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Abstract
A universal process of a process calculus is one that, given the Gödel index of

a process of a certain type, produces a process equivalent to the encoded process.
This paper demonstrates how universal processes can be formally defined and how
a universal process of the value-passing calculus can be constructed. The exis-
tence of such a universal process in a process model can be explored to implement
higher order communications, security protocols, and programming languages in
the process model. A process version of the S-m-n theorem is stated to showcase
how to embed the recursion theory in a process calculus.

1 Introduction
The classic recursion theory [Rog87, Soa87] is based on two fundamental observa-
tions. The first is that there is an effective function φk that enumerates all the k-ary
recursive functions. By fixing an enumeration function we can write φk

i for φk(i),
the i-th k-ary recursive function. The number i is called the Gödel number, or the
Gödel index of the recursive function. The effectiveness of φk

i comes in both direc-
tions. One can effectively calculate a unique number from a given recursive function.
One can also effectively recover a unique recursive function from a given number. The
S-m-n Theorem states that for all k0, k1 there is a total (k0+1)-ary recursive function
sk0

k1
(z, x1, . . . , xk0 ) such that φk0+k1

k (i1, . . . , ik0 , j1, . . . , jk1 ) ' φk1

s
k0
k1

(k,i1,...,ik0 )
( j1, . . . , jk1 ) for

all numbers k, i1, . . . , ik0 , j1, . . . , jk1 . The equality ' means that either both sides are
defined and they are equal or neither side is defined. The second important observation
is that there exists a (k+1)-ary universal function Uk that, upon receiving an index j
of a k-ary recursive function f and k numbers i1, . . . , ik, evaluates f(i1, . . . , ik). In other
words, Uk( j, i1, . . . , ik) ' φk

j(i1, . . . , ik). The existence of such a universal function de-
pends crucially on Gödelization. It is by Gödelization that we can see a number both
as a datum and a program. The S-m-n Theorem and the universal functions are the
foundational tools in recursion theory. The practical counterpart of a universal func-
tion is a general purpose computer. The central idea of the von Neumann structure
of such a computer is that of the stored program, which is essentially the same thing
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as Gödelization. From the point of view of programming, a universal function is an
interpreter that works by interpreting a datum as a program. Again this is the idea of
Gödelization.

Recursion theory plays a foundational role in computation theory and the theory
of programming languages. It makes one think why in the theory of process calculus,
or more generally in concurrency theory, the fundamental technique of Gödelization
has not been utilized so far. One possible explanation is that concurrent computations
are often distributed. For processes scattered at different locations the notion of a cen-
tralized universal process may sound alien. In retrospect however, the absence of any
universal process has been unfortunate. The π-calculus [MPW92], and CCS [Mil89]
as well, was proposed with the intention to be the ‘λ-calculus’ for concurrent computa-
tion. Yet in the theory of process calculus there still lacks a notion comparable to that of
decidability/undecidability. There are now some interesting techniques that allow one
to prove negative results in say π-calculus [BGZ03, BGZ04, Pal03, GSV04, FL10].
However they do not offer a method as general as the reduction method in recursion
theory. To develop a theory of solvability/unsolvability for the π-calculus, the ideas
and the techniques of recursion theory are instructive. In programming theory, there
have been quite a few papers on implementing variants of π, or substantial extensions
of them, on current computing platforms. But there has been little discussion on how
to implement a concurrent programming language in the π-calculus. It’s understand-
ably so since the idea of a universal process (or general interpreter) is indispensable in
any such implementation. If we are serious about the promise that the π-calculus is to
concurrent computation what the λ-calculus is to functional computation, we should
look at implementation issues of concurrent programming languages in the π-calculus.

The above discussion leads to the conclusion that in both theory and practice there
is a genuine need for a process theory that goes beyond the classic recursion theory of
function. The theory of process calculus currently fails to meet that need. What can
we do to improve the situation? A natural thing to do is to look at how Gödelization
can be carried out in process calculi and how universal processes can be constructed.
Gödelization is a problem for a process calculus that cannot even code up the nat-
ural numbers in a way that supports the interpretations of the computable functions
within the calculus. We need to confine our attention to complete models. Intuitively
a complete process calculus is one that is expressive enough to admit good use of
Gödelization. Now supposeM is a complete model. What does a universal process of
M look like? In the general case it is unlikely that there is a single M-process capable
of simulating all M-processes. A π-process for example only refers to a finite number
of global names. There is no way for it to simulate a π-process that uses strictly more
global names. We must accept that a universal process of a process calculus should
consist of a countable family of processes. Luckily we seldom need a single all power-
ful universal process. In most applications it suffices to have a collection of processes,
each acting as a universal process for a set of processes of a certain type. A type for
example could be a finite set of names. Then a process is of that type if the names
it contains all appear in that set. If we think of it, having to use a restricted version
of universal process does not really stop us from deriving any solvability/unsolvability
results in M. If something is solvable in M, it is solvable by an M-process of some
type. If it is not solvable, it is not solved by anyM-process of any type.
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We will look at Gödelization and the notion of universal process in VPC, a self-
contained version of the value-passing calculus. The reason to start with this particular
model is that it is closer to recursion theory than all the other process calculi [Fu13].
The contribution of this paper is the introduction of a formal definition of universal
process and the construction of a universal process for VPC. The significance of the
existence of a universal process is emphasized by illustrating a number of applications.
The technique developed in this work is expected to play a key role in the study of
process theory and programming theory implemented on process models.

The paper is structured as follows. Section 2 reviews the necessary background on
VPC and the observational theory of processes. Section 3 provides the formal definition
of universal process and demonstrates how to construct a universal process in VPC.
Section 4 outlines three major applications of universal process. Section 5 formalizes
the process version of S-m-n Theorem. Section 6 discusses some future research topics.

Before engaging in the technicalities in the rest of the paper, we should comment
on the presentation style of this paper. We shall not spell out all technical details of
our constructions, and consequently nor shall we formally establish the correctness of
the constructions. We will make full use of the fact that VPC is complete. This is
very much like what recursion theoreticians make use of Church-Turing Thesis since
the publication of Post’s pioneering paper [Pos44]. If one has not built up enough
confidence in exploiting the completeness of process models this way, one is advised
to consult [Fu13, Fu14b, Fu14a, FL10] in which sufficient technical details can be
found.

2 Preliminary
In this section we define the semantics of the value-passing calculus, fix the notion of
process equality used in this paper, and explain in what sense the value-passing calculus
is complete.

2.1 VPC
Value-passing calculi [Hoa85, Mil89, HI93a, HI93b, HL95] have been studied in var-
ious contexts. In most of these studies, the value domains are left open-ended. A re-
cent work that provides a self-contained account of the value-passing calculi is [Fu13].
Since our value-passing calculus is going to be the source model whose programs are
to be interpreted by a universal process, an open-ended attitude is inadequate. At the
same time we hope to avoid the formality of [Fu13] for clarity. Fortunately there is
a standard theory we can refer to. The value domain of our value-passing calculus is
taken to be Presburger Arithmetic [Pre29] (an English translation of the original paper
can be found in [Sta84]). This is the sub-theory of Peano Arithmetic defined by the
constant 0, the unary function s and the binary function ‘+’. By overloading notations,
we shall abbreviate sk(0) to k and sk(x) to x + k. For our purpose the most attractive
property of Presburger Arithmetic is the decidability of its first order theory. There is
a terminating procedure that decides the validity of every first order formula of Pres-
burger Arithmetic [Pre29, Mon76, End01]. This is a crucial property if a value-passing
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calculus is seen as a programming model. The absence of the multiplication operator
does not affect the power of our model since the operator can be implemented in the
value-passing calculus [Fu13].

Let N be the set {0, s(0), s2(0), . . .}, ranged over by i, j, k, and V be the set of natural
number variables, ranged over by x, y, z. The set T of value terms, ranged over by s, t, is
constructed from the numbers, the variables, and the binary operator ‘+’. The notation
T0 stands for the set of closed terms. The set B of first order logical formulae, ranged
over by ϕ, consists of the formulas constructed from the terms, the logical operators
⊥,>,∧,∨,⇒,∃,∀ and the binary relations <,=. We write ` ϕ if ϕ is a theorem of
Presburger Arithmetic.

Let N be the set of names, ranged over by a, b, c, d, e, f , g, h. The set of the finite
VPC-terms is defined by the following BNF:

T := 0 | a(x).T | a(t).T | T |T | (c)T | if ϕ then T.

