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Abstract. The paper considers the strong bisimilarity/similarity check-
ing problems for CCSµ and CCS!, two typical variants of CCS. The strong
bisimilarity of the CCSµ/CCS! processes is shown to be Π0

1 -complete,
even when the processes are restricted to the restriction prenex normal
forms. The strong bisimilarity between a CCS!/CCSµ process and a fixed
regular process is also shown to be Π0

1 -complete. The paper also estab-
lishes the decidability of the similarity problem of a regular process by a
CCS! process.

1 Introduction

One of the most important problems in the area of system verification is that of
equivalence checking [1]. In concurrency theory, these are the problems of decid-
ing whether two given processes are behavioral equivalent or not. Among these
equivalences, the bisimilarity plays a prominent role. Many decidability and com-
plexity results have been established during the past two decades for a number
of models, especially those in the PRS-hierarchy [13], for which a recent survey
of results is given in [17] by Srba. Some classical results and proof techniques
are summarized in [12, 6, 1]. One interesting observation from these investiga-
tions is that the bisimilarity is easier to check than the other equivalences in the
linear-branching time spectrum.

CCS is a classical model of interaction introduced by Milner [14]. In [2], Busi,
Gabbrielli and Zavattaro confirm that CCSdµ, the full CCS with communication,
restriction and the dynamic fixpoint (i.e. µ-operator), is Turing Complete. It fol-
lows immediately that neither the strong bisimilarity nor the weak bisimilarity on
the CCSdµ processes is decidable. On the other hand, Hirshfeld, Christensen and
Moller demonstrate in [9] that, if the restriction operator is removed from CCS,
or the composition operator is replaced by parallel composition, the strong sub-
bisimilarity becomes decidable. If we admit both restriction and communication
in the calculi, there are still several variations that are not Turing complete [4],
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Fig. 1. CCS Hierarchy

some of which are given in Fig. 1. In the diagram an arrow “ // ” indicates
the subbisimilarity relationship, which can be interpreted as saying that the tar-
get calculus is at least as expressive as the source calculus. Apart from CCSdµ,
the six calculi in the top of Fig. 1 are not expressive enough to define coun-
ters in the sense of [4]. So the decidability of the equivalence checking problems
for these systems arises naturally. Among the six variants, CCSµ and CCS! are
most important. In both CCSµ and CCS!, the dynamic µ-operator of CCSdµ

is replaced by the static µ-operator and replication respectively. The difference
between these two kinds of µ-operator will be explained in Section 2. CCSµ

0 and
CCS!

0 are subcalculi of CCSµ and CCS!, in which no restriction may occur un-
derneath any µ-operator, respectively replication operator. Finally CCSµ

ν− and
CCS!

ν− are obtained from CCSµ and CCS! by removing the restriction operator.
To fit into the PRS-hierarchy, we write FS for the class of the finite state (i.e.
regular) processes.

In this paper we study the decidability issue of several strong bisimilar-
ity/similarity checking problems for the models in the CCS-Hierarchy. These
problems are indicated by the question marks in Fig. 2. The contributions of
this paper is summarized as follows.

– Using the technique of ‘Defender’s Choice’, a reduction from the halting
problem of Minsky Machine establishes the undecidability (Π0

1 -hardness)
of CCSµ

0 ∼CCSµ
0 . The reduction is then modified to show the undecidabil-

X X ∼X X ∼FS FS- X X -FS

CCS!
ν− X X ? ?

CCSµ
ν− X X ? ?

CCS!
0 ? ? ? ?

CCSµ
0 ? ? ? ?

CCS! ? ? ? ?

CCSµ ? ? ? ?

CCSdµ × × × ×

“∼” for strong bisimilarity
“-” for strong similarity

“X” for decidable
“×” for undecidable
“?” for unknown

Fig. 2. Problems to Explore
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ity (Π0
1 -hard) of CCS!

0∼CCS!
0. This resolves the four problems in the first

column of the table.
– Busi, Gabbrielli and Zavattaro establish in [3] the undecidability result (Σ0

1 -
hardness) of the weak bisimilarity of CCS!. By modifying the proof of Busi et
al., CCS!∼FS is shown undecidable (Π0

1 -hard), which immediately implies
the undecidability (Π0

1 -hardness) of CCSµ∼FS. Jančar, Kučera and Mayr
point out in [7] the close relationship between X ∼FS and the reachability of
HM property. It follows that the reachability of HM property for CCS!/CCSµ

is also undecidable. By constructing a translation from CCS!
0 to Labeled

Petri Net, we demonstrate the decidability of CCS!
0∼FS, CCS!

0 -FS and
FS-CCS!

0, making use of Jančar and Moller’s decidability result [8] on the
Labeled Petri Nets. The same approach applies to CCSµ

0 .
– We show that FS-CCS! is decidable. The proof follows the idea of bisim-

ulation base and the technique of expansion tree presented in [6]. It also
makes use of the well-quasi-order of CCS! introduced in [2].

