Theory Defined by Process

Yuxi Fu

BASICS, Department of Computer Science
Shanghai Jiaotong University, Shanghai 200240, China

Abstract. Theories defined in a process model are formalized and stud-
ied. A theory in a process calculus is a set of well-founded processes that
are perpetually available, each can be regarded as a service, an agent
behind the scene or an axiom. The operational and observational se-
mantics of the theories are investigated. The power of the approach is
demonstrated by interpreting the asynchronous m-calculus as a theory,
the asynchronous theory, in the m-calculus. A complete axiomatic system
is constructed for the asynchronous theory, which gives rise to a proof
system for the weak asynchronous bisimilarity of the asynchronous .

1 Introduction

In a network computing environment, how do we evaluate the capacities of two
service providers S; and S57 Suppose we place a request to both the providers.
One, say 57, finds the appropriate service in its repertoire and immediately
delivers the service. The other provider Sy does not specialize in the kind of
service we are interested in. But since it has a strong search ability, it simply
redirects our request to a third party who can offer the service we want for free.
Moreover Sy does it in such a manner that we are not aware of the existence
of the third party. If S; and Sy can always supply the services with similar
qualities, we are led to believe that they are equally powerful. The point is
that in a distributed computing environment, we are not testing S; and Sy in
isolation. That is clearly impossible. No one can stop S; and Sy from exploring
the resources freely available on the network. Although we can pretend that
we are testing Sp, what we are really doing is to test S; plus all the resources
accessible by S;. Worse still S; is often blurred with the environment so that
we are not always able to tell precisely which is which. The service providers S;
and Ss could have quite different capacities when isolated. They can be however
equivalent in a resource rich network environment.

We would like to formalize the above scenario in interaction models. The
issue to address is this: A model of interaction, say the m-calculus, is a closed
system of interactants. A m-process only interacts within the model. It does not
interact with anything that is not a m-process. In this closed world view, how
and in what fashion are the network services interpreted? Our basic idea is to
regard the kind of service available on the network as a set S = {S1,52,...} of
processes. We shall always assume that each member of the set is well-founded.
It’s no good to have a service that never delivers. A one-shot service is not of

much use as a piece of resource. So the actual services distributed over different
locations are perceived as the processes 151,155, The finite behavior of a
process P siting among 151,15, ... can always be inspected by considering the
finite action sequences of the shape

P|Si| ... |8, 25 . 2o p

since in a finite number of steps, the process P may only consult a finite number
of service providers. If we consider a single step action of P, we only have to

focus on the actions of the form P |S’ 25 P’ for ' € S. Now the crucial point
is that the services really stay invisibly in the background. So from P | S’ 2 p

we shall be able to deduce P 5 P’ and the equivalence between P | S” and P.
We are on our way to a theory by process.

From a model theoretical point of view, sometimes we need to assume that
we are working with open systems within a closed world. In a real world, there
are already a set of processes in operation. These processes could be the stan-
dard functionalities provided by the hardware platform, or the procedures of an
operating system. As practitioners, we are not very much interested in the back-
ground functionalities or the operating procedures. Most of time we are working
with a subsystem enjoying a certain degree of closedness. In other words, we
focus on a variant (subsystem) of a calculus (frame system) defined within the
calculus, not outside the calculus. Such a variant is both a subcalculus and an
internal calculus. It is a subcalculus because the objects of study form a proper
subset of the objects of the frame calculus. It is also an internal calculus because
it does not make the best of a sense when viewed outside the frame calculus.
Some of the process calculi proposed in literature are actually internal calculi.
One such calculus is discussed next.

The asynchronous m-calculus [Bou92,HT91a,HT91b,HY95,ACS96] is obtained
from the synchronous m-calculus by dropping the continuations for output ac-
tions. At first look this appears a bit simplistic since asynchrony can not be a
syntactical issue. The idea is however that the output process ac.P no longer
engages in any interactions. The asynchronous emission of ¢ at a is perceived as
an internal action of the process. Hence the following semantic definition

ac.P — ac| P

Under the new semantics, it is easily seen that ac.P is observationally equiv-
alent to a@c|P. So in the asynchronous m-calculus the continuation P of the
output prefix process ac.P is completely dropped. The observational theory of
the asynchronous 7-calculus has been based on the following understanding:

Since an observer does not know when an output primitive is consumed
by the observee, it might as well assume that it does not know at all if
the process ac has acted or not.