The VPC-processes, denoted by P,Q, are the VPC-terms that contain no free variables.
The name c in (c)T is a local name. A name is global if it is not local. The semantics
of the finite VPC-terms is given by the following labeled transition system, where α
ranges over the action set {a(i), a(i) | a ∈ N , i ∈ N} ∪ {τ}.

Action

a(x).T
a(i)
−→ T {i/x} a(t).T

a(i)
−→ T

` t = i.

Composition

S
α
−→ S ′

S |T
α
−→ S ′ |T

S
a(i)
−→ S ′ T

a(i)
−→ T ′

S |T
τ
−→ S ′ |T ′

Localization
T

α
−→ T ′

(c)T
α
−→ (c)T ′

c is not in α.

Condition
T

α
−→ T ′

if ϕ then T
α
−→ T ′

` ϕ.

We shall use standard notations like =⇒ and
α

=⇒. The recursion mechanism of a value-
passing calculus can be defined in a number of ways. They are not completely equiva-
lent in terms of expressive power [BGZ03, BGZ04, Pal03, GSV04, FL10]. The infinite
behaviors of our modelVPC is introduced by equationally defined terms. A parametric
definition is given by the equation

D(x1, . . . , xk) = T, (1)

where x1, . . . , xk are parameter variables. In this paper we require that T does not con-
tain any free variable not in {x1, . . . , xk}. The instantiation of D(x1, . . . , xk) at value
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terms t1, . . . , tk, denoted by D(t1, . . . , tk), is T {t1/x1, . . . , tk/xk}. In addition to the fi-
nite terms, VPC also has instantiated terms of the form D(t1, . . . , tk), where t1, . . . , tk
are value terms. The parametric definition (1) is generally recursive in the sense that
T may contain instantiated occurrences of D(x1, . . . , xk). It may also contain instan-
tiated occurrences of some D′(y1, . . . , y j) given by another parametric definition. The
operational semantics of D(t1, . . . , tk) is defined by the following rule:

T {t1/x1, . . . , tk/xk}
α
−→ T ′

D(t1, . . . , tk)
α
−→ T ′

D(x1, . . . , xk) = T.

Now suppose D(x) = c(0) | (c)(c(x) | c(x) | c(z).D(z+1)). Then the following reductions
are admissible:

D(1)
τ
−→ c(0) | (c)(c(1) |D(1 + 1))
τ
−→ c(0) | (c)(c(1) | c(0) | (c)(c(2) |D(2+1))).

In this example the global name c in the component c(0) gets captured every time the
parametric definition is unfolded.

An alternative to parametric definition is replication. The syntax for the replication
terms is given by

T := . . . | !a(x).T | !a(t).T.

The operational semantics of the replicator is defined by the following transitions:

!a(x).T
a(i)
−→ T {i/x} | !a(x).T !a(t).T

a(i)
−→ T | !a(t).T

` t = i.

We will denote by VPC! the value-passing calculus with the replicator.
The replicator is a derived operator in VPC. The term !a(x).T for example is equal

to the instantiation D(x1, . . . , xk) where

D(x1, . . . , xk) = D(x1, . . . , xk) | a(x).T

and {x1, . . . , xk} is the set of the free variables appearing in a(x).T . We shall freely use
the replication operator inVPC. The calculusVPC! cannot simulate everything inVPC
though [Fu13]. In the latter one can implement a recursive algorithm in a top-to-bottom
fashion. This is often not the case in the former. The best VPC! can do is to use stack
explicitly to manage the recursive calls in a bottom-up manner. The important thing
for us is that all recursive functions can be implemented in VPC! [Fu13].

The following abbreviations will be used

a.T def
= a(x).T, where x does not appear in T,

a.T def
= a(0).T.

We occasionally write for example t(x) to indicate that t contains the variable x. Ac-
cordingly we write t(s) for the term obtained by substituting s for x. The notations
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ϕ(x), ϕ(s) and T (x),T (s) are used similarly. We sometimes use the two leg if command
defined as follows:

if ϕ then S else T def
= if ϕ then S | if ¬ϕ then T.

For clarity we will write

case t of
ϕ0(z)⇒ T0(z);

...

ϕk−1(z)⇒ Tk−1(z);
ϕk(z)⇒ Tk(z)

end case

for the nested if statement if ϕ0(t) then T0(t) else if . . . else if ϕk(t) then Tk(t). The
auxiliary notation let x = t in T stands for T {t/x}. This is useful when t is a long
expression and x occurs in T several times.

For a complete treatment of VPC the reader should consult [Fu13].

2.2 Equality and Expressiveness
The definition of a universal process must refer to a process equality. The choice of
such an equality is not entirely orthogonal to the existence of a universal process. It is
conceivable that some sort of universal process exists with respect to a weak equality,
whereas it is impossible to have a universal process with respect to a stronger equality.
To present our result in its strongest form, we shall introduce a number of properties
that we believe best describe the correctness of our universal processes. The following
account follows the general methodology of [Fu14b]. The description given here is
however self-contained. In this section we assume thatM is a process calculus and R is
a binary relation on the set ofM-processes. The notation R−1 will stand for the reverse
relation of R.

A universal process is a generalization of a universal Turing machine. Upon re-
ceiving a number the latter simulates the Turing machine encoded by the number. But
how about the correctness of the simulation? The answer is provided by the oper-
ational interpretation of the Church-Turing Thesis [vEB90]. A sound translation of
one computation model to another is a bisimulation of computation steps à la Mil-
ner [Mil89] and Park [Par81]. Moreover if we take nondeterministic computation into
account the translation ought to be a branching bisimulation of van Glabbeek and Weij-
land [vGW89]. The reader is referred to [Fu14a] for a formal study of nondeterministic
computation in a process algebraic setting.

Definition 1. R is a bisimulation if the following clauses are valid:

1. If QR−1P
τ
−→ P′ then one of the following statements is valid:

(i) Q =⇒ Q′ for some Q′ such that Q′R−1P and Q′R−1P′.

6



(ii) Q =⇒ Q′′R−1P for some Q′′ such that ∃Q′.Q′′
τ
−→ Q′R−1P′.

2. If PRQ
τ
−→ Q′ then one of the following statements is valid:

(i) P =⇒ P′ for some P′ such that P′RQ and P′RQ′.

(ii) P =⇒ P′′RQ for some P′′ such that ∃P′.P′′
τ
−→ P′RQ′.

A universal process must be sensitive to divergence. It would be unacceptable to
interpret all processes by divergent processes. The following definition is from [Pri78].
It is the best formalization of the termination preserving property that goes along with
the bisimulations [vGLT09, Fu14b].

Definition 2. R is codivergent if the following statements are valid:

1. If PRQ
τ
−→ Q1

τ
−→ . . .

τ
−→ Qi

τ
−→ . . ., then ∃P′.∃k ≥ 1.P

τ
=⇒ P′RQk.

2. If QR−1P
τ
−→ P1

τ
−→ . . .

τ
−→ Pi

τ
−→ . . ., then ∃Q′.∃k ≥ 1.Q

τ
=⇒ Q′R−1Pk.

A universal process should also respect interactability. The barbedness of Milner
and Sangiorgi [MS92] poses a minimal condition. We say that a process P is observ-
able, notation P⇓, if =⇒

α
−→ for some α , τ. It is unobservable, notation P6⇓, if it is not

observable.

Definition 3. R is equipollent if P⇓ ⇔ Q⇓ whenever PRQ.

The equipollence condition does not make much sense unless some kind of closure
property is available. Concurrent composition and localization are the most funda-
mental operators in concurrency theory. The former makes global interaction possible
while the latter localizes such possibility. Hence the following definition.

Definition 4. R is extensional if the following statements are valid:

1. If PRQ, then (c)PR(c)Q for every c ∈ N;

2. If P0RQ0 and P1RQ1, then (P0 | P1)R(Q0 |Q1).

In [Fu14b] it is argued that these properties give a model-independent characteri-
zation of process equality.

Definition 5. The absolute equality =M is the largest relation on the set of the M-
processes that satisfies the following:

1. It is reflexive;

2. It is extensional, equipollent, codivergent and bisimilar.

It is easy to convince oneself that =M is well defined. So we have =VPC and =VPC! .
We will often omit the subscript.

