
Theory of Interaction

Yuxi Fu

BASICS, Shanghai Jiao Tong University

Abstract

Theory of Interaction aims to provide a foundational framework for computa-
tion and interaction. It proposes four fundamental principles that character-
ize the common features of all models of computation and interaction. These
principles suffice to support a model independent treatment of the two most
important relationships in computer science, the equality between processes
and the relative expressiveness between models. Based on the two relation-
ships the theory of equality, the theory of expressiveness and the theory of
completeness are developed.

Keywords: Process calculus, bisimulation, interaction, computation

c©The paper is to appear in Theoretical Computer Science.

Preprint submitted to Theoretical Computer Science B August 8, 2015

Contents

1 Foundation 4
1.1 Theory of Interaction . 7
1.2 Fundamental Principle . 7

1.2.1 Principle of Object . 8
1.2.2 Principle of Action . 9
1.2.3 Principle of Observation 11
1.2.4 Principle of Consistency 13

1.3 Computability Model . 14

2 Model of Interaction 16
2.1 Machine Model . 17
2.2 Function Model . 20
2.3 Program Model . 21

3 Theory of Equality 23
3.1 Equality for Evolving Object 24

3.1.1 Time Invariance . 24
3.1.2 Space Invariance . 25
3.1.3 Computation Invariance 26
3.1.4 Interaction Invariance 27

3.2 Absolute Equality . 27
3.3 Below and Above the Absolute Equality 33
3.4 Respectful Operator . 35
3.5 Observation Theory . 37

4 Theory of Expressiveness 38
4.1 Subbisimilarity . 39
4.2 Soundness and Relative Expressiveness 42
4.3 Incompatibility of VPC and Pi 43
4.4 Self Interpretation . 46
4.5 Subbisimilarity for Pi Variant 51
4.6 Expressiveness of Polyadic Pi 53

5 Theory of Completeness 54
5.1 Complete Model . 56
5.2 Incompleteness Result . 58

2

5.2.1 CCS . 58
5.2.2 Process-Passing Calculus 61

5.3 Computability Model Justified 65

6 Related Work 68
6.1 On Equality . 70

6.1.1 Bisimulation . 71
6.1.2 Codivergence . 72
6.1.3 Extensionality . 73
6.1.4 Equipollence . 74

6.2 On Expressiveness . 75
6.2.1 Leader Election Problem 75
6.2.2 Operational Correspondence 77
6.2.3 Weak Operational Correspondence 78
6.2.4 Equivalence Criterion 78
6.2.5 Weak Full Abstraction 79
6.2.6 Compositionality . 79
6.2.7 Name Invariance . 80
6.2.8 Correct Translation . 80

6.3 On Completeness . 81
6.4 Natural Criteria . 83

7 Conclusion 84
7.1 Unsettled Problem . 85
7.2 Future Direction . 86

Appendix A Input via Output? 90

Appendix B Value-Passing via Name-Passing? 91

3

1. Foundation

Modern computing is all about interaction (Milner, 1993a). This is how-
ever not to say that the traditional notion of computing is not about inter-
action. The difference is due to the angle of observation. In Church-Turing’s
models of computation, the focus is on the closed systems, systems that never
interact with any other systems, and the internal actions of the systems. So
the models of computation are concerned with interactions within. On the
other hand, the interest of the distributed computing and the mobile com-
puting is in the open systems. In addition to its internal interactions, an
open system interacts with another open system. The complexity of an open
system is often caused by the interleavings of its internal interactions with
its external actions and the nondeterministic timings of these interleavings.

Models of computation were proposed and studied in 1930’s. Some well-
known models are the Recursive Function Model, the Turing Machine Model,
the λ-calculus, and the Random Access Machine (Rogers, 1987; Hopcroft and
Ullman, 1979; Barendregt, 1984; van Emde Boas, 1990). By investigating the
comparative power of these models, it was soon realized that all these models
are equivalent in the sense that the partial functions definable in these models
are all the same. The belief that all models of computation are equivalent in
this sense has been referred to as Church-Turing Thesis. The original formu-
lation of Church-Turing Thesis emphasizes on computability. It was revealed
in subsequent studies, especially in the studies of algorithms (Dasgupta et al.,
2006) and computational complexity (Papadimitriou, 1994; Wegener, 2005;
Arora and Barak, 2009), that the equivalence of the models of computa-
tion actually holds at the operational level. There is a translation from one
model of computation to another that preserves and reflects computations.
The translation is not only effective, it is actually efficient.

Milner (1980) pioneered the study to formalize the notion of interaction
between open systems (processes) by his work on CCS. At about the same
time, Hoare (1978) has made landmark contribution to the theory in his
work on the well-known programming language CSP. Since then the theory
of process calculus in particular and the concurrency theory in general have
proliferated. In fact the development of concurrency theory has been so fast
and the number of the proposed models has increased so dramatically that
a call for a general theory of interaction has long been overdue. Looking
back, one cannot help remarking that the fundamental notions like inter-
action, composition, localization, and interface (channel) were all present

4

in the very beginning in CSP as well as CCS. A crucial tool, bisimulation,
was introduced to concurrency by Park (1981) and Milner (1989a) in 1980’s,
which has greatly advanced the observation theory of processes ever since.
An interesting account of the history of bisimulation in computer science can
be found in (Sangiorgi, 2009).

An issue that has attracted more attention than ever rencently is the
relative expressiveness of process calculi. In view of the hundreds of process
calculi (Nestmann, 2006), if not more, that have been proposed, results on
expressiveness are rare. The issue is complicated by the lack of a consensus on
the criteria for comparing the expressiveness. As Parrow (2006) has pointed
out, if we have i process calculi and j sets of criteria, we end up with i× j× i
positive or negative results on expressiveness. Worse still there may well be
contradictory results since an expressiveness relationship from one calculus
to another may be negative by one set of criteria and positive by another set
of criteria. The truth is, as long as we are using two different sets of criteria,
contradictory results will never be a surprise. This is definitely unacceptable
for a theory that seeks to reveal the law of interaction. One source of the
diversity is that too many process calculi have been manufactured with little
industrial effort. The lack of constraints has led to a profusion of calculi
that would fail any single set of criteria. If we are to look for a single set
of sensible criteria applicable to some models, we will be at the same time
ruling out a good few of others.

Another important issue is about what Abramsky (2006) has called ex-
pressive completeness. Should we impose a minimal expressive power on all
models of interaction? A positive answer would be a very foundational as-
sumption that provides a fundamental constraint. If a process calculus is
intended to be an extension of a computation model, the expressive com-
pleteness should imply that within the calculus one should be able to code
up all the computable functions. So in a unified theory for both computation
models and interaction models, the expressive completeness should subsume
the so-called Turing completeness discussed in literature. But how should
we formalize the expressive completeness? Let’s take a look at how Turing
completeness is formalized in the theory of process calculus. Again different
criteria have been proposed in literature (Maffeis and Phillips, 2005). The
proof of Turing completeness according to these criteria typically amounts to
constructing a map J K from the set of the computing objects of a computa-
tion model L to a set of processes of a process calculus M in such a way that a
computation of say L is simulated by an internal action sequence of JLK; and

5

vice versa. There is nothing wrong with most Turing completeness proofs in
process calculus literature. But since these proofs are for interaction mod-
els, one should really see them from the perspective of interaction. Some of
the equalities used in the proofs are not even trace equivalent. Consequently
these Turing completeness results are not really useful for the interactive pro-
cesses. Another conspicuous deficiency of most proofs of Turing completeness
for process calculi is the lack of something like “value supply” or “result de-
livery”. The input values are not picked up from environments properly, and
the results cannot be delivered safely to any targeted receivers. Again this
level of completeness cannot be promoted to interaction level.

One could give more examples demonstrating the lack of consensus, not
to mention philosophies, in other parts of the theory of process calculus. But
the point has been made. As much as it has benefited from the observational
approach that tries to ignore all computations, the theory of process calculus
has suffered from not paying enough attention to the fundamental role of
the theory of computation. The theory of process calculus and the theory of
computation have been two separate developments. A sensible thing to do
is to carry out an integrated study that does not favour one over the other.
It is expected that both theories should benefit from such an integration.

Before we formally develop the Theory of Interaction, we have to point
out that the motivation for this work is mainly theoretical. We aim to lay
down a framework that is as model independent as possible and at the same
time allows one to prove significant general results. For that purpose we
have to make some choices along the way. Firstly we will adopt the one-
one synchronous communication as the basic interaction pattern. For two
processes to interact they must be connected to the two ends of a channel.
There are other communication patterns like one-many communication and
CSP style synchronization that are not covered by our framework. Secondly
we will focus exclusively on interleaving semantics. Some of our criteria do
not apply in a noninterleaving semantics. Thirdly we assume that there are
a couple of operators that are universal in the sense that these operators
are present in all the models we will be considering. There are models that
instead of having all the universal operators, have some kind of combined
versions of these operators whose semantics is model specific. A study of
an even more general framework that can cover models like some variants
of CSP, Join Calculus, Distributed π and the Ambient Calculus (see for
example (Fournet et al., 1996; Fournet and Gonthier, 1996; Hennessy, 2007;
Cardelli and Gordon, 2000)) is beyond the scope of this paper.

6

1.1. Theory of Interaction

The prime motivation for Theory of Interaction is to bridge the gap be-
tween the computation theory and the interaction theory. By adopting the
view that interaction is computation seen from within and that computa-
tion is interaction seen from without, Theory of Interaction eliminates the
distinction between these two kinds of models from the outset. The bene-
fit is that we may extend the results and methodologies well established in
the computation theory to models that account for both computation and
interaction.

The ultimate goal of Theory of Interaction is to provide a framework
in which one may formalize the foundational assumptions, for example the
Church Turing Thesis, widely accepted in the major branches of computer
science. Since postulates are formulated in terms of relations, one has to
pin down the fundamental relationships in computer science before formal-
izing any postulates. These relationships must be about models and objects
(processes, programs), there is nothing more basic than these two classes of
entities, hence the following two relationships.

• The first is the equality relationship on processes. At an abstract level,
one cannot think of a relationship on objects/processes/programs that
is simpler than the equality relationship.

• The second is the expressiveness relationship formalizing the idea that
one model is at least as expressive as another. All other relationships
between models are conceptually more complex.

Both the equality relationship and the expressiveness relationship must be
defined in a model independent manner, otherwise there would be no way
to formalize any postulates that apply to all models. Now the only way
to achieve model independence is to introduce a number of principles that
prescribe the common properties of all models as well as all objects. We start
with these principles.

1.2. Fundamental Principle

Four fundamental principles for Theory of Interaction will be introduced.
These principles introduce a set of minimal properties enough to define the
two most important relationships.

7

1.2.1. Principle of Object

A model of interaction defines interactions. All interactions are performed
by processes. An interaction is a cooperation between two processes. It is
synchronous and atomic. A basic assumption in Theory of Interaction is that
all interactions are conducted via interfaces.

Through interfaces are interactions possible; no interactions go
without interfaces.

This assumption, borrowed from the theory of process calculus, is ground
shaping. It forces us, from the very start, to answer some basic questions
about interfaces. Do we need to assume different sets of interfaces for different
models of interaction? If our answer to the question is positive, we are
implicitly assuming that an interface does have a mind of its own. If that was
the case, why were interfaces not processes? It makes more sense to assume
that interfaces are property free. This is why they are simply formalized as
names. A name is the name of itself. It differs from another name only in
that they are distinct names. Since the names are propertyless, it does not
matter which set of names a model is using. Without losing any generality
we adopt the following convention:

There is only one infinite and countable set of interfaces. All
models of interaction make use of this set of interfaces.

This simple assumption suggests that the interfaces are of a physical nature,
whose existence is independent of any particular model.

So there are two kinds of syntactical objects in every model of interaction.
In Theory of Interaction, we confine our attention to the models in which
the names and the processes are the only proper objects. Other syntactical
objects are either derivable or auxiliary.

Principle of Object. There are two kinds of objects; they are
the names and the processes.

We will apply as much as possible the same syntactical notations to all mod-
els. We will writeN for the set of the names, ranged over by a, b, c, d, e, f, g, h.
In the models we consider in this paper, an interaction happen between two
processes. When two processes are connected at the two ends of an interface,
an interaction can be fired. We often write a and a to indicate the “positive”
and the “negative” ends of the interface a.

8

When defining mobility, we need name variables. Let Vn be the countable
and infinite set of the name variables, ranged over by u, v, w, x, y, z. A name
variable is a place holder. It can be bound by a prefix operation, in which
case we say that the name variable is bound. A name variable is free if it is
not bound.

The set N ∪ Vn will be ranged over by l,m, n, o, p, q. A renaming α is a
partial map α : N ⇀ N such that the domain of definition dom(α) is finite
and that it is injective on dom(α). A renaming is often written explicitly
as {b1/a1, . . . , bk/ak}. A substitution σ is a partial map σ : Vn ⇀ N ∪ Vn
whose domain of definition dom(σ) is finite. A substitution is often written
as {p1/x1, . . . , pk/xk}. An assignment ρ is a partial function of type Vn ⇀ N
whose domain of definition is cofinite.

For a model of interaction M, there are syntactical objects called terms,
or the M-terms. The notation TM denotes the set of the M-terms, ranged over
by R, S, T . When defining higher order calculi or some form of recursion, we
need term variables. We write Vt for the infinite countable set of the term
variables, ranged over by X, Y, Z. A term variable can be bound by a prefix
operation.

An M-process is a proper M-term. The M-terms are introduced in order
to define M-processes. This is often necessary in a structural definition. A
basic requirement for a term to be a process is that it does not contain
any free variables of any kind. The notation PM stands for the set of the
M-processes, ranged over by A,B,C,D, L,M,N,O, P,Q.

A term substitution is a partial map ς : Vt ⇀ TM whose domain of defi-
nition dom(ς) is finite. We often write {T1/X1, . . . , Tk/Xk} for a term sub-
stitution. A term assignment % is a partial function of type Vt ⇀ PM whose
domain of definition is cofinite.

We abbreviate a finite sequence of names c1, . . . , ck to c̃. Accordingly
(c1) . . . (ck)T is often abbreviated to (c̃)T . Similarly we will write for example

x̃, X̃, T̃ and P̃ .
The letters i, j, k will range over the set of natural numbers.

1.2.2. Principle of Action

A process either interacts with another process or performs an action on
its own. The former is an external action whereas the latter is an internal
action. An internal action is either a one step deterministic computation, or
a one step nondeterministic computation. An external action of a process is
what a counterpart sees when the two processes are engaged in an interac-

9

tion. For this reason, the external actions are observable whereas the internal
actions are unobservable. From the point of view of Theory of Interaction,
the external actions and the internal actions carry the same weight.

Principle of Action. There are two aspects of atomic actions,
the internal aspect and the external aspect.

Syntactically we shall write P
τ−→ P ′ to indicate that P evolves to P ′ after

performing an internal action. The reflexive and transitive closure of
τ−→ is

denoted by =⇒, and the transitive closure of
τ−→ by

τ
=⇒. Using this notation

we can describe the dichotomy between deterministic and nondeterministic
computations.

• We say that P
τ−→ P ′ is a one step deterministic computation, notation

P → P ′, if P ′ and P are equal.

• We say that P
τ−→ P ′ is a one step nondeterministic computation,

notation P
ι−→ P ′, if P ′ and P are not equal.

The precise meaning of the terminologies will be clear after the equality
relation is fixed. The reflexive and transitive closure of→ is denoted by→∗,
and the transitive closure by →+. We write P 9 if P → P ′ for no P ′.

Suppose M is a model of interaction. Let LM, ranged over by `, be the
set of labels representing the external actions admitted in M. We write

P
`−→ P ′

for the fact that P turns into P ′ after performing the action `. For each
` ∈ LM let ` be the opposite action of `. Conversely ` is the opposite action
of `. An action and its opposite action, attached to the opposite ends of a
channel, are contributions of two processes engaged in an interaction. The

notation
`
� is defined as follows:

`
�

def
= →∗ `−→ .

Let L∗M be the set of the finite strings of the elements of LM. We write `∗ for
an element of L∗M. The empty string is denoted by ε. If `∗ = `1 . . . `k, then

the notation P
`∗

� P ′ stands for ∃P1, . . . , Pk−1.P
`1
� P1 . . .

`k−1

� Pk−1

`k
� P ′. If

`∗ = ε, then P
`∗

� P ′ is the same as P →∗ P ′.
The set of actions AM is the union set LM∪{τ}, ranged over by λ. We say

that P ′ is a descendant of P if P
λ1−→ . . .

λk−→ P ′ for some k ≥ 0. According
to the definition P is a descendant of itself.

10

1.2.3. Principle of Observation

The only way to make an observation on a process is to interact with
it. There is no alternative. If an interaction pattern between O and P is
not similar to any interaction pattern between O and Q, then in the eyes
of O the processes P and Q are different. In other words, O can observe a
difference between P and Q. While making an observation, an observer is
simultaneously being observed by the observee. It follows that the observers
and the observees must be in reciprocal positions. This reciprocality has
serious implications, one of which is stated as follows:

The observers have the same observing power as the observees,
no more, no less.

In a closed model of processes, where a process may interact with another
process within the model but may not interact with anything outside the
model, having a stronger observing power is impossible, and having a weaker
observing power is insufficient.

What makes it possible for two processes to observe each other? The
observation is possible if they are composed at the same level to form a
bigger system. A composition differs from a parallel deployment precisely in
that in the former the components may interact whereas in the latter no such
interactions may happen. Composition and interaction come hand in hand.
In terms of observation, this relationship can be phrased as follows:

Observation is the reason for composition; composition enables
observation.

The standard notation for the composition operator is “|”. In P |Q the op-
erator “|” connects the processes P,Q, allowing them to interact at common
interfaces. Systems composed of many components admit a great deal of in-
teractions. However interactions without any control are hardly of any use.
One effective approach to increase the control on interaction is to use local-
ization operator. For a process P , we write (a)P for the process obtained
from P by restricting the use of the name a. Here the name a is localized,
meaning that in (a)P the interface a must be used within P and that P can-
not interact with another process through the interface a. In other words, P
cannot be observed at a. Investigations conducted in the theory of process
calculus have shown that the localization operator is of fundamental impor-
tance (Busi and Zavattaro, 2004; Giambiagi et al., 2004; Fu and Lu, 2010).

11

Without the operator most calculi would be too weak to be of any interest.
The motto is stated below:

Non-observation is the reason for localization; localization dis-
ables observation.

A mainstream practice in the theory of process calculus is that the notion
of observation is assumed invariant in all process calculi. If one thinks of it,
this assumption is really the very basis for the expressiveness study.

The way of making observations is the same in all models of
interaction. In other words, the notion of observation is model
independent.

Technically this assumption on observation forces one to adopt the following
fundamental principle.

Principle of Observation. There are two universal operators,
the composition operator and the localization operator.

Principle of Observation implies that the semantics of the two operators are
essentially the same in all models of interaction (Gorla, 2008a,b). Using the
labeled transition systems (Plotkin, 1981; Aceto et al., 2001), the operational
semantics of the composition operator can be defined in the standard way.
There are two structural rules:

S
λ−→ S ′

S |T λ−→ S ′ |T
T

λ−→ T ′

S |T λ−→ S |T ′
(1)

There are semantic rules that define the cooperations between the two com-
ponents of a composition. Although they cannot be completely specified at
this level of abstraction, they always take the following general form.

S
`−→ S ′ T

`−→ T ′

S |T τ−→ R′
(2)

The symmetric version of (2) will be always omitted. In (2) the external
actions ` and ` are the contributions of S and T respectively in the cooper-
ation, and R′ is defined from S ′, T ′, `, `. For the localization operator, the
structural rule is defined by the following rule.

T
λ−→ T ′

(a)T
λ−→ (a)T ′

a does not appear in λ. (3)

12

The semantic rules for the localization operator are of the following pattern.

T
`−→ T ′

(a)T
(a)`−→ T ′

a does not appear in ` as an interface name. (4)

The precise interpretation of the side condition of (4) is model dependent.
Since the composition operator is symmetric and associative, we shall use

the product notation ∏
i∈{1,..,k}

Ti

for the composite term ((. . . (T1 |T2) | . . .) |Tk−1) |Tk. The composition of i
copies of T is denoted by ∏

i

T.

We shall say that the name a in (a)T is a local name. A name is a global
name if it is not local. The localization operation introduces a hierarchical
structure in a term. In (a)(S | (a)T) for example, S and T cannot interact
at a. We write gn() and ln() for the functions that return the set of global
names, and respectively the set of local names. We also write n() for the
function that returns the set of all names.

We shall apply the α-conversion to both local names and bound name
variables. Based on α-conversion, we shall make it a convention that no
conflict and confusion about names and name variables can ever arise.

We can now describe the observations using the universal operators. For
example the following internal action sequence is an observation on P .

(b)(O2 | (a)(O1 |P))
τ−→ (b)(O2 | (a)(O′1 |P ′))

τ−→ τ−→ (b)(O′2 | (a)(O′1 |P ′))

The process P is observed in the environment (b)(O2 | (a)(O1 |)). A universal
definition of environment is rendered possible by the Principle of Observation.

Definition 1. An M-environment C[] is either a hole [], or (c)C ′[], or
P |C ′[], or C ′[] |P , where c ∈ N , P ∈ PM and C ′[] is an M-environment.

1.2.4. Principle of Consistency

Theory of Interaction is consistent in the sense that not all processes of
a model can be identified. Since the theory is meant to provide a unification
framework, the equality or inequality of two processes should be judged from

13

the point of view of both computation and interaction. In terms of the ability
to perform computations, what could be the biggest difference between two
processes? The difference cannot be sharper than that

• one always terminates, and

• the other may engage in an infinite sequence of internal actions.

We say that a process P is terminating if it does not have any infinite sequence
of internal actions P

τ−→ τ−→ . . .; it is divergent otherwise. From the point
of view of the external actions, what could be the biggest difference between
two processes? The difference cannot be sharper than that

• one can interact, and

• the other cannot interact with any process.

We say that a process P is observable, notation P⇓, if P =⇒ `−→ T for some
` and T ; otherwise it is unobservable, notation P 6⇓.

At the concurrent level of abstraction, the consistency of a model can
only mean that the most different processes should never be equated.

Principle of Consistency. A terminating process is never equal
to a divergent process. An observable process is never equal to
an unobservable process.

In Theory of Interaction all models are assumed to have the process 0 that
cannot do any internal or external actions. Principle of Consistency not only
points out what processes can be distinguished, but also implies what cannot
be distinguished. The following statement can be seen as a corollary of the
principle: All terminating unobservable processes are equal to 0. So we might
as well think of a terminating unobservable process as a terminated process.

1.3. Computability Model

From the point of view of Theory of Interaction, a computation model is a
simplification of an interaction model obtained by localizing all global inter-
faces. Different computation models can be extended to different interaction
models. Among all these extensions a minimal model that embodies the
fundamental idea of computability and interactability would be very useful.
From our perspective an interactional extension of the computable functions
may serve as such a model.

14

The first step to recover the interaction model from the computable func-
tions is to recall that what made us to introduce the channels in the first place
is precisely to internalize actions like input-a-value and output-a-result. For
the unary computable function f(x) the intuition is that its operational se-
mantics should describe the following three stage activities:

1. it picks up a numeral from the environment;

2. it then carries out the computation prescribed by the function; and
finally

3. it delivers the result of the computation to a targeted receiver.

Depending on the type of the ambient environment, the inputs and the
outputs are done with the help of particular channels. The Computability
Model, the C-calculus, is the minimal extension of the computable function
model that supports (1) through (3). In C the atomic processes are either
functions or values with the capacity to interact. The processes are generated
by the following simple grammar:

P := 0 | Ω | F b
a(f(x)) | a(i) | P |P,

where f(x) is a unary computable function, and i is a numeral, underlined
to avoid confusion. We will write i, j, k, l,m, n for numerals. The functional

process F b
a(f(x)) at a, b, where the names a, b must be distinct, can input a

numeral, say m, at channel a. It becomes b(n) if f(m) = n and Ω if f(m) is
undefined. The semantics of F b

a(f(x)) is given by the following rules.

F b
a(f(x))

a(m)−→ b(n)
if f(m) = n.

F b
a(f(x))

a(m)−→ Ω
if f(m) is undefined.

The sole action of the value process a(i) at a is to release the numeral n at
the channel a. The process Ω is special in that it can only diverge. These
operational behaviors are defined by the following rules.

a(n)
a(n)−→ 0 Ω

τ−→ Ω

The transition rule for interaction is standard:

P
a(n)−→ P ′ Q

a(n)−→ Q′

P |Q τ−→ P ′ |Q′

15

The structural rules are also standard:

P
λ−→ P ′

P |Q λ−→ P ′ |Q

Q
λ−→ Q′

P |Q λ−→ P |Q′

The definition of the Computability Model is now complete. Its fundamental
role in Theory of Interaction will be revealed later.

At this point the reader must wonder why C does not have the localization
operator. According to the principles we have described, C as it stands is
not a legitimate model of interaction in the present framework. It turns out
that for C to fulfil its role expected of it, the localization operator is not only
unnecessary, it actually has an adversary effect on C.