This leads to an equational theory in which only the output actions of the
observees are observable. In such a theory we have typically the equivalence

a(z).(ax|T) =, T

where ~, denotes the asynchronous bisimilarity. But the idea that an observer
is not aware of the action of @c simply because it has no continuation is not
without debate. Why is it that in the synchronous m-calculus, the action of
ac.0 is observable? Well it is observable because it can engage in an interac-
tion. In the observational theory of process an observation is nothing more than
an interaction. Everything that participates in an interaction is deemed observ-
able. If we apply this fundamental view to the asynchronous m-calculus, we are
forced to conclude that in a(z).T|(c)(ac| Q) — (¢)(T{c/z}|Q), both a(2).T
and (c)(ac| Q) participate in the interaction and therefore both are observed
during the procedure. If an interaction is a cooperation between an input pro-
cess and an output process, it does not seem to make too much sense to say
that one is observable and the other is not. There are asynchronous commu-
nications, there are nonetheless no asynchronous interactions. Observations are
about interactions; they are not about communications.

There ought to be an alternative explanation for the observational theory
of the asynchronous w-calculus. An output process ac.P may communicate to
a background environment. The latter picks up the name ¢ and sends it to an
input process through channel a in a later time. What is then the background
environment? A process calculus is a closed model in the sense that a process
of the model only interacts with processes that stay inside the same model. The
background environment has to be interpreted as a set of processes within the
model. The asynchronous m-calculus is better seen as an internal calculus of the
m-calculus. The asynchronous communications are achieved by running a set of
processes of the form la(z).azx in the background environment.

One may also study proof theory in process models [Abr93]. A particular
logical system can be formulated as a theory in a process model. An element
of the theory codes up either an axiom or a rule of the logic. A process of
the form !A can be seen as a proposition. The process A, which must be well-
founded, is a proof of !A. A logical reasoning making use of the proposition
must interact with a copy of A to verify the proof. According to the well-known
Curry-Howard correspondence, a proposition !A can be interpreted as a type, or
a class in an object oriented paradigm [Wal95]. A class has a set of methods of
the form !d(z).D. The method !d(x).D can be invoked by an object of the form
de.O that supplies the method with the parameter e. The implementation of a
programming language amounts to defining a theory that code up the system
functions or methods provided by the language. The equivalence of two pieces
of programs written in the language are judged in the presence of the theory.

The motivation for this paper is that the notion of theory defined by processes
arises naturally in many applications of process models. It is worthwhile to give
an application independent study of the problems pertaining to such theories.
Section 2 defines the m-calculus, the frame calculus used in this paper. Section 3
gives a formal treatment of the theories. Section 4 relates the asynchronous
theory to the asynchronous m-calculus. Section 5 provides a complete equational
system for the asynchronous theory. Section 6 concludes.

2 Pi Calculus

The w-calculus of Milner, Parrow and Walker [MPW92] has been widely studied
and used in both theory and in practice. Our presentation of the calculus is
slightly different from the standard one. The main difference is that we draw
a firm line between the names and the name variables. The reader is advised
to consult [FZ10] for the discussion why the distinction between two categories
is important. Throughout the paper the following notational convention will be
observed:

— The set A of the names is ranged over by a,b,c,d, e, f, g, h.
— The set N, of the name variables is ranged over by u, v, w, z, ¥, 2.
— The set N/ U N, is ranged over by I,m,n, 0, p, q.

A condition is a finite conjunction of atomic propositions. An atomic proposition
is either a match [m=n] or a mismatch [m=n]. We always omit the conjunction
operator. The set of the conditions is ranged over by ¢, ¢, ¥. We write ¢ < T
(p & 1) if ¢ is evaluated to the truth value T (the false value 1) no matter
how the name variables appeared in the condition are instantiated. Similarly we
can define ¢ = ¢ and ¢ < .