The abstract definition of =M makes it difficult to work with. We need a characteri-
zation of =M that relies neither on the equipollence condition nor on the extensionality
condition. In practice it is sufficient to have an external bisimilarity 'M satisfying
'M ⊆ =M.
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Definition 6. A codivergent bisimulation R is anM-bisimulation if whenever QRP
α
−→

P′ for some α , τ then Q =⇒ Q′′
α
−→ Q′RP′ and PRQ′′ for some Q′,Q′′. The M-

bisimilarity 'M is the largestM-bisimulation.

Both 'VPC ⊆ =VPC and 'VPC! ⊆ =VPC! hold. We shall make use of these facts in the
correctness proofs.

By making use of the congruence = we can define semantically the one step de-
terministic computation P → P′ as an internal action P

τ
−→ P′ such that P′ = P, and

the one step nondeterministic computation P
ι
−→ P′ as an internal action P

τ
−→ P′

such that P′ , P. The distinction between the two classes of internal actions is impor-
tant to appreciate the working mechanism of the universal process. The reflexive and
transitive closure of→ is denoted by→∗.

If we consider interpreter rather than universal process, we need to relate a process
of one model to a process of another model. In other words we need to talk about
‘equality’ between the processes from two different process calculi. This way of look-
ing at the expressiveness relationship between two process calculi leads immediately
to the following definition [Fu14b].

Definition 7. A binary relation ∝ from the set ofM-processes to the set of N-processes
is a subbisimilarity if it renders true the following statements:

• ∝ is total and sound;

• ∝ is extensional, equipollent, codivergent and bisimilar.

M is subbisimilar to N, notation M v N or N w M, if there is a subbisimilarity, a
witness ofM v N, fromM to N.

The reflexivity of Definition 5 is turned into the totality and soundness of Defini-
tion 7. Totality means that for each M-process P there is an N-process Q such that
P ∝ Q. The soundness is the condition that Q =N Q′ whenever P =M P′, P ∝ Q
and P′ ∝ Q′. Intuitively M v N means that N is at least as expressive as M. The
relation v is stronger than most of the expressiveness relations discussed in the lit-
erature [BGZ03, BGZ04, Gor08, Pal03, Fu14b], which makes the correctness of our
interpreter more convincing.

2.3 Completeness
Both VPC and VPC! are Turing complete. There are several interpretations of Turing
completeness in the literature on process calculus [BGZ04, MP05, FL10]. The gen-
eral requirement on Turing completeness of a process modelM can be summarized as
follows:

• There is an encoding ~ � of the natural numbers inM.

• There is an interpretation ~ � of recursive functions [Rog87] in M such that for
every k-ary computable function f(x1, . . . , xk) and all numbers i1, . . . , ik the fol-
lowing operational property holds: If f(i1, . . . , ik) is defined then

~i1� | . . . | ~ik� | ~f(x1, . . . , xk)�
τ

=⇒≈ ~f(i1, . . . , ik)�,
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where
τ

=⇒ is the transitive closure of
τ
−→; if f(i1, . . . , ik) is undefined then

~i1� | . . . | ~ik� | ~f(x1, . . . , xk)�
τ

=⇒≈ Ω,

where Ω is a divergent process whose only action is Ω
τ
−→ Ω, and ≈ is one of the termi-

nation preserving weak equalities. A criticism to this level of completeness is that the
input numbers ~i1�, . . . , ~ik� are not necessarily picked up properly by ~f(x1, . . . , xk)�,
and the result number ~f(x1, . . . , xk)� is not sent to any intended receiver. The evolution
from say ~i1� | . . . | ~ik� | ~f(x1, . . . , xk)� to ~f(i1, . . . , ik)� could be too liberal.

The Turing completeness of an interaction model M means that an outsider can
see that the recursive functions can be coded up using M-processes. It is an external
completeness. A stronger notion of completeness, a much more useful one in practice,
is internal completeness. Intuitively the internal completeness ofM means that the in-
siders, theM-processes, are aware of the fact that they can compute all the computable
functions. A formal treatment of this kind of completeness is provided in [Fu14b]. In
this paper it suffices to say that the completeness ofM boils down to the following:

• For each name a and each number i there is an encoding ~i�a of i at a.

• For all k ≥ 0 and all names a1, . . . , ak, b, there is an encoding function ~ �b
a1,...,ak

such that for every k-ary recursive function f(x1, . . . , xk) the following statement
is valid: For all natural numbers i1, . . . , ik, f(i1, . . . , ik) is defined if and only if

~i1�a1 | . . . | ~ik�ak | ~f(x1, . . . , xk)�b
a1,...,ak

ι
−→ . . .

ι
−→︸       ︷︷       ︸

k times

=M ~f(i1, . . . , ik)�b,

and f(i1, . . . , ik) is undefined if and only if

~i1�a1 | . . . | ~ik�ak | ~f(x1, . . . , xk)�b
a1,...,ak

ι
−→ . . .

ι
−→︸       ︷︷       ︸

k times

=M Ω.

The class {~i�a}i∈N,a∈N provides an encoding of the natural numbers in M. The pro-
cess ~i�a is ready to deliver the number i to a process at channel a. The process
~f(x1, . . . , xk)�b

a1,...,ak
inputs the numbers i1, . . . , ik sequentially at a1, . . . , ak in k steps,

after which it becomes some process, say M, equal to ~f(i1, . . . , ik)�b. The only action
of ~f(i1, . . . , ik)�b is to deliver the result to whichever process wants a number at chan-
nel b. It should be remarked that M may perform a finite sequence of deterministic
computations to simulate the computation of f(i1, . . . , ik). All the intermediate states of
this simulation are equal to each other.

Both VPC and VPC! are complete in the above sense. In both models the encoding
~i�a is defined by a(i).

The practical implication of the completeness of VPC and VPC! is that we may
make use of a process without explicitly defining it. Let’s explain this point by ex-
amples. Suppose f(x1, . . . , xk0 ), g(y1, . . . , yk1 ) are computable functions. Then we may
assume that if f(x1, . . . , xk0 ) = g(y1, . . . , yk1 ) then T is a VPC-term with the obvious
semantics. In fact it can be defined by the following term

(c)(d)(~f(x1, . . . , xk0 )�c | ~g(y1, . . . , yk1 )�d | c(x).d(y).if x = y then T ),
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where ~f(x1, . . . , xk0 )�c is the VPC-process that outputs the value of f(x1, . . . , xk0 ) at c,
whose existence is guaranteed by the completeness ofVPC. The process ~g(y1, . . . , yk1 )�d

is similar. In the same fashion we may think of a(f(x1, . . . , xk)).T as the VPC-term
(c)(~f(x1, . . . , xk)�c | c(z).a(z).T ). More generally let ψ(x1, . . . , xk) be a semi-decidable
property and χψ(x1, . . . , xk) be the partial characteristic function of ψ. According to
definition χψ(x1, . . . , xk) is the recursive function that returns ‘1’ at input sequence
i1, . . . , ik when the property holds and diverges otherwise. Now we may regard if ψ then T
the same as if χψ = 1 then T . If ψ is a decidable property, then if ψ then T else T ′ can
be interpreted as

if χψ = 1 then T | if χψ , 1 then T ′.

To simplify notation we shall use more liberal terms like

A( j).if j = 1 then T ( j). (2)

In the above term the generalized prefix operation A( j) is understood as an arithmetic
operation. After the result j has been calculated, the term if j = 1 then T ( j) is ready to
fire. By the completeness the term in (2) can be implemented in VPC.

In the rest of the paper we shall use the internal completeness of VPC extensively
in the manner just described.

For a systematic development of the equality theory, the expressiveness theory and
the completeness theory from which the definitions given in Section 2.2 and Section 2.3
are imported, the reader is referred to [Fu14b]. The completeness of VPC is formally
established in [Fu13].

3 Universal Process
This section presents the major contribution of this paper, which is to construct a uni-
versal process for VPC. Since a universal process is a special case of an interpreter, we
will first give a formal definition of the latter. We then define an interpreter of VPC! in
VPC. Finally we modify the definition of the interpreter to produce the desired univer-
sal process of VPC. We hope that this two step definition offers a clearer presentation
of our methodology.

Suppose L,M are complete models. We intend to formalize the relationship saying
thatM is capable of interpreting all the L-processes withinM. Informally an interpreter
of L in M is an M-process such that after inputting a Gödel number of an L-process it
behaves like the L-process represented by the number. A prerequisite for the existence
of such an interpreter is that M should be at least as expressive as L. This is because
if L @ M then there is an L-process whose interactive behavior cannot be simulated by
anyM-processes. When this is the case there cannot be any interpreter of L inM. We
conclude that every interpreter of L inM is based on an expressiveness relation ∝ from
L toM.