2. Model of Interaction

Let’s begin with an outline of how the models of interaction are defined.
Suppose M is a model. The set TM of the M-terms is defined by an abstract
grammar in the style of BNF. It looks typically like the following:

T := 0 | T |T ′ | (c)T | T3 | . . . | Tk.

Each of {T3, . . . , Tk} introduces an operator. In the spirit of Theory of In-
teraction, we take 0, T |T ′ and (c)T as default and will omit them from
the definition of an abstract grammar. The semantics of M is defined by a
labeled transition system, which is a tuple (TM,AM,−→M) where the tran-

sition relation −→M is a subset of TM × AM × TM. We write S
λ−→M T for

(S, λ, T) ∈−→M. The relation −→M, where the subscript is almost always
omitted, is generated by mutual inductions on TM. The inductions are given
by axioms and rules and are composed of two parts:

• the axioms and rules specific to M;

• the rules introduced in Section 1.2.3.

When defining the semantics of a model, the structural rules (1) and (3) will
always be omitted. Quite often a semantic rule like (4) is also omitted as long
as the interface names of the external actions have been specified. However
the interaction rules like (2) will always be given.

In this section, we review three important models of interaction. They
will be the running examples throughout the paper. Our formulations of

16

the function model and the program model are not quite the same as the
standard ones. Extensive studies of these two models in a manner advocated
by Theory of Interaction can be found in (Fu, 2013b; Fu and Zhu, 2015).

2.1. Machine Model

We first take a look at a machine model for interaction. Such a model
is promoted from the machine models for computation. An Atomic In-
teractive Machine is basically obtained from a (deterministic) Turing Ma-
chine (Hopcroft and Ullman, 1979) by replacing the input tape, the work
tapes, and the output tape by input channels, accumulator and registers, and
output channels respectively. It can also be seen as an extension of a Counter
Machine (van Emde Boas, 1990) with input and output channels. Formally
an Atomic Interactive Machine M is a tuple (I,O,R0(n0),R1(n1),A(n),P, j)
where the components (see Fig. 1) have the following interpretations:

• I is the finite set of input channels through each of which the machine
may input one numeral at a time.

• O is the finite set of output channels through each of which the machine
may output one numeral at a time.

• R0,R1 are two registers, either of which may store a numeral. The
numerals n0, n1 are the current values of the registers.

• A is the accumulator which may hold a numeral. The numeral n is the
current value of the accumulator.

• P is the program that consists of a finite list of instructions. The pro-
gram appears in the following shape:

1 : I1

2 : I2

...

k : Ik

k + 1 : Stop

where k ≥ 0. Here 1, . . . , k+1 are the addresses of the instructions. The
last instruction of the program must be Stop. For each i ∈ {1, . . . , k +
1}, we write P(i) for the i-th instruction of P.

17

nA

P
n0

R0

n1

R1

T
T

�
�

!!
!!

a1

...

ai

PPPPq

��
��1

b1

bi′
PPPPq

...

��
��1

- j : . . .

Figure 1: Atomic Interactive Machine.

• j is the address of the current instruction, taking value in {1, . . . , k+1}.

The instructions are classified into two groups, those that move data around
between machines, and those that manipulate data within a machine. The
instructions in the first group are of two types:

(i) Input a, where a ∈ I, picks up a numeral at channel a and update the
content of A by the received numeral.

(o) Output b, where b ∈ O, fetches the numeral stored in A and delivers
the numeral through channel b.

The instructions in the second group are of three types. Only one instruction
is of the first type.

(s) Stop is the instruction that terminates the machine execution.

Two instructions are of the second type.

(r) Read i, where i is either 0 or 1, copies the content of Ri to A.

(w) Write i, where i is either 0 or 1, copies the content of A to Ri.

The instructions of the third type define arithmetic operations. There are
many choices for these instructions. The reader might have his/her favorite
combination. In this paper we shall not be specific about these instructions.

The semantics of the Atomic Interactive Machines is given by a labeled
transition system. The rules about the input and output instructions are as
follows.

18

P(j) = Input a

(I,O,R0(n0),R1(n1),A(n),P, j)
a(m)−→ (I,O,R0(n0),R1(n1),A(m),P, j + 1)

P(j) = Output b

(I,O,R0(n0),R1(n1),A(n),P, j)
b(n)−→ (I,O,R0(n0),R1(n1),A(n),P, j + 1)

The rules about the read and write instructions are as follows:

P(j) = Read i and i ∈ {0, 1}
(I,O,R0(n0),R1(n1),A(n),P, j)

τ−→ (I,O,R0(n0),R1(n1),A(ni),P, j + 1)

P(j) = Write 0

(I,O,R0(n0),R1(n1),A(n),P, j)
τ−→ (I,O,R0(n),R1(n1),A(n),P, j + 1)

P(j) = Write 1

(I,O,R0(n0),R1(n1),A(n),P, j)
τ−→ (I,O,R0(n0),R1(n),A(n),P, j + 1)

The Atomic Interactive Machines are so defined to facilitate exchange of
information among individual machines. The general Interactive Machines
are syntactically defined by the following grammar:

M := AIM | M |M′ | (c)M

where AIM’s are the Atomic Interactive Machines. Let IM denote the Inter-
active Machine Model. The semantics of IM follows the general methodology.
The interaction rule for example is defined by the following rule and its sym-
metric version.

M
a(n)−→ M′ N

a(n)−→ N′

M |N τ−→ M′ |N′

The machine model is convenient for model theoretical studies of dis-
tributed systems. In distributed computing a major concern is how interac-
tions are implemented. Insightful discussions on this issue can be found in
the pioneering work of Hoare (1978) and of Milner (1989a).

19

2.2. Function Model

The value-passing calculus VPC is the recursion theory (Rogers, 1987;
Soare, 1987) reincarnated in an interactive framework. Let’s pause for a
minute and think about what need be introduced to define all the recursive
functions. The followings ought to be clear.

1. To admit the input actions input terms “a(x).T” are introduced.

2. To support the output actions output terms “a().T” are incorporated.

3. To define minimization, conditional terms “if ϕ then T” are necessary.

4. To interpret recursion, replication is a minimal option.

The model VPC is defined on top of Presburger Arithmetic (Fu, 2013b).
We write PA ` ϕ if ϕ can be derived in Presburger Arithmetic. Formally the
set TVPC of the VPC-terms is generated by the following grammar.

T :=
∑

1≤i≤k

a(x).Ti |
∑

1≤i≤k

a(ti).Ti | if ϕ then T | !a(x).T | !a(t).T.

In the input choice
∑

1≤i≤k a(x).Ti and the output choice
∑

1≤i≤k a(ti).Ti, the
guard a(x) is an input prefix and the guard a(ti) is an output prefix. The
input prefix a(x) binds the term variable x in the term it applies. A variable
is free if it is not bound. The set PVPC of the VPC-processes consists of those
VPC-terms that do not contain any free variables. The term if ϕ then T is a
conditional term in which ϕ is a boolean expression. Often we write [ϕ]T as
a syntactical abbreviation for if ϕ then T . A finite set of boolean expressions
{ϕi}i∈I is mutually exclusive if PA ` (ϕi ∧ ϕj ⇒ ⊥) for all i, j ∈ I such that
i 6= j. Given such a family, one could define the conditional choice

∑
i∈I [ϕi]Ti

as follows: ∑
i∈I

[ϕi]Ti
def
=

∏
i∈I

[ϕi]Ti.

A special case of the conditional choice is the following if then else term:

if ϕ then S else T
def
= [ϕ]S | [¬ϕ]T.

It is obvious that at most one of S, T can be fired. For the same reason, at
most one summand of

∑
i∈I [ϕi]Ti may proceed further.

20

Using the label set LVPC = {a(i), a(i) | a ∈ N , and i is a natural number},
the semantics of VPC can be defined by the following labeled transition
system, where j ranges over {1, . . . , k} in the action rules.

Action

∑
1≤i≤k a(x).Ti

a(n)−→ Tj{n/x}
∑

1≤i≤k a(ti).Ti
a(n)−→ Tj

PA ` tj = n.

Interaction

S
a(n)−→ S ′ T

a(n)−→ T ′

S |T τ−→ S ′ |T ′

Condition
T

λ−→ T ′

if ϕ then T
λ−→ T ′

PA ` ϕ.

Recursion

!a(x).T
a(n)−→ T{n/x} | !a(x).T !a(t).T

a(n)−→ T | !a(t).T
PA ` t = n.

In many occasions the variant of VPC with the input and the output
prefixes in place of the guarded choices is sufficient. We write VPC− for
this variant. Our treatment of VPC is more formal than the ones found in
literature. A detailed exposure of our approach can be found in (Fu, 2013b).

2.3. Program Model

Church’s λ-calculus (Barendregt, 1984) has played a key role both in
mathematical logic and in understanding the operational issues concerning
(functional) programming. The lazy λ-calculus (Abramsky, 1988) is the vari-
ant whose operational semantics is purely sequential. What makes the λ-
calculus so successful in modeling programming is its use of a basic operator,
the functional application, and its exclusive focus on functions. This is very
much like in the axiomatic set theory, widely accepted as a foundation of
mathematics, where one has the membership relation and the sets. When
moving from functional computation to concurrent computation, a natural
thing to do is to take concurrent composition operator as basic and retain
some form of function. It appears at first sight that the interactive model

21

of the lazy λ-calculus is straightforward. Its syntax could be defined by the
following grammar:

T := X | a(X).T | a〈T 〉.T.

Unfortunately the model so defined is not a legal citizen in Theory of In-
teraction. The problem is that, unlike in the λ-calculus, a process has little
control over what it receives through interaction. See Section 5.2.2 for more
technical explanation. A paradigm shift from the functional scenario to the
object oriented scenario was made by Milner et al. (1992). Instead of passing
around processes, the π-processes send and receive names. The set Tπ of the
π-terms is generated by the following grammar:

T :=
∑

1≤i≤k

n(x).Ti |
∑

1≤i≤k

nmi.Ti | [p=q]T | [p 6=q]T | !n(x).T | !nm.T.

The match operator [=] and the mismatch operator [6=] are extremely
important in both theory and practice. They are independent and conser-
vative over the π-calculus without the conditionals (Fu and Lu, 2010). The
name variable x in n(x).T is bound. The set Pπ of the π-processes consists
of those π-terms that contain no free name variables. The label set Lπ is
{ac, ac, a(c) | a, c ∈ N}. The semantics of the π-calculus is defined by the
following rules, where [k] = {1, . . . , k}.
Action

∑
1≤i≤k a(x).Ti

ac−→ Tj{c/x}
j ∈ [k] ∑

1≤i≤k ami.Ti
ac−→ Tj

mj = c, j ∈ [k]

Interaction

S
ac−→ S ′ T

ac−→ T ′

S |T τ−→ S ′ |T ′
S

ac−→ S ′ T
a(c)−→ T ′

S |T τ−→ (c)(S ′ |T ′)

Condition
T

λ−→ T ′

[c=c]T
λ−→ T ′

T
λ−→ T ′

[a 6=b]T λ−→ T ′

Recursion

!a(x).T
ac−→ T{c/x} | !a(x).T !ac.T

ac−→ T | !ac.T

22

Some variants of the π-calculus can be obtained by imposing additional
syntactical restrictions. Let π− be obtained from the π-calculus by re-
placing the guarded choice operators by the plain prefix operator. If the
match/mismatch operator is further removed from π−, we get πM , the mini-
mal π-calculus. For a comprehensive theory of the π-calculus and its variants,
the reader is referred to the satellite paper by Fu and Zhu (2015).

3. Theory of Equality

Theory of equality studies observational equalities of processes. In line
with the spirit of Theory of Interaction, we shall be focusing exclusively on
model independent equalities. Conceivably there are a number of choices.
What we are looking for is the equality “=” on processes. Our strategy to
uncover the definition of this equality is to derive several corollaries from
the four foundational principles. The properties stated in these corollaries
are minimal in the sense that none of them can be properly weakened. We
then turn these minimal properties into defining properties. What we get is
the absolute equality. Here the word “absolute” refers to minimality, model
independence, and uniqueness. The success of Theory of Interaction depends
on the fact that if we strengthen or weaken the definition of the absolute
equality, we would get an equivalence subject to criticism.

Before proceeding ahead, a review of some standard terminologies is in
order. A (binary) relation R on M is a subset of PM × PM. It is reflexive
if ∀P ∈ PM.(P, P) ∈ R, symmetric if (P,Q) ∈ R implies (Q,P) ∈ R, and
transitive if (N,P) ∈ R and (P,Q) ∈ R imply (N,Q) ∈ R. We will often use
the infix notation PRQ for (P,Q) ∈ R. LetRi be the composition of i copies
of R with R0 being the identity relation. The reflexive and transitive closure⋃
i∈ωRi of R is denoted by R∗. A relation S from M to M′ is a subset of
PM×PM′ . It is total if ∀P ∈ PM.∃Q ∈ PM′ .(P,Q) ∈ S. Given a relation S, the
reverse relation is denoted by S−1. The composition {(x, z) | ∃y.xS0y∧yS1z}
is denoted by S0;S1, or even by S0S1.

Definition 2. A relation R on M is closed if the following are valid:

1. For each a ∈ N , (a)P R (a)Q whenever PRQ.

2. For each O ∈ PM, O |P R O |Q and P |O R Q |O whenever PRQ.

23

3.1. Equality for Evolving Object

Computations are carried out over time. Interactions are conducted in
space. The equalities for self evolving and interacting objects must span in
both time and space. They should never be refuted by any computation or
interaction. Time, space, computation, and interaction are all we have in
mind when looking for the equality on processes.

3.1.1. Time Invariance

The equality = on the processes must take into account of the dynamic
self evolutions of processes. What if

P = Q =⇒ Q′

for possibly an infinite number of distinct Q′? If for some Q′′ there does not
exist any P ′ such that

P =⇒ P ′ = Q′′

then the process Q might silently evolve into some state to which P has no
matching state. If such situations may occur, how can = even be considered
an equality in the first place? The point is that, when left alone, processes
evolve by themselves over time. The self evolutions can be neither controlled
nor detected. If the equality P = Q holds right now, it should be possible that
the equality is maintained at any point in future. Moreover the maintenance
is done in a way that the history of the equality can be traced when going
backwards in time. In Theory of Interaction the slogan is this:

Equal objects have been equal in history and will be equal in
future.

It is not trivial to formalize this proposition for self evolving objects. In our
opinion the next definition, introduced by van Glabbeek and Weijland (1989),
captures precisely the future aspect of the above slogan. It is a refinement
of the weak bisimulation, confer Definition 12.

Definition 3. A binary relation R is a bisimulation if it validates the fol-
lowing bisimulation property:

1. If QR−1P
τ−→ P ′ then one of the following statements is valid:

(i) Q =⇒ Q′ for some Q′ such that Q′R−1P and Q′R−1P ′.

24

(ii) Q =⇒ Q′′R−1P for some Q′′ such that ∃Q′.Q′′ τ−→ Q′R−1P ′.

2. If PRQ τ−→ Q′ then one of the following statements is valid:

(i) P =⇒ P ′ for some P ′ such that P ′RQ and P ′RQ′.
(ii) P =⇒ P ′′RQ for some P ′′ such that ∃P ′.P ′′ τ−→ P ′RQ′.

It is important that the bisimulation property is stated in terms of internal
actions. External actions are model dependent and consequently cannot be
explicitly referred to in any model independent definition.

3.1.2. Space Invariance

According to the Principle of Observation, if M is equal to N and P is
equal to Q, then the result of M observing P should not be different from
the result of N observing Q. But what does it mean that two observations
are not different? The only possible interpretation is that the result of L
observing M |P should not be different from the result of O observing N |Q
whenever L is equal to O. In other words, M |P and N |Q must be equal.
Now if no process may ever observe any difference between P and Q, then no
process that does not make use of the name a can ever observe any difference
between P and Q. This is equivalent to saying that (a)P and (a)Q are equal.
Contrapositively if a process can observe a difference between (a)P and (a)Q,
then it can also detect the difference between P and Q since the difference
cannot involve a. To conclude, the equality for the processes must be closed
under both composition and localization. It is in this sense that the equality
for processes spans in space.

Definition 4. A binary relation R is extensional if the following extension-
ality property holds:

1. If MRN and PRQ then (M |P) R (N |Q);

2. If PRQ then (a)P R (a)Q for every a ∈ N .

The Principle of Observation guarantees that extensionality is a model
independent property. It will become clear that condition (2) of Definition 4
is indispensable. Without it we would not be able to distinguish between
!τ | !a | b and !τ | !a | c in a model independent way, bearing in mind that the
external actions are model dependent. The relationship between the ex-
tensional relations and the closed relations is pointed out in the following
lemma.

25

Lemma 3.1. The following statements are valid:

1. If R is reflexive and extensional, then R is closed.

2. If R is closed, then R∗ is extensional.

When reasoning about process equality, it is often necessary to construct
the extensional closure operation on a relation. It is therefore convenient to
make available the following definition.

Definition 5. The extensional closure R◦ of a binary relation R is induc-
tively defined as follows:

R0
def
= R
...

Ri+1
def
= Ri ∪

{
((a)P, (a)Q)
(L |M,N |O)

∣∣∣∣ a ∈ N and PRiQ
LRiN and MRiO

}
...

R◦ def
=

⋃
i∈ω

Ri

Clearly a binary relation R is extensional if and only if R = R◦.

3.1.3. Computation Invariance

The equality = on the processes must also answer to the question on
divergence. What if

P = Q
τ−→ Q1

τ−→ Q2
τ−→ . . .

τ−→ Qi
τ−→ Qi+1

τ−→ . . .

where Q can continue to do internal actions ad infinitum? If P always even-
tually interacts with some environment, then intuitively it is not completely
equivalent to Q since an infinite internal action sequence can preempt any
interactions with any environments. A standard solution to the divergence
problem is to impose the divergence preservation condition which requires
that P is divergent if and only if Q is divergent. But the condition does not
seem to fit well with the idea of bisimulation. Let’s see an example. Suppose
A is the CCS process (c)((τ.c.good+τ) | !c.(τ.c.good+τ)). The internal choice
τ.c.good + τ can be defined by (a)((a.c.good + a) | a). More often than not,
the process A |µX.τ.X is thought to be equivalent to A. Both are divergent.

26

There is however good reasons why they should not be equated. A divergent
computation of A |µX.τ.X may never produce anything good. On the other
hand, A keeps on producing something good after every two consecutive in-
ternal actions. An improvement on the divergence preservation condition
requires that an infinite internal action sequence of Q is bisimulated by an
infinite internal action sequence of P ; and vice versa. This leads to the next
definition that captures part of the Principle of Consistency.

Definition 6. A binary relation R is codivergent if the following codiver-
gence property holds whenever PRQ:

1. If P
τ−→ P1

τ−→ . . .
τ−→ Pi+1

τ−→ . . . is an infinite internal action
sequence then Q

τ
=⇒ Q′R−1Pi for some Q′ and some i ≥ 1;

2. If Q
τ−→ Q1

τ−→ . . .
τ−→ Qi+1

τ−→ . . . is an infinite internal action
sequence then P

τ
=⇒ P ′RQi for some P ′ and some i ≥ 1.

It is obvious that a codivergent relation is divergence preserving.

3.1.4. Interaction Invariance

The equality = on processes must also take into account of the dynamic
interactions between processes and environments. If P = Q then P and Q
should exert similar influence on, or inflict comparable damage to an environ-
ment. Since we are interested in the minimal properties the equality has to
satisfy, we may choose to settle on the following property: If P = Q and one
of P,Q can interact with an environment then the other can interact with
an environment as well. We say that P and Q are equipollent if P⇓ ⇔ Q⇓.

Definition 7. A binary relation R is equipollent if P and Q are equipollent
whenever PRQ.

From the viewpoint of model independence, there is no way to strengthen
the equipollence condition. From the point of view of observation, there does
not seem to be any room to weaken the condition. It ought to be just right.

3.2. Absolute Equality

The definitions of bisimulation, extensionality, codivergence and equipol-
lence are given without any reference to any model. We are now turning
these conditions into the defining properties of the equality. Before doing
that, the following technical lemma is necessary.

27

Lemma 3.2. If {Ri}i∈I is a family of reflexive, equipollent, extensional, co-
divergent bisimulations on M, then (

⋃
i∈I Ri)

∗ is a reflexive, equipollent, ex-
tensional, codivergent bisimulation on M.

Proof. The bisimulation property is closed under the relational composi-
tion. See (Baeten, 1996) for the subtlety of this point. �

It follows that the largest reflexive, equipollent, codivergent, extensional
bisimulation of every model of interaction exists, hence the next definition.

Definition 8. The absolute equality =M of M is the largest relation on PM
that validates the following statements:

1. The relation is reflexive.

2. The relation is equipollent, extensional, codivergent and bisimilar.

An alternative to Definition 8 is given in the next lemma.

Lemma 3.3. The absolute equality =M coincides with the largest equipollent,
codivergent, closed bisimulation on PM.

Since the definition of =M is model independent, we often omit the sub-
script.

We can now make precise the definition of the deterministic computations
and that of the nondeterministic computations.

• We say that P
τ−→ P ′ is a one step deterministic computation, notation

P → P ′, if P ′ = P .

• We say that P
τ−→ P ′ is a one step nondeterministic computation,

notation P
ι−→ P ′, if P ′ 6= P .

If P
ι−→ P ′ then the internal action changes the communication capacity of

P or the (in)ability of P to diverge. By definition if P = Q and P changes
the state to P ′ in a single step, meaning P

ι−→ P ′, then Q may evolve to
Q′′ via a finite sequence of internal actions that do not change the state, i.e.
Q→∗ Q′′, and then changes the state from Q′′ to Q′ in a single step, that is
Q′′

ι−→ Q′, in order to match P
ι−→ P ′.

Using Lemma 3.3 it is easy to derive the following fundamental property
of the absolute equality.

28

Lemma 3.4. If P =⇒= Q and Q =⇒= P then P = Q.

Proof. Suppose P ≡ P0
τ−→ P1

τ−→ . . .
τ−→ Pk = Q and Q ≡ Q0

τ−→
Q1

τ−→ . . .
τ−→ Qk′ = P . Let R be the relation

{(Pi, Qj) | 0 ≤ i ≤ k ∧ 0 ≤ j ≤ k′} ∪ = .

It is routine to check that R◦ is a reflexive, equipollent, extensional, codiver-
gent bisimulation. �

We shall refer to Lemma 3.4 as Bisimulation Lemma. As far as we know,
the property described in Lemma 3.4 was discovered by De Nicola et al.
(1990), who called it X-property. It is an extremely general result, valid for
all the observational equivalences one may think of.

A simple yet fundamental property about computation is stated next.

Lemma 3.5. If P0
τ−→ P1

τ−→ . . .
τ−→ Pk = P0, then P0 → P1 → . . .→ Pk.

Proof. Suppose 1 ≤ i ≤ j ≤ k. Clearly Pi =⇒ Pj = Pj and Pj =⇒ Pk =⇒
P ′i = Pi for some P ′i . It follows from Lemma 3.4 that Pi = Pj. �

Lemma 3.5 will be referred to as Computation Lemma. It was discovered
by van Glabbeek and Weijland (1989), who termed it Stuttering Lemma.
The significance of this lemma lies in that it reveals how systems evolve. All
internal action sequences are of the form

P0 →∗ P ′0
ι−→ P1 →∗ P ′1

ι−→ . . .
ι−→ Pi →∗ P ′i

ι−→ Pi+1 →∗ (5)

After P ′0 has made a change-of-state move to P1, there is no turn-back. No
later state can ever be equal to P ′0. In other words, systems evolve in stages.
Once a system has reached to a new stage, it will never go back to any of
its previous stages unless there is an intervention from environment. Now if
Q0 = P0 then Q0 has to simulate (5) by an internal action sequence of the
following shape

Q0 →∗ Q′0
ι−→ Q1 →∗ Q′1

ι−→ . . .
ι−→ Qi →∗ Q′i

ι−→ Qi+1 →∗ . . . (6)

such that Q1 = P1, . . . , Qi = Pi, The two internal action sequences (5)
and (6) enjoy another interesting property. The corresponding pair Pi, Qi not
only bisimulate into the future, they also bisimulate backwards to history.

29

This back and forth bisimulation property was pointed out by De Nicola et al.
(1990).

We tend to think that Computation Lemma describes an intrinsic prop-
erty about self evolving systems; it is more about computation than about
system equivalence.

Computation Lemma also points out that as far as the absolute equality is
concerned, the codivergence condition is equivalent to the following statement
in terms of deterministic computation:

If P0 = Q0 and P0 → P1 → . . . → Pk → . . . is an infinite se-
quence of deterministic computation, then there exists an infinite
sequence of deterministic computation Q0 → Q1 → . . .→ Qk →
. . ..

So codivergence is about classical computations as it should be. The termi-
nation preservation property should be understood as saying that if P = Q
and P can do deterministic computation ad infinitum, then Q can do deter-
ministic computation ad infinitum; and vice versa.

To demonstrate the power of the absolute equality we take a look at it in
the Computability Model. We remark that since the C-calculus disowns the
localization operator, the condition (2) of Definition 4 is vacuously met. To
begin with we introduce a congruence relation on the C-processes.