Our definition of the m-calculus is influenced by the results obtained in [FL10].
It is equivalent to the standard presentation in terms of expressiveness and it
has better algebraic property. The set of the terms is inductively constructed
from the following grammar:

T:=> @NTi|T|T' | ()T | =T,
iel

where \; € {n(z),nm,7(c)} U {7} and © € {n(z),nm,7(c)}; they are prefixes.
Here 7 indicates an interaction, ab, ab,a(c) denote respectively an input action,
an output action and a bound output action. In the guarded choice) ;. ; ¢iAi.T;
the indexing set I must be finite. We shall often write w1 A1.71 + ... + @A\ T},
for Zie{l,..,n} X T;. We write 0 for the guarded choice whose indexing set is
the empty set. According to our definition it does not make sense to write for
example T 4 0. Due to the set theoretical nature the guarded choice 1. 77 +
coi F oM T+ iga i1 Tiv1 + -0+ oA Ty is the same as g1 A\ Th + ... +
Git1Nit1-Lip1 + @idi T + ... + ©pAn. Ty, Sometimes we will abuse notation by
writing for instance poAg.Tp + Zie{l,Z} wiXi. T for oo To+ 1 A1.11 + wara. Th.
We will also abbreviate [TIN.T + 3, @iXi.T; to NT + .. 0idi. T;. A name
¢ appeared underneath the localization operator (¢) or a bound output prefix
a(c) is local. It is global if it is not local. A name variable z is bound if it is
underneath an input prefix say n(z). It is free if it is not bound. Both bound
names and local names are subject to a-conversion. We will use the functions
gn(2),In(2), fv(L),bu() with the obvious meanings. A process is a term in which
all name variables are bound. Let T denote the set of the terms, ranged over
by R,S,T, and P the set of the processes, ranged over by A, B,C,...,0, P,Q.
The term !7.7T is in replication form. A term without any occurrence of the
replication operator is called regular.

The operational semantics of this w-calculus is defined by the following la-
beled transition system.

Action
pi <= Ta wi <:> T’
ac i = a(z) iy A; is not
Yicr pidi Ty — Ti{c/x} ! ' Yicr pidi Ty = T; an input.
Composition
T T Ss T R ey
S|T 25 8|1 S|T 8T S|T = (e)(S"|T")
Localization
ac / A y
=, vkl
(1T 24 ()T =2 ()T
Replication
; — if 7 is not an input.
la(z). T <% T{b/z} |la(z).T Ir. T — T |'x.T

Let — be the)\reﬂexive and transitive closure of ——. Let :)‘> be — if
A = 7 and be == otherwise. These notations allow us to define Milner
and Park’s bisimulation equality [Mil89].

Definition 1. A symmetric relation R on P is a weak bisimulation if @ 2

Q'RP’' whenever QRP 2y P'. The weak bisimilarity ~ s the largest weak
bisimulation.

An example of bisimulation equality is 7.7 ~ 7.(T |!n.T). We write S ~
T if S{ai/x1,...,an/x0n} ~ T{a1/x1,...,an/x,} for every substitution whose
domain of definition {x1,...,2,} is fu(S|T). For the particular w-calculus of
this paper, ~ is closed under all the operators.

Theorem 1. The relation ~ is both an equivalence and a congruence on T .

Theorem 1 relies on the fact that in the guarded choice Zie ; piXi.T; the operator
is > ;e @idi-—. From 7 ~ [z=y|T we may derive @a + 7.7 ~ @a + 7.[v=y|T; but
we may not derive aa + 7 ~ @a + [z=y]T.
A process P is well-founded if there is no infinite action sequence P N
RN starting from P. It is a process with finite interactability if it is
well-founded and there is a number k # 0 such that no action sequence P ET
P... iy P; of P contains more than k non-7 actions. A process P is functional
if every maximal action sequence of P is of the form P NN , where A
is an input action and A’ an output action.