What is expected of an interpreter? There is no point for it to simulate a term
containing free variables. But it is expected to be able to manipulate bound variables
since they only act as placeholders. An interpreter can deal with a finite number of
global names. But no interpreter can store an infinite number of global names. The
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issue concerning local names is more tricky. Different models have different naming
policies. Some models admit dynamic creation of local names, others do not. So
in general an interpreter must know the number of distinct local names appearing in a
process in order to simulate it properly. Talking about the number of distinct names, we
would like to emphasize that (b)(ab.b | (b)(c)ab.ac.b.c) contains two, not three, distinct
local names, although semantically there are three local names. This static view is
important for Gödelization. LetN∗ be the set of finite lists of names, ranged over by .
The notation a ∈  means that a appears in . We have the following description of an
interpreter:

An interpreter of L in M is a family {Ii, 
c }i∈N, ∈N∗,c<  of M-processes such

that, for all i ∈ N,  ∈ N∗ and c ∈ N such that c < , after picking up
a Gödel number at channel c the process Ii, 

c can simulate all L-processes
that have at most i distinct local names and contain no more global names
than those appearing in .

We will write Ii,a1...ak
c if  is the list a1 . . . ak. The superscript i is often omitted. The

interpretation of a number by Ii, 
c differs from the interpretation of the same number by

I
i, ′
c in that they have different interfaces. However Ii, 

c and Ii′, 
c may produce the same

interpretation of a number if the number encodes a process that has at most min{i, i′}
local names.

Now suppose k is the Gödel index of an L-process P whose set of global names
is a subset of {a1, . . . , a j} and whose number of local names is no more than i. Let
{~ �c}c∈N be an indexed encoding function of the natural numbers in M. The process
I

i,a1...a j
c must satisfy the following property: There exists a unique Q such that

~k�c | I
i,a1...a j
c

ι
−→ Q ∝−1 P, (3)

where ∝ is the subbisimilarity the interpretation is based upon and ∝−1 is the inverse
relation of ∝. After a single step interaction with ~k�c the process Ii,a1...a j

c becomes an
M-version of P under ∝. Since there may be many subbisimilarities from L to M and
possibly infinite number of encodings of the natural numbers intoM, it is more precise
to define an interpreter of L inM as the tuple 〈{Ii, 

c }i∈N, ∈N∗,c< , ~ �,∝〉 that satisfies (3).
This completes the formal definition of interpreter.

Let’s write L ∈ M if there is an interpreter of L in M. We may think of L ∈ M
as an internal version, or a programming version, of L v M. In the terminology of
programming language, L ∈ M says that L can be implemented inM.

The distinction between a translation and an implementation should now be clear.
A translation is a reduction from a source model to a target model. It is a meta theoret-
ical operation. An implementation is a family of processes in the target model that is
capable of reproducing a process of the source model at will.

3.1 Gödel Index
We avail ourselves of an effective bijective function

〈 , . . . , 〉k : N × . . . × N︸        ︷︷        ︸
k times

→ N,

11



~0�i
def
= 0,

~a(x).T�i
def
= 7 ∗ 〈ς(a), ς(x), ~T�i〉 + 1,

~a(t).T�i
def
= 7 ∗ 〈ς(a), ~t�ς, ~T�i〉 + 2,

~T |T ′�i
def
= 7 ∗ 〈~T�i, ~T ′�i〉 + 3,

~(c)T�i
def
= 7 ∗ 〈ς(c), ~T�i〉 + 4,

~if ϕ then T�i
def
= 7 ∗ 〈~ϕ�ς, ~T�i〉 + 5,

~!a(x).T�i
def
= 7 ∗ 〈ς(a), ς(x), ~T�i〉 + 6,

~!a(t).T�i
def
= 7 ∗ 〈ς(a), ~t�ς, ~T�i〉 + 7.

Figure 1: Gödel Index of VPC!-Term.

whose inverse function is composed of the unary functions ( )0, . . . , ( )k−1. For clarity
we sometimes write for instance zi, j for ((z)i) j when no confusion arises. We assume
that 〈0, 0, . . . , 0〉k = 0, and we often omit the subscript in 〈 , . . . , 〉k. For convenience
we assume that the unary pairing function is the identity function and the 0-ary pairing
function is the constant 0.

By abusing notations, let ς denote both a bijective function from the setN of names
to N and a bijective function from the set V of variables to N. Using ς as an oracle
function, we can define an effective bijective function from the set T of terms to N and
an effective bijective function from the set B of formulas to N. We will denote both by
~ �ς and omit the obvious structural definition.

Using the standard technique the Gödel number of a VPC!-term is defined by the
function ~ �i introduced in Figure 1. The function ~ �i is a bijection between the set
of the VPC!-terms and the set of the natural numbers. It should be emphasized that we
prohibit the use of α-conversion when we are assigning Gödel numbers to the VPC!-
terms. The encodings of say a(x).a(x).b(x) and a(x).a(y).b(y) are different, even though
they are treated as syntactically the same term when α-conversion is admitted.

We get another set of Gödel indices if we use an oracle function different from ς.
The definition of our interpreter does not depend on any particular choice of such a
function. For a VPC!-process P using k global names a1, . . . , ak and i local names,
a normal index of P is the one in which the global names a1, . . . , ak are indexed by
1, 2, . . . , k and the local names are indexed by k + 1, k + 2, . . . , k + i.

3.2 A VPC Interpreter

We now define an interpreter {Ii, 
d }i∈N, ∈N∗,d<  ofVPC! inVPC. The definition of Ii,a1...ak

d
is given as follows:

I
i,a1...ak
d = d(z).(h)(Pi(z) | h(z).Si(z)). (4)

The interpreter executes the two subroutines sequentially.

• If z is the Gödel number of a process, say A, of the right type, the parser Pi(z)
transforms z to a normal Gödel index z′ that codes up a process α-convertible

12



case z of
r7(z)=0 ⇒ c(x).(if x = 1 then e else c(x − 1));
r7(z)=1 ⇒ if L1(d7(z)0) then Gi(d7(z)2, 〈d7(z)1 + 1, v〉);
r7(z)=2 ⇒ if L1

2(d7(z)1) then if L0
2(d7(z)0) then Gi(d7(z)2, v);

r7(z)=3 ⇒ c(x).(c(x + 1) | Gi(d7(z)0, v) | Gi(d7(z)1, v));
r7(z)=4 ⇒ if L4(d7(z)0) then Gi(d7(z)1, v);
r7(z)=5 ⇒ if L5(d7(z)0) then Gi(d7(z)1, v);
r7(z)=6 ⇒ if L6(d7(z)0) then Gi(d7(z)2, 〈d7(z)1 + 1, v〉);
r7(z)=7 ⇒ if L1

7(d7(z)1) then if L0
7(d7(z)0) then Gi(d7(z)2, v)

end case.

Figure 2: Grammar Checker Gi(z, v).

to A, and then releases z′ through the channel h. If z is illegitimate the parser
aborts the interpretation. In other words Ii,a1...ak

d chooses to interpret the index of
a process of a wrong type as an index for 0.

• The simulator Si(z′) operates on the received normal Gödel number and simu-
lates the process indexed by the number.

The interpretation makes use of the following recursive functions r7, d7:

r7(z) def
=

{
0, if z = 0,
i, if 1 ≤ i ≤ 7 and ∃ j.z = 7 ∗ j + i,

d7(z) def
=

{
0, if z = 0,
j, if ∃i∈{1, . . . , 7}.z = 7 ∗ j + i.

The operation carried out by the parser is purely arithmetical. So it can be implemented
in VPC. Let’s however take a look at an outline of the following implementation:

(g1 . . . gk+i)(c)(e)(
k+i∏
j=1

g j(0) | c(1) | Gi(z, 0) | e.Ni(z, 0)),

where
∏k+i

j=1 g j(0) stands for g1(0) | . . . | gk+i(0). The grammar checker Gi(z, v) is de-
fined in Fig. 2. It aborts the interpreter if any one of the following happens:

• The number of the indices of global names is more than k.

• The number of the indices of local names is more than i.

• There is an index for a free variable.