Definition 9. The structural congruence ≡C is the least equivalent and con-
gruent relation satisfying the following equalities:

1. 0 |P ≡C P ; P |Q ≡C Q |P ; (P |Q) |R ≡C P | (Q |R);
2. Ω |Ω ≡C Ω.

The next result says that =C is almost the syntactical equality.

Theorem 3.6. P =C Q if and only if P ≡C Q.

Proof. The main steps of the proof can be structured as follows:

(a) Every C-process must be of the form∏
i∈I

F bi
ai

(hi(x)) |
∏
j∈J

cj(mj) |
∏
k∈K

Ω |
∏
l∈L

0 (7)

up to the associativity and commutativity of the composition operator.
We say that F bi

ai
(hi(x)) is a functional component and cj(mj) is a value

component at cj.

30

(b) For each C-process A there is some C-process A such that A |A =⇒ U
for some unobservable C-process U .

(c) If P
τ−→ P ′ then the number of the value components of P ′ is no more

than that of P .

(d) For numerals n,m, let fn→m(x) be defined as follows:

fn→m(x)
def
= if x = n then m else diverge. (8)

Suppose f does not appear inA |B. NowA |F f
a (fn→m(x)) | a(n+ 1)

τ−→
A |Ω. According to (b) there is some A such that f does not appear
in A and

A |A |F f
a (fn→m(x)) | a(n+ 1)

τ
=⇒= Ω. (9)

Now A |F f
a (fn→m(x)) 6= B | f(m) follows from (9) and the fact that C

is observable whenever A |B | f(m) | a(n+ 1) =⇒ C.

(e) Suppose f does not appear in A |B and A | f(n) = B | f(n). Let g be a
name that does not appear in A |B. Then A | f(n) |F g

f (fn→m(x))
τ−→

A | g(m) must be bisimulated by B | f(n) |F g
f (fn→m(x))

τ
=⇒ B′ | g(m)

due to the property proved in (d). SoB | g(m)
τ

=⇒ B′ | g(m) = A | g(m).
By symmetry and the Bisimulation Lemma we conclude thatA | g(m) =
B | g(m).

(f) Let R be the following relation{
(A,B)

∣∣∣∣ the name f does not appear in A |B,
and A | f(n) = B | f(n).

}
.

The property proved in (e) implies that R is closed under composition.
It is easily seen that it is also equipollent, codivergent and bisimilar.
We conclude that if f does not appear in A |B and A | f(n) = B | f(n)
then A = B.

(g) Suppose A |F f
a (fn→m(x)) = B |F f

a (fn→m(x)) and f does not appear in
A |B. It is an easy consequence of (d) that A | f(m) = B | f(m), hence
A = B by (f).

(h) Suppose P →∗ P1 and P1 may not perform any computation. Let a(n)
be a value component of P and f be a name that does not appear in
P . The action P |F f

a (fn→n(x))
τ−→ P ′ | f(n) must be bisimulated by

P1 |F f
a (fn→n(x))→∗ P ′′1 |F f

a (fn→n(x))
τ−→ P ′1 | f(n)

31

by (d). According to (g) one has that P1 →∗ P ′′1 . And by assumption
P ′′1 must be P1. So a(n) is also a value component of P1. In the light
of the property stated in (c) we conclude that P and P1 have the same
multi-set of the value components.

(i) Suppose P =C Q, P →∗ P1, Q →∗ Q1 and neither P1 nor Q1 may
perform any computation. Using the idea of (h), we can show that P1

and Q1 have the same multi-set of the value components. Consequently
P and Q have the same multi-set of the value components.

(j) A consequence of (i) is that P 6=C P ′ whenever P
τ−→ P ′. This is

because in every function process F b
a(f(x)) the names a, b are distinct.

(k) Now suppose P =C Q and the functional components of P are

F b1
a1

(h1(x)), . . . , F bk
ak

(hk(x)).

Let m1 be a numeral. Then the action

P | a1(m1)
τ−→ P1 (10)

must be bisimulated by

Q | a1(m1)
τ−→ Q1. (11)

According to (i) the value component a1(m1) must be consumed in the
action of (11). It follows that the number of the functional components
of Q is no less than k. By symmetry we conclude that P,Q must have
the same number of the functional components.

(l) It also follows from (f), (i) and (j) that if P =C Q and P ′, Q′ are
obtained from P,Q by removing the value components then P ′ =C Q

′.

(m) Suppose P =C Q and P,Q do not have any value components. Let
F b
a(f(x)) be a functional component of P . If for every functional com-

ponent of Q that is of the form F b
a(g(x)) the computable function g(x)

is not the same as f(x), then we may force a contradiction by compos-
ing with P,Q a numeral of output C-processes of the form a(n). So
F b
a(f(x)) must be a functional component of Q. By symmetry and (k)

we conclude that P,Q must have the same multi-set of the functional
components.

The codivergence property takes care of the Ω components. �

32

Having seen Theorem 3.6, one wonders what if the localization operator is
admitted to C. Let A be obtained from C by adding the localization operator
whose semantics is defined by the rule (3). The following proposition tells us
that the equality becomes very different in A.

Proposition 3.7. Suppose Ia = (b)(F b
a(f) |F a

b (f−1)), where f is a total com-
putable function. Then Ia | Ia =A Ia.

Proof. It is clear that (b)(b(f(i)) |F a
b (f−1)) =A (b)(F a

b (f) | b(f−1(i))) =A a(i)
and (b)(0 | a(i)) =A (b)(a(i) |0) =A a(i) for every numeral i. Let R be the
following relation

{(C[Ia | Ia], C[Ia]) | C[] is an environment}.

It is easy to see that R ∪ R−1∪ =A is reflexive, equipollent, extensional,
codivergent and bisimilar. �

The equality stated in the above proposition is often associated with the
asynchronous π-calculus (Honda and Tokoro, 1991a,b; Boudol, 1992), which
is a variant of π where output primitive does not have any continuation. It
is well-known that this variant of the π-calculus enjoys some very different
algebraic laws (Amadio et al., 1998; Sangiorgi, 1996b; Boreale, 1996; Merro,
2000; Merro and Sangiorgi, 2004; Fu, 2010), among which the equality stated
in Proposition 3.7 is typical.

We remark that C does not have the problem for the simple reason that
b must be distinct from a for every functional process at a, b. Had we admit-
ted functional process of the form F a

a (f), we would have F a
a (fid) |F a

a (fid) =C
F a
a (fid), where fid denotes the identity function. This is an equality that does

not translate to most models. As this example indicates, one has to be very
careful about the definition of C.

3.3. Below and Above the Absolute Equality

We will provide further evidence that the absolute equality is the only
equality for both computation and interaction. We do that by taking a look at
two modifications of the absolute equality. At the present level of abstraction,
there is little room for any refinement on the equipollence, codivergence and
extensionality conditions. Moreover since these conditions are proposed as
minimal conditions, there is no way to weaken any of them either. Only the
bisimulation condition is subject to modification.

33

Firstly let’s think for a while how the bisimulation property can be
strengthened. It is not difficult to see that there is really only one sensi-
ble way to do that.

Definition 10. A binary relation R is a strong bisimulation if the following
strong bisimulation property holds.

1. If QR−1P
τ−→ P ′ then Q

τ−→ Q′R−1P ′ for some Q′.
2. If PRQ τ−→ Q′ then P

τ−→ P ′RQ′ for some P ′.

Clearly the strong bisimulation property subsumes the codivergence property.
To keep it consistent with Definition 8, we introduce the following.

Definition 11. The strong equality ∼M is the largest reflexive, equipollent,
extensional, strong bisimulation on PM.

For the familiar process calculi, strong equality ∼M is essentially the strong
bisimilarity of Park (1981) and Milner (1989a). It follows from definition
that ∼M ⊆ =M. The strong equality is useful in constructing proof sys-
tems (Hennessy and Milner, 1985) and in the use of bisimulation-up-to tech-
nique (Sangiorgi and Milner, 1992). However from the point of view of the
observation theory the requirement that one computation step of a process
must be simulated by one computation step of an equal process has serious
negative consequences. Church-Turing Thesis would fail under this strong
interpretation.

How about weakening the definition of bisimulation? In literature the
delay bisimulation (Milner, 1981) and the η-bisimulation (Baeten and van
Glabbeek, 1987) have been proposed as weaker forms of bisimulation. The
definitions of these bisimulations must refer to external actions, which is
against our model independent philosophy. The least modification of bisim-
ulation is in our view the weak bisimulation of Milner (1989a).

Definition 12. A binary relation R is a weak bisimulation if the following
weak bisimulation property holds.

1. If QR−1P
τ−→ P ′ then Q =⇒ Q′R−1P ′ for some Q′.

2. If PRQ τ−→ Q′ then P =⇒ P ′RQ′ for some P ′.

Like the definition of bisimulation Definition 12 does not give rise to a useful
relation if it is not combined with additional properties. The weak equality
given in the next definition is stronger than the weak bisimilarity of Milner
in that the former takes divergence into account.

34

Definition 13. The weak equality =M
w is the largest reflexive, equipollent,

extensional, codivergent weak bisimulation on PM.

Clearly =M ⊆ =M
w . A well-known equality valid for =M

w is the so called
Milner’s third τ -law, a consequence of which is the following equality

τ.(a+τ.b) + τ.c =M
w τ.(a+τ.b) + τ.b+ τ.c. (12)

Equality (12) is invalid for the absolute equality. The right hand side of
(12) has an internal action of the form τ.(a+τ.b) + τ.b + τ.c

τ−→ b. The
only way to simulate such an internal action by the left hand is τ.(a+τ.b) +
τ.c

τ−→ a+τ.b
τ−→ b. However according to the picture given in (5) and (6),

these two internal action sequences should never be identified since a single
change-of-state action τ.(a+τ.b) + τ.b+ τ.c

τ−→ b is quite different from two
consecutive change-of-state actions τ.(a+τ.b) + τ.c

τ−→ a+τ.b
τ−→ b. For

another example, consider the π-processes M,A,B defined as follows:

M
def
= µX.a(x).[x=c](τ.X + τ.xx),

A
def
= !M,

B
def
= !M | a(x).[x=c]xx.

It should be clear that A =π
w B but not A =π B. The problem of the weak

equality is that it wrongfully confuses the deterministic computations with
the nondeterministic ones. In theory of computation the distinction between
these two kinds of computation is never compromised.

We have looked at two nearest cousins of the absolute equality. Both are
rejectable from the point of view of computation.

3.4. Respectful Operator

An expected criticism to the absolute equality =M is that it is not neces-
sarily closed under all the M-operators. Congruence property is so important
for an equality that it is tempting to introduce the following definition.

The algebraic M-equality is the largest reflexive, equipollent, co-
divergent bisimulation on PM closed under all the M-operators.

One could argue that the above definition is just as model independent as
Definition 8. Another popular way of enforcing the algebraic property is
through the following definition.

35

P and Q are M-congruent if the equality P =M Q is closed under
all the M-operators.

From the point of view of observation theory there are good reasons to reject
both definitions. Several arguments are given below.

1. If a unary operator op does not preserve the equality P =M Q, then
both the algebraic M-equality and the M-congruence are strictly con-
tained in the absolute equality =M. In other words both equalities intro-
duce additional distinguishing power that cannot be achieved through
observation/interaction; they are not really observational equivalence.

2. The requirement that the equality be closed under whatever operator
one has in mind is not justifiable. In an interactive framework, one
simply cannot grab two pieces of running programs by brutal force,
put them in a local testing platform, and run the test. Testing for the
self evolving processes means that the only thing the testers can do
is to interact with the testees, which implies that the testers are the
environments in the sense of Definition 1. In the π-calculus for instance
a context like a(x). should not be considered a legitimate environment.

3. Algebraic property is not something that can be observed. An observer
cannot observe the choice operator of a.b+ b.a since the observee may
well be a | b. The point is that algebraic property has nothing to do
with the observation theory. It has everything to do with the semantic
definition of the operators. As long as the semantics is right, alge-
braicity comes for free. Instead of taking algebraicity as a property, we
should instead take it as a criterion.

A famous misbehaved operator is the unguarded choice. In order to make
a congruence out of the bisimulation equivalence in the presence of this op-
erator, one has to reject P = τ.P . This is ridiculous since the equality
between P and τ.P should never be rejected by any observational equality.
What should really be rejected is the unguarded choice. The guarded version
should always be preferred (Nestmann and Pierce, 1996; Fu and Lu, 2010).
Another operator that ought to be rejected is the unrestrained replication.
It is clear that 0 = τ.0 but not !0 = !τ.0. The latter violates the codiver-
gence condition. In retrospect the replicator should have been introduced
in its guarded form in the first place. There is really no need for the unre-
strained replications since the guarded replications are just as expressive as
the unguarded ones.

36

An operator of M is said to be respectful if it respects the absolute equal-
ity. Most of the operators introduced in the theory of process calculus are
indeed respectful. In the current paper we outlaw any operators that are not
respectful.

In Theory of Interaction the absolute equality is a congruence.

So we have imposed another constraint on the models we shall consider.

3.5. Observation Theory

We now inspect the absolute equality in the models defined in Section 2. It
turns out that in each of these models, the absolute equality of two processes
can be established using a more tractable method. By such an approach
the external actions are explicitly bisimulated. In the cases of VPC and
π, if the codivergence condition is dropped, the explicit characterizations
are the branching bisimilarities of van Glabbeek and Weijland (1989). If
moreover the bisimulation is replaced by the weak bisimulation, the explicit
characterizations are precisely the weak bisimilarities.

In the following definition and the theorem the model M can be under-
stood as any of the four models C, IM, VPC, π.

Definition 14. An M-bisimulation R is a codivergent bisimulation on PM
that validates the following statements whenever PRQ.

1. If P
`−→ P ′ then Q =⇒ Q′′

`−→ Q′R−1P ′ and PRQ′′ for some Q′′, Q′.

2. If Q
`−→ Q′ then P =⇒ P ′′

`−→ P ′RQ′ and P ′′RQ for some P ′′, P ′.

The M-bisimilarity ≈M is the largest M-bisimulation.

We say that (1) and (2) of the above definition provide an external charac-
terization of the absolute equality =M. We often refer to ≈M as the external
bisimilarity for M. The next theorem provides a strong justification for in-
troducing M-bisimilarities.

Theorem 3.8. The following statements are valid.

1. The external bisimilarity ≈VPC coincides with =VPC.

2. The external bisimilarity ≈π coincides with =π.

37

Proof. First of all we remark that both external bisimilarities are congru-
ence. So the inclusions in one direction are easy.

The value carried by an output action of a VPC-process can always be
recognized unambiguously by some environments. If say P =VPC Q and

P
a(5)−→ P ′, then it is easy to derive Q

a(5)
� Q′ =VPC P

′ for some Q′ using the
environment a(x).if x = 5 then c(z), where c appears neither in P nor in Q.
For input actions one needs to use environments of the form a(k).f + a(k).g.

In the case of the π-calculus the crucial observation is that(P,Q)

∣∣∣∣∣∣
(a1, .., ak)(c1a1 | . . . | ckak |P) =π

(a1, .., ak)(c1a1 | . . . | ckak |Q),
{c1, . . . , ck} ∩ gn(P |Q) = ∅, k ≥ 0

is a π-bisimulation up to ∼π. For the complete proof, the reader is referred
to (Fu and Zhu, 2015). �

For the Computability Model it would really be disturbing if the external
bisimilarity gives rise to an equality different from the absolute equality.
Fortunately the coincidence is an immediate consequence of Theorem 3.6.

Corollary 3.9. The external bisimilarity ≈C coincides with =C.

Theorem 3.8 and Corollary 3.9 are among a few coincidence results that
we know of. However in any event the inclusion ≈M ⊆ =M is valid, which is
all that matters when using ≈M to prove process equality.

The external characterization of the absolute equality =M of M is the
basis for the observation theory of M.

4. Theory of Expressiveness

Theory of expressiveness ought to be the most important part of the con-
currency theory. It remains however one of the least investigated area in the
theory. The lack of a theory of expressiveness has impeded the studies into
several important issues. One such study is about operator independence.
Given a model M, the operator independence problem asks if an operator
of M can be expressed by the remaining operators of M. Fu and Lu (2010)
have shown that all the operators of the π-calculus are independent. This is
achieved by studying the expressiveness of every sub-model of the π-calculus
obtained by removing one of its operators. Results of this kind are very

38

rare. At the moment we are not even able to say for example that the op-
erators of FA (Fu, 2007) are independent to each other. Another branch of
investigation heavily depends on the theory of expressiveness is the expres-
sive completeness (Abramsky, 2006). There have been several studies on the
problem of Turing completeness of process calculi. But by and large the re-
sults obtained so far are not very conclusive. The lack of a widely acceptable
theory of expressiveness is mainly to blame.

The central issue of the theory of expressiveness is to uncover the def-
inition of expressiveness. Expressiveness is a relative concept. When we
are stating an expressiveness result about a model, we are comparing it
against some other model(s). It goes without saying that the “being-more-
expressive” relationship has to be transitive, and necessarily model indepen-
dent. An expressive result is often obtained by providing a structural trans-
lation, also called an encoding. In this paper we shall maintain a distinction
between interpretations and translations/encodings.

• An interpretation of M0 into M1 is a total relation from PM0 to PM1 .
This relation interprets a process of M0 by a set of processes of M1.

• A translation/encoding from M0 to M1 is an effective function from
PM0 to PM1 . A translation/encoding gives rise to an interpretation by
composing it with the absolute equality =M1 of the target model.

An encoding is often defined by structural induction.
In this section we provide a basic approach to the theory of expressiveness.

The philosophy of the approach is that the relative expressiveness relationship
must be a generalization of the absolute equality. It is simply inconsistent to
apply an expressiveness criterion that is weaker or stronger than the equality
to which the expressiveness criterion must refer to.

4.1. Subbisimilarity

An interpretation from M0 to M1 that formalizes the idea of M1 being at
least as expressive as M0 associates to a process P of M0 a set of M1-processes
that are equal to P as it were. Such a relation is equipollent, extensional,
codivergent and bisimilar. The reflexivity turns into totality plus soundness.
We now motivate the soundness requirement.

There are two dual aspects of the expressive power, the distinguishing
power and the control power. They are like the two sides of a coin. If M1

is more expressive than M0, then M1 should have more distinguishing power

39

than M0. Distinguishing power is about the capacity to interact. It speaks
about the ability of observers. At the same time, if M1 is more expressive
than M0, then M1 should also have more control power than M0. Control
power is about the capacity not to interact. It pronounces the ability of
observees.

Now suppose T is an interpretation from M0 to M1 indicating that the
latter is at least as expressive as the former. If M1 cannot distinguish two
processes of M0 under the interpretation T , then according to the above
discussion M0 cannot distinguish the two processes.

Definition 15. The interpretation T is complete if T ; =M1 ; T −1 ⊆ =M0 .

Complementarily if two processes of M0 have equal control power to defeat
all attempts to distinguish them, then their interpretations under T should
have equal control power to remain indistinguishable.

Definition 16. The interpretation is sound if T −1; =M0 ; T ⊆ =M1 .

We remark that the existence of a universal equality, the absolute equality,
is essential to both completeness and soundness. An interpretation relating
two different equivalences should not be perceived as a relative expressiveness
result. Another point is that, since the absolute equality is a special inter-
pretation and an interpretation is a generalization of the absolute equality,
the conditions T ; =M1 ; T −1 ⊆ =M0 and T −1; =M0 ; T ⊆=M1 are nothing but
reflexivity from the point of view of the source model and the target model
respectively. This seems to be a good reason for the next definition.

Definition 17. An interpretation T from M0 to M1 is fully abstract if it is
both sound and complete.

Following the previous remark, we would like to emphasize the role of the
full abstraction by pointing out the following relationship:

Full abstraction is a generalization of reflexivity.

It is easy to see that T ; =M1 ; T −1 ⊆ =M0 if T is total, equipollent, extensional,
codivergent and bisimilar. This is why in the following model independent
definition, only totality and soundness are required.

40

Definition 18. A relation R from M0 to M1 is a subbisimilarity, notation
R : M0 →M1, if it validates the following statements.

1. The relation is total and sound.

2. The relation is equipollent, extensional, codivergent and bisimilar.

The condition (1) of Definition 18 corresponds to the condition (1) of
Definition 8. It makes sure that the following proposition is valid.

Proposition 4.1. Subbisimilarities are fully abstract.

We say that M0 is subbisimilar to M1, notation M0 v M1, if there is
a subbisimilarity from M0 to M1. We write M0 @ M1 if M0 v M1 but
M1 6v M0. The proposition M0 v M1 can now be reiterated as follows:
M1 is at least as expressive as M0 if for each M0-process P there exists an
M1-process Q that is equal to P .

Proposition 4.2. Both v and @ are transitive.

The next simple fact will be used without further reference.

Lemma 4.3. Suppose S is a subbisimilarity. If PSQ9 then P →∗ P ′SQ
for some P ′ such that P ′ 9. Conversely if QS−1P 9 then Q →∗ Q′S−1P
for some Q′ such that Q′ 9.

We can now apply the subbisimilarity tool to the prime models defined in
Section 2. The first result assures that the machine model is more elementary
than the value passing calculi.

Theorem 4.4. IM @ VPC.

The negative result VPC 6v IM is due to the fact that every Interactive
Machine M is essentially of the form (c̃)(M1 | . . . |Mk) where M1, . . . ,Mk are
Atomic Interactive Machines. This machine may perform at most a fixed
number of immediate actions at a time. It follows that no Interactive Ma-
chines can simulate a VPC process, say !a(x).b(x), which may produce more
and more immediate interactive capabilities when it evolves. The negative
result does not depend on the output choice operator of VPC.

Corollary 4.5. VPC− 6v IM.

41

More examples will be given in the following subsections.
The existence of a unique expressiveness relationship helps to formalize

many semantic concepts based on expressiveness. Let’s see two examples.
Suppose op is an operator of M. Let M−op be the model obtained from M
by removing op. The independence of op asks if the addition of op to M−op
changes the expressive power of M−op.

Definition 19. An operator op of M is independent if M 6vM−op.

Normally we are only concerned with the independence for the operators
other than the universal operators. The following fact is established in (Fu
and Lu, 2010).

Fact 4.6. The operators of the π-calculus are all independent.

A related issue asks if an extension is faithful.

Definition 20. An operator op of M is conservative if the identity map from
M−op to M is a subbisimilarity.

Clearly an operator op of M is conservative if the identity map from
M−op to M is sound. An explicit characterization of =M in terms of the
external bisimilarity is helpful in deciding if an extension is conservative.
The following is an example (Fu and Lu, 2010).

Fact 4.7. Both the match operator and the mismatch operator of the π-
calculus are conservative.

4.2. Soundness and Relative Expressiveness

A relative expressiveness result, say M v N, asserts that M is a submodel
of N; in other words, the former can be faithfully represented in the latter.
Here soundness plays an indispensable role. To get a feeling of the subtlety of
the soundness, we take a look at two translations that violate the soundness
condition. These exercises will demonstrate that a lot of liberal encodings
would be admitted if the soundness condition is dropped.

The first counter example is about a self-translation of the π-calculus.
Let J K./ be a function from Pπ to Pπ that is structural on 0, composition,

42

localization, replication, match and mismatch. Its definition on the prefix
terms is given by the following clauses.

Jn(x).T K./ def
= n(c).c(x).JT K./,

Jnm.T K./ def
= n(z).zm.JT K./, where z is fresh.

It is shown in Appendix A that the translation satisfies all but the sound-
ness condition of a subbisimilarity. As it turns out, there is no nontrivial
interpretation of the π-calculus into itself, see Theorem 4.12.

The second example is more subtle. Suppose we intend to substantiate
our vague intuition that the π-calculus is more powerful than VPC. After
some careful research, we come up with an encoding of VPC into the π-
calculus. It consists of four parts:

1. an encoding of the numerals by the π-processes;

2. an encoding of the boolean expressions by the π-processes;

3. an encoding of the term expressions by the π-processes; and

4. an encoding of the VPC-processes by the π-processes.

The encoding is defined in detail in Appendix B. It looks very good at first
sight. But again the soundness fails. Theorem 4.9 will confirm that there is
no subbisimilarity from VPC to π.

4.3. Incompatibility of VPC and Pi

We report in this section the expressiveness results obtained by applying
the subbisimilarity tool to VPC and π. The first result confirms that the ob-
ject oriented programming style admitted by the π-calculus is very different
from the functional programming style.

Proposition 4.8. π 6v VPC.

Proof. It suffices to show that the π-process a(x).x cannot be simulated
by any VPC-process. Assume that there were a subbisimilarity F from π to
VPC. Let A and Ab be such that a(x).x F A and ab F Ab. It is easy to
see that after Ab has done an external action at the name a it becomes some
process equal to 0. Now A may contain only a finite number of global names.
So its interactions with the interpretations of ab1, . . . , abk, . . . cannot be all
correct. �

43

The second result reveals that the value-passing mechanism of the func-
tional programming is beyond the communication capacity of the object ori-
ented programming.

Theorem 4.9. VPC 6v π.

