous CSP [Hoa78, Hoa85], which is a value-passing calculus,
is essentially algebraic. The operational semantics for CSP a la pure CCS is
introduced in [Bro83, BHR84, Ros97]. The labeled transition semantics for the
value-passing CCS appears in [HI93a, HI93b]. A more serious attempt to study
the operational semantics of the value-passing calculi is reported in the seminal
paper by Hennessy and Lin [HL95]. The significance of their work is that it
points out the indispensable role the first order logic may play in the study of
the semantics of the value-passing calculi. The present work can be seen as a
further step that completes the picture outlined by Hennessy and Lin [HL95].

The observational equality of this paper is an application of the universal
equality of Fu [Fu12b] to the value-passing calculi. This is an equality that dif-
fers from any equalities that have been proposed for the value-passing calculi.
The algebraic theory of CSP has been extensively studied [BHR84, Ros97], with
particular emphasis on the trace and failure semantics. In the literature on CSP,
it is popular to see a set of algebraic laws as providing an axiomatic seman-
tics. The algebraic theory of the value-passing calculi has been studied with
motivation from the denotational semantics [Hen91, HI93a, HI93b]. The obser-
vational equivalence, the weak bisimilarity, and its symbolic characterization
is systematically studied in [HL95]. Proof systems for these equivalences have
also been studied in [Hen91, HI93a, HI93b, HL96]. These systems are param-
eterized over proof systems for the logics of data domains. The decidability of
our equation system ASTh compares favorably to these systems. The algorith-
mic aspect of the equivalence checking for the value-passing calculi is elaborated
in [Lin93, Lin96, Lin98]. Our treatment to the value-passing calculi may cast new
light on the equivalence checking algorithms for the value-passing processes. A
survey of the symbolic approach is given by Ingolfsdottir and Lin [IL01].

Our formalization of the value-passing calculi makes it possible to carry out a
refined study on the expressiveness of these models. There have been early efforts
that attack the expressiveness issue. See for example [Pal03, FL10]. However it is
fair to say that none of the results obtained so far is conclusive. In this paper we
have studied the absolute expressiveness of the value-passing calculi by character-
izing the Turing complete value-passing calculi in terms of the numeric systems.
We have also studied the relative expressiveness of the value-passing calculi. It
is shown in this paper that VPC is the least expressive value-passing calculus.
The minimality result sheds new light on the value-passing calculi studied by
previous researchers, all of those models being informal variants of VPC. It is
worth remarking that VPC is strictly less expressive than the π-calculus [Fu12b]
and is strictly more expressive than the Interactive Machine Model [Fu12b].
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We have emphasized the importance of confining our attention to the decid-
able fragment of the first order logic. The tradeoff is that �sTh is much stronger
than =Th. A challenging task is to prove or disprove that �sTh and =Th coincide
on the finite control VPCTh-terms. But a more urgent problem is the following.

Problem 1. Does �s
VPC

coincide with =VPC on the finite VPC-terms?

The symbolic bisimilarity studied in this paper is the simplest of its kind. It is too

strong for the infinite state processes. Consider for example the process A0
def
=

a(x).if x is even then b(x) + a(x).if x is odd then b(x) and the process A1
def
=

a(x).b(x) + a(x).if x is even then b(x) + a(x).if x is odd then b(x). An implemen-
tation of if x is even then b(x) is (c)(c(0) | !c(y).if x = y then b(x) else c(s(s(y)))).
The term if x is odd then b(x) is defined similarly. It is clear that A0 =VPC A1.

On the other hand A0 ��sVPC A1. The transition A1
a(x)−→� b(x) can be simu-

lated by A0. There is however no boolean PA-partition on {x} that witnesses
the simulation. If we relax on the boolean restriction, then intuitively the set
{∃z.x = 2∗z, ∃z.x = 2∗z+1} forms a ‘partition’. In order to carry out investiga-
tion along this line, the symbolic approach must be modified in a couple of ways.
Firstly the proper power of the Peano system should be retained. Specifically
the addition operator ‘+’ and the multiplication operator ‘∗’ are necessary to
produce much more powerful specifications. Secondly the symbolic bisimilarity
should be defined by a family of relations indexed by the first order formu-
las [HL95, IL01]. The introduction of the arithmetic operators does not change
the grammar of VPC. No VPC-terms would contain any arithmetic operators.
So the logic expressions of VPC are still decidable. The extra expressive power
is only exploited in verification. We may ask the following question.

Problem 2. What is the symbolic theory that exploits the richer Peano theory?

The equation system ASTh provides an effective method to check the symbolic
bisimilarity of two finite VPCTh-terms. A natural question to ask is how to extend
ASTh to a complete system for the finite control VPCTh-terms. Hennessy, Lin and
Rathke have discussed the issue in [HL97, Rat97a, Rat97b, HLR97]. It should
be routine to adapt their approach and Milner’s original approach [Mil89b] to
VPCTh. Additional care should be taken to divergence [LDH02, LDH05, Fu12a].
The details are yet to be worked out.

There are other aspects of the value-passing calculi that are worth investigat-
ing. One could for example take a look at the box equality introduced by Fu
and Zhu [FZ11]. One could also take a look at the algorithm complexities for
a number of decidability problems. The general methodology proposed in this
paper has laid down a firm foundation for the solutions to these problems.
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[G3̈1] Gödel, K.: Über formal unentscheidbare sätze der principia mathematica

und verwandter systeme. Monatshefte für Mathematik und verwandter
Systeme I 38, 173–198 (1931)

[Hen91] Hennessy, M.: A proof system for communicating processes with value-
passing. Journal of Formal Aspects of Computer Science 3, 346–366
(1991)

[HI93a] Hennessy, M., Ingólfsdóttir, A.: Communicating processes with value-
passing and assignment. Journal of Formal Aspects of Computing 5, 432–
466 (1993)
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