At the name c is recorded the number of the concurrent components the parser has en-
countered. Initially there is only one component, which explains the presence of c(1).
The parser ends successfully if in the end the value at c is 0. The names g1, . . . , gk

are used to store the indices for the global names and the names gk+1, . . . , gk+i for the
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local names. If j1 is the first index for a local name Gi(z, v) encounters, the gram-
mar checker stores j1 + 1 at gk+1. This can be done by invoking gk+1(x).gk+1( j1 + 1).
Similarly if j2 is the second index of a local name Gi(z, v) encounters, then Gi(z, v)
stores j2 + 1 at gk+2. In completely the same fashion, the grammar checker stores
the Gödel numbers that represent the global names at g1, . . . , gk in the order they are
discovered. The second parameter v of Gi(z, v) codes up the bound variables already
discovered. If for example the bound variables are x1, . . . , xk′ encountered in that order
then v would be 〈ς(xk′ )+1, 〈ς(xk′−1)+1, . . . , 〈ς(x1)+1, 0〉 . . .〉〉. The Boolean functions
L1, L1

2, L
0
2, L4, L5, L6, L1

7, L
0
7 check if the number of names is under the limit or if all

variables are bound. We now explain how Gi(z, v) works.

• r7(z) = 0. If the number of concurrent components becomes zero, end Gi suc-
cessfully and initiate the normalizer Ni(z, 0).

• r7(z) = 1. The number d7(z)1 is the index of a bound variable. The process
L1(d7(z)0) needs to make sure that if d7(z)0 is neither the index of a local name
nor an index of a global name that has been recorded before, then the number
stored at gk must be 0. If L1(d7(z)0) succeeds, the number d7(z)0 + 1 is stored
at the least g j that has not been used. After L1(d7(z)0) has ended successfully,
the number d7(z)1 + 1 is added to the list of the indices of the bound variables
already parsed and is passed down recursively.

• r7(z) = 2. The subroutine L1
2(d7(z)1) checks if the term represented by the number

d7(z)1 contains an unknown variable. It aborts if it encounters an index that does
not appear in the tuple encoded by v. If L1

2(d7(z)1) succeeds, L0
2(d7(z)0) checks

the legitimacy of the encoding d7(z)0. The process L0
2 works in the same manner

as the process L1.

• r7(z) = 3. The counter at c is incremented by 1 since one concurrent component
is split into two.

• r7(z) = 4. The subroutine L4(d7(z)0) checks if the number d7(z)0 + 1 is the same
as the number stored at some g j, where k+1 ≤ j ≤ k+ i. If the answer is positive,
L4(d7(z)0) succeeds; otherwise it checks if the number at gk+i is 0. If the answer
to the latter query is negative, it aborts; otherwise it succeeds after it has stored
the number d7(z)0 + 1 at the appropriate g j.

• r7(z) = 5. The subroutine L5(d7(z)0) checks if the number d7(z)0 codes up a well
formed formula. Specifically it needs to make sure that the formula coded up by
the number does not contain any free variable.

• r7(z) = 6, r7(z) = 7. These cases are similar to the cases r7(z) = 1, r7(z) = 2
respectively.

After Gi(z, 0) has ended successfully, it starts the process Ni(z, 0).
Using the values stored at g j’s,Ni(z, 0) transforms Gödel index z to a normal Gödel

index z′ and then releases z′ at h. An implementation of Ni is given in Fig. 3. The
operation Find( j,w, y) returns as the value of y the j′ such that j is the number stored
at g j′ . If j appears in w, then look for the index j′ in {k+1, . . . , k+ i}; otherwise look for
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case z of
r7(z)=0 ⇒ h(0);
r7(z)=1 ⇒ Find(d7(z)0,w, y).(b)(b(x).h(7∗〈y, d7(z)1, x〉+1) | (h)(h(u).b(u) | Ni(d7(z)2,w)));
r7(z)=2 ⇒ Find(d7(z)0,w, y).(b)(b(x).h(7∗〈y, d7(z)1, x〉+2) | (h)(h(u).b(u) | Ni(d7(z)2,w)));
r7(z)=3 ⇒ (b1b2)(b1(x1).b2(x2).h(7∗〈x1, x2〉+3)

| (h)(h(u).b1(u) | Ni(d7(z)0,w)) | (h)(h(u).b2(u) | Ni(d7(z)1,w)));
r7(z)=4 ⇒ (b)(b(x).h(7∗〈d7(z)0, x〉+4) | (h)(h(u).b(u) | Ni(d7(z)1, 〈d7(z)0,w〉)));
r7(z)=5 ⇒ (b)(b(x).h(7∗〈d7(z)0, x〉+5) | (h)(h(u).b(u) | Ni(d7(z)1,w)));
r7(z)=6 ⇒ Find(d7(z)0,w, y).(b)(b(x).h(7∗〈y, d7(z)1, x〉+6) | (h)(h(u).b(u) | Ni(d7(z)2,w)));
r7(z)=7 ⇒ Find(d7(z)0,w, y).(b)(b(x).h(7∗〈y, d7(z)1, x〉+7) | (h)(h(u).b(u) | Ni(d7(z)2,w)))

end case

Figure 3: Normalizer Ni(z,w).

case z of
r7(z)=0 ⇒ 0;
r7(z)=1 ⇒ Nth(d7(z)0, y).ay(x).Si([x/d7(z)1]d7(z)2);
r7(z)=2 ⇒ Nth(d7(z)0, y).ay(val(d7(z)1)).Si(d7(z)2);
r7(z)=3 ⇒ Si(d7(z)0) | Si(d7(z)1);
r7(z)=4 ⇒ Nth(d7(z)0, y).(ay)Si(d7(z)1);
r7(z)=5 ⇒ if val(d7(z)0) then Si(d7(z)1);
r7(z)=6 ⇒ Nth(d7(z)0, y).!ay(x).Si([x/d7(z)1]d7(z)2);
r7(z)=7 ⇒ Nth(d7(z)0, y).!ay(val(d7(z)1)).Si(d7(z)2)

end case

Figure 4: Simulator Si(z).

the j′ in {1, . . . , k}. In w are stored the local names that might appear in the term being
processed. This additional complexity is due to the fact that a number could denote
both a local name and a global name. By making use of dynamic binding, a recursive
invocation of Ni(z,w) collects through the localized channel h the normal encoding of
a subterm and passes it to its caller using the local channel b.

The simulator Si(z), defined in Fig. 4, simulates the VPC!-process coded up by z
in an on-the-fly fashion. The arithmetical operations referred to in Fig. 4 are described
below:

• The notation [x/d7(z)1]d7(z)2 stands for the Gödel number obtained from d7(z)2
by substituting x, which must have been instantiated by an input action at the
moment this operation is executed, for d7(z)1.

• The notation val(d7(z)1) denotes the result of evaluating the term expression
coded up by d7(z)1. Similarly val(d7(z)0) denotes the result of evaluating the
formula coded up by d7(z)0. Notice that when the evaluation operations start,
neither d7(z)0 nor d7(z)1 contains any variables.
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The prefix operation Nth(d7(z)0, y) returns j as the value of y if d7(z)0 is stored at g j,
where 1 ≤ j ≤ k + i. Some comments on Si(z) are as follows:

• r7(z)=1. The continuation ay(x).Si([x/d7(z)1]d7(z)2) is an abbreviation of

if y=1 then a1(x).Si([x/d7(z)1]d7(z)2) | . . . | if y=k then ak(x).Si([x/d7(z)1]d7(z)2).

In case r7(z)=2, the subterm ay(val(d7(z)1)).Si(d7(z)2) is defined similarly.

• r7(z)=4. This case deserves special attention. This is where we have to use VPC.
An implementation of the recursive call of the simulator in VPC! would ren-
der the localization operator (ay) detached from the body to which the operator
should apply.

It is remarkable that the interpreter uses only one dummy variable x. No confusion
among the bound variables can ever arise.

Although we have not supplied all the details of the interpretation, the key ingredi-
ents that support the following claim have all been spelled out.

Theorem 8. VPC! ∈ VPC.

Proof. The argument given here rests on the completeness ofVPC [Fu13] and our trust
in the Church-Turing Thesis. We summarize the main points below:

• The encoding of the natural numbers is given by the class {a(k)}k∈N,a∈N . This
encoding is correct with respect to the absolute equality =VPC [Fu13]. All the
number theoretical operations involved in the definition of Ii, 

d are computable.
It follows that these operations are all definable in VPC.

• The relation ∝i: VPC! → VPC is basically the structural embedding composed
with the equality relation =VPC, where the replication operator in VPC! is inter-
preted by the derived replication operator in VPC.