Proof. Assume that there were a subbisimilarity G from VPC to π. For
each name a and each numeral i, let dica 9 be a chosen interpretation of
a(i) under G and A9 be a chosen interpretation of a(x).b(x) by G. Before
proving the theorem, we need to derive a number of necessary properties
about dica and A.

1. By the codivergence condition there is no infinite internal action se-
quence from dica |A. According to König Lemma there are only a
finite number of internal action sequences from dica |A. Every internal
action sequence of dica |A terminates in a process equal to dicb.

2. If dica |A
τ−→ B then dica |A 6= B. Observe that dica |A | dica |A would

have an infinite computation sequence if dica |A→ B for some B.

3. It follows from the previous fact that the action a(i) | a(x).b(x)
ι−→=

b(x) must be matched up by every immediate internal action of dica |A
and that dica |A

ι−→ B =π dicb whenever dica |A
τ−→ B.

4. The process dica may perform either an input action at a or an out-
put action at a. It cannot perform both an input action and an out-
put action. Otherwise one would have dica | dica

τ−→ M for some M ,
which is impossible for the following reasons: (i) dica | dica

ι−→ M is
impossible since a(i) | a(i) cannot do any computation at all; and (ii)
dica | dica →M is also impossible because that would induce an infinite
computation sequence from dica | dica.

5. If dica can perform an input (output) action at a, then for every j the
process djca can perform an input (output) action because the latter
needs to interact with A.

6. If dica
ab−→ L, then L =π 0. Notice that a(x) G (b)A by extensionality

and (b)A cannot do any internal action. Consequently dica | (b)A
ι−→

L |A′ for some A′. It follows that L |A′ =π 0, hence L =π 0.

7. We conclude from the previous observation that b and b′ must be dis-

tinct names whenever i 6= j and dica
ab−→ and djca

ab′−→.

There are three cases according to the type of the external actions of dica.

44

1. There are two distinct numerals j, k such that both djca and dkca can
perform bound output actions. Suppose

djca
a(b)−→ N,

dkca
a(b)−→ O.

Consider the VPC-processes defined as follows:

Cd
def
= !a(x).d(x),

Ce
def
= !a(x).e(x),

Cj
def
= a(x).if x = j then d(x) else e(x).

It is easily seen that Cd |Ce = Cd |Ce |Cj. Let Dd, De, Dj be the π-
processes such that CdGDd 9, CeGDe 9 and CjGDj 9. By exten-
sionality and soundness one has that Dd |De = Dd |De |Dj and that
Dd, De, Dj can only do input actions at a. Further properties about
Dd, De, Dj are stated as follows:

• De | djca
ι−→ D′e for some D′e such that D′e may only perform ex-

ternal actions at a and e. Notice that D′e may not perform any
output action at a due to the fact that D′e cannot do a nondeter-
ministic computation step.

• Dj | djca
ι−→ D′j for some D′j such that D′j may only perform

actions at d.

Now suppose Dd
ab−→ D′d, De

ab−→ D′e and Dj
ab−→ D′j. Without loss of

generality we may assume thatDd |De |Dj
ab−→ Dd |De |D′j is simulated

by Dd |De
ab−→ Dd |D′e. We would then have the following equality

(a)(e)(b)(Dd |D′e |N) = (a)(e)(b)(Dd |De |D′j |N). (13)

This is a contradiction since the right hand side of (13) is observable
whereas the left hand side is unobservable.

2. Suppose that almost all members of {d0ca, d1ca, d2ca, . . .} can perform
free output actions. Let Q be an interpretation of the following VPC-
process

a(z).if z is even then a(z + 1) else diverge.

45

For each natural number i, we have the following interaction

d2ica |Q
ι−→= d2i+ 1ca. (14)

What is described in (14) renders a contradiction since Q may contain
only a finite number of global names and consequently the set of the
global names released at a by the processes in {d2ca, d4ca, . . .} cannot
be disjoint from those released by the processes in {d1ca, d3ca, . . .}.

3. Now suppose the immediate actions of dica are input actions. Then
the processes Dd, De, Dj defined in the previous case would have to do
output actions. A contradiction can be similarly derived as in the first
case. So this case is also impossible.

We conclude that VPC 6v π. �

The intuition behind the above proof is that a numeral has to be coded
up in π-calculus by a nontrivial process that first releases a local name and
then tells the caller the numeral it represents, but then the separation in
time between releasing a local name and doing the real transition makes it
vulnerable to attacks from environments. Suppose a π process P invokes
Dj by sending a local name to Dj. This is an interaction step between P
and Dd |De |Dj, which must be simulated by at least one step interaction
between P and Dd |De, otherwise some process in the environment might
interact with P and possesses the resource for good. Now Dd |De can carry
out the interaction with the help of either Dd or De. Either way it may
fail since it does not know at this stage which numeral it is getting from P .
The problem caused by simulating an atomic action by a sequence of atomic
actions is one of the reasons to introduce bisimulation equivalence in the first
place. See the introductory discussions given in (Milner, 1989a).

4.4. Self Interpretation

An obvious consequence of Definition 18 is that there could be many
subbisimilarities from one model to another. Why don’t we focus on the
“largest subbisimilarity” between two models? The results in this section
will tell us that we really should not do that. Before proving these results
we need to introduce some terminologies.

Definition 21. Two subbisimilarities R,R′ : M → N are incompatible if
there is some P ∈ PM such that Q 6= O whenever PRQ and PR′O. They
are compatible if they are not incompatible. A subbisimilarity R : M → N
is maximal if R′ ⊆ R whenever R′ : M→ N is compatible with R.

46

Every subbisimilarity R is contained in the maximal subbisimilarity R; =.
Two compatible subbisimilarities are essentially the same interpretation. So
we may as well identify a subbisimilarity R with the maximal subbisimilarity
R; =. We say that there is a unique interpretation from M to N if all the
subbisimilarities from M to N are compatible; in other words, the largest
subbisimilarity from M to N exists. The largest subbisimilarity from M to
itself is essentially the absolute equality on the model M. In the rest of this
section we inspect the self interpretations on the three prime models.

Proposition 4.10. There are an infinite number of pairwise incompatible
subbisimilarities from VPC to VPC.

Proof. Suppose f is a bijective computable function. Clearly its inverse
function f is also a bijective computable function. We may think of f as an
encoding function and f−1 the corresponding decoding function. A relation
J Kf from VPC to VPC can be defined that makes use of the encoding and
decoding functions. The encoding of the choice terms is defined as follows:

J
∑

1≤i≤k

a(x).TiKf
def
=

∑
1≤i≤k

a(u).(c)((b)(b(u) |F c
b (f−1)) | c(x).JTiKf),

J
∑

1≤i≤k

a(ti).TiKf
def
= (c̃)(

∏
1≤i≤k

(b)(b(ti) |F ci
b (f)) | c1(z1) . . . ck(zk).

∑
1≤i≤k

a(zi).JTiKf),

where c is a fresh name. In the above encoding, F c
b (f−1) is the VPC-process

that after inputting a numeral at b, say n, calculates f−1(n) before delivering
the result at c. The process F ci

b (f) is similar. The precise definition of F c
b ()

is given in (Fu, 2013b). The replication terms can be interpreted in the same
fashion. It is not difficult to see that J Kf; =VPC is a subbisimilarity from VPC
to VPC. �

VPC is an interactive version of the recursion theory. The above propo-
sition implies that if the recursion theory can be embedded into a model of
interaction, it can be embedded in an infinite number of ways.

Using the same idea it is routine to establish the next proposition.

Proposition 4.11. There are an infinite number of pairwise incompatible
subbisimilarities from IM to IM.

47

We have seen that generally models of interaction admit multiple self
interpretations. It would be nice to see a model on which the only self
interpretation is the trivial one.

Theorem 4.12. The absolute equality =π is the largest subbisimilarity from
the π-calculus to itself.

Proof. Suppose vπ is a maximal subbisimilarity from π to π. We shall
show that vπ is a π-bisimulation. To start with we need to derive a number
of properties about the interpretation vπ.

1. First of all we prove that the process ac is interpreted by itself. The
following arguments resemble those in the proof of Theorem 4.9.

(a) Let A be such that a(x) vπ A9. The process A may not do both
an input action and an output action at the name a. Suppose
otherwise. Then A |A would be able to do an internal action, say
A |A τ−→ A1. By extensionality this internal action may be caused

either by A
a(c)−→ and A

ac−→, or by A
aa−→ and A

aa−→. Assume

A |A = A1. In the first case A |A a(c1)−→ ac1−→ A′1 must be matched up

by A1 →∗
a(c1)−→ ac1−→ A2 = A′1 for some A2, where the two external

actions at a may induce an interaction. Now A′1 →∗
a(c1)−→ ac1−→ A′2

must also be simulated by A2. Continuing in this way we get an
infinite action sequence

A |A a(c1)−→ ac1−→→∗a(c2)−→ ac2−→→∗a(c3)−→ ac3−→ (15)

It follows from (15) that A |A would be able to do an infinite
sequence of internal actions, which would violate the codivergence
property. The same contradiction can be derived if A |A τ−→ A1

was caused by A
aa−→ and A

aa−→. So the assumption A |A = A1

was wrong. However the change-of-state internal action A |A ι−→
A1 also renders a contradiction since a(x) | a(x) cannot do any
change of state internal action. So A may perform either input
actions at a or output actions at a; it cannot do both input and
output actions at a.

(b) For each c, let Ac be such that ac vπ Ac 9. By codivergence
the set of the internal action sequences of A |Ac form a finite

48

tree. It follows that the longest external action sequence cannot
be bisimulated by any A′ satisfying A |Ac

τ−→ A′. So A |Ac
ι−→

A′ = 0 whenever A |Ac
τ−→ A′.

(c) If Ac can do an input (output) action then Af can do an input
(output) action for all f , where Af is such that af vπ Af 9.

(d) Let Cd, Ce, C∨ be defined as follows:

Cd
def
= !a(x).dx,

Ce
def
= !a(x).ex,

C∨
def
= a(x).([x=c]dx | [x 6=c]ex).

Let Dd, De, D∨ be the π-processes such that Cd vπ Dd 9, Ce vπ
De 9 and C∨ vπ D∨ 9. By extensionality and soundness the
equality

Dd |De = Dd |De |D∨ (16)

follows from the equality Cd |Ce = Cd |Ce |C∨.
(e) Suppose D∨ could do an output action, say D∨

λ−→ D′∨. Then
Af may only do input actions at a, and consequently Dd, De

may only do output actions at a. Using the fact that the τ -
tree of Dd |Af is finite, it is easy to see that every internal action

Dd |Af
τ−→ L is a change-of-state action that necessarily bisimu-

lates !a(x).dx | af τ−→!a(x).dx | df . Moreover L may not perform
any input action at the name a. These remarks also apply to De.

(f) It follows from (16) that the action must be bisimulated by either

Dd or De. Without loss of generality assume that Dd
λ−→ D′d

such that D′d |De = Dd |De |D′∨. Suppose Af
λ′−→ A

′
f for some

input action λ′ that is complementary to λ. Let Af |Dd
τ−→ A′

be the interaction induced by Af
λ′−→ A

′
f and Dd

λ−→ D′d, and

Af |D∨
τ−→ A′′ be induced by Af

λ′−→ A
′
f and D∨

λ−→ D′∨. Clearly
we must have

A′ |De = Dd |De |A′′. (17)

According to property (e), the processes A′ and De may not in-
teract. Similarly A′′ and Dd |De may not interact. It follows
that the equality (17) renders a contradiction since (a)(e)(A′ |De)
is observable whereas (a)(e)(Dd |De |A′′) is not observable. We

49

conclude that Dd, De, D∨ can only perform input action(s) at a.
Accordingly for each c, the process Ac can only do output action(s)
at a.

(g) Suppose that there existed some Ag that could do a bound output

action, say Ag
a(d′)−→. Now if Ah could also do a bound output

action, then by α-convention we may assume that Ag
a(d′′)−→ and

Ah
a(d′′)−→ for some fresh d′′. If Ah performs a free output action,

the output action must be ah according to (h). By extensionality
we may assume that h does not appear as a global name in Ag.

Thus Ag
a(h)−→ by α-conversion. In either case we may repeat the

argument in (f) to derive a contradiction.
(h) We conclude that, for all c, the process Ac can only do free output

action(s). Since A |Ac
τ−→= 0, it must be the case that Ac

ac′−→= 0
for some c′. Now let Oa be a process such that a(x).x vπ Oa 9.
By extensionality we may assume that a is the only global name
that appears in Oa. The action a(x).x | ac ι−→ c must be matched
up by Oa |Ac

ι−→ Cc such that Cc is observable at c. So c′ must
be c.

What we have proved is that ac vπ ac for all a, c.

2. The above argument can be repeated to show that a process of the
form ac+ ad is interpreted by itself.

3. Let N be such that a(x).[x 6=c]e + a(x).d vπ N 9. The following
properties hold by the result stated in (2) and the extensionality:

(a) N
ag−→→∗ dh−→ 0 for all g and all h;

(b) N
ag−→→∗ eh−→ 0 for every name g 6= c and every h.

We conclude by Theorem 3.8 that N = a(x).[x 6=c]e + a(x).d. In other
words a(x).[x 6=c]e+ a(x).d vπ a(x).[x 6=c]e+ a(x).d.

4. Using the fact that processes of the form ac+ad and a(x).[x 6=c]e+a(x).d
are interpreted by themselves, it is standard to prove the following
properties for all P,Q such that P vπ Q:

• If P
ac−→ P ′ then Q =⇒ Q′′

ac−→ Q′ and P vπ Q′′ and P ′ vπ Q′.
• If Q

ac−→ Q′ then P =⇒ P ′′
ac−→ P ′ and P ′′ vπ Q and P ′ vπ Q′.

• If P
ac−→ P ′ then Q =⇒ Q′′

ac−→ Q′ and P vπ Q′′ and P ′ vπ Q′.

• If Q
ac−→ Q′ then P =⇒ P ′′

ac−→ P ′ and P ′′ vπ Q and P ′ vπ Q′.

50

5. Suppose L contains neither the replication operator nor the localization

operator. Let M be such that L vπ M . Assume that M
λ1
� . . .

λk
�

M ′ a(c)
� M ′′ for some M ′,M ′′, where λ1, . . . , λk are either input actions

or free output actions. Using observers discussed in (2) and (3), one

may force L to perform the action sequence L
λ1
� . . .

λk
� L′ such that

L′ vπ M ′. As in the proof of (3) one can argue that, for fresh d, e, the
process a(x).[x/∈gn(L′ |M ′)]e+a(x).d is interpreted by itself. But then

L′ | (a(x).[x/∈gn(L′ |M ′)]e+a(x).d) vπ M ′ | (a(x).[x/∈gn(L′ |M ′)]e+a(x).d)

renders a contradiction. We conclude that M may never perform any
bound output action.

6. It follows from (4) and (5) that the following relation

{(L,M) | L vπ M, and L contains neither replication nor localiztion}

is an external bisimulation. So every π-process that contains neither
the replication operator nor the localization operator is interpreted by
itself under vπ.

The importance of property (6) is that it allows one to repeat the proof
of Theorem 3.8 to show that vπ is an external bisimulation. Therefore vπ ⊆
=π. The coincidence between vπ and =π follows by the maximality of vπ.
So the absolute equality on π is the only interpretation from π to π. �

4.5. Subbisimilarity for Pi Variant

The choice operator we have used in this paper is weaker than the choice
operators one encounters in literature. Apart from the general unguarded
choice operator (Milner, 1989a), the mixed choice (or guarded choice) and
the separated choice are sufficient in many applications (Palamidessi, 2003;
Fu and Lu, 2010). Further variants of the π-calculus can be obtained by
replacing the replication operator by the fixpoint operator or parametric
definition. Altogether we have nine variants of the π-calculus. See (Fu and
Lu, 2010) for detailed description.

We are interested in the relative expressive power of the nine variants.
Since the action sets of the variants are all the same, we could try an external
characterization of the subbisimilarity.

51

Definition 22. Suppose π0, π1 are two of the nine π-variants. A total rela-
tion R from π0 to π1 is a π-subbisimulation if it is a codivergent bisimulation
and the following statements are valid whenever PRQ:

1. If P
`−→ P ′ then Q =⇒ Q′′

`−→ Q′ and PRQ′′ and P ′RQ′.
2. If Q

`−→ Q′ then P =⇒ P ′′
`−→ P ′ and P ′′RQ and P ′RQ′.

We write π0 vπ π1 if there is a π-subbisimulation from π0 to π1.

If π0 vπ π1 then the largest π-subbisimulation from π0 to π1 exists, which is
necessarily extensional and equipollent, hence the following lemma.

Lemma 4.13. If π0 vπ π1 then π0 v π1.

The converse of the lemma also holds.

Theorem 4.14. Suppose π0, π1 are two of the nine π-variants. Then π0 vπ
π1 if and only if π0 v π1.

Proof. We only have to prove that π0 v π1 implies π0 vπ π1, which
amounts to showing that v is a π-subbisimulation from π0 to π1. But this is
just the proof of Theorem 4.12. �

Corollary 4.15. Suppose π0, π1 are two of the nine π-variants. If π0 v π1

then there is a unique interpretation of π0 into π1.

Fu and Lu (2010) have studied the relative expressive power of the nine
π-variants in terms of a relationship, called codivergent subbisimilarity in (Fu
and Lu, 2010), that is weaker than the π-subbisimulation of Definition 22.
The difference is that in (Fu and Lu, 2010) only the weak bisimulation prop-
erty is required whereas in Definition 22 the branching style bisimulation is
expected. However the expressiveness results about the π-variants obtained
in (Fu and Lu, 2010) should remain the same had we apply the subbisimi-
larity of this paper as the criterion. This is because a negative result by a
certain criterion remains valid if a stronger criterion is adopted and all the
encodings supporting the positive results in (Fu and Lu, 2010) satisfy the
stronger requirement of the branching style bisimulation.

We have therefore placed the results obtained in (Fu and Lu, 2010) on a
firmer foundation.

52

4.6. Expressiveness of Polyadic Pi

It has been a folklore that the polyadic π-calculus cannot be coded up
in the monadic π-calculus. In this section we formally prove this popular
belief using the subbisimilarity criterion. Let πk, for k ≥ 1 be the k-ary
polyadic π-calculus whose input terms are of the form n(x1, . . . , xk).T and
whose output terms are of the shape n〈n1, . . . , nk〉.T . The 1-ary polyadic
π-calculus is just the monadic π-calculus. The external πk-bisimilarity ≈πk

is defined in the standard manner. The coincidence between ≈πk and =πk

can be established by recycling the proof of Theorem 3.8.

Proposition 4.16. For each k ≥ 2 the relations ≈πk ,=πk coincide.

Proposition 4.16 implies that the identity map from πk to πk+1 is a subbisim-
ilarity. The latter is also strictly more expressive than the former.

Theorem 4.17. π @ π2 @ π3 @ π4 @

Proof. We only prove π2 6v π. Consider the π2-processes defined as follows:

C2
d

def
= !a(x, y).d,

C2
e

def
= !a(x, y),

C2
∨

def
= a(x, y).(x.d | y),

where d for example stands for (c)d〈c, c〉. Let D2
d, D

2
e , D

2
∨ be the interpre-

tations in π of C2
d , C

2
e , C

2
∨ respectively. Obviously C2

d |C2
e |C2

∨ = C2
d |C2

e

and D2
d |D2

e |D2
∨ = D2

d |D2
e . If D2

d, D
2
e , D

2
∨ can do immediate output ac-

tions then a contradiction can be easily derived. Now suppose D2
d, D

2
e , D

2
∨

can do immediate input actions. Let Af,g, Af , Ag, Aa be the interpretations
of a〈f, g〉, a〈f, f〉, a〈g, g〉, a〈a, a〉 respectively. If any of Af,g, Af , Ag, Aa could
do a bound output action at a, a contradiction would be derived. Otherwise
Af,g would be able to perform an output action that is also admitted by one
of Af , Ag, Aa, which leads to a contradiction again. We are done. �

It is worth remarking that the above proof does not make use of the
match/mismatch operator. The polyadic π-calculi referred to in Theorem 4.17
can be understood as the minimal ones.

53

5. Theory of Completeness

The four principles introduced in Section 1 do not rule out uninteresting
models. How interesting should our models be? One interpretation, and
probably the only interpretation, is that a model of interaction should allow
one to solve interesting problems. So the question is split into two:

1. what are the interesting problems? and

2. how do we place a minimal requirement on a model so that it does
provide solutions to the interesting problems?

A preliminary answer to the second question is in terms of expressive com-
pleteness: There exists a least model that admits the solutions to all the
interesting problems, and every model of interaction should subsume the
least model. The existence of the universal relationship v makes it possible
to formalize this idea. How powerful should the least model be? Since The-
ory of Interaction aims at a uniform treatment of both computation models
and interaction models, the only reasonable assumption is that the interest-
ing problems are those that are solvable by the Turing machines. Thus the
answer to the first question ought to be that all computable functions are
definable in the least model.

There are a number of well known computation models, all of them can
be extended to interaction models. These interaction models may vary in
the power of atomic actions, programming styles and so on. The differences
are suppressed in the computation models due to the absence of external
interactions, and are largely ignored since the focus has been on the definable
functions. But the differences do imply that the interactive versions of these
computation models are generally incompatible as we have seen in Section 4.
What we seek is a model that provides the bare primitives for computability
and interactability. The C model is an ideal candidate for several reasons:

1. A functional C-process specifies what a function is, it says absolutely
nothing about how to implement it. The requirement is minimal from
the computational viewpoint.

2. The input-output mechanism of C has no more power than sending and
receiving values, which is minimal from the viewpoint of interaction.

3. There is not any nondeterminism introduced by any atomic C-process.
All nondeterminism in C is caused by the composition operator.

4. The equality theory of C is extremely simple. The proof of Theorem 3.6
provides enough evidence that there is little redundancy in C.

54

Let Mod be the class of all models of interaction. The first fundamental
postulate of Theory of Interaction states that all the models in Mod are
conservative extensions over C.

Axiom of Completeness. ∀M ∈Mod. C vM.

Since Theory of Interaction is a formal theory for both the computation
models and the interaction models, the Axiom of Completeness is best seen
as a formalization of the Church-Turing Thesis.

Axiom of Completeness has significant implication to the process theory.
A calculus L that fails C v L is either too weak to define all the recursive
functions, or is lack of an interaction mechanism that admits proper commu-
nications. As mentioned before, the purpose of introducing an interaction
model is precisely to internalize the meta operations like the instantiations
of function parameters, the announcements of computing results. If the in-
teractions are useful to the participants at all, it should be possible that the
correct inputs are picked up in an orderly manner without corruption, and
the results are released to the targeted receivers eventually. The failure of L
to satisfy C v L is an obvious indication that L cannot be considered as both
a computation model and an interaction model. We shall use the phrase “M
is complete” to refer to the fact that C vM.

Axiom of Completeness points out the inadequacy of some of the Turing
completeness claims stated in the process calculus literature. The criticism is
that the proofs of these claims boil down to showing that the target models
appear Turing complete to someone outside the models. This level of com-
pleteness can be exploited to establish undecidability results. It is however
almost useless to programming since in a closed model a process never com-
municates to anyone outside the model. Our view has been that the processes
of a complete model should appear Turing complete to the processes inside
the model. In reality it is this internal completeness that truly matters.

Axiom of Completeness has far-reaching implications to practice. Let’s
see an example. We will show below that the π-calculus is complete. By
the Axiom of Completeness there must be a π-process that after receiving a
numeral i at channel a outputs the i-th Fibonacci numeral at channel b, and
then it is ready to input another numeral at a. The Axiom of Completeness
allows us to talk about a process with certain functionality without worrying
about its definition. Getting confident in using the Axiom of Completeness
this way is the first step to more sophisticated Theory of Interaction.

55

5.1. Complete Model

We point out in this section that the three models defined in Section 2 are
indeed complete. A proof of completeness can be structured in four steps:

1. Define a map E from the set PC of the functional C-processes, the value
C-processes and Ω to PM.

2. Extend E to a map from PC to PM by letting E(P0 |P1)
def
= E(P0) | E(P1).

3. Prove that the composition E ; =M is equipollent, codivergent and bisim-
ilar. Notice that E ; =M is extensional by definition.

4. Argue that E ; =M is sound.

Suppose P0 =C P1, E(P0) =M Q0 and E(P1) =M Q1. If E ; =M is equipollent
and codivergent, then Ω must be correctly encoded. It follows immediately
that E(P0) =M E(P1), thanks to Theorem 3.6. Thus Q0 =M Q1. So the
soundness comes for free once (3) has been done. We conclude that practi-
cally only step (1) and step (3) are compulsory.

By Church-Turing Thesis every computable function can be implemented
by a Turing Machine. It is obvious that a process of the form F b

a(f(x)) can
be coded up by an AITM. A value process of the form a(n) can also be easily
translated to an ITM. By composing with the absolute equality one gets a
subbisimilarity from C to IM.

Theorem 5.1. C v IM.

In (Fu, 2013b) an encoding of the recursive functions into VPC is given.
By composing with =VPC the encoding gives rise to a subbisimilarity from
C to VPC, which immediately implies the completeness of the latter. The
encoding does not refer to any choice operator.