3 Theory

Upon request, a service provider should deliver the service in a short time. In
a similar token, a proposition should have a finite description so that its valid-
ity can be verified in a finite number of steps. These observations lead to the
following definition.

Definition 2. A theory A is a set of processes of the form w.T with finite
interactability. These processes are called axioms.

The intuition behind a theory is that it provides a set of eternal truths within a
closed world model. Operationally an axiom A can be identified to the process
1A. Every proof in the model can make inquiry into these laws. Propositions
valid in the model are all relative to the set of the eternal truths. By definition
every axiom A is nontrivial in the sense that A % 0. A theory A is finite if it is
a finite set. It is finitely presentable if it can be generated from a finite theory.
By A being generated from B, we mean that

A = {Ba| B € B, and « is an injective function from N to N'}.

A theory is regular (functional) if all its axioms are regular (functional).
Let’s see some examples.

Ezxample 1. The asynchronous theory Asy is defined by the finitely presentable
theory {a(z).az | a € N'}. In the presence of Asy communications are asyn-
chronous. An output process ac.P does not have to interact with the target
process. It could interact with the axiom a(z).@z and let the latter pass the
information to the target. Using the same idea, one may define the finite theory
AB = {a(x).bx,b(x).az} that essentially identifies the names a, b.

Ezxample 2. The natural numbers can be coded up in the following fashion:
def _
HQ]];D = pl,
; def _ i
[i+1], = (a)(al []o)-

Here p is the access name for the numbers. The notation | is a name that denotes
false (we may use a special name T to denote truth). The natural numbers are
underlined to avoid any confusion. We write @(z) for (p)(ap|[é],). It is routine
to define processes SUCC,, EQ, and L, that implement the successor function,
the equality predicate and the linear order predicate on the natural numbers.
The process L, for example inputs a local name at a; and then using that local
name to get three more local names, say b, ¢, d. It continues to input a number %
at b and a number j at c. Finally it returns T at d if and only if i < j; otherwise
it returns L at d. Let Pa be the theory

{Po(0),...,Di(3),...} U{SUCC,, EQq4, Ly | a € N'}.

It is an implementation of the Peano arithmetic in w-calculus. For detail the
reader could consult [FZ10] for the encodings of these processes.

Ezxample 3. The theory Crp is given by the union of Pa with the following set

{e()0(y).(...T-...),dw)v(2).(...T-..)},

in which e(v).v(y).(...7-...) is the encryption function whose action sequences
are all of the form

e(w)v(y).(...T...) <L,

for some number ¢ and d(v).v(z).(...7-...) is the decryption function whose
action sequences are all of the form

d(v)(2).(...7...) 2L 2,

for some number j. The theory Crp provides the encryption and decryption
functionalities every process can make use of.

Ezample 4. Suppose that we would like to define a random number generator
that provides perpetual service on network. It appeared at first sight that the
theory Ran can be defined by extending Pa with the (functional) process

a(v).(¢) (E(0) | le(z).(e(d).dz + vz)). (1)

Upon receiving a private channel provided by a user, the process (1) randomly
generates a number and sends it to the user through the private channel. However
process (1) may diverge. So it is not an axiom according to our definition. The
theory Ran can be defined by the finite set {g(0), g(x).9(p).(q)(Dq | gx))}. It can
also be defined by the infinite set

{9(0),9(2),...,39(@),...}.
So we are faced with choices of theories that provide equivalent functionality.

Ezxample 5. The w-calculus has been used both as a specification language and
a machine language. The rational behind these practices is that 7 is expressive
enough to qualify for a machine model. Now if we think of 7-calculus as a ma-
chine model, we can talk about implementations of programming languages on
m-calculus. This is precisely what is done in [Wal95]. Formally what is then an
interpreter of a higher order programming language on 7?7 Whatever the inter-
preter is, it must give an account of the standard routines and packages supplied
by the programming language. In our opinion these routines and packages are
best interpreted as a theory Prg. Two programs defined according to the gram-
mar of the language are equivalent if they are so in the presence of Prg. Let O
be a program that invokes a system routine and P be a user defined program
that achieves the same functionality. Conceptually O and P are equivalent. But
they are not bisimilar since the former may interact at a name which P does not
know. The notion of theory is a starting point to resolve issues of this kind.