• The interpreter {Ii, 
d }i∈N, ∈N∗,d<  is defined in (4). To establish (3) it is sufficient to

demonstrate that the following relation, denoted by I, is a subbisimilarity.(P, (d)(d(k) | Ii, 
d ))

∣∣∣∣∣∣∣∣
P is a VPC! process, all global names of P
are in , the number of local names of P is
no more than i, k is an index of P, and d < .

 ; =VPC .

It is easy to argue informally that the definition of the simulator in Fig. 4 renders
true the following statements:

– Since all the actions of P are also actions of (d)(d(k) | Ii, 
d ), the following

explicit bisimulation property is valid whenever PIQ:

∗ If P
α
−→ P′ then Q→∗

α
−→ Q′I−1P′ for some Q′.

∗ If Q
α
−→ Q′ and α , τ or Q

ι
−→ Q′, then ∃P′.P

α
−→ P′IQ′.

∗ If Q→ Q′ then either PIQ′ or ∃P′.P→ P′IQ′.
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– I is codivergent since the extra number theoretical manipulations do not
introduce any divergence.

These properties are enough for us to conclude that I is a subbisimilarity.

This completes the proof sketch. �

3.3 Universal VPC Process
A self-interpreter for M is an interpreter of M in M. Such an interpreter is based
on a subbisimilarity from M to M. In general there is more than one subbisimilarity
from M to M [Fu14b], among which the absolute equality =M offers a canonical rela-
tion in the sense that every process is interpreted by itself. An interpreter of M in M
based on the absolute equality =M is called a universal process for M. We will write
〈{U

i, 
c }i∈N, ∈N∗,c< , ~ �〉 for a universal process ofM. For all i, , c the processUi, 

c must
satisfy the following property: If P is of the right type and k is a Gödel index of P then
a unique Q exists such that

~k�c | U
i, 
c

ι
−→ Q =M P. (5)

The aim of this subsection is to modify the interpreter constructed in the previous
subsection to obtain a universal process for VPC.

We need to explain how parametric definitions are treated. Now every VPC-term
refers to only a finite number of parametric definitions. Suppose the parametric defini-
tions appearing in T are given by the following equations:

D1(x11, . . . , x1i1 ) = T1,
...

Dk(xk1, . . . , xkik ) = Tk,

(6)

for some k ≥ 0. When k = 0 we understand that T contains no occurrence of any
parametric definition. The Gödel index ~T�u of T is defined as follows:

~T�u
def
= 〈k, 〈~T�d, ~T�p〉〉. (7)

The components of (7) have the following readings:

• k is the number of parametric definitions in (6). According to our notational
convention ~T�d, which is a k-ary tuple, is 0 when k = 0.

• The index ~T�d codes up all the parametric definitions in (6). It is given by

~T�d
def
=

〈 〈i1, 〈ς(x11), . . . , ς(x1i1 ), ~T1�p〉〉,
...

〈ik, 〈ς(xk1), . . . , ς(xkik ), ~Tk�p〉〉 〉.

(8)

This is not a self-referential definition since the function ~ �p is independent
from the function ~ �u.
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~0�p
def
= 0,

~a(x).T�p
def
= 6 ∗ 〈ς(a), ς(x), ~T�p〉 + 1,

~a(t).T�p
def
= 6 ∗ 〈ς(a), ~t�ς, ~T�p〉 + 2,

~T |T ′�p
def
= 6 ∗ 〈~T�p, ~T ′�p〉 + 3,

~(c)T�p
def
= 6 ∗ 〈ς(c), ~T�p〉 + 4,

~if ϕ then T�p
def
= 6 ∗ 〈~ϕ�ς, ~T�p〉 + 5,

~D j(t j1, . . . , t jn j )�p
def
= 6 ∗ 〈 j, 〈n j, 〈~t j1�ς, . . . , ~t jn j�ς〉〉〉 + 6.

Figure 5: Gödel Index of VPC-Term.

• The structural definition of ~ �p is given in Fig. 5. The only thing worth men-
tioning is that the index of D j(t j1, . . . , t ji j ) contains the information about the
equation in which D j is defined, the number of parameters of D j, and all the
terms that instantiate the parameters.

At top level the indices of all VPC-terms are of the form (7). One may think of ~T�p as
the main program and ~T�d as the subroutines necessary when executing the program.

Our universal process {Ui, 
d }i∈N, ∈N∗,d<  for VPC is defined as follows:

U
i,a1...ak
d

def
= d(z).(h)(Pu(z) | h(z).(e)(Du((z)0, z1,0) | Su(z1,1))) (9)

for all i, a1, . . . , ak, d such that d < {a1, . . . , ak}. The process Ui,a1...ak
d is similar to

I
i,a1...ak
d defined in (4). We leave out the definition of the parser Pu(z) since it is similar

to Pi(z) and it is purely arithmetical. The processDu((z)0, z1,0) is an instantiation of the
parametric definitionDu(x, y) given by the following equation:

Du(x, y) = !e(v).if 1 ≤ (v)0 ≤ x then let w = (v)0 − 1
in let u = yw,0 in Su([v1,1,u−1/yw,1,u−1] . . . [v1,1,0/yw,1,0]yw,1,u).

The first parameter of Du(x, y) indicates the number of the mutually dependent equa-
tions. The second parameter is the Gödel index of these parametric definitions that
takes the form of (8). The definition Du(x, y) is essentially the interpretation of ~T�d.
It is able to simulate all the parametric definitions that are encoded in y. Again this is
possible because the simulation is on-the-fly. The simulator Su(z) in (9) is defined in
Fig. 6. The recursive functions r6, d6 are similar to those of r7, d7 respectively. In case
r6(z) = 6 the subroutineDu((z)0, z1,0) is invoked with the parameter d6(z).

By an argument similar to the one given in the proof of Theorem 8, one can con-
vince oneself of the validity of the following result.

Theorem 9. VPC ∈ VPC.

4 Application
The existence of a universal process can be seen as an expressiveness criterion. There
cannot be any universal process for CCS [Mil89] or the process-passing calculus [San92,
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case z of
r6(z)=0 ⇒ 0;
r6(z)=1 ⇒ Nth(d6(z)0, y).ay(x).Su([x/d6(z)1]d6(z)2);
r6(z)=2 ⇒ Nth(d6(z)0, y).ay(val(d6(z)1)).Su(d6(z)2);
r6(z)=3 ⇒ Su(d6(z)0) | Su(d6(z)1);
r6(z)=4 ⇒ Nth(d6(z)0, y).(ay)Su(d6(z)1);
r6(z)=5 ⇒ if val(d6(z)0) then Su(d6(z)1);
r6(z)=6 ⇒ e(d6(z))

end case

Figure 6: Simulator Su(z).

Tho95] since neither is complete [Fu14b]. But once an interaction model does admit
some sort of universal process, a whole range of new applications are available. In this
section we sketch three of them.

4.1 Process Passing as Value Passing
The most valuable contribution of a universal process is that it allows a receiving pro-
cess to interpret a number as a process. This is a very useful property when applying
VPC to tackle practical programming issues. But is it necessary to pass a process from
one location to another? If the process that appears in the target environment is com-
pletely the same as the one sent from the source environment, a positive answer to the
question can hardly be convincing. What is useful in practice is that the source process
sends an abstraction parameterized over names, and the process on the receiving end
instantiates the parameters of the abstraction by its local names. This way of introduc-
ing the higher order feature in the π-calculus is adopted in [San92, San93]. We follow
the same approach to extend VPC. Our higher order VPC has the following grammar:

T := . . . | X(a1, . . . , a j) | A(a1, . . . , a j) | a(X:〈i, j〉).T | a(A:〈i, j〉).T,

where only the higher order terms are indicated. An abstraction A is a term whose
global names are abstracted away. A process with j global names can be turned into
an abstraction with j parameters. If for example T is a term with the global names
c1, . . . , c j then λc1 . . . c j.T is an abstraction. In the above syntax A : 〈i, j〉 indicates
that A is an abstraction with i local names and j parameters. The term a(X:〈i, j〉).T is
a higher order input, in which 〈i, j〉 provides the typing information of the abstraction
variable X, a(A:〈i, j〉).T is in higher order output form, X(a1, . . . , a j) is an instantiation
of the abstraction variable X at a1, . . . , a j and A(a1, . . . , a j) an instantiation of the ab-
straction A at a1, . . . , a j. The instantiation of the abstraction λc1 . . . c j.T at a1, . . . , a j

is syntactically the same as the term T {a1/c1. . . . , a j/c j}. Instantiations must be type
correct. Formally the names in the higher order VPC are typed in the same way as the
channels in the higher order π-calculus are typed [San92, San93]. We ignore the type
system in the present light weight treatment. In addition to the operational semantics
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of VPC the higher order VPC has the following semantic rules:

a(X:〈i, j〉).T
a(A)
−→ T {A/X} a(A:〈i, j〉).T

a(A)
−→ T

S
a(A)
−→ S ′ T

a(A)
−→ T ′

S |T
τ
−→ S ′ |T ′

In the higher order input rule A must be of the same type as the variable X.
We can now explain how to simulate the operational semantics of the higher order

VPC in the first orderVPC. Let υ stand for a partial function from the set of abstraction
variables to V that is injective on its finite domain of definition. The notation υ[Z→z]
refers to the function that is the same as υ except that it sends Z onto z. The nontrivial
part of the encoding is given below:

~X(a1, . . . , a j)�υ = (d)(d([ς(a1)/v1, . . . , ς(a j)/v j]υ(X)) | Ui,a1...a j

d ),
~a(X:〈i, j〉).T�υ = a(x).~T�υ[X→x], where x is chosen such that it is not in T,

~a(A:〈i, j〉).T�υ = a(~A�υ).~T�υ.