Only finite branching processes are considered in this paper. This guarantees
that the bisimilarity/similarity can be approximated in the sense that P 6∼ Q
if and only if P 6∼n Q for some n. It necessarily implies that all the problems
in Fig. 2 are actually in Π0

1 . So we only need to show Π0
1 -hardness to get Π0

1 -
completeness. We remark that a relation R(x) is in Σ0

1 (resp. Π0
1 ), if it can be

expressed by ∃y.S(x, y) (resp. ∀y.S(x, y)) for some decidable relation S(x, y).
Note that R(x) is in Σ0

1 if and only if its complement is in Π0
1 . See [16] for

further details about the arithmetic hierarchy.
The rest of the paper is organized as follows. Section 2 lays down the prelim-

inaries. Section 3 investigates the problems of deciding the strong bisimilarity
on the CCSµ processes and the CCS! processes. Section 4 considers the problem
of deciding strong bisimilarity/similarity between a CCS! or CCSµ process and
a finite state process. Section 5 gives some remarks.

2 Basic Definition and Notation

To describe the interactions between systems, we need names. The set of the
names N is ranged over by a, b, c, . . . , and the set of the names and the conames
N ∪N is ranged over by α, β, . . .. To define the operational semantics, we need
action labels. The set of the action labels A = N ∪N ∪ {τ} is ranged by λ. To
introduce the fixpoint operator, we need variables. The set of the variables V is
ranged over by X, Y, Z.

The set E of CCSµ expressions is generated inductively by the grammar

E ::= 0 | X | λ.E | E |E′ | (a)E | E + E′ | µX.E

The relabeling operator is ruled out for the reason that it is too powerful. Since
our purpose is to demonstrate the hardness of bisimilarity checking, the model
should be restricted as less expressive as possible. The binary choice E +E′ will
be used in its guarded form, meaning that both E and E′ are in prefix form. The
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Prefix
λ.E

λ−→ E
Composition

E
λ−→ E′

E |F λ−→ E′ |F

E
α−→ E′ F

α−→ F ′

E |F τ−→ E′ |F ′

Restriction
E

λ−→ E′ a 6∈ n(λ)

(a)E
λ−→ (a)E′

Choice
E

λ−→ E′

E + F
λ−→ E′

Fixpoint
E{µX.E/X} λ−→ E′

µX.E
λ−→ E′

Fig. 3. The Semantics for CCSµ

guardedness guarantees the finite branching property. The variable X in µX.E
is bound. A variable is free if it is not bound. A CCSµ expression containing no
free variables is a process. The set of the processes is denoted by P.

The standard semantics of CCSµ is given by the labeled transition system
(E ,A,→), where the elements of E are often referred to as states. The relation
→ ⊆ E × A × E is the transition relation. The membership (E, λ,E′) ∈ → is
always indicated by E

λ→ E′. The relation → is generated inductively by the
rules defined in Fig. 3.

Special attention should be paid to the Fixpoint rule. The higher order sub-
stitutions used in this paper, like {µX.E/X}, is static, meaning that when ap-
plying the substitution to a process expression E, the bound names need be
renamed to avoid name capture. Under the static interpretation the process
µX.(a|(a)(a|X)) can not perform any action. If on the other hand the dynamic
µ-operator is adopted, one would have the infinite computation

µX.(a | (a)(a |X)) τ→ a | (a)(0 |0 | (a)(a |µX.(a | (a)(a |X)))) τ→ . . .

The notation CCSdµ appeared in Fig. 1 refers to the CCS with the dynamic
fixpoint operator. For more discussions on the relative expressive power of these
two kinds of µ-operator, see [2] and [4].

A binary relation R on the set of processes is a strong simulation if, for each
(P,Q) ∈ R, P can be simulated by Q in the following sense:

If P
λ−→ P ′, then Q

λ−→ Q′ for some Q′ such that (P ′, Q′) ∈ R.

A binary relation R is a strong bisimulation if both R and its inverse R−1

are strong simulations. The strong similarity - is the largest strong simulation,
and the strong bisimilarity ∼ is the largest strong bisimulation. The former is a
preorder and the latter is an equivalence.

The strong bisimilarity has a game theoretic characterization known as the
bisimulation game. It is a complete-information dynamic game played by two
players named ‘attacker’ and ‘defender’. The labeled transition system (P,A,→)
is perceived as a chessboard. During the play the current position is described
by a pair of states (P1, P−1) ∈ P × P. The game is played in rounds. In each
round the players change the position according to the following rules:

1. The attacker chooses a state i ∈ {1,−1}, an action λ ∈ A, and some P ′
i ∈ P

such that Pi
λ−→ P ′

i .
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2. The defender responds by choosing some P ′
−i ∈ P such that P−i

λ−→ P ′
−i;

and then (P ′
1, P

′
−1) becomes the current position of the next round.