3.1 Operational Semantics

To investigate the algebraic properties of the theories, we need to define the
operational semantics of the theories first. Given a theory A, a process P under
the theory A can be imagined as the least fixpoint of the following equation

p=r| []'4

A€A

This recursive definition is not always attainable at the syntactical level since
it makes use of a possibly infinite composition. But notice that P | A, for each
A € A, is also the least fixpoint of the equation. This observation motivates
the treatment of the operational semantics of A by extending that of m. The
semantics of the theory A, or the ma-calculus, extends the operational semantics
of m with the following rule:

P|A P
PP

Definition 1 can be immediately applied to 74 .

AeA. (2)

Definition 3. A symmetric relation R on P is a weak A-bisimulation if Q) 2,
Q'RP’ in ma whenever QRP 25 Plin wa. The weak A-bisimilarity ~4 is the
largest weak A-bisimulation.

The proof of Theorem 1 can be repeated to show that ~4 is both an equiv-
alence and a congruence on 7.

Since every axiom in a theory is nontrivial, the fact stated in the next propo-
sition is apparent.

Proposition 1. The strict inclusion ~C~a holds for every theory A.

Proof. By definition ~ is an A-bisimulation. The strictness is witnessed by the
equivalence A ~ 0 whenever A € A. ad

The next lemma is a generalization of Proposition 1.
Lemma 1. If A C B then ~pC~pg.

By abusing the notation again, one could describe the relationship between
0 and the theory A by the following equation:

o= []'4 (3)
A€A

Equality (3) has been exploited to define the semantics of the asynchronous
m-calculus. Honda and Tokoro introduce the following rule in [HT91a,HT91b].

(4)

025 ac

It is evident that (4) is essentially (2) applied to Asy.

3.2 Kernel

A theory A is consistent if >~ is not PxP; it is inconsistent otherwise. The
next proposition is useful.

Proposition 2. The following statements are equivalent:
(i) A is consistent;

(1) APEP.P #4 0;

(iti) APEPNAEA.P #4 A.

Proof. 1f (ii) did not hold, then every process would be equated by theory A,
contradicting (i). Hence (i) implies (ii). If VPEP.JA€A.P = A, then every
process is equated to 0. So (ii) implies (iii). Finally (iii) trivially implies (i). O

The above proposition indicates that there is a distinguishing line between
the processes equal to 0 in the equational theory of A and those that are not.
This motivates the following definition. The kernel Ay, of the theory A is the
set of the processes equal to 0 under the theory A, i.e.

Ajer ={A| A~a 0}
By Proposition 2, a theory is consistent if and only if its kernel is not P.
Proposition 3. ~a equals ~g if and only if Ager = Bper-
Proof. 1t is clear that Age, C Bge, if and only if ~p C~pg. a

A corollary of Proposition 3 is that a theory is completely determined by its
kernel. One could define for instance that A is a subtheory of B if A C By,
and that A is essentially in A if A € Ay,

Although it is easy to see that Asy is consistent, it is generally tricky to
establish the consistency of a theory. Let F be the theory consists of all the
regular processes. For each process P, let P™(") denote the process obtained from
P by removing all the occurrences of the replication operator and the localization
operator. It is not difficult to see that P ~gp P~() ~g 0. So Fy., = P. Therefore
F is inconsistent. For a positive result, we remark that all functional theories
are consistent. In a functional theory the process aa is never equal to 0.

4 Asynchronous Theory and Asynchronous 7

We prove in this section that Asy provides a faithful account of the asyn-
chronous w-calculus. We adopt the following grammar for the asynchronous
m-calculus, which summarizes the essential feathers of the calculi defined in lit-
erature [Bou92,HT91a,HT91b,HY95,ACS96].