The operation [ς(a1)/v1, . . . , ς(a j)/v j]( ) replaces in υ(X) the indexes v1, . . . , v j of j
global names by the indexes of a1, . . . , a j respectively. Notice that since we are dealing
with processes containing neither first order variables nor higher order variables, by
the time the on-the-fly interpretation reaches υ(X), it has already been instantiated by a
number. Thus v1, . . . , v j can be safely calculated from υ(X). The encoding of a higher
order VPC process is given by ~P�∅, where ∅ is the nowhere defined function.

The translation of the higher order VPC into the first order VPC is notably different
from the translation of the higher π into the first order π [San93]. For one thing the
simulation of the higher order communication in VPC is achieved by code transmis-
sion, whereas in the π scenario the simulation is implemented via access control. An
advantage of our encoding is that it allows the ‘user’ to exert tight control over the exe-
cutions. The user may wish to terminate the simulation after a certain amount of time,
bounded by a time complexity function. This can be implemented by incorporating into
the encoding a timer that counts the number of simulation steps already performed.

In practice it is the code transmission, rather than the programme transmission, that
is widely used.

4.2 Communication Security
The completeness of an interaction model means that any encryption/decryption algo-
rithm can be implemented in it and an encrypted text can be passed from one process
to another. By exploiting that fact, a universal process can offer an effective way to
enhance the security of communications. Suppose party A intends to send a piece of
programme to party B through a public channel. There is no way to prevent anyone
from eavesdropping on the communication channels. What party A can do is to en-
crypt the Gödel number of the programme before sending it to party B. After receiving
the number, party B decodes the number to recover the Gödel index. It then places
the encoded programme in its private environment and puts it into action by invoking
a universal process. Far more complicated scenarios can be designed along this line of
thinking.
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The point is that the existence of a universal process allows one to implement the
well known security protocols in VPC to enhance communication security. This is
a more traditional approach compared to the one that introduces explicit operators to
model security protocols in process calculi [AG99].

4.3 Programming Paradigm
If VPC is seen as a machine model, what would be an implementation of a higher
order programming language in VPC? If VPC is seen as a programming language,
what kind of programming paradigm does it support? The issue of constructing a
higher order programming language on top of a process model has been studied by
several research groups, see the references in [SWU10]. This is not the right place to
overview the existing approaches and tools. What we are going to do is to propose
a new programming paradigm that makes essential use of the universal processes. To
explain our idea we introduce a new process model referred to as PL. This is essentially
the same as VPC. But instead of sending and receiving numbers, a PL process sends
and receives strings. The reason for a string-passing process calculus is that it provides
the right level of abstraction to study programming theory in process algebra. A piece
of program is nothing but a string, which can be parsed, type checked and executed.

Let Σ be a finite set of symbols and Σ∗ be the set of finite strings over Σ. We will
write % for a string variable and ` for a string term constructed from strings, string
variables and string operations. We write ψ for a boolean formula about strings. For
simplicity we see a symbol as a string of length one. We choose a set of basic string
operations on Σ∗ and a set of basic logic operations on Σ∗. We obviously need the
head, tail and length operations, as well as the binary prefix relation among others. The
particular choice of the operations is not our concern.

The set of the PL-terms is defined by the following BNF:

T := 0 | a(%).T | a(`).T | T |T ′ | (c)T | if ψ then T | D(`1, . . . , `k).

The operational semantics of PL is obtained from the labeled transition system of VPC
by substituting strings for numbers. The model PL is easily seen to be complete. In
fact there is clearly an effective bijection between Σ∗ and N. Using this bijection it
ought to be easy to construct two subbisimilarities to support the claim that PL v VPC
and VPC v PL. From the practical point of view it is convenient to assume that Σ

contains the proper subset ΣN = {0, succ,+,×}. The calculus PLN defined in terms of
the symbol set ΣN is as expressive as VPC. We may think of PLN as a machine model
on which PL is implemented, by which we mean that there is an interpreter of PL in
PLN.

Now the general framework has been set up, let’s explain how programming lan-
guages can be implemented in our model. Suppose L is a concurrent, typed program-
ming language, which could be as sophisticated as a full-fledged programming lan-
guage or as simple as the concurrent language studied in [Mil89]. The definition of L
is given by a parser {Pc}c∈N . Let Pr be an L program. Then

c(Pr) |Pc
ι
−→ L
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for some L. The process indicates acceptance if Pr is a well defined L program, it
refuses if Pr violates the L grammar. The implementation of L is given by an execu-
tor {Ei, 

c }i∈N, ∈N∗,c< , which is feasible by the technique developed in this paper. For a
legitimate L program Pr of the right type one must have that

c(Pr) |Ei, 
c

ι
−→ I

for some I that implements Pr in PL. This oversimplified account should be enough to
give the reader a taste of our methodology.

Different programming paradigms are supported by different process models. If
one intends to study the object oriented features, the right model is the π-calculus.
Since π is also complete [Fu14b], everything carried out in this paper can be repeated
for π. It should not be difficult to internalize, as it were, Walker’s meta translation of
an object oriented language [Wal91, Wal95] in the fashion advocated here. What we
get is an implementation, rather than a translation, of the object oriented language in π.

5 S-m-n Theorem
In this section we explain how to do recursion theory by taking a look at VPC ver-
sion of the S-m-n Theorem. The challenge here is actually how to formulate it cor-
rectly. We know from the recursion theory that S-m-n Theorem is about partial evalua-
tion. There is an effective way to transfer the index of a (k0+k1)-ary effective function
f(x1, . . . , xk0 , y1, . . . , yk1 ) and the inputs i1, . . . , ik0 to the index of the k1-ary effective
function f(i1, . . . , ik0 , y1, . . . , yk1 ). If we are ever to have a recursion theory of VPC pro-
cesses, we must start by answering the question of what the right VPC counterpart of
a recursive function is. It is not hard to see that the most natural generalization of a
recursive function is a parametric definition of the form

D(z1, . . . , zk) = T. (10)

For numbers i1, . . . , i j, where j ≤ k, we will write D(i1, . . . , i j, z j+1, . . . , zk) for the
(k− j)-ary parametric definition D′(z j+1, . . . , zk) given by

D′(z j+1, . . . , zk) = T {i1/z1, . . . , i j/z j}.

Suppose i is the number of local names of T and  is the list of the global names in
T . We say that the D(z1, . . . , zk) defined in (10) is a k-ary parametric definition of type
[i, ]. Two k-ary parametric definitions, say D0(z1, . . . , zk) and D1(z1, . . . , zk), are equal
if for all numbers i1, . . . , ik, one has D0(i1, . . . , ik) =VPC D1(i1, . . . , ik).

By recycling the encoding in Section 3.1 we can Gödelize the set of the k-ary para-
metric definitions of type [i, ]. Our technique to derive a universal process, as devel-
oped in Section 3, helps define a universal processU[i, ][k]

z (z1, . . . , zk) for the set of the
k-ary parametric definitions of type [i, ]. Here the word ‘process’ is not very precise
sinceU[i, ][k]

z (z1, . . . , zk) is a parametric definition rather than a process. The parameter
z is made an index, suggesting that U[i, ][k]

z (z1, . . . , zk) should be thought of as the z-th
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k-ary parametric definition of type [i, ]. The defining property of U[i, ][k]
z (z1, . . . , zk)

requires that for each number j, say the index of D(z1, . . . , zk), the equality

U
[i, ][k]
j (z1, . . . , zk) =VPC D(z1, . . . , zk)

holds. Now we can state the S-m-n Theorem.