If the defender never gets stuck, it wins. Otherwise the attacker wins. It is easy
to see that the defender has a winning strategy in the bisimulation game starting
from the initial position (P,Q) if and only if P ∼ Q.

The variant CCS! is obtained from CCSµ by replacing the fixpoint operator
by the replication operator. The grammar of the process is defined as follows:

P ::= 0 | λ.P | P | P ′ | (a)P | P + P ′ | !P

The operational semantics of the replication is given by the following two rules:

Replication
P

λ−→ P ′

!P λ−→ P ′ | !P

P
α−→ P ′ P

α−→ P ′′

!P τ−→ P ′ |P ′′ | !P

Throughout this paper we do not distinguish processes or process expressions
up to the congruence induced by the commutativity and the associativity of the
choice operator “+” and the composition operator “|”.

3 Undecidability of Strong Bisimilarity

In this section, we show that the strong bisimilarity between two CCSµ processes
is Π0

1 -hard by a many-one reduction from HaltingMinskyMachine. The latter
is known to be Σ0

1 -complete. These two problems are formally stated as follows:

Problem: CCSµ ∼CCSµ

Instance: Two CCSµ processes P1 and P2.
Question: P1 ∼ P2 ?

Problem: HaltingMinskyMachine
Instance: A Minsky Machine R.
Question: Does the computation of R terminate when R starts from the configu-

ration (1; 0, 0)?

Although the construction of Busi et al [3] can work for the general case, the
construction presented here allows us to prove much stronger results. The proof
technique is known as ‘Defender’s Choice’ [12]. Using this technique and ad-
ditional manipulations, the same problem for CCS! can also be shown to be
Π0

1 -hard.
Two-register Minsky Machine is a Turing complete computational model [15].

A Minsky Machine R has two registers r1 and r2 that can hold arbitrary large
natural numbers. The behavior of R is specified by a sequence of instructions
{(1 : I1), (2 : I2), . . . , (n− 1 : In−1), (n : halt)}. For each i ∈ {1, . . . , n− 1}, the
i-th instruction may be in one of two forms:

- (i : Succ(rj)): The instruction adds 1 to the content of the register rj and
i + 1 becomes the value of the program counter.
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- (i : Decjump(rj , s)): If the contents of the register rj is not zero, the instruc-
tion decreases it by 1 and i + 1 becomes the value of the program counter;
otherwise s becomes the value of the program counter.

The configuration of R is given by the tuple (i; c1, c2) where i is the program
counter indicating the instruction to be executed, and c1,c2 are the current
contents of the registers r1,r2. The computation of R is defined in a natural
way via a (finite or infinite) sequence of configurations starting from a certain
initial configuration. Whenever the n-th instruction (known as the halting state)
is reached, the computation terminates. The following lemma is well known.

Lemma 1. HaltingMinskyMachine is undecidable. It is Σ0
1 -complete in the

arithmetic hierarchy.

3.1 Basic Construction

Our goal is to show that there is an effective construction such that given a Min-
sky Machine R, it produces a pair of CCSµ processes A and B with the property
that R halts if and only if A and B are not strongly bisimilar. For convenience
the construction given below makes use of the constant definition instead of the
µ-operator. Notice however that since there is no restriction operator underneath
any µ-operations, the µ-operator used here is trivially static.

Let R be an instance of HaltingMinskyMachine whose instructions are
{(1 : I1), (2 : I2), . . . , (n − 1 : In−1), (n : halt)}. For every i from 1 to n, we
define a pair of processes Pi and Qi as follows:

– If the i-th instruction is (i : Succ(rj)), let

Pi
def= incj.Pi+1

Qi
def= incj.Qi+1

– If the i-th instruction is (i : Decjump(rj , s)), let

Pi
def= decj.d.Pi+1 + zeroj.(tt.z.Ps + ff.z.Qs)

Qi
def= decj.d.Qi+1 + zeroj.(tt.z.Qs + ff.z.Ps)

– For the n-th instruction (n : halt), let

Pn
def= halt.0

Qn
def= 0

The processes Pi’s and Qi’s will be used to simulate the execution of the i-th
instruction of R. The idea behind this definition will be explained later. Note
that the only difference between the Pi’s and the Qi’s is that Pn can perform a
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special action halt whereas Qn can not. The processes Counterj(k) for j ∈ {1, 2}
defined below are used to partially simulate the registers of R.

Counterj(k) def= Cj | Cj | . . . | Cj︸ ︷︷ ︸
k

| Oj

where Oj and Cj are defined as follows:

Oj
def= incj.(Cj | Oj) + zeroj.tt.Oj

Cj
def= decj.0 + zeroj.ff.Cj

The process Counter1(0) for example is one of the weak forms of counter used
in this paper. They are not the counter proper. However they are good enough
for the purpose