T:=0|am|Y ni(x).T; | T|T| ()T | n(z).T.
i€l

Notice that the above grammar maintains a distinction between the names and
the name variables. There are basically two ways to formulate the semantics of
the asynchronous 7-calculus. Honda and Tokoro’s semantics makes use of the
rule (4). The notion of theory is lurking in their framework. Amadio, Castellani
and Sangiorgi’s approach takes a more traditional view on the asynchronous 7.
Their operational semantics is defined by the following rules.

Action
ab 2 0 Sier ai(2).T; 25 Ti{c/z}
Composition
T AT N A s s 7™
S|T 2 8|1 S|T = 5'|T S|T 5 (e)(S"|T")
Localization
ac / A /
L1 L c¢n(
(T X (OT 25 (T
Replication

la(x).T =% T{c/x} |la(x).T

In Honda and Tokoro’s treatment the asynchronous 7 differs from the syn-
chronous 7 at the operational level, whereas in Amadio, Castellani and San-
giorgi’s treatment it is at the observational level. The definition of the asyn-
chronous bisimilarity [ACS96] appears odd from the point of view of interaction.

Definition 4. A symmetric relation R on the asynchronous mw-processes is an
asynchronous bisimulation if the following statements are valid whenever PRQ:

1. If Q = Q' then P = P'RQ’ for some P'.

2. IfQ b, Q' then P LN P'RQ" for some P'.

3. IfQ _ab, Q' then either P _ab, P'RQ' for some P' or P = P’ for some P’
such that P'|abR Q'.

The asynchronous bisimilarity ~, is the largest asynchronous bisimulation.

The asynchronous 7 is a syntactic subcalculus of 7. It is also an operational
variant of 7 according to Honda and Tokoro’s formulation. Amadio, Castellani
and Sangiorgi have proved that ~, coincides with Honda and Tokoro’s bisimula-
tion equivalence, called HT-bisimilarity in [ACS96]. Their proof can be extended
to produce a proof of the following theorem.

Theorem 2. Suppose S, T are asynchronous w-terms. Then S ~, T if and only
ZfS = Asy T.

Theorem 2 can be interpreted as saying that the asynchronous 7 is a syntac-
tical simplification of magy. It perceives masy as a self-contained closed model.
It can also be seen as a justification of the asynchronous 7 as defined by Honda
and Tokoro, as well as the variant defined by Amadio, Castellani and Sangiorgi.

L1 ©0=0

L2 ()T = (d)(c)T

L3 (@) (r=deAT +) = (¢)

L4 (¢)([x#c]eA.T + Z% = Ec;(@)\.T +>)
(c)

L5 (@EAXT+>)=()>] if ¢ = subj(\)
L6 (e)(pac.T +) = (c)(pa(c). T+ ") if ¢ ¢ gn(yp)
L7 (c) Ziel oiNi. T, = Ziel wiXi.(c)T; ifVi € I.cé¢ gn(pi, \i)
M1 [LIXNT+> =)

M2 @A.T—&—Z:w)\.T—&—Z if o < 1
M3 [e=ploA.T + 5 = [z=pl(PAT){p/z} +

M4 [z#£ploA. 3 + Y = [w#pleAfa#p] > + >

S1 AT+ = npAT—HpAT—FZ

S2 AT+ > = —p]ap)\ T + [z#pleAT +

S3 n(z).S+n(@).T+ > =n(x).S+n().T +n(z).(x=p|r.5 + [z#£p]r.T) + >
T1 $T), = SOZ

T2 > +<p7'. =3

T3 A(or.T+ D)+ > = oA (@r. T+ D2) + dppAT + >

w

Fig. 1. Axioms for the Weak Bisimilarity.

5 Proof System

A complete equational system for the strong asynchronous bisimilarity is given
in [ACS96]. Such a system for the weak asynchronous bisimilarity has not been
available. The problem in generalizing a result from the strong case to the weak
case could be an indication that something is not quite right. The difficulty in
designing an equational system for the weak asynchronous bisimilarity is due to
the lack of the output prefix operator. This is unfortunate since the role of the
output prefix operation is to impose orders on interactions. It has nothing to do
with asynchronous communications. Our approach disowns this problem.