Theorem 10. Suppose k0, k1 are natural numbers. There is a total (k0+1)-ary recursive
function sk0

k1
(z, x1, . . . , xk0 ) such that for all numbers j, i1, . . . , ik0 the following equality

holds:
U

[i, ][k0+k1]
j (i1, . . . , ik0 , y1, . . . , yk1 ) =VPC U

[i, ][k1]

s
k0
k1

( j,i1,...,ik0 )
(y1, . . . , yk1 ).

Proof. The proof follows the standard argument. Given the index of a (k0+k1)-ary
parametric definition D′′(x1, . . . , xk0 , y1, . . . , yk1 ) of type [i, ], one can effectively con-
struct the k1-ary parametric definition D′′(i1, . . . , ik0 , y1, . . . , yk1 ) of the same type, from
which we get its Gödel index effectively. This defines a total recursive function. �

The S-m-n Theorem helps import results in recursion theory to process theory. The
famous Rice Theorem [Rog87] is one such result.

Theorem 11. Suppose B is a set of k-ary parametric definitions that satisfies the fol-
lowing properties:

1. B is not empty;

2. there is some k-ary parametric definition that is not in B;

3. B is closed under the absolute equality.

Then the set { j | U[i, ][k]
j (x1, . . . , xk) ∈ B for some [i, ]} is undecidable.

Proof. Without loss of generality, suppose Ω < B. By condition (1) the set B contains
some k-ary parametric definition D(x1, . . . , xk). Let W contain the number 〈i1, . . . , ik〉 if
the 〈i1, . . . , ik〉-th k-ary recursive function is definable at i1, . . . , ik. It is well known that
W is recursive enumerable but not decidable. Let the (k+1)-ary parametric definition
D′(z, x1, . . . , xk) be defined by

D′(z, x1, . . . , xk) = if z ∈ W then D(x1, . . . , xk).

Suppose D′(z, x1, . . . , xk) is of type [i, ]. Then some number j exists such that

U
[i, ][k+1]
j (z, x1, . . . , xk) =VPC D′(z, x1, . . . , xk).

According to Theorem 10 some binary total recursive function s exists such that

U
[i, ][k]
s( j,z) (x1, . . . , xk) =VPC U

[i, ][k+1]
j (z, x1, . . . , xk).

Using (3) it is clear that k ∈ W if and only if D′(k, x1, . . . , xk) =VPC D(x1, . . . , xk) if and
only ifU[i, ][k]

s( j,k) (x1, . . . , xk) ∈ B. So B cannot be decidable. �

There is nothing new about the above proof. But at least it demonstrates that the
type constraint [i, ] ofU[i, ][k] is not much of a restriction.

A simple consequence of the Rice Theorem is about the unobservable processes.

Corollary 12. The set of the unobservable processes is undecidable.
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6 Future Work
The idea of designing universal processes was discussed in [AMS97] in the framework
of CCS. Due to the limitation of the model, a universal process for CCS is static in the
sense that it must preload the Gödel number of the CCS process to be simulated since it
can never dynamically input any number. In order to simulate the branching structure
of a process, the universal process for CCS must introduce divergence. A recent work
is reported in [BLT11], where the authors studied universal Reactive Turing Machines.
A universal Reactive Turing Machine either introduces divergence, or places restriction
on the maximum branching degree of the Reactive Turing Machine being simulated,
both divergence and branching degree being of semantic nature. A universal machine
for Reactive Turing Machines is also static in the above sense since the transmission
of the description of a machine, which is a string of symbols, to the universal machine
should not be interrupted. The advantage of our universal process is it is dynamic and
does not impose any semantic constraints on any processes to be simulated.

The constructions of the universal processes in other complete models can be simi-
larly given. In π-calculus for example the numbers can be coded up using the following
inductively defined name indexed functions:

~0�a = a(c).c(b).c(e).ee,

~i+1�a = a(c).c(b).c(e).~i�b.

It is more or less a formality to apply the approach of this paper to generate a universal
process of π. We leave it as future work to investigate how such a universal process can
be exploited in a fruitful way.

Not every complete model seems to have a universal process though. At the time
of writing we do not yet know if VPC! has a universal process. Our preliminary study
of this problem has not led to any definite answer. In a more general scenario, the
technique to prove or disprove that a particular process model has a universal process
may well reveal some fundamental property of the model.

The idea of universal process can be further exploited. Two important directions
are outlined below.

• At the theoretical level, it is interesting to look at a recursion theory of process.
It is well known that the bulk of the classic recursion theory of functions can
be developed from the universal functions, the S-m-n theorem and Recursion
Theorem [Rog87, Soa87]. It remains to see however how far a recursion theory
of VPC can take us.

• At the programming level, it is worth the effort to study programming theory in a
systematic way. More generally we can look at the class of process calculi with
universal processes. These are models well equipped to model programming
features. The significance of these models to programming theory is yet to be
investigated.

Is it possible for a universal process to be a single process rather than a family of
processes? A drastic approach to address the issue is to introduce a bijective naming
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function ν( ) : N → N that a VPC process may make use of. The function ν( ) gives
an enumeration ν0, ν1, . . . of the names. It can be extended to a function from T to the
set {νt | t ∈ T} of name expressions. Now the grammar of VPCν can be defined by the
following BNF:

T := 0 | νt(x).T | νt(t).T | T |T | (νi)T | if ψ then T | D(t1, . . . , tk).

An example of a VPCν process is

ν0(x).ν1(y).if x = 2y then νx(y).

It is clear from this example that VPCν admits mobile computing to a certain degree.
Notice that the match operator [νt=νt′ ]T is definable in VPCν. The new model lacks
the power, and the trouble as well, introduced by relocating local names. The virtue
of VPCν is that it has a single universal process Uc that is capable of dealing with
indices of all VPCν processes. This is rendered possible by the naming function which
produces a canonical indexing for all the names whatsoever. Further study on VPCν
is necessary before we can evaluate its theoretical and practical relevance to process
theory.

Acknowledgments This work has been supported by NSFC (60873034, 61033002).
Xiaojuan Cai’s idea about the on-the-fly simulations has been very instructive to this
work. Sandy Harris and Huan Long have helped in improving the quality of this paper.

References
[AG99] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi

calculus. Informaiton and Computation, 148(1):1–70, 1999.

[AMS97] H. Andersen, S. Mørk, and M. Sørensen. A universal reactive machine. In
Proc. CONCUR 1997, volume 1243 of Lecture Notes in Computer Science,
pages 89–103, 1997.

[BGZ03] N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs recursive defini-
tions in channel based calculi. In Proc. ICALP’03, volume 2719 of Lecture
Notes in Computer Science, pages 133–144, 2003.

[BGZ04] N. Busi, M. Gabbrielli, and G. Zavattaro. Comparing recursion, replication
and iteration in process calculi. In Proc. ICALP’04, volume 3142 of Lecture
Notes in Computer Science, pages 307–319, 2004.

[BLT11] J. Baeten, B. Luttik, and P. Tilburg. Reactive turing machine. In Proc. FCT
2011, volume 6914 of Lecture Notes in Computer Science, pages 348–359,
2011.

[End01] J. Enderton. A Mathematical Introduction to Logic. Harcourt/Academic
Press, 2001.

25



[FL10] Y. Fu and H. Lu. On the expressiveness of interaction. Theoretical Com-
puter Science, 411:1387–1451, 2010.

[Fu13] Y. Fu. The value-passing calculus. In Theories of Programming and Formal
Methods, Lecture Notes in Computer Science 8051, pages 166–195, 2013.

[Fu14a] Y. Fu. Nondeterministic structure of computation. To appear in Mathemat-
ical Structures in Computer Science, 2014.

[Fu14b] Y. Fu. Theory of interaction. Theoretical Computer Science, revision sub-
mitted (http://basics.sjtu.edu.cn/˜yuxi/), 2014.

[Gor08] D. Gorla. Towards a unified approach to encodability and separation results
for process calculi. In CONCUR 2008, Lecture Notes in Computer Science
5201, pages 492–507, 2008.

[GSV04] P. Giambiagi, G. Schneider, and F. Valencia. On the expressiveness of in-
finite behavior and name scoping in process calculi. In FOSSACS 2004,
Lecture Notes in Computer Science 2987, pages 226–240, 2004.
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