Theorem 5.2. C v VPC and C v VPC−.

VPC− is the minimal model among the class of the value-passing calculi
discussed in (Fu, 2013b). Using the terminology of this paper, VPC− is
subbisimilar to every value-passing calculus. It follows that all the value-
passing calculi are complete. Using the result from (Fu, 2013b), we may
summarize by saying that a value-passing calculus, in the general sense of
the terminology defined in (Fu, 2013b), is complete if and only if it has a
numeric system.

56

Next we prove that πM is complete. We will show that the recursive
functions are definable in πM , which is more than necessary for our purpose.

The encoding of the recursive functions into the π-calculus makes use
of the processes defined in Appendix B. The structural definition on the
nonfunctional processes is as follows:

J0Kπ def
= 0,

JΩKπ def
= (c)(cc | !c(x).xx),

Jb(n)Kπ def
= JnKπb ,

JP |QKπ def
= JP Kπ | JQKπ,

The translations of the successor function, constant functions, projection
functions and composition functions are given below. In the following struc-
tural definition we write F b

a1,..,ak
(f(x1, .., xk)) to force the interpretation of

the k-ary recursive function f(x1, .., xk) to be of the right type. The process
JF b

a1,..,ak
(f(x1, .., xk))K must pick up the inputs consecutively at a1, . . . , ak and

deliver the result at b.

JF b
a1

(s(x))Kπ def
= (d1)Rep(a1, d1).(c)Copy(d1, c).b(e, f).ec,

JF b
a1,..,ak

(n(x1, .., xk))Kπ
def
= (d1)Rep(a1, d1). · · · .(dk)Rep(ak, dk).JnKπb ,

JF b
a1,..,ak

(pik(x1, .., xk))Kπ
def
= (d1)Rep(a1, d1). · · · .(dk)Rep(ak, dk).Copy(di, b),

JF b
a1,..,ak

(f(f1(x̃), .., fi(x̃)))Kπ def
= (d1)Rep(a1, d1). · · · .(dk)Rep(ak, dk).(c1 . . . ci)

(JF c1
d1,..,dk

(f1(x̃))Kπ | . . . | JF ci
d1,..,dk

(fi(x̃))Kπ

| JF b
c1,..,ci

(f(x̃))Kπ).

The encodings of the recursion functions and the minimization functions are
slightly more involved.

1. JF b
a1,..,ak+1

(rec z.[f(x̃, x′, z), g(x̃)])Kπ is the following process

(d1)Rep(a1, d1). · · · .(dk+1)Rep(ak+1, dk+1).(f)(f(b, dk+1) |Rec),

where Rec stands for the π-process

!f(v, x).x(y, z).(z.JF v
d1,..,dk

(g(x1, .., xk))Kπ

| y(x).(d)f〈d, x〉.JF v
d1,..,dkdx

(f(x1, .., xk+1, z))Kπ).

57

2. JF b
a1,..,ak

(µz.f(x̃, z))Kπ is the following process

(d1)Rep(a1, d1). · · · .(dk)Rep(ak, dk).(e)(JF e
d1,..,dk,d

(f(x̃, z))Kπ | J!0Kπd |Mu)

where Mu stands for

f〈e, d〉 | !f(x,w).x(y, z).(z.Copy(w, b)

| y.(d)(!d(c, g).cw | (e)(JF e
d1,..,dkd

(f(x̃, z))Kπ | f〈e, d〉))).

By associating a particular recursive function to each computable func-

tion, the above encoding generates the relation Tπ
def
= {(P, JP Kπ) | P ∈ PC}.

It should be clear that Tπ is equipollent and closed under composition. It
is not a bisimulation, the reason being that a computational descendant of
JP Kπ is not in the relation. But of course the composition Tπ; =π does not
have that problem.

Theorem 5.3. C v πM and C v π.

5.2. Incompleteness Result

It turns out that some well-known process calculi fail the Axiom of Com-
pleteness. We show in this section that CCS and the process-passing calculus
are incomplete, the reason being that CCS has a very weak interaction mech-
anism and the process-passing calculus has insufficient control power.

5.2.1. CCS

Milner’s Calculus of Communicating System (Milner, 1980, 1989a), CCS
for short, provides a prototype for models of interaction. The interaction
primitive of CCS is simplified to bare minimal. All interactions in CCS are
synchronization. Nothing is communicated in any interaction. There are
a number of variants of CCS, most of which have been mentioned in (Mil-
ner, 1989a). Discussions about the relative expressiveness of CCS are given
in (Palamidessi, 2003; Fu and Lu, 2010). The variant we shall be concerned
with has the guarded choice. The unguarded choice, apart from being a non-
congruent operator, introduces infinite branching (Fu and Lu, 2010) which
cannot be implemented in practice. The set PCCS is constructed from the
following grammar:

P :=
∑
i∈I

`i.Pi | D(a1, . . . , ak)

58

where I is a finite indexing set and `i ranges over the set N ∪ N for every
i ∈ I,

∑
i∈I `i.Pi is a guarded choice, and D(a1, . . . , ak) is the instantiation

of a parametric definition at the names a1, . . . , ak. Using the action set
ACCS = N ∪N ∪{τ}, the semantics of CCS is defined by the following rules.

Choice ∑
i∈I `i.Pi

`i−→ Pi

i ∈ I

Interaction

P
`−→ P ′ Q

`−→ Q′

P |Q τ−→ P ′ |Q′

Recursion
T{c̃/x̃} λ−→ P ′

D(c̃)
λ−→ P ′

D(x̃) = T.

Despite of the result proved in (Busi et al., 2003) that CCS is Turing
complete, the intuition is however that CCS apparently lacks of the ability
to pick up a value or to deliver a result in a proper manner. This intuition
strongly suggests the following.

Theorem 5.4. CCS is not complete.

Proof. We prove that the numerals cannot be properly defined in CCS.
Assume that there were a subbisimilarity F from C to CCS. Let s(x) denote
the successor function and ↑ the nowhere defined function. Let B0, B, C,B

↑

be such that the following conditions are met.

• b(0) F B0 9,

• F c
b (s(x)) F B 9,

• F b
c (s(x)) F C 9,

• F c
b (↑) F B↑ 9.

We will derive a contradiction in a few steps. The argument can be organized
in the following fashion.

1. To start with it is easy to show that the absolute equality on the CCS-
processes coincides with its external bisimilarity.

59

2. Suppose that B0 |B
τ−→ B′0 |B′ is caused by an interaction at a global

name say d. Then B0 |B
d−→ d−→ B′0 |B′ and B0 |B

d−→ d−→ B′0 |B′.
If B0 |B = B′0 |B′ then using (1) we could derive an infinite action
sequence of the form

B0 |B
d
�

d
�

d
�

d
� . . .

and another infinite sequence of the form

B0 |B
d
�

d
�

d
�

d
�

But then B0 |B |B0 |B would be divergent, contradicting to the fact
that b(0) |F c

b (s(x)) | b(0) |F c
b (s(x)) is terminating. So every immediate

internal action of B0 |B is a change-of-state action.

3. Let’s assume that B0 |B↑
τ−→ B1

0 |B1 for some B1
0 , B

1. Suppose that

B0 |B↑
`1=⇒ . . .

`k=⇒ Bk
0 |Bk is the longest external action sequence such

that Bk
0 |Bk may not perform any external action. It is clear that the

action sequence B0 |B↑
`1=⇒ . . .

`k=⇒ Bk
0 |Bk cannot be matched up by

any action sequence of B1
0 |B1. Therefore B0 |B↑

ι−→ B1
0 |B1, which

must match up the change-of-state internal action b(i) |F c
b (↑) ι−→ Ω.

It should be obvious that both B1
0 and B1 are unobservable.

4. Let L be such that B |C →∗ L9. Suppose B2, . . . , B2i, . . . satisfy the
following properties:

B0 |L →∗ ι−→→∗ ι−→→∗ B2 F
−1 b(2) and B2 9,

...

B2i |L →∗ ι−→→∗ ι−→→∗ B2i+2 F
−1 b(2i+ 2) and B2i+2 9,

...

For each i ≥ 1 the process B2i+2 must be of the form B′2i |L′2i. We may
apply the argument in (3) to B2i+2 to conclude that either B′2i or L′2i
is unobservable.

5. Suppose the number of the observable L′2i’s is finite. Then there must
be some k > 1 such that B′2k, B

′
2k+2, B

′
2k+4, . . . are all observable. Each

process in the sequence contains one and only one subterm in summa-
tion form that may induce external actions for the process. It follows
that there is an infinite subsequence B′2k1 , B

′
2k2
, B′2k3 , . . . such that all

60

the external actions are induced by the subterms that are syntactically
identical, the reason being that all these subterms are derivatives of
either B or L. Due to dynamic binding it is possible that there are
B′2ki , B

′
2kj

such that the set of the external actions admitted by B′2ki is
different from that of B′2kj . But clearly there must be an infinite sub-
sequence B′2k′1

, B′2k′2
, B′2k′3

, . . . in which all processes may perform the

same set of external actions. Now the crucial point is that there must
be two processes B′2k′i

, B′2k′j
, where 1 ≤ k′i < k′j, that enjoy the following

property:

(†) For each action `, B′2k′i
becomes observable after perform-

ing ` if and only if B′2k′j
becomes observable after performing

`.

Let f(x) be the following computable function

if x < 2k′j then 0 else diverge,

and let D be a CCS process satisfying F c
b (f(x)) F D 9. Clearly D′ is

observable whenever B2k′i
|D ι−→ D′. By property (†) we must have

that B2k′j
|D ι−→ D′′ for some observable D′′. But this contradicts to

the fact that all the change-of-state actions of B2k′j
|D should lead to

unobservable states.

6. If there are infinite observable L′2i’s, then we can apply the argument
in (5) to derive a similar contradiction. So this case is also impossible.

We conclude that C 6v CCS. �

The above proof refers neither to the choice operator nor to the finite
branching property. Therefore it is also valid for the CCS with binary un-
guarded choice operator and parametric definition. This is the most expres-
sive CCS variant studied in (Fu and Lu, 2010). So we have justified the
general statement of Theorem 5.4.

5.2.2. Process-Passing Calculus

The process-passing calculus, called Λ-calculus in this paper, extends the
lazy λ-calculus with the ability to interact externally. The set of the Λ-terms
TΛ is generated by the following grammar:

T := X | a(X).T | a(T).T.

61

The term variable X is bound in a(X).T . The set PΛ of the Λ-processes
consists of those Λ-terms in which all the term variables are bound. The
label set LΛ is

{a(L), (c̃)a(L) | L ∈ PΛ ∧ c̃, a ∈ N ∧ a /∈ {c̃} ∧ {c̃} ⊆ gn(L)}.

In both a(L) and (c̃)a(L), the interface name is a. The rules defining the
operational semantics are given below.

Action

a(X).T
a(L)−→ T{L/X} a(L).T

a(L)−→ T

Interaction

S
a(L)−→ T ′ T

(c̃)a(L)−→ T ′

S |T τ−→ (c̃)(S ′ |T ′)
Localization

T
(c̃)a(L)−→ T ′

(d)T
(d)(c̃)a(L)−→ T ′

d ∈ gn(L) \ {c̃}.

In our semantics we require that a term released in an output action must
be a process. The operational semantics of the Λ-calculus is complicated by
the fact that the transportation of a process might extend the scope of a
localization operator.

The relationship between higher order π-calculus and first order π-calculus
has been studied by Sangiorgi (1992, 1993). It has been argued that the Λ-
calculus is at most as expressive as the π-calculus. Prior to Sangiorgi’s work,
Thomsen (1989) has discussed the relationship between CHOCS, the calculus
of higher order communicating systems, and the π-calculus. A related work
is described in (Amadio, 1993). The Sangiorgi-Thomsen’s translation of the
Λ-calculus in the π-calculus is based on an injective function st : Vp → Vn.
We assume that st(X) = x and so on. The extensional translation is defined
as follows:

JXKst
def
= x,

Ja(X).T Kst
def
= a(x).JT Kst,

Ja(T).T ′Kst
def
= (c)(ac.JT ′Kst | !c.JT Kst).

62

The encoding generates an equipollent, extensional, codivergent bisimulation
by composing with =π. Is the relation sound? We invite the reader to look
for the answer.

Can the π-calculus be interpreted in Λ? Our intuition tells us that the
answer is negative. In the π-calculus a received name can be used in a
prefix, whereas in the Λ-calculus a received process cannot act as a prefix of
anything. In other words, the Λ-calculus has far less control power than the
π-calculus. This intuition is justified by the next theorem.

Theorem 5.5. The Λ-calculus is not complete.

Proof. The proof is similar to the proof of Theorem 5.4. Assume there
were a subbisimilarity F from the C-calculus to the Λ-calculus. We derive
a contradiction in a few steps.

1. Let Bi, B be such that b(i) F Bi 9 and F c
b (s(x)) F B 9. Assume that

Bi |B
τ−→ C1 is caused by an interaction between Bi and B at a global

name d. If Bi |B = C1 then C1 →∗ C2 for some C2 such that C2 does
not admit any computation. It is easy to see that C2 must be able to
perform both an input action at d and an output action at d. These two
complementary actions contribute to an internal action. Continuing in
this way one could construct an infinite sequence of internal actions.
This renders a contradiction since b(i) | F c

b (s(x)) does not admit any
infinite internal action sequence. We conclude that every immediate
internal action of Bi |B is a change-of-state internal action.

2. Let B↑ be such that F c
b (↑) F B↑ 9. As is done in (1) one can prove

that the immediate internal action of Bi |B↑ must be a change-of-state
action. Consequently C0 must be unobservable whenever Bi |B↑

τ−→
C0.

3. Since there is no choice operator in the Λ-calculus, it follows from (2)
that only one prefix term in Bi is fireable. Similarly only one prefix
term in B↑ may act.

4. Now let Li, L
↑ be such that g(i) F Li and F h

g (↑) F L↑. The global name
at which the processes Li, L

↑ interact must be different from the global
name at which the processes Bi, B

↑ interact. Otherwise Bi |L↑ would
be able to perform a change-of-state action, rendering a contradiction.
The consequence is that we can always choose a name say d such that
whenever d(i) F D then the only external action of D is carried out at
a name that is not in any specific finite name set.

63

5. Suppose Bi
b(A′′)−→ Si{A′′/X} and B

(d̃)b(A′′)−→ A′. It should be clear that

Bi |B
ι−→ (d̃)(Si{A′′/X} |A′) (18)

is bisimulated by b(i) |M c
b (s(x))

ι−→ c(i+ 1). Now let S ′i be such that
Si =⇒ S ′i and that S ′i cannot perform any internal action. Clearly

(d̃)(Si{A′′/X} |A′) →∗ (d̃)(S ′i{A′′/X} |A′). By structural induction it
is easy to prove that

S ′i{A′′/X} = S ′′i {A′′/X} |
∏
ki

A′′

for some ki ≥ 0 and some S ′′i in which X is guarded. We can rewrite
(18) to

Bi |B
ι
�= (d̃)(S ′′i {A′′/X} |

∏
ki

A′′ |A′).

For a number j that differs from i, we also have

Bj |B
ι
�= (d̃)(S ′′j {A′′/X} |

∏
kj

A′′ |A′)

for some kj and some S ′′j in which X is guarded. The external actions
of

(d̃)(S ′′i {A′′/X} |
∏
ki

A′′ |A′) and (d̃)(S ′′j {A′′/X} |
∏
kj

A′′ |A′)

must be caused by the components
∏

ki
A′′ |A′ and

∏
kj
A′′ |A′ respec-

tively. Without loss of generality we assume ki < kj. Consider the
process M satisfying F f

c (fi+1→i+1(x)) FM 9. We have the following

(d̃)(S ′′i {A′′/X} |
∏
ki

A′′ |A′) |M →∗ ι−→M ′ F −1f(i+ 1).

According to (4) we can choose f in such a way that the next external
action of M ′ is caused by a descendant of M . But then we must have

(d̃)(S ′′j {A′′/X} |
∏
kj

A′′ |A′) |M →∗ ι−→⇓,

contradicting to the definition of f(x). So this case is impossible.

64

6. Suppose Bi
(d̃i)b(Ai)−→ B′i and B

b(Ai)−→ T{Ai/X}. It should be clear that

Bi |B
ι−→ (d̃i)(B

′
i |T{Ai/X}) (19)

is bisimulated by b(i) |M c
b (s(x))

ι−→ c(i+ 1). According to (4) we
may choose the name c in such a way that the immediate external
action of (d̃i)(B

′
i |T{Ai/X}) is carried out at a name different from

any name appeared in Bi. Consequently the next external action of
(d̃i)(B

′
i |T{Ai/X}) must be caused by T . It follows from (19) that

Bi+1 |B |M
ι−→ (d̃i+1)(B′i+1 |T{Ai+1/X}) |M →∗

ι−→M ′′ ⇓

for some M ′′, where M is the process introduced in (5). By (5) the

change-of-state action of (d̃i+1)(B′i+1 |T{Ai+1/X}) |M is caused by M
performing an input action. By assumption the external action of M ′′

is caused by a descendant of M . It is easy to see from these facts that

Bi+2 |B |M
ι−→ (d̃i+2)(B′i+2 |T{Ai+2/X}) |M →∗

ι−→⇓,

contradicting to the definition of fi+1→i+1(x).

We conclude that C 6v Λ. �

It is shown in (Lanese et al., 2010) that the abstraction-passing cal-
culi (Sangiorgi, 1992) are strictly more expressive than the process-passing
calculi. Similar result has been obtained by Xu (2012) for higher order cal-
culi with relabeling. It remains to see if any of these stronger higher order
process calculi is complete without incorporating some kind of name-passing
communication mechanism.

5.3. Computability Model Justified

The Computability Model C plays a fundamental role in Theory of Inter-
action. Important issues about C must be addressed in a satisfactory way.
Two inevitable questions are:

1. Is C strong enough?

2. Is C too strong?

65

The Axiom of Completeness places a lower bound on the models of inter-
action. It is stronger than the following form of the Church-Turing Thesis:
All computable functions are definable in a (computation) model. The Ax-
iom of Completeness is strictly stronger because it also takes into account
of the external communications. Another aspect of Church-Turing Thesis,
stating that the functions definable in all physically implementable compu-
tation models are computable functions, is not captured by the Axiom of
Completeness. This is reasonable since concurrent models, like the non-
deterministic Turing machine model, are not believed to be implementable
physically. From the point of view of computation C is certainly strong
enough. Is C strong enough from the viewpoint of interaction? This ques-
tion, together with the second question raised in the above, are about the
interaction mechanism of C. A functional process in C is capable of inputting
a value and then outputting another one. There is no doubt that it places
only a minimal requirement on the interactability. What can be questioned is
the capacity of the interactability admitted to C. A process in C can send to
another process a piece of message of any size, coded up by a number, in the
twinkling of an eye. This is not what happens in most models! But thanks
to Theorem 3.6 the Axiom of Completeness does not force this unbounded-
message-size communication capacity on any complete model. As far as the
functional processes and the value processes are concerned, the axiom only
talks about what should be communicated, not how it should be accom-
plished. This is so because C does not have the localization operator. So
now comes the big question: Why does C not have the localization opera-
tor? Wouldn’t the Axiom of Completeness be a better axiom had C had the
operator? A technical answer to these questions is that it wouldn’t work.
The new model would become so different that it is incompatible with any
of the three prime models introduced in Section 2. Recall that A denotes
the model C extended with the localization operator whose operational se-
mantics is defined by the rule given in (3). We have the following negative
results.

Proposition 5.6. A 6v π.

Proof. Assume that the π processes C, D are the interpretations of F b
a(fid),

F a
b (fid) respectively. Then (b)(F b

a(fid) |F ab
b (fid)) would be the interpretation

of (b)(C |D). Using the analysis given in the proof of Theorem 4.9, one

66

derives that (b)(C |D) | (b)(C |D) 6=π (b)(C |D). However

(b)(F b
a(fid) |F ab

b (fid)) | (b)(F b
a(fid) |F ab

b (fid)) =A (b)(F b
a(fid) |F ab

b (fid))

according to Proposition 3.7. We conclude that the soundness condition
cannot be satisfied. �

Proposition 5.7. A 6v VPC.

Proof. First observe that a value process a(i) cannot be interpreted by a
term that can do an input action. Otherwise the interpretation of a func-
tional process of the form F b

a(fid) can only do output actions at channel a.
The number of the output actions it can do must be finite. A contradic-
tion can then be easily derived. So a(i) must be interpreted by a process
A that can only do output actions at a. Let C be an interpretation of
F b
a(fid). The interaction (b)C |A τ−→ B, for any possible B, must be a

nondeterministic computation step, otherwise (b)C |A | (b)C |A would be ca-
pable of doing an infinite computation. We conclude that B is essentially
0 and consequently a(i) is essentially interpreted by a(i′) for some i′. But

then it is easy to see that C ′ = b(k) whenever C
a(k)−→ C ′. We conclude

that (b)(C |D) | (b)(C |D) 6=VPC (b)(C |D), where D is an interpretation of
F a
b (fid). Clearly the soundness fails because of Proposition 3.7. �

Corollary 5.8. A 6v IM.

The above results rule out the possibility for A to play any role in the
Axiom of Completeness. What is wrong with it? The localization operator
brings out the asynchrony of the atomic A-processes, which has been delib-
erately suppressed in C. One could try to introduce some kind of sequential
operation into A to remove the asynchrony. But that would solve one prob-
lem by introducing a bunch of others. If we introduce for example the output
prefix operator in A, we end up in a situation where the asynchronous calculi
like the asynchronous π are ruled out since the output prefix operator can-
not be properly interpreted by the asynchronous output. All these technical
results suggest that C should not be made any stronger.

As a theoretical model C should keep neutral to any implementation
method as well as to any programming style. Adding an additional operator
would sacrifice the neutrality, and at the meantime would deny the models
that do not pertain to a particular paradigm.

67

6. Related Work

The development of the process theory can be summarized in a number
of ways. A handy approach is to classify the stages of the development by
the influential models that have been studied in the process theory. Our
understandings of the theories of equality, expressiveness, and completeness
have advanced significantly with the investigations into each of these models.

The influence of CCSP model, a shorthand for Milner’s CCS (Milner,
1980, 1989a) and Hoare’s CSP (Hoare, 1978, 1985), reaches to almost every
corner of the theory. Apart from the introduction of the fundamental opera-
tors of the process theory (0, concurrent operator, localization operator), the
studies of CCSP have led to a theory of process equality (Milner, 1981, 1984,
1989b; Hennessy and Milner, 1985; Roscoe, 1997) that has been successfully
applied/extended to other process models. The results established in the
equality theory have been exploited in Bergstra and Klop’s ACP (Baeten
and Weijland, 1990) that features an axiomatic approach. There are a num-
ber of decidability results Hirshfeld and Jerrum (1999) for the variants of
CCS/ACP (Hirshfeld and Jerrum, 1999; Mayr, 2000; Burkart et al., 2001;
Srba, 2004; Kučera and Jančar, 2006; Jančar and Srba, 2008; Czerwiński
et al., 2011; Fu, 2013a; Yin et al., 2014), some of which can be used to
establish separation results. However a proper investigation into the rela-
tive expressiveness of the variants of CCS has been a recent endeavor (Busi
et al., 2003; Giambiagi et al., 2004; Busi et al., 2004; Busi and Zavattaro,
2004; Palamidessi, 2003; Fu and Lu, 2010). The characterization by Fu and
Lu (2010) of the expressiveness of CCS variants remains valid if we use the
subbisimilarity defined in this paper as criterion.

In reality processes do not just synchronize, they pass messages from
one to another. The value-passing calculi, in which the messages are coded
up by numerals, were introduced in the CCSP framework (Milner, 1989a;
Hoare, 1985). A systematic studies of the value-passing mechanism have been
carried out by Hennessy and his collaborators (Hennessy, 1991; Hennessy and
Ingólfsdóttir, 1993a,b; Hennessy and Lin, 1995, 1996; Rathke, 1997; Hennessy
and Lin, 1997; Hennessy et al., 1997). It was discovered in these studies that
the symbolic approach (Hennessy and Lin, 1995; Ingólfsdóttir and Lin, 2001)
plays an important role in analyzing the branching structures of the value-
passing calculi. In all these studies, the value domains are treated as oracles.
This isolation of concern facilitates the development of the equality theory.
It is however not at all helpful to the expressiveness study. A self-contained

68

treatment of the theory of the value-passing calculi is carried out in a satellite
paper by Fu (2013b).