The expansion law plays a crucial role in proof systems. It is about how
to convert two concurrent choice terms to one choice term. Suppose S, T are
respectively the guarded choices) ;. ¢iA;.S; and ZjeJ Y;\;. 1. Then

Ai=m(x),\;=np

SIT =Y 0iXi(Si|T)+ > pitpj[m=n|r.(Si{p/x} | T})
iel i€l jeJ
Aj=m(x), \i=np
+Y UNSIT)+ Y ea[m=nlr(Si | Ty{p/x}).
jeJ icl,jed

Let AS be the equational system defined in Figure 1 plus the expansion law.
In Figure 1 the notation Y stands for Y, ; v;\;.T; and Y’ for > ier ¥iN Ty
Accordingly ¢} should be understood as ;. ; @@ ;. T;. Our axiomatic system
differs from the standard one in that ours is defined in terms of the guarded choice
operator rather than the unguarded choice operator.

In AS we may rewrite terms to normal forms, whose definition is given next.

Definition 5. Let F be gn(T) U fu(T'). The w-term T is a normal form if it is
of the form 3, A\i.T; such that for each i € I one of the followings holds.

1. If \; = 7 then T; is a normal form on F.

2. If \; = mm then T; is a normal form on F.

3. If \i =7(c) then T; = [c¢ F|TE for some normal form TF on F U {c}.
4. If \i = n(zx) then T; is of the form

g FITT +) le=mIT}"

meF

such that Tf is a normal form on FU{x} and, for eachm € F, x ¢ fuo(T™)
and T7" is a normal form on F.

For the motivation of the above definition and the proof of the next lemma,
the reader is referred to [FZ10].

Lemma 2. IfT is reqular, then a normal form T exists such that AS =T =T'.

AS is sound and complete for the weak bisimilarity on the regular 7-terms.
Theorem 3. Suppose S, T are reqular. Then S ~T iff ASFS=T.

Complete systems have been discussed in literature [MPW92,PS95,Lin95,FY03].
A recent account that fits more into the present context can be found in [FZ10].
Notice that our formulation of T2 is crucial for the completeness proof.

We now turn to ~asy. Let ASasy be AS together with the following law.

a(z)azxr =0 (5)

Apparently ASasy is sound for ~agy. The first indication that (5) is complete
is the validity of the saturation property.

Lemma 3 (saturation). Suppose T is regular. If T 2 T in TAsy and A is
not an input action then ASasy =T =T + A\.T".

Proof. ' T =2 T’ makes use of the rule (2) k times, then it is easy to see that
T|ai(z).aix| ... |ax(z).ax 27 By Lemma 2 there is some normal form
Ty,Ty such that AS - Ty = T|ay(z).arz| ... |ag(z).agx and AS + T = T".
By the standard approach it is easy to establish ASasy - T1 = T4 + A.T}. Thus
ASpasy FT =T |a1(z).arx| ... |ag(x).are =T1 =T1 +A\.T{ = T+ X.T’. Notice
that according to (5) the equality T'= T | a(z).ax follows from T'= T'| 0, which
in turn follows from the expansion law. a

Our statement of the saturation property is greatly simplified. Normally it
should also deal with the input actions. For the m-calculus it should also deal

with the action sequences of the form T'o =2 T in which the action is enabled by

the substitution. But the simple statement of Lemma 3 suffices for an informed
reader.

The proof of the completeness theorem is an induction on the complexity of
the normal forms. The depth dep(T") of a normal form T is defined as follows:

dep(0) of 0,
dep(pn(a).T) < dep(T) +2
dep(pA.T) 4 de p(T) + 1, if A is not an input,
dep(_ @ihi Th) = max{dep(ipiXi.T) et
iel

For a regular term T, dep(T) is defined by dep(T”), where T” is a normal form of
T. It is worth remarking that the depth for input prefix is greater than that for
output, bounded output and tau prefixes. This is important to the next proof.

Theorem 4 (completeness). For reqular S, T, S ~asy T iff ASasy S =T.