The search for the λ-calculus of the concurrent computations has resulted
in an influential model, the π-calculus of Milner, Parrow and Walker (Mil-
ner et al., 1992; Parrow, 2001; Sangiorgi and Walker, 2001b). Due to its
name-passing communication mechanism, the conditional processes in the
π-calculus can be nicely defined in terms of the match and mismatch op-
erators. The studies in the name-passing paradigm (Parrow and Sangiorgi,
1995; Boreale and De Nicola, 1995; Lin, 1995a,b; Sangiorgi, 1996c; Lin, 1996,
1998, 2003; Fu and Yang, 2003; Fu, 2005) clarify the indispensable role of the
localization operator and its tricky presence in the original formulation of the
π-calculus. The investigations into the variants of the π-calculus (Honda and
Tokoro, 1991a,b; Boudol, 1992; Amadio et al., 1998; Sangiorgi, 1996b; Bore-
ale, 1996; Fu, 1997; Parrow and Victor, 1997, 1998; Fu, 1999; Merro, 2000;
Merro and Sangiorgi, 2004; Fu, 2003) brings out the agility of the name-
passing mechanism. The proposal of the barbed bisimilarity by Milner and
Sangiorgi (1992) for the name-passing calculi is a major step in the study
of the theory of equality. The research in the π-calculus has also advanced
the theory of expressiveness. Milner’s encoding of the lazy λ-calculus (Mil-
ner, 1992) has inspired several follow-up works that relate the operational and
the observational semantics of the computation model to those of the process
models (Sangiorgi, 1994, 1995; Fu, 1999; Merro, 2000; Merro and Sangiorgi,
2004; Cai and Fu, 2011). Sangiorgi’s translation of the higher order process
calculi (Sangiorgi, 1993, 1996a,b, 2001) into the π-calculus significantly im-
proves our understanding of the relationship between higher order process
calculi and the π-calculus. The object oriented style of the π-programming,
a notable feature of the works of Milner and Sangiorgi, is emphasized by
Walker’s interpretation of the object oriented languages (Walker, 1991, 1995).
All encodings into the π-calculus have to address the issue of full abstraction.
The most recent attempt to attack the problem is the fully abstract encoding
of the full λ-calculus by Cai and Fu (2011). The theory of expressiveness has
been significantly enriched by the works on the relative expressiveness of the
various variants of the π-calculus (Honda and Tokoro, 1991a,b; Amadio et al.,
1998; Nestmann and Pierce, 1996; Merro, 2000; Nestmann, 2000; Palamidessi,
2003; Merro and Sangiorgi, 2004; Cacciagrano et al., 2006; Palamiddessi et al.,
2006; Cacciagrano et al., 2008) and the works (Gorla, 2008b,a, 2009a,b; Fu,
2007) that compare the π-calculus to other process models, in particularly the
variants (Levi and Sangiorgi, 2000; Guan et al., 2001; Phillips and Vigliotti,

69

2002; M. Bugliesi and Crafa, 2004; Merro and Zappa Nardelli, 2005; Merro
and Hennessy, 2006; Fu, 2007) of the Ambient Calculus (Cardelli and Gor-
don, 2000). In retrospect one cannot help remarking that the equality theory
of the π-calculus has been unnecessarily complicated, and the research on the
expressiveness theory of the name-passing calculi has been slowed down, by
the confusion of the name variables with the names. An elaboration on the
problems caused by the confusion can be found in (Fu and Zhu, 2015).

The power of the barbed bisimilarity is duly exhibited in Sangiorgi’s study
of the higher order calculi (Sangiorgi, 1992, 1996a). There could be several
variations when defining a bisimulation equivalence for the process-passing
calculi (Thomsen, 1989, 1990; Sangiorgi, 1992; Thomsen, 1993, 1995), but
it is the barbed bisimilarity that tells us which one should be preferred. It
does not take much long for one to get the feeling that the process-passing
mechanism has too weak a control power over the interactions to carry out the
fundamental constructions possible in the π-calculus. Sangiorgi’s encoding
of the lazy λ-calculus in the higher order π-calculus (Sangiorgi, 1993) for
example has to resort to the constant definitions parametric on either names
or processes. These parametric definitions are not only used locally, they
are also passed from one process to another, which necessarily means that
typing information has to be provided since different definitions have different
numbers of parameter. Both the work of Thomsen on the higher order CCS
and Sangiorgi on the higher order π-calculus suggest that the process-passing
mechanism is best used along with the name-passing mechanism, which again
raises the issue of type system. Having to introduce a type discipline is one
way to say that the higher order mechanism belongs to programming theory
rather than to model theory.

In the rest of the section, we take a closer look at the related criteria.
Our discussions will be guided by the four principles. The practical aspect
of the criteria will be commented on in Section 6.4.

6.1. On Equality

The bisimulation and the codivergence are intensional conditions. Inten-
sional conditions are concerned with computations. On the other hand, the
extensionality and the equipollence are extensional conditions. Extensional
conditions are to do with interactions. If we completely ignore the intensional
conditions, we may come up with the following definition.

70

Definition 23. The extensional equality =M
e on M is the largest equivalent,

extensional and equipollent relation on PM.

Definition 23 is the model independent formulation of the trace equivalence.
See (Fu and Zhu, 2015) for more on this topic. The so-called observational
equivalences are obtained by strengthening Definition 23 with additional in-
tensional requirements. The strong equality and the weak equality are two
examples. So is the testing equivalence (Fu and Zhu, 2015). The advantage
of this way of thinking about the observational equivalences is that it only
produces model independent definitions. It is beyond the scope of this pa-
per to discuss which of the equivalence relations proposed in literature (van
Glabbeek, 1993b, 2001) have model independent characterizations. What we
do in this subsection is to comment on the major conceptual and technical
contributions that relate to the present work.

6.1.1. Bisimulation

In algebraic theory bisimulation is a technique to construct the largest
fixpoints. The concept was introduced to concurrency theory by Park (1981)
and Milner (1989a). For a long time bisimulation was mainly perceived as
a requirement about external actions. Many variations were proposed and
studied (van Glabbeek, 2001, 1993b). It is the barbed bisimulation of Milner
and Sangiorgi (1992) that brings out the power of the bisimulation of internal
actions. This is a first step towards a model independent theory of process.
The barbed approach, and the reductional semantics, have become a stan-
dard tool in process theory (Sangiorgi and Walker, 2001b). It is emphasized
in (Fu and Lu, 2010; Fu, 2015) that the notion of bisimulation is implicit
in Church-Turing Thesis (van Emde Boas, 1990). To prove a Turing com-
pleteness result amounts to establishing an effective bisimulation (Fu, 2015)
of computation from a known computation model to the target model. Now
the key point is that a bisimulation of internal action is not the same as a
bisimulation of deterministic computation. A deterministic computation is
a local manipulation that does not change the ability to interact, whereas
a nondeterministic computation does change the interactability. The cor-
rect definition of the bisimulation of internal action is the essence of the
branching bisimulation introduced by van Glabbeek and Weijland (1989).
The particular formulation given in Definition 3 is due to Baesten (Baeten,
1996), which has the edge over the original formulation of van Glabbeek and
Weijland (1989) in that the composition of two branching bisimulations is

71

still a branching bisimulation. The advantage of the branching bisimulation
over the weak bisimulation has been demonstrated in a series of papers by
van Glabbeek and his collaborators (van Glabbeek and Weijland, 1989; van
Glabbeek, 1993a,b, 1994; van Glabbeek et al., 2009). The branching bisim-
ulation also appears as a more stable property than the weak bisimulation.
This is manifested in a number of works.

1. De Nicola et al. (1990) have argued that the branching bisimilarity is
the least fixpoints of the operators that admit both forward bisimula-
tion as well as some kind of backward bisimulation.

2. De Nicola and Vaandrager (1995) have shown that there is a nice logical
characterization of the branching bisimilarity using an additional until
operator,

3. Baier and Hermanns (1997) have pointed out that for the fully proba-
bilistic systems branching bisimulation is the only choice.

4. Czerwiński et al. (2011) and Fu (2013a) have provided convincing ex-
amples demonstrating that the branching bisimilarity is a lot more
tractable than the weak bisimilarity.

The importance of the branching bisimulation is best appreciated when com-
putations are considered as first class citizens.

One benefit of combining the barbed approach and the branching ap-
proach is that one only needs to talk about bisimulations of internal actions.
Bisimulations of external actions are derived properties.

6.1.2. Codivergence

The theory of process calculus has been criticized for not paying enough
attention to divergence. It was ignored completely in the trace equivalence
of CSP (Hoare, 1978, 1985) and the bisimulation equivalence of CCS (Mil-
ner, 1989a). In the denotational treatment a process that can only diverge
is understood as the bottom element of the domain (Amadio and Curien,
1998) of processes. The denotational approach identifies divergence to zero
information or undefinedness. If the information order is mingled with the
observational theories, different order relations on processes are produced.
In the testing scenario of De Nicola and Hennessy (De Nicola and Hennessy,
1984; Phillips, 1987; Hennessy, 1988), the must equivalence regards diver-
gence as catastrophic. This is rectified in later modifications of the testing
equivalence (Brinksma et al., 1995; Natarajan and Cleaveland, 1995; Bore-
ale et al., 1999, 2001). In the bisimulation semantics (Walker, 1990; Aceto

72

and Hennessy, 1992), divergence is respected but not bisimulated. In pro-
cess algebra (Baeten and Weijland, 1990), divergence is an operator defined
(in)equationally. The denotational approach features a preordained predi-
cate, often denoted by ⇑, that is defined on the syntax of processes, and
an inactive process, denoted by ⊥ or Ω or ∆ by various authors and called
explicit divergence, that induces a satisfaction relationship to the predicate.

Divergence is neither a syntactical concept nor an observational one. Its
treatment should be intensional rather than extensional. This is consistent
with the view that bisimulation as given in Definition 3 is a computational,
and consequently an intensional property. The preferable way of defining
divergence is in terms of infinite internal action sequences. An equality is
divergence sensitive if it respects divergence. The simplest formulation of di-
vergence sensitivity is the so-called termination preserving property. In (van
Glabbeek, 1993b) the author summarizes several ways to strengthen the ter-
mination preserving property. The operational approach to divergence had
been left without scrutiny for some time. It is Lohrey et al. (2002, 2005) who
give for the first time an algebraic characterization of the divergence sen-
sitive equivalences classified by van Glabbeek. Termination preservation is
obviously a correct criterion if it is stated for the deterministic computations.
It is a dubious one when stated for the general computations including the
nondeterministic computations. The right property that goes nicely with the
bisimulation property is the codivergence heavily used by Fu and Lu (2010).
Independently van Glabbeek, Luttik and Trčka have studied in a recent pa-
per (van Glabbeek et al., 2009) the codivergence property of the branching
bisimulations. Codivergence appears in (van Glabbeek et al., 2009) as the
weakest condition among several alternative formulations of the same idea.
But Bisimulation Lemma clearly implies that it is as effective as the strongest
formulation one may think of. As far as we know the codivergence property
was stated for the first time by Priese (Priese, 1978), who called it eventu-
ally progressing property. The equational axioms for codivergence is studied
in (Fu, 2015), which is inspired by the work of Lohrey et al. (2005).

6.1.3. Extensionality

The observation theory of process is complicated by our perception that
there are an almost unbounded number of choices of the observers. If the
observers are external, meaning that they stay outside the model of the
observees, then they may vary considerably in strength. But if the observing
power of the external observers, chosen for whatever reasons, are too strong

73

or too weak compared to the power of the observees, isn’t that suggesting
that a wrong model has been chosen? We might as well start with a stronger
or weaker model. If a process calculus defines a closed model of processes,
which is generally accepted, then the observers ought to be internal ones. The
proper assumption is that all processes of a model are observers, which leads
to the environment closure property of the barbed equivalence (Milner and
Sangiorgi, 1992). If one generalizes this closure property from a relation on
one model to a relation from one model to another, one gets the extensionality
criterion. The simple step from the environmental closure condition to the
extensionality condition is what makes possible the unification of the equality
and the expressiveness relationship. The tradeoff is that generally one has
to settle for a subbisimilarity rather than the subbisimilarity.

It has been suggested that a composition process P |Q could be inter-
preted as C[JP K, JQK] for some nontrivial context C[,] in target model.
Theoretically such a translation is understood as saying that JP K or JQK has
been wrongly interpreted. In applications necessity for this kind of transla-
tion occurs. That is a different issue.

6.1.4. Equipollence

Extensionality alone is insufficient to recover an observational equiva-
lence. A counter example is the extensional closure of {(!a | !a, !b | !b)}. To
capture the full power of observation, one needs to talk about interactability.
This is what Milner and Sangiorgi’s barbed approach has offered. In the orig-
inal paper of Milner and Sangiorgi (1992), barbedness means observability.
The idea was embraced in a lot of later studies and has clarified the relative
roles of some of the equivalences (Sangiorgi and Walker, 2001a). In most of
these studies one defines a barb as for example a subject name of an action
or an external action, and then define the barbed equivalence accordingly.
These variations on the barbed equivalence are not as model independent
as Milner and Sangiorgi’s original definition. When generalizing relations on
one model to relations between two models, it is the observability, not any
definition of barbs, that survives.

The barbed approach has promoted a shift from the labeled semantics
to the reductional semantics (Berry and Boudol, 1992; Milner, 1992; Honda
and Yoshida, 1995). While we acknowledge the importance of the reductional
approach, we must point out that it is rather easy to design a reductional
semantics that cannot be justified from the perspective of interaction. Some-
times one ends up with just a term rewriting system.

74

6.2. On Expressiveness

Nestmann (2000), Palamidessi (2003) and Parrow (2006) have discussed
several expressiveness criteria proposed in literature. Gorla (2008a) has done
significant work on the expressiveness of process calculi. Gorla’s model inde-
pendent approach differs from ours in that his criteria are more application
oriented whereas ours are purely theoretical. This point will be further elab-
orated in Section 6.4. In this subsection we examine a number of criteria in
the light of Theory of Interaction. Suppose that there are two translations:

M0
T−→M1

T ′−→M2,

where T asserts that M1 is at least as expressive as M0 and T ′ asserts that
M2 is at least as expressive as M1. Whatever the criteria are taken for the
assertions, it must follow that M2 is at least as expressive as M0. In sequel
we will reject any criterion that does not enjoy transitivity.

Every criterion for expressiveness should refer to some equivalence rela-
tion. For simplicity we shall only use the weak equality, and accordingly
weak bisimulations, in the following discussions.

6.2.1. Leader Election Problem

If there is a problem that can be solved in L but is unsolvable in L′, then
the problem separates L from L′ since the latter cannot be more expressive
than the former. The Leader Election of distributed systems (Garcia-Molina,
1982; Stoller, 2000) is one such problem that is often used to tell apart
process calculi (Bougé, 1988; Palamidessi, 2003; Phillips and Vigliotti, 2006;
Vigliotti et al., 2007; Phillips and Vigliotti, 2008). In the theory of distributed
computing an important issue is about reaching a consensus. The problem
looks for a method to reach an agreement, say a number less than k, among
a set of k processes. It has been proved that such a method does not exist
for the general consensus problem if processes may fail. The problem does
have a solution if we assume that no participating processes can ever fail
or that there is a timeout mechanism. In the restricted scenario, a simple
leader election algorithm suffices. In process theory failure is interpreted as
divergence. The Leader Election Problem assumes that all the negotiating
processes are terminating. It is however not an easy task to prove that a
problem is unsolvable in a particular process model.

Solutions to the Leader Election Problem are often required to satisfy
additional properties like distribution, symmetry and stability (Palamidessi,

75

2003). It has been suggested that adding more structures is one way to
achieve sharper separation results (Vigliotti et al., 2007). Some of the ad-
ditional structures are highly syntactical. Results along this line have more
implications to distributed computing than to process theory. A proof by
counter example, say the Leader Election Problem, can be couched in the
following formal terms:

1. Single out a process P in L.

2. Assume that there were a subbisimilarity F from L to L′.
3. Derive a contradiction from the assumption ∃Q.PFQ.

4. Conclude that L 6v L′.

The steps (1-4) are the standard procedure to prove a negative result. When
working in a formal setting as strong as Theory of Interaction, the counter
examples are often simple and straightforward. For instance it is easy to
show that the mixed choice a + b cannot be interpreted in the π-calculus
with only the separated choices (Fu and Lu, 2010). This counter example is
much simpler than the Leader Election Problem.

Let’s see another example. Is the random number generator definable in
say VPC? Take a look at the VPC-process Rng defined as follows:

Rng
def
= (c)(c(0) | !c(x).(τ.c(succ(x)) + τ.b(x))).

It is clear that Rng
τ

=⇒ b(k)−→= 0 for every k. The number k is picked up
randomly due to the nondeterminism caused by the composition operator.
But notice that Rng is divergent. So at best it is a divergent implementation
of the random number generator. Can we improve upon the solution offered
by Rng? The answer is negative.

Lemma 6.1. There does not exist a terminating VPC-process RN such that

all its action sequences are of the form RN =⇒ b(k)−→= 0 and for every k one

has that RN =⇒ b(k)−→= 0.

Proof. According to the termination condition, RN cannot contain two
replication sub-processes that can interact. But then RN must be finite
branching and consequently König Lemma implies that RN is only capable
of generating a finite number of natural numbers. �

76

6.2.2. Operational Correspondence

Two folklore criteria for the operational faithfulness of the translation is
given in the next two definitions.

Definition 24. The translation T is operationally complete if P
τ−→ P ′

implies that T (P) =⇒ Q′ =M1
w T (P ′) for some Q′ ∈ PM1 .

Definition 25. The translation T is operationally sound if T (P)
τ−→ Q′

implies that P =⇒ P ′ and Q′ =M1
w T (P ′) for some P ′ ∈ PM0 .

To put things in perspective, suppose T and T ′ are operationally sound
and complete. Let’s see what is necessary to establish the operational com-
pleteness and soundness of the composition T ; T ′.

• It is easy to see that in order to prove the completeness of T ; T ′, we
generally need the following soundness property:

– If P =M1
w Q then T ′(P) =M2

w T ′(Q).

We also need to make use of the fact that =M2
w is a weak bisimulation.

• The soundness of T ; T ′ is problematic. Suppose T ′(T (A))
τ−→ A2 for

some A ∈ PM0 . By the soundness of T ′, some A1 exists such that
T (A) =⇒ A1 and T ′(A1) =M2

w A2. Without loss of generality, assume
that T (A) =⇒ A1 consists of two internal steps, say T (A)

τ−→ A′1
τ−→

A1. By the soundness of T , some A0 exists such that A =⇒ A0 and
T (A0) =M1

w A′1. To continue, we need to use the property that =M1
w is a

weak bisimulation. We get some A′′1 such that T (A0) =⇒ A′′1 =M1
w A1.

We are back to square one since T (A0) =⇒ A′′1 could contain more
than one internal step.

So Definition 25 is not as innocent as it appears. There are two ways to get
over the problem with the soundness. One is to turn the maps T , T ′ into
relations, which leads to the idea of weak subbisimilarity (Fu and Lu, 2010).
A weak subbisimilarity generalizes a subbisimilarity in that the former is a
weak bisimulation, not necessarily a bisimulation. The other is to strengthen
the operational soundness in the manner of the next definition.

Definition 26. The translation T is truly operational sound if T (P) =⇒ Q′

implies that P =⇒ P ′ for some P ′ ∈ PM0 such that Q′ =M1
w T (P ′).

77

We can now formulate the notion of operational correspondence.

Definition 27. The translation T is operationally correspondent if it is op-
erationally complete and truly operationally sound.

The operational correspondence is a basic requirement for any sensible
translation. It must be used in combination with other criteria.

6.2.3. Weak Operational Correspondence

In the literature, see for example (Parrow, 2006), a weaker version of the
operational soundness appears more popular than the operational soundness
we have just discussed.

Definition 28. A translation T is weakly operationally sound if T (P)
τ−→

Q′ implies P =⇒ P ′ for some P ′ ∈ PM0 and Q′ =⇒ Q′′ =M1
w T (P ′) for some

Q′′ ∈ PM1 .

Using similar argument as given in Section 6.2.2, one easily sees that the
transitivity of the weak operational correspondence poses even a bigger prob-
lem. One solution is to strengthen Definition 28 in the style of Definition 26.

Definition 29. A translation T is truly weak operationally sound if T (P) =⇒
Q′ implies P =⇒ P ′ for some P ′ ∈ PM0 and Q′ =⇒ Q′′ =M1

w T (P ′) for some
Q′′ ∈ PM1 .

Assuming that the translation T is operational complete and preserves
the weak equality, it is easy to show that truly weak operational soundness
is transitive. A discussion of the advantage of the formulation given in the
above definition has appeared in (Nestmann and Pierce, 2000).

Weak operational correspondence is often applied when operational cor-
respondence fails. It happens when an encoding introduces extra names. The
role of Q′ =⇒ Q′′ is to do away with unwanted extra names by completing
unfinished simulations.

6.2.4. Equivalence Criterion

When the models M0,M1 are close enough, it is possible to apply the
equivalence criterion. A typical scenario of using the equivalence criterion
looks like this:

1. M0 is syntactically a submodel of M1.

78

2. The action set of M0 is the same as the action set of M1.

3. To show that M0 is as expressive as M1, one shows that for each process
P of M1 there is some process Q of M0 such that Q =M1

w P .

The equivalence criterion is often useful when comparing the expressive
powers of different variants of a model (Palamidessi, 2003). It can be seen
as an application of Definition 18 in a special scenario.

6.2.5. Weak Full Abstraction

A translation fails to satisfy the full abstraction property often satisfies
the so-called “weak full abstraction” property (Parrow, 2006).

Definition 30. The translation T is weakly full abstract if the following
property holds: P =M0

w Q if and only if T (P) ≈M1 T (Q).

In the above definition, ≈M1 is the equivalence obtained by restricting the
set of the observers to the set consisting of the translations of the contexts
definable in M0.

If there is another weak fully abstract translation T ′ from some M1 to M2,
a different equivalence ≈M2 would be used. Since ≈M1 is strictly weaker than
=M1
w , there is no way to talk about transitivity for the weak full abstraction.

At theoretical level the weak full abstraction condition must be rejected.

6.2.6. Compositionality

Almost all the translations that have been proposed are structural. If the
translation of every operator is structural, then the translation of every pro-
cess is structural. This motivates the following definition by Gorla (2008b,a,
2009b,a).

Definition 31. The translation T is compositional if for every k-ary oper-
ator op of M0 there exists some context C[, . . . ,] of M1 with k-holes such
that T (op(P1, . . . , Pk)) =M1

w C[T (P1), . . . , T (Pk)].

Compositionality is clearly transitive. In reality a compositional trans-
lation may be stronger than what Definition 31 suggests. Take for example
Milner’s encoding of the lazy λ-calculus:

JMNK(u)
def
= (v)(JMK(v) | vu.v(n) | !n(w).JNK(w)).

79

The translation of the application is not exactly compositional according to
Definition 31 since it is parameterized on the names. This example shows
that the translation T in the above definition should be understood in general
as a parameterized encoding.

Compositionality is a good property for an encoding to have. From the
point of view of expressiveness, it is not clear why a non-compositional in-
terpretation should be ruled out.

6.2.7. Name Invariance

Most translations have the nice property that they are invariant under
the change of names. The criterion defined next is part of the uniformity
condition of Palamidessi (2003). It is also heavily used in the work of Gorla
(2008b,a, 2009b,a).

Definition 32. The translation T is name invariant if T (Pα) ≡ T (P)α
for every P ∈ PM0 and every renaming α.

In the statement of Definition 32, the renaming α could be either injective
or non-injective. Injective name invariance is a fine property, though it is not
that useful technically. On the other hand non-injective renaming is a bit
too strong. There is nothing wrong for a translation that maps the π-process
[a=b]de onto 0. But clearly every translation T should render T (([a=b]de)α)
and 0α unequal if α is the non-injective renaming {b/a}.

6.2.8. Correct Translation

A recent proposal for expressiveness relation makes use of the so called
correct translations (van Glabbeek, 2012). In this approach a model is pre-
sented as a pair (M, IM) where M introduces valid expressions and IM is a
surjective interpretation map from M to some domain DM of meanings. A
corret translation from (M, IM) to (N, IN) is a map T from M to N such that
IM(T) � IN(T (T)) for all T , where � is some appropriate semantic equiv-
alence on DM ∪ DN. According to the definition a correct translation from
(M, IM) to (N, IN) depends on IM, IN and �. For simplicity suppose that
IM and IN are given by the labeled transition semantics of the respective
models. So IM(T) for example is the labeled transition system or the process
graph induced by T . Now if (M, IM) and (N, IN) have quite different action
labels, defining the semantic equivalence relation � is just as hard as defining
the translation T . One could even argue that defining � is the same thing

80

as defining T . In general the story is not that one has a semantic relation
� in advance, and then one defines the translation T . The relation � and
the map T are defined simultaneously since both depend on the semantic
mappings IM and IN. Simpler situations occur when DM = DN.

6.3. On Completeness

There has been no consensus on what it means for a process calculus to
be Turing complete. For the restricted question of Turing completeness of
the π-calculus, Milner’s answer is the most influential one (Milner, 1992). His
encoding, a typical application of the apparatus of the π-calculus, is given
below:

JxKa
def
= xa,

Jλx.MKa
def
= a(x).a(v).Jλx.MKv,

JMNKa
def
= (c)(JMKc | !c(f).ca.f(w).JNKw).

It is proved in (Milner, 1992) that the encodings of the closed λ-terms
both preserve and reflect the operational semantics of the lazy λ-calculus
of Abramsky (1988). In the followup papers (Sangiorgi, 1994, 1995) San-
giorgi proved that Milner’s encoding is fully abstract with respect to the
open applicative bisimilarity on the λ-terms. In (Milner, 1992) Milner has
also given an interpretation of the call-by-value λ-calculus (Plotkin, 1975)
in the π-calculus. Encodings into the variants of the π-calculus have been
investigated in (Sangiorgi, 1993; Fu, 1999; Merro and Sangiorgi, 2004). None
of these encodings are good for the full λ-calculus (Barendregt, 1984). The
fully abstract encoding of the full λ-calculus in π (Cai and Fu, 2011) makes
use of the match/mismatch operator and the guarded choice operator.

Over the last few years the Turing completeness property has been studied
for a number of process calculi (Palamidessi, 2003; Busi et al., 2004; Maffeis
and Phillips, 2005; Fu and Lu, 2010) using the machine model rather than the
λ-calculus. Maffeis and Phillips (2005) have summarized several criteria for
Turing completeness. The weakest criterion that has appeared in literature
can be stated as follows:

TC-0: Let C be a computation model. A process calculus M
with a canonical equivalence � on the M-processes is Turing
complete if there is a function e : C→ PM such that the following
statements are valid for each c ∈ C:

81

(i) If c → c′ then e(c) =⇒ P for some process P such that
P � e(c′).
(ii) If e(c)

τ−→ P then c→∗ c′ for some c′ such that e(c′) � P .
(iii) c diverges if and only if e(c) diverges.

TC-0 is useful for establishing undecidable results. It has been used as a
statement that asserts Turing completeness. In our opinion TC-0 is too
weak to be a criterion for anything. It is satisfied by some trivial encodings.
Let b for example be a function defined by the following.

b(c)
def
=

{
0, if c terminates,
Ω, if c diverges.

The function b clearly satisfies TC-0. It basically says that all process calculi
are Turing complete according to TC-0. The encodings defined in process
calculus literature actually satisfy far more properties, say the effectiveness,
than TC-0. What Turing completeness is really about is the simulations of
functional behaviours. This can be formally stated as follows.

TC-1: Let R be the model of recursive funcitons. A process
calculus M with a canonical equivalence � on the M-processes
is Turing complete if there is a function e : R → PM such that
the following statements are valid for all f(x1, . . . , xi) ∈ R and all
numerals n1, . . . , ni:
(i) If f(n1, . . . , ni) → f′ then e(f(x̃)) | e(n1) | . . . | e(ni) =⇒ P for
some process P such that P � e(f′).
(ii) If e(f(x̃)) | e(n1) | . . . | e(ni)

τ−→ P then f(n1, . . . , ni)→∗ f′ for
some f′ such that e(f′) � P .
(iii) f(n1, . . . , ni) diverges if and only if e(f(x̃)) | e(n1) | . . . | e(ni)
diverges.

It is not difficult to see that an encoding satisfying TC-1 must not confuse two
distinct numerals. The consequence is that the recursive functions cannot be
interpreted in a trivial fashion. TC-1 appears to be the strongest criterion
one could find in the literature. Other weaker forms are more liberal about
(ii) and/or (iii). For example the encoding of a recursive function might get
stuck or diverge on some inputs even if the recursive function is defined on
these inputs. TC-1 and its weaker forms have been used to establish Turing
completeness, or the absence of it, of CCS (Busi et al., 2004; Fu and Lu,

82

2010) and Ambient Calculi (Hirschkoff et al., 2002; Zimmer, 2003; Busi and
Zavattaro, 2004; Maffeis and Phillips, 2005).

From the point of view of interaction, even TC-1 is subject to criticism.
Suppose f(n1, . . . , ni)→∗ n and

e(f(x̃)) | e(n1) | . . . | e(ni)
τ−→ P1

τ−→ P2
τ−→ . . .

τ−→ Pk � e(n). (20)

According to definition f(n1, . . . , ni) is computationally equal to n. This
equality is generally not respected by the encoding e since it is possible that
Pk 6� Pi for all i < k. The consequence is that the simulation of the encoding
of a recursive function can be easily interrupted by the environment and an
environment is never sure of what it is getting.

There are other variant definitions of the Turing completeness. It suf-
fices to say that none of them meet our requirement on completeness. The
encodings of the lazy λ-calculus in the π-calculus for example lack of the
mechanism of result delivery. Other encodings appear weaker in that they
have neither the input nor the output mechanisms. Although computations
can be carried out by these encodings, the results of the computations are not
usable to any processes. It is in the light of these facts that the completeness
of this paper should be judged.

The notion of completeness is so important to Theory of Interaction that
a sound formulation of the notion is of paramount importance.

6.4. Natural Criteria

The comparisons carried out in Section 6.1 and Section 6.2 are done
with regards to interpretation rather than translation. For theoretical studies
interpretation should definitely be preferred. There are at least two reasons.

1. Results about interpretability are model independent. They have both
theoretical significance and practical implication.

2. A solid negative result about expressiveness must be proved by showing
the absence of any interpretation. The nonexistence of any translations
or encodings satisfying a set of conditions cannot be conclusive.

In practice one is more interested in the effective proofs of positive results.
This is the case when one tries to construct a compiler for a programming
language using another programming language. In reality there is little point
in claiming that L′ is more expressive than L if one cannot implement the
former by the latter. The motivations for the structural criteria proposed in

83

literature, notably those by Nestmann (2000), Palamidessi (2003) and Gorla
(2008a), are the belief that if there are translations between two natural
models, there are natural translations between the models. This belief has
been widely exploited in computation theory. The criteria discussed in Sec-
tion 6.2 are natural criteria. Different authors have different understanding
of the non-technical word “natural” in different application scenarios, hence
the diversity. If one compares for instance two models that fit in the same
programming paradigm, one applies compositionality and name invariance
conditions. If one is looking for an efficient algorithm for a specific problem,
one may impose some structural constraints on the solutions.

In practice one also uses natural equalities for different purposes. One
such equality is the testing equivalence De Nicola and Hennessy (1984). The
model independent approach can be applied to the testing equivalence, lead-
ing to a different theory than what is presented in this paper.

It is from the angle of theoretical necessity and application diversity that
the Theory of Interaction and the work of others can be fully appreciated.

7. Conclusion

The most significant contribution of this paper is the model independent
formulation of the two most important relationships in Computer Science,
the expressiveness relationship between the models and the equality rela-
tionship between the objects of a model. The mere fact that the Axiom of
Completeness can be formally stated is itself a manifestation. The uniform
definition of the equality and the expressiveness is a technical advance, mak-
ing it clear how the expressiveness relationship can be unique and why the
full abstraction is a necessary requirement. Theory of Interaction is open
to logic study. In logic, equality is unique, and there is no ambiguity when
one talks about one logic being more expressive than another. We have seen
the benefit of using logic in the formulation of the Axiom of Completeness.
Another example, the Axiom of Computation, is introduced in (Fu, 2015).

Theory of Interaction provides a number of guidelines when introducing
a new model N. The following two questions must be addressed:

• Is N complete?

• Is the absolute equality a congruence?

More information about N can be obtained by answering harder questions.
Theory of Interaction allows to formalize these questions unambiguously.

84

@
@

@
@

@
@
@
@

�
�
�
�
�
�
�
�

C

IM
B
BM

VPC

B
BM

πM
πL

πR
π

πS

�
�
�
��

...

Figure 2: The World of Models

What is carried out in this paper is the starting point for many things to
follow. In sequel we point out some problems, unsettled in this paper, and
several interesting research directions.

7.1. Unsettled Problem

The picture in Fig. 2 is what we currently know, leaving aside for the
moment the question of what πL, πS, πR stand for. In Section 4 we have
derived some structural results. More generally one may ask the following.

Problem 1. Is there any useful structural theory about Mod?

In particular, how do we stratify Mod? Is there any interesting hierarchy
theorem or theory for Mod? Should there be a final model? To answer the
question one would probably introduce something like processes with oracles.
It remains to see how to define the notion of oracles for interaction models.

For the models without the choice operator, the problem one comes across
when attempting to prove the coincidence is to do with the bisimulations of
the input actions. Take the π-calculus for instance. Suppose P =π Q

ac−→ Q′

and d is a fresh name. Now Q | ac.d | d τ−→ τ−→ Q′ must be simulated by
some P | ac.d | d τ

=⇒ P ′. From the latter internal action sequence it is easy to
derive P

ac
=⇒ P ′. But so far we have not been able to show that the simulation

must take the form P →∗ ac−→ P ′. This issue is technically important and
practically useful. We would very much like to see any progress on it.

Problem 2. What is the observation theory of πM?

If the external bisimilarity turns out to be the same as given in Definition 14,
one may immediately conclude that πM @ π. The external characterization
of =πM is important if one studies models that have name-passing features.

85

Definition 33. A model M has name-passing if πM v M. A model M has
value-passing if VPC− vM.

A external characterization of the absolute equality of VPC− is also open.
Section 4.4 tells us that there are possibly many incompatible interpretations
of a complete model into itself. It also suggests that incompatible interpre-
tations are often caused by different encoding-decoding functions. At the
moment VPC and IM are the only models we know that have nontrivial self
interpretations. The picture of the self interpretations on VPC/IM will not
be fully understood until we answer the following.

Problem 3. Is every self interpretation on VPC/IM induced by a bijective
computable function?

7.2. Future Direction

Future studies in Theory of Interaction may stretch in several directions.

1. The first direction is to expand the current picture, given by the di-
agram in Fig. 2, of the world of interaction models. The only model
missing in the picture is the asynchronous π-calculus. We have not
discussed the model due to space consideration. The model πL, called
local π by Merro and Sangiorgi (2004), is the π-variant in which a
name received from a communication cannot be used as an input chan-
nel. Symmetrically πR (Fu and Zhu, 2015) is the π-variant in which
a name received from a communication cannot be used as an output
channel. Another π-variant, called πS in (Fu and Zhu, 2015), is defined
by imposing the restriction that the received names can only be used
as channel names (subject names). The expressiveness of πL, πS, πR is
studied in (Xue et al., 2011). A sensible thing to do is to examine the
other major process models not yet discussed in this paper. One could
compare along the way the existing expressiveness results against the
results obtained by applying the subbisimilarity relationship. There is
little doubt that exercises of this sort would bring to us new insight
into these process models.

2. The second direction is to apply the model independent philosophy of
Theory of Interaction to other frameworks. If we go about the plan in
the order of the equality theory, the expressiveness theory and the com-
pleteness theory, we should start from the picture described in Fig. 3.
All equalities for models of interaction should be observational. In

86

=e no intensional requirement

=t

=w

= strongest intensional requirement

6

6

6

Figure 3: The World of Equalities

other words they must satisfy the extensionality and equipollence con-
ditions. So every equality is above the extensional equality introduced
by Definition 23. On the other hand, the bisimulation and codivergence
conditions are the strongest intensional (computational) requirements
one may impose on the observational equalities. Consequently every
equality is under the absolute equality. Now suppose =t is a model
independent equality that lies between the extensional equality and
the absolute equality. The definition of =t either introduces some new
intensional condition, or weakens the codivergence and bisimulation
conditions, or is a mixture of both. Due to its model independent na-
ture, the definition can be routinely generalized to the expressiveness
relationship. The rest of the job is to develop the expressiveness theory
and the completeness theory that go along with =t. The views and the
results obtained along this line of research would certainly improve our
understanding of the interaction models.
The model independent approach can also be applied to the study of
the pre-orders on processes. A progress along this line of investigation
is reported in (He, 2010).
We can try to use the model independent approach to study other
communication mechanisms. Some process calculi are based on com-
munication media that support one-many broadcast. Some other pro-
cess calculi permit a group of processes to synchronize at a particular
communication media, like CSP (Hoare, 1985). Still some other pro-
cess calculi can engage in a one-one interaction based on locations, like
Ambient Calculus of Cardelli and Gordon (2000). It remains to see
how the basic idea of Theory of Interaction can be applied to these

87

different communication mechanisms.
3. The third direction is to rework the concurrency theory in the light

of Theory of Interaction. There are many aspects one could inspect.
One may try to formulate the asynchronous theory (Honda and Tokoro,
1991a,b; Boudol, 1992; Amadio et al., 1998) in Theory of Interaction.
Initial progress on this topic is reported in (Fu, 2010). One may apply
the principles of Theory of Interaction to the Petri Net Model (Reisig,
1985) so that the problem of compositionality is solved in a satisfactory
way. Theory of Interaction provides a method, as well as a toolkit, to
shrink the bulk of the concurrency theory by streamlining the models.

4. The fourth direction is to integrate the theory of computation (Das-
gupta et al., 2006; Papadimitriou, 1994; Wegener, 2005) into Theory of
Interaction. Since every interaction model is complete, one may carry
out algorithm design and complexity analysis in an interaction model.
The additional help Theory of Interaction might provide is a formal
treatment of the distinctions between the determinism and the nonde-
terminism. The hope is that by expanding the computation theory into
the dimension of interaction, nondeterminism can be dealt with at the
model level rather than at the algorithmic level.

5. The fifth direction is to explore the tools developed in Theory of Inter-
action to search for significant negative results. The theory of process
calculus is a theory abundant in models. It is also a theory that is
by and large flat. The lack of deep negative results supports the flat
theory view. Finkel and Schnoebelen explain in (Finkel and Schnoe-
belen, 2001) how the well quasi order structure (Kruskal, 1972) can be
used to derive a number of results in concurrency theory. The same
structures are used in obtaining some negative results in process the-
ory (Busi et al., 2003, 2004; Fu and Lu, 2010). Another interesting
negative result is Sewell’s theorem on the nonexistence of a finite ax-
iomatic system of the finite state processes (Sewell, 1994, 1995, 1997).
There are not many such examples. The meta theoretical framework
offered by Theory of Interaction ought to be helpful in obtaining general
negative results.

6. The sixth direction is to apply the ideas of Theory of Interaction to
solving practical issues. With the advance in hardware, interest in con-
current programming has been revived. Studies in this area face many
new challenges. In concurrent program analysis for example, one needs
a language independent notion of program equivalence to start with.

88

To evaluate the virtues of different concurrent programming languages,
one cannot avoid using some language independent expressiveness re-
lation. There are other application areas where Theory of Interaction
should help in one way or another. Feedbacks from applications will
be important to further development of the theory.

So Theory of Interaction not only offers a framework, it also offers problems.
There are a lot to do.

Acknowledgment

I would like to thank the members of BASICS for their interest, discus-
sions and feedbacks. I am grateful to Huan Long and Jianxin Xue who have
discovered a number of serious mistakes in several drafts of the paper. In
particular they demonstrated to me that my original perception about the
self interpretations on the π-calculus was terribly wrong, and that the tricks
used in the proof of Theorem 4.12 can be reused to tell apart the polyadic
π from the monadic π. I owe a great deal to Xiaojuan Cai, Xiaoju Dong,
Huan Long, Hao Lu, Jianxin Xue and Han Zhu for having collaborated on
issues related to the topics of this paper. I have also benefited a lot from
an informative discussion with professor Mingsheng Ying about axiomatic
approach in computer science.

Working on the topics covered in this paper has been a fascinating ex-
perience. Towards the end of 2006, after my collaboration with Hao Lu has
led to the results described in (Fu and Lu, 2010), I started thinking about
a general model independent theory of interaction. I got heavily occupied
by it in the years 2007-2008. During the time several frameworks had been
investigated and denied. By early 2009 the theory was beginning to take its
present shape. I made an announcement of a draft paper in BASICS 2009.
The questions and comments I received from the audience of the workshop
have kept me working on the subject ever since.

I must thank the two anonymous referees for their detailed comments,
suggestions, questions and criticisms. In many ways their insightful advice
has helped to improve the quality of the paper in an indispensable fashion.

Over the years I have been supported by NSFC projects one after an-
other. I would like to mention in particular the project number 61033002
and the PACE project number ANR 61261130589. Seriously I owe NSFC a
big apology for not being able to deliver in time enough published papers.
In retrospect I should have broadened my research scope many years ago.

89

Appendix A. Input via Output?

The next two facts describe some standard properties of J K./.

Fact 1. The following statements are valid.

1. If T
τ−→ T ′ then JT K./ τ−→ τ−→ JT ′K./.

2. J K./ is contained in a minimal extension J K./⇓ that is equipollent, ex-
tensional, codivergent and bisimilar.

Proof. The validity of (1) is obvious. In fact T
τ−→ T ′ implies JT K./ τ−→

Tc
τ−→ JT ′K./ for some Tc such that Tc = JT ′K./. The equality tells us how

to extend the function J K./ to a minimal relation J K./⇓ that is equipollent,
extensional, codivergent and bisimilar. �

Fact 2. The composition =; {(JP K./, JQK./) | P = Q}; = is equipollent, ex-
tensional, codivergent and bisimilar.

Proof. Let R stand for the relation {(JP K./, JQK./) | P = Q}. Now suppose

A′
ι←− A = JP K./ R JQK./ = B

and that A
ι−→ A′ is simulated by JP K./ →∗ P ′′c

ι−→ P ′c for some P ′′c , P
′
c such

that A = P ′′c and A′ = P ′c. We may as well assume that P ′′c ≡ JP ′′K./ for some
P ′′ such that P =⇒ P ′′. Now P ′′

τ−→ P ′ for some P ′ such that P ′c = JP ′K./.
Using the fact P = Q, one gets some Q′′, Q′ such that Q =⇒ Q′′

τ−→ Q′ =
P ′ and Q′′ = P ′′. Therefore JQK./ =⇒ JQ′′K./ τ−→= JQ′K./ R JP ′K./ and
JQ′′K./ R JP ′′K./. Finally some B′′, B′ exist such that B =⇒ B′′

τ−→ B′ =
JQ′K./ and B′′ = JQ′′K./. What we have essentially demonstrated is that
=;R; = is equipollent, extensional, codivergent and bisimilar. �

What is missing from Fact 1 and Fact 2? Had we established reflexivity
of =;R; =, we would have proved that the composition J K./; = were a sub-
bisimilarity and that J K./ were a correct encoding. This is impossible. The
map J K./ fails the soundness condition. The process !a(x).bx is equal to the
process (d)(a(x).(bx | d) | !d.a(x).(bx | d)). But the interpretation J!a(x).bxK./
is obviously unequal to

J(d)(a(x).(bx | d) | !d.a(x).(bx | d))K./

since the former can always do input actions at a whereas the latter can only
do one such action.

90

Appendix B. Value-Passing via Name-Passing?

The encodings are based on an injective map of the term variables onto
the name variables. For simplicity we pretend that this map is an identity
function. In what follows we will make use of the following encoding of the
polyadic prefixes in terms of the monadic prefixes (Milner, 1993b):

a(x1, . . . , xk).T
def
= a(w).w(x1). · · · .w(xk).T,

a〈n1, . . . , nk〉.T
def
= a(c).cn1. · · · .cnk.T,

a(b1, . . . , bk).T
def
= a(c).c(b1). · · · .c(bk).T.

The encoding does not give rise to a subbisimilarity. But it is good for our
purpose.

The interpretation of every object in the π-calculus must be accessible.
In other words it must let environments know its existence. The numeral n
will be interpreted as a process that can be visited at a name. So there is an
infinite number of interpretations of every numeral, each being accessible at
a particular name. The numerals can be coded up in many ways. We shall
use the following encoding:

J0Kπc
def
= c(e, f).f ,

Jn+1Kπc
def
= (d)(c(e, f).ed | JnKπd).

It is obvious from the definition that JiKπc = JjKπc if and only if i = j. A
process interacts with JnKπc would have to consume JnKπc as it were in order
to figure out what the numeral is. Once the process has got the numeral,
it would probably make use of the numeral several times. For that to be
possible, the process must make several copies of the numeral. A better
approach is to introduce an operation that duplicates the encoded numeral
for a potentially infinite number of times. To describe the operation it is
convenient to introduce the following persistent form of the encoding:

J!0Kπc
def
= !c(e, f).f ,

J!n+1Kπc
def
= (d)(!c(e, f).ed | J!nKπd).

Now for every π-term T , we would like to introduce a π-term Rep(x, u).T
that replicates an input numeral. Operationally it satisfies the following
computational property:

JnKπc |Rep(c, d).T
τ−→= J!nKπd |T.

91

We may define Rep(x, u).T by the following term

(fg)(x(y, z).(z.(T | !u(e, f).f) | y(x).(d)f〈d, x〉.g.!u(e, f).ed)

| !f(v, x).x(y, z).(z.g.(T | !v(e, f).f) | y(x).(d)f〈d, x〉.!v(e, f).ed)).

The term Rep(c, d).T transforms the encoding JnKπc into a replicated form
before T can be fired. The name g is used to prevent the replicated form
from being used before it is completely generated. Once we have the process
J!nKπc we might want to make a copy of it whenever necessary. This is done
by Copy(x, u).T that is defined by the following term

(fg)(x(y, z).(z.(T |u(e, f).f) | y(x).(d)f〈d, x〉.g.u(e, f).ed)

| !f(v, x).x(y, z).(z.g.(T | v(e, f).f) | y(x).(d)f〈d, x〉.v(e, f).ed)).

It is clear that the following computations are admissible.

JnKπc |Copy(c, d).T
τ−→= JnKπd |T,

J!nKπc |Copy(c, d).T
τ−→= J!nKπc | JnKπd |T.

The encoding of the boolean expressions explores the fact that when a
process reaches to a state where a conditional subterm is in a fireable position,
its free variables must have all been instantiated. The structural definition
of the encoding is as follows:

J>Kπc
def
= c(e, f).e,

J⊥Kπc
def
= c(e, f).f ,

Jp=qKπc
def
= Equal(p, q, c),

Jp<qKπc
def
= Less(p, q, c),

J¬ϕKπc
def
= (d)(JϕKπd | d(u, v).(u.J⊥Kπc | v.J>Kπc)),

Jϕ ∧ ψKπc
def
= (d1d2)(JϕKπd1 | JψKπd2 | d1(u, v).d2(u′, v′).(u.u′.J>Kπc
|u.v′.J⊥Kπc | v.u′.J⊥Kπc | v.v′.J⊥Kπc)),

Jϕ ∨ ψKπc
def
= (d1d2)(JϕKπd1 | JψKπd2 | d1(u, v).d2(u′, v′).(u.u′.J>Kπc
|u.v′.J>Kπc | v.u′.J>Kπc | v.v′.J⊥Kπc)).

The processes Equal(p, q, c) and Less(p, q, c) appeared in the above encoding

92

are defined as follows:

Equal(p, q, c)
def
= (d)(d〈p, q〉 | !d(u, v).u(x, y).v(x′, y′).(x(w).x′(w′).d〈w,w′〉

| y.x′(w′).J⊥Kπc |x(w).y′.J⊥Kπc | y.y′.J>Kπc)),

Less(p, q, c)
def
= (d)(d〈p, q〉 | !d(u, v).u(x, y).v(x′, y′).(x(w).x′(w′).d〈w,w′〉

| y.x′(w′).J>Kπc |x(w).y′.J⊥Kπc | y.y′.J⊥Kπc)).

The correctness of the encoding JϕKπc is stated in the next lemma.

Fact 3. Suppose x1, . . . , xi are free in ϕ. Then ` ϕ{n1/x1, . . . , ni/xi} if and
only if (c1 . . . ci)(JϕKπc {c1/x1, . . . , ci/xi} | Jn1Kπc1 | . . . | JniK

π
ci

) = J>Kπc .

The encoding of the term expressions is straightforward, using the fact
that a term expression is either a numeral, or a term variable, or of the form
i+ x.

JtKπc
def
=

JiKπc , if t = i,
Copy(x, c), if t = x,
(c1 . . . ci)Copy(x, ci).(cc1 | c1c2 | . . . | ci−1ci), if t = i+ x.

Finally we can define the encoding of the VPC-processes. The translation
is defined by the following induction:

J
∑

1≤i≤k

a(x).TiKvpc→π
def
=

∑
1≤i≤k

a(x).(c)Rep(x, c).JTiKvpc→π{c/x},

J
∑

1≤i≤k

a(ti).TiKvpc→π
def
=

∑
1≤i≤k

a(c).(JtiKπc | JTiKvpc→π),

Jif ϕ then T Kvpc→π def
= (c)(JϕKπc | c(u, v).u.JT Kvpc→π),

J!a(x).T Kvpc→π def
= !a(x).(c)Rep(x, c).JT Kvpc→π{c/x},

J!a(t).T Kvpc→π def
= !a(c).(JtKπc | JT Kvpc→π).

Compared to the map J K./, the translation J Kvpc→π is much better. We
will not go into details to demonstrate how this encoding satisfies the good
properties stated in the next lemma. It suffices to say that the long proof is
routine.

Fact 4. The composition J Kvpc→π; =π is equipollent, extensional, codivergent
and bisimilar.

Fact 4 should not be overvalued since J Kvpc→π; =π fails to be sound.

93

References

Abramsky, S., 1988. The Lazy Lambda Calculus. In: Turner, D. (Ed.),
Declarative Programming. Addison-Wesley, 65–116.

Abramsky, S., 2006. What are the Fundamental Structures of Concurrency?
We still do not know. Electronic Notes in Theoretical Computer Science
162, 37–41.

Aceto, L., Fokkink, W., Verhoef, C., 2001. Structural operational seman-
tics. In: Bergstra, J., Ponse, A., Smolka, S. (Eds.), Handbook of Process
Algebra. North-Holland, 197–292.

Aceto, L., Hennessy, M., 1992. Termination, deadlock, and divergence. Jour-
nal of ACM 39, 147–187.

Amadio, R., 1993. On the reduction of chocs bisimulation to π-calculus bisim-
ulation. In: CONCUR’93. Lecture Notes in Computer Science 715, 112–
126.

Amadio, R., Castellani, I., Sangiorgi, D., 1998. On bisimulations for the
asynchronous π-calculus. Theoretical Computer Science 195, 291–324.

Amadio, R., Curien, P., 1998. Domains and Lambda-Calculi. Cambridge
Tracts in Theoretical Computer Science. CUP.

Arora, S., Barak, B., 2009. Computational Complexity, a modern approach.
CUP.

Baeten, J., 1996. Branching bisimilarity is an equivalence indeed. Information
Processing Letters 58, 141–147.

Baeten, J., van Glabbeek, R., 1987. Another look at abstraction in process
algebra. In: ICALP’87. Lecture Notes in Computer Science 267, 84–97.

Baeten, J., Weijland, W., 1990. Process Algebra. Vol. 18 of Cambridge Tracts
in Theoretical Computer Science. CUP.

Baier, C., Hermanns, H., 1997. Weak bisimulation for fully probabilistic pro-
cesses. In: CAV’97. Lecture Notes in Computer Science 1254, 119–130.

94

Barendregt, H., 1984. The Lambda Calculus: Its Syntax and Semantics.
North-Holland.

Berry, G., Boudol, G., 1992. The chemical abstract machine. Theoretical
Computer Science 96, 217–248.

Boreale, M., 1996. On the expressiveness of internal mobility in name-passing
calculi. In: CONCUR’96. Lecture Notes in Computer Science 1119, 161–
178.

Boreale, M., De Nicola, R., 1995. Testing equivalence for mobile processes.
Information and Computation 120, 279–303.

Boreale, M., De Nicola, R., Pugliese, R., 1999. Basic observables for pro-
cesses. Information and Computation 149, 77–98.

Boreale, M., De Nicola, R., Pugliese, R., 2001. Divergence in testing and
readiness semantics. Theoretical Computer Science 266, 237–248.

Boudol, G., 1992. Asynchrony and the π-calculus. Tech. Rep. RR-1702, IN-
RIA Sophia-Antipolis.

Bougé, L., 1988. On the existence of symmetric algorithms to find leaders
in networks of communicating sequential processes. Acta Informatica 25,
179–201.

Brinksma, E., Rensink, A., Vogler, W., 1995. Fair testing. In: CONCUR’95.
Lecture Notes in Computer Science 962, 313–327.

Burkart, O., Caucal, D., Moller, F., Steffen, B., 2001. Verification on infinite
structures. In: Bergstra, J., Ponse, A., Smolka, S. (Eds.), Handbook of
Process Algebra. North-Holland, 545–623.

Busi, N., Gabbrielli, M., Zavattaro, G., 2003. Replication vs recursive defini-
tions in channel based calculi. In: ICALP’03. Lecture Notes in Computer
Science 2719, 133–144.

Busi, N., Gabbrielli, M., Zavattaro, G., 2004. Comparing recursion, repli-
cation and iteration in process calculi. In: ICALP’04. Lecture Notes in
Computer Science 3142, 307–319.

95

Busi, N., Zavattaro, G., 2004. On the expressive power of movement and
restriction in pure mobile ambients. Theoretical Computer Science 322,
477–515.

Cacciagrano, D., Corradini, F., Aranda, J., Valencia, F., 2008. Linearity, per-
sistence and testing semantics in the asynchronous pi-calculus. Electronic
Notes in Theoretical Computer Science 194, 59–84.

Cacciagrano, D., Corradini, F., Palamidessi, C., 2006. Separation of syn-
chronous and asynchronous communication via testing. Electronic Notes
in Theoretical Computer Science 154, 95–108.

Cai, X., Fu, Y., 2011. The λ-calculus in the π-calculus. Mathematical Struc-
ture in Computer Science 21, 943–996.

Cardelli, L., Gordon, A., 2000. Mobile ambients. Theoretical Computer Sci-
ence 240, 177–213.

Czerwiński, W., Hofman, P., Lasota, S., 2011. Decidability of branching
bisimulation on normed commutative context-free processes. In: CON-
CUR’11. Lecture Notes in Computer Science 6901, 528–542.

Dasgupta, A., Papamiditriou, C., Vazirani, U., 2006. Algorithm. MaGraw-
Hill.

De Nicola, R., Hennessy, M., 1984. Testing equivalence for processes. Theo-
retical Computer Science 34, 83–133.

De Nicola, R., Mantanari, U., Vaandrager, F., 1990. Back and forth bisimula-
tions. In: CONCUR’90. Lecture Notes in Computer Science 458, 152–165.

De Nicola, R., Vaandrager, F., 1995. Three logics for branching bisimulation.
Journal of ACM 42, 458–487.

Fournet, C., Gonthier, G., 1996. The reflexive chemical abstract machine and
the join-calculus. In: POPL’96. ACM, 372–385.

Fournet, C., Gonthier, G., Lévy, J., Maranget, L., Rémy, D., 1996. A Calculus
of Mobile Agents. In: CONCUR’96. Lecture Notes in Computer Science
1119, 406-421.

96

Finkel, A., Schnoebelen, P., 2001. Well-structured transition system every-
where. Theoretical Computer Science 256, 63–92.

Fu, Y., 1997. A proof theoretical approach to communications. In: ICALP’97.
Lecture Notes in Computer Science 1256, 325–335.

Fu, Y., 1999. Variations on mobile processes. Theoretical Computer Science
221, 327–368.

Fu, Y., 2003. Bisimulation congruences of chi calculus. Information and Com-
putation 184, 201–226.

Fu, Y., 2005. On quasi open bisimulation. Theoretical Computer Science 338,
96–126.

Fu, Y., 2007. Fair ambients. Acta Informatica 43, 535–594.

Fu, Y., 2010. Theory by process. In: CONCUR’10. Lecture Notes in Com-
puter Science 6296, 403–416.

Fu, Y., 2013a. Checking equality and regularity for normed BPA with silent
moves. In: ICALP’13. Lecture Notes in Computer Science 7966, 244–255.

Fu, Y., 2013b. The value-passing calculus. In: Theories of Programming and
Formal Methods. Lecture Notes in Computer Science 8051, 166–195.

Fu, Y., 2015. Nondeterministic structure of computation. Mathematical
Structures in Computer Science 25, 1295–1338.

Fu, Y., Lu, H., 2010. On the expressiveness of interaction. Theoretical Com-
puter Science 411, 1387–1451.

Fu, Y., Yang, Z., 2003. Tau laws for pi calculus. Theoretical Computer Sci-
ence 308, 55–130.

Fu, Y., Zhu, H., 2015. The name-passing calculus. ArXiv:1508.00093.

Garcia-Molina, H., 1982. Elections in distributed computing systems. IEEE
Transactions on Computers 31, 48–59.

Giambiagi, P., Schneider, G., Valencia, F., 2004. On the expressiveness of
infinite behavior and name scoping in process calculi. In: FOSSACS’04.
Lecture Notes in Computer Science 2987, 226–240.

97

Gorla, D., 2008a. Comparing communication primitives via their relative
expressive power. Information and Computation 206, 931–952.

Gorla, D., 2008b. Towards a unified approach to encodability and separation
results for process calculi. In: CONCUR’08. Lecture Notes in Computer
Science 5201, 492–507.

Gorla, D., 2009a. On the relative power of ambient-based calculi. In: TGC’08.
Lecture Notes in Computer Science 5474, 141–156.

Gorla, D., 2009b. On the relative power of calculi for mobility. In: MFPS’09.
Electronic Notes in Theoretical Computer Science 249, 269–286.

Guan, X., Yang, Y., You, J., 2001. Typing evolving ambients. Information
Processing Letters 80, 265–270.

He, C., 2010. Model independent order relations for processes. In: APLAS’10.
Lecture Notes in Computer Science 6461, 408–423.

Hennessy, M., 1988. An Algebraic Theory of Processes. MIT Press, Cam-
bridge, MA.

Hennessy, M., 1991. A proof system for communicating processes with value-
passing. Journal of Formal Aspects of Computer Science 3, 346–366.

Hennessy, M., 2007. A Distributed Pi-Calculus. CUP.

Hennessy, M., Ingólfsdóttir, A., 1993a. Communicating processes with value-
passing and assignment. Journal of Formal Aspects of Computing 5, 432–
466.

Hennessy, M., Ingólfsdóttir, A., 1993b. A theory of communicating processes
with value-passing. Information and Computation 107, 202–236.

Hennessy, M., Lin, H., 1995. Symbolic bisimulations. Theoretical Computer
Science 138, 353–369.

Hennessy, M., Lin, H., 1996. Proof systems for message passing process al-
gebras. Formal Aspects of Computing 8, 379–407.

Hennessy, M., Lin, H., 1997. Unique fixpoint induction for message-passing
process calculi. In: Computing: Australian Theory Symposium (CAT’97).
Vol. 8, 122–131.

98

Hennessy, M., Lin, H., Rathke, J., 1997. Unique fixpoint induction for
message-passing process calculi. Science of Computer Programming 41,
241–275.

Hennessy, M., Milner, R., 1985. Algebraic laws for nondeterminism and con-
currency. Journal of ACM 32, 137–161.

Hirschkoff, D., Lozes, E., Sangiorgi, D., 2002. Separability, expressiveness,
and decidability in the ambient logic. In: LICS’02. IEEE Computer Soci-
ety, 423–432.

Hirshfeld, Y., Jerrum, M., 1999. Bisimulation equivalence is decidable for
normed process algebra. In: ICALP’99. Lecture Notes in Computer Science
1644, 72–73.

Hoare, C., 1978. Communicating sequential processes. Communications of
ACM 21, 666–677.

Hoare, C., 1985. Communicating Sequential Processes. Prentice Hall.

Honda, K., Tokoro, M., 1991a. An object calculus for asynchronous communi-
cations. In: ECOOP’91. Lecture Notes in Computer Science 512, 133–147.

Honda, K., Tokoro, M., 1991b. On asynchronous communication semantics.
In: Workshop on Object-Based Concurrent Computing. Lecture Notes in
Computer Science 615, 21–51.

Honda, K., Yoshida, M., 1995. On reduction-based process semantics. Theo-
retical Computer Science 151, 437–486.

Hopcroft, J., Ullman, J., 1979. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley Publishing Company.

Ingólfsdóttir, A., Lin, H., 2001. A symbolic approach to value-passing pro-
cesses. In: Bergstra, J., Ponse, A., Smolka, S. (Eds.), Handbook of Process
Algebra. North-Holland, 427–478.

Jančar, P., Srba, J., 2008. Undecidability of bisimilarity by defender’s forcing.
Journal of ACM 55 (1).

Kruskal, J., 1972. The theory of well ordering: A frequently discovered con-
cept. Journal of Combinatorial Theory, Series A 13, 297–305.

99

Kučera, A., Jančar, P., 2006. Equivalence-checking on infinite state systems:
Techniques and results. Theory and Practice of Logic Programming 6,
227–264.

Lanese, I., Perez, J., Sangiorgi, D., Schmitt, A., 2010. On the expressiveness
of polyadic and synchronous communication in higher-order process calculi.
In: ICALP’10. Lecture Notes in Computer Science 6199, 442–453.

Levi, F., Sangiorgi, D., 2000. Controlling interference in ambients. In:
POPL’00. ACM, 352–364.

Lin, H., 1995a. Complete inference systems for weak bisimulation equiv-
alences in the π-calculus. In: Proceedings of Sixth International Joint
Conference on the Theory and Practice of Software Development. Lecture
Notes in Computer Science 915, 187–201.

Lin, H., 1995b. Unique fixpoint induction for mobile processes. In: CON-
CUR’95. Lecture Notes in Computer Science 962, 88–102.

Lin, H., 1996. Symbolic transition graphs with assignment. In: CONCUR’96.
Lecture Notes in Computer Science 1119, 50–65.

Lin, H., 1998. Complete proof systems for observation congruences in finite-
control π-calculus. In: ICALP’98. Lecture Notes in Computer Science 1443,
443–454.

Lin, H., 2003. Complete inference systems for weak bisimulation equivalences
in the pi-calculus. Information and Computation 180, 1–29.

Lohrey, M., D’Argenio, P., Hermanns, H., 2002. Axiomatising divergence. In:
ICALP’02. Lecture Notes in Computer Science 2380, 585–596.

Lohrey, M., D’Argenio, P., Hermanns, H., 2005. Axiomatising divergence.
Information and Computatio 203, 115–144.

M. Bugliesi, G. C., Crafa, S., 2004. Access control for mobile agents: the cal-
culus of boxed ambients. ACM Transactions on Programming Languages
and Systems 26, 57–124.

Maffeis, S., Phillips, I., 2005. On the computational strength of pure ambient
calculi. Theoretical Computer Science 330, 501–551.

100

Mayr, R., 2000. Process rewrite systems. Information and Computation 156,
264–286.

Merro, M., 2000. Locality in the π-calculus and applications to object-
oriented languages. Ph.D. thesis, Ecole des Mines de Paris.

Merro, M., Hennessy, M., 2006. A bisimulation-based semantic theory of safe
ambients. ACM Transactions on Programming Languages and Systems 28,
290–330.

Merro, M., Sangiorgi, D., 2004. On asynchrony in name-passing calculi.
Mathematical Structures in Computer Science 14, 715–767.

Merro, M., Zappa Nardelli, F., 2005. Behavioural theory for mobile ambients.
Journal of ACM 52, 961–1023.

Milner, R., 1980. A calculus of communicating systems. Lecture Notes in
Computer Science 92. Springer.

Milner, R., 1981. Modal characterisation of observable machine behaviour.
In: CAAP’81. Lecture Notes in Computer Science 112, 25–34.

Milner, R., 1984. A complete inference system for a class of regular be-
haviours. Journal of Computer and System Science 28, 439–466.

Milner, R., 1989a. Communication and Concurrency. Prentice Hall.

Milner, R., 1989b. A complete axiomatization system for observational con-
gruence of finite state behaviours. Information and Computation 81, 227–
247.

Milner, R., 1992. Functions as processes. Mathematical Structures in Com-
puter Science 2, 119–146.

Milner, R., 1993a. Elements of interaction. Communication of ACM 36, 78–
89.

Milner, R., 1993b. The polyadic π-calculus: a tutorial. In: Proceedings of the
1991 Marktoberdorf Summer School on Logic and Algebra of Specification.
NATO ASI, Series F. Springer.

101

Milner, R., Parrow, J., Walker, D., 1992. A calculus of mobile processes.
Information and Computation 100, 1–40 (Part I), 41–77 (Part II).

Milner, R., Sangiorgi, D., 1992. Barbed bisimulation. In: ICALP’92. Lecture
Notes in Computer Science 623, 685–695.

Natarajan, V., Cleaveland, R., 1995. Divergence and fair testing. In:
ICALP’95. Lecture Notes in Computer Science 944, 648–659.

Nestmann, U., 2000. What is a good encoding of guarded choices? Informa-
tion and computation 156, 287–319.

Nestmann, U., 2006. Welcome to the jungle: A subjective guide to mobile
process calculi. In: CONCUR’06. Lecture Notes in Computer Science 4137,
52–63.

Nestmann, U., Pierce, B., 1996. Decoding choice encodings. In: CON-
CUR’96. Lecture Notes in Computer Science 1119, 179–194.

Nestmann, U., Pierce, B., 2000. Decoding choice encodings. Information and
Computation 156, 287–319.

Palamiddessi, C., Saraswat, V., Valencia, F., Victor, B., 2006. On the ex-
pressiveness of linearity vs. persistence in the asynchronous pi calculus. In:
LICS’06. IEEE Computer Society, 59–68.

Palamidessi, C., 2003. Comparing the expressive power of the synchronous
and the asynchronous π-calculus. Mathematical Structures in Computer
Science 13, 685–719.

Papadimitriou, C., 1994. Computational Complexity. Addison-Wesley, Read-
ing, MA.

Park, D., 1981. Concurrency and automata on infinite sequences. In: The-
oretical Computer Science. Lecture Notes in Computer Science 104, 167–
183.

Parrow, J., 2001. An introduction to the π-calculus. In: Bergstra, J., Ponse,
A., Smolka, S. (Eds.), Handbook of Process Algebra. North-Holland, 478–
543.

Parrow, J., 2006. Expressiveness of process algebras. In: LIX Colloquium’06.

102

Parrow, J., Sangiorgi, D., 1995. Algebraic theories for name-passing calculi.
Information and Computation 120, 174–197.

Parrow, J., Victor, B., 1997. The update calculus. In: AMAST’97. Lecture
Notes in Computer Science 1119, 389–405.

Parrow, J., Victor, B., 1998. The fusion calculus: Expressiveness and sym-
metry in mobile processes. In: LICS’98. IEEE Computer Society, 176–185.

Phillips, I., 1987. Refusal testing. Theoretical Computer Science 50, 241–284.

Phillips, I., Vigliotti, M., 2002. On reduction semantics for the push and
pull ambient calculus. In: TCS’02, IFIP 17th World Computer Congress,
Montreal. Kluwer, 550–562.

Phillips, I., Vigliotti, M., 2006. Leader election in rings of ambient processes.
Theoretical Computer Science 356, 468–494.

Phillips, I., Vigliotti, M., 2008. Symmetric electoral systems for ambient
calculi. Information and Computation 206, 34–72.

Plotkin, G., 1975. Call-by-name, call-by-value, and the λ-calculus. Theoret-
ical Computer Science 1, 125–159.

Plotkin, G., 1981. A structural approach to operational semantics. Tech. rep.,
Computer Science Department, Aarhus University.

Priese, L., 1978. On the concept of simulation in asynchronous, concurrent
systems. Progress in Cybernatics and Systems Research 7, 85–92.

Rathke, J., 1997. Unique fixpoint induction for value-passing processes. In:
LICS’97. IEEE Computer Society, 140–148.

Reisig, W., 1985. Petri Nets, An Introduction. EATCS Monograph on The-
oretical Computer Science. Springer.

Rogers, H., 1987. Theory of Recursive Functions and Effective Computability.
MIT Press.

Roscoe, A., 1997. The Theory and Practice of Concurrency. Prentice Hall.

103

Sangiorgi, D., 1992. Expressing mobility in process algebras: First order and
higher order paradigm. Ph.D. thesis, Department of Computer Science,
University of Edinburgh.

Sangiorgi, D., 1993. From π-calculus to higher order π-calculus–and back. In:
TAPSOFT’93. Lecture Notes in Computer Science 668, 151–166.

Sangiorgi, D., 1994. The lazy λ-calculus in a concurrency scenario. Informa-
tion and Computation 111, 120–153.

Sangiorgi, D., 1995. Lazy functions and mobile processes. Tech. Rep. 2515,
INRIA Sophia-Antipolis.

Sangiorgi, D., 1996a. Bisimulation for higher order process calculi. Informa-
tion and Comptation 131, 141–178.

Sangiorgi, D., 1996b. π-calculus, internal mobility and agent-passing calculi.
Theoretical Computer Science 167, 235–274.

Sangiorgi, D., 1996c. A theory of bisimulation for π-calculus. Acta Informat-
ica 3, 69–97.

Sangiorgi, D., 2001. Asynchronous process calculi: The first-order and higher-
order paradigms (tutorial). Theoretical Computer Science 253, 311–350.

Sangiorgi, D., 2009. On the origin of bisimulation and coinduction. Transac-
tions on Programming Languages and Systems 31 (4).

Sangiorgi, D., Milner, R., 1992. Techniques of “weak bisimulation up to”. In:
CONCUR’92. Lecture Notes in Computer Science 630, 32–46.

Sangiorgi, D., Walker, D., 2001a. On barbed equivalence in π-calculus. In:
CONCUR’01. Lecture Notes in Computer Science 2154, 292–304.

Sangiorgi, D., Walker, D., 2001b. The π Calculus: A Theory of Mobile Pro-
cesses. CUP.

Sewell, P., 1994. Bisimulation is not finitely (first order) equationally axioma-
tisable. In: LICS’94. IEEE Computer Society, 62–70.

Sewell, P., 1995. The algebra of finite state processes. Ph.D. thesis, The
University of Edinburgh.

104

Sewell, P., 1997. Nonaxiomatisability of equivalence over finite state pro-
cesses. Annals of Pure and Applied Logic 90, 163–191.

Soare, R., 1987. Recursively Enumerable Sets and Degrees, a study of com-
putable functions and computably generated sets. Springer.

Srba, J., 2004. Roadmap of infinite results. In: Formal Models and Semantics,
II. World Scientific Publishing Co.

Stoller, D., 2000. Leader election in asynchronous distributed systems. IEEE
Transactions on Computers 49, 283–284.

Thomsen, B., 1989. A calculus of higher order communicating systems. In:
POPL’89. ACM, 143–154.

Thomsen, B., 1990. Calculi for higher order communicating systems. Ph.D.
thesis, Department of Computing, University of London.

Thomsen, B., 1993. Plain chocs — a second generation calculus for higher
order processes. Acta Informatica 30, 1–59.

Thomsen, B., 1995. A theory of higher order communicating systems. Infor-
mation and Computation 116, 38–57.

van Emde Boas, P., 1990. Machine models and simulations. In: van Leeuwen,
J. (Ed.), Handbook of Theoretical Computer Science: Algorithm and Com-
plexity, volume A. Elservier, 65–116.

van Glabbeek, R., 1993a. A complete axiomatization for branching bisimu-
lation congruence of finite-state behaviours. In: MFCS’93. Lecture Notes
in Computer Science 711. 473–484.

van Glabbeek, R., 1993b. Linear time – branching time spectrum (II). In:
CONCUR’93. Lecture Notes in Computer Science 715, 66–81.

van Glabbeek, R., 1994. What is branching time semantics and why to use it?
In: Paun, G., Rozenberg, G., Salomaa, A. (Eds.), Current Trends in The-
oretical Computer Science; Entering the 21th Century. World Scientific,
469–479.

105

van Glabbeek, R., 2001. Linear time – branching time spectrum (I). In:
Bergstra, J., Ponse, A., Smolka, S. (Eds.), Handbook of Process Algebra.
North-Holland, 3–99.

van Glabbeek, R., Luttik, B., Trčka, N., 2009. Branching bisimilarity with
explicit divergence. Fundamenta Informaticae 93, 371–392.

van Glabbeek, R., 2012. Musings on Encodings and Expressiveness. In: EX-
PRESS/SOS’12. 81–98.

van Glabbeek, R., Weijland, W., 1989. Branching time and abstraction
in bisimulation semantics. In: Information Processing’89. North-Holland,
613–618.

Vigliotti, M., Phillips, I., Palamidessi, C., 2007. Tutorial on separation results
in process calculi via leader election. Theoretical Computer Science 388,
267–289.

Walker, D., 1990. Bisimulation and divergence. Information and Computa-
tion 85, 202–241.

Walker, D., 1991. π-calculus semantics for object-oriented programming lan-
guages. In: TACS’91. Lecture Notes in Computer Science 526, 532–547.

Walker, D., 1995. Objects in the π-calculus. Information and Computation
116, 253–271.

Wegener, I., 2005. Complexity Theory. Springer.

Xu, X., 2012. Distinguishing and relating higher-order and first-order pro-
cesses by expressiveness. Acta Informatica 49, 445–484.

Xue, J., Long, H., Fu, Y., 2011. Remark on some pi variants. Draft paper.

Yin, Q., Fu, Y., He, C., Huang, M., Tao, X. Branching bisimilarity checking
for PRS. In: ICALP’14. Lecture Notes in Computer Science 8573, 363–374.

Zimmer, P., 2003. On the expressiveness of pure safe ambients. Mathematical
Sturcutres in Computer Science 13, 721–770.

106

	Foundation
	Theory of Interaction
	Fundamental Principle
	Principle of Object
	Principle of Action
	Principle of Observation
	Principle of Consistency

	Computability Model

	Model of Interaction
	Machine Model
	Function Model
	Program Model

	Theory of Equality
	Equality for Evolving Object
	Time Invariance
	Space Invariance
	Computation Invariance
	Interaction Invariance

	Absolute Equality
	Below and Above the Absolute Equality
	Respectful Operator
	Observation Theory

	Theory of Expressiveness
	Subbisimilarity
	Soundness and Relative Expressiveness
	Incompatibility of VPC and Pi
	Self Interpretation
	Subbisimilarity for Pi Variant
	Expressiveness of Polyadic Pi

	Theory of Completeness
	Complete Model
	Incompleteness Result
	CCS
	Process-Passing Calculus

	Computability Model Justified

	Related Work
	On Equality
	Bisimulation
	Codivergence
	Extensionality
	Equipollence

	On Expressiveness
	Leader Election Problem
	Operational Correspondence
	Weak Operational Correspondence
	Equivalence Criterion
	Weak Full Abstraction
	Compositionality
	Name Invariance
	Correct Translation

	On Completeness
	Natural Criteria

	Conclusion
	Unsettled Problem
	Future Direction

	Input via Output?
	Value-Passing via Name-Passing?