Proof. Suppose P =3, ; ¢iA.S;and Q = Zje] Y A;.T; are normal forms such
that P ~asy Q. If a(2).S; is a summand of P, then P % S;{c/xz}. The process
@ has to simulate this action in the following manner Q = Q; — Q, = Q.
It is easy to see that dep(Q1) < dep(Q) and dep(Q’') < dep(Q2). If Q1 =5 Qs
is not derived from the rule (2), then clearly dep(Q2) < dep(Q1). If it is derived
from the rule (2), then AS F Q2 = Q) for some normal form @}, using the
expansion law. It is obvious that dep(Q2) = dep(Q%) < dep(Q1) + 1 by the
definition of the depth function. But dep(S;{c/x}) < dep(P) — 2 by definition.
Hence dep(Q’) + dep(Si{c/z}) < dep(Q) + dep(P). So ASasy - Q' = Si{c/z}
by induction hypothesis.

The above oversimplified account is meant to bring out the fact that the
depth function dep(-) does allow the standard inductive proof to go through.
Consult [FZ10] for the general idea of the completeness proof. O

Can we generalize Theorem 4 to an arbitrary regular theory A? Let ASa be
obtained by combining AS with the following law for the regular theory A.

A =0, for every A € A. (6)
The system ASa is interesting in view of the following result.
Lemma 4. ASa is complete iff ASa = A = 0 for every reqular process in Ager.

Proof. The axiom (6) allows us to expand a term of the form T'| A, where T is
finite and A € A, to a normal term. So we may establish the saturation property
(Lemma 3). The inductive proof of completeness makes use of a lexicographical
order defined as follows: The pair (S’,T") is order less than (S, T') if the maximal
number of the nested depth of the prefixes of S’ is strictly less than the maximal
number of the nested depth of the prefixes of S. a

6 Conclusion

The notion of theory probably should have been introduced long time ago. It
is in essence an application oriented concept. In practice it is one of the most
important concepts to start with. There are several directions one can pursue
concerning the notion of theory. Let’s mention a couple of them. Firstly it is im-
portant to be able to prove that a given theory is consistent. One may look for a
useful general result stating the consistency of a theory under certain properties.
Secondly it is interesting to look for complete proof systems for general theories.
For which regular theories for instance is ASa complete? These are issues to be
investigated in future.

References

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theoretical
Computer Science, 111:3-57, 1993.

[ACS96] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous 7 calculus. In Proc. CONCUR’96, volume 1119 of Lecture Notes
in Computer Science, pages 147-162. Springer, 1996.

[Bou92] G. Boudol. Asynchrony and the m-calculus. Technical Report RR-1702,
INRIA Sophia-Antipolis, 1992.

[FL10] Y. Fuand H. Lu. On the expressiveness of interaction. Theoretical Computer
Science, 411:1387-1451, 2010.

[FY03] Y. Fuand Z. Yang. Tau laws for pi calculus. Theoretical Computer Science,
308:55-130, 2003.

[FZ10] Y. Fu and H. Zhu. Name-passing calculus (http://basics.sjtu.edu.cn/"~
yuxi/papers/), 2010.

[HT91a] K. Honda and M. Tokoro. An object calculus for asynchronous commu-
nications. In Proc. ECOOP’91, volume 512 of Lecture Notes in Computer
Science, pages 133—147, Geneva, Switzerland, 1991.

[HT91b] K. Honda and M. Tokoro. On asynchronous communication semantics. In
Proc. Workshop on Object-Based Concurrent Computing, volume 615 of Lec-
ture Notes in Computer Science, pages 21-51, 1991.

[HY95] k. Honda and M. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 151:437-486, 1995.

[Lin95] H. Lin. Complete inference systems for weak bisimulation equivalences in
the m-calculus. In Proceedings of Sizth International Joint Conference on the
Theory and Practice of Software Development, volume 915 of Lecture Notes
in Computer Science, pages 187-201, 1995.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[MPWO92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. In-
formation and Computation, 100:1-40 (Part I), 41-77 (Part II), 1992.

[PS95] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi.
Information and Computation, 120:174-197, 1995.

[Wal95] D. Walker. Objects in the m-calculus. Information and Computation,
116:253-271, 1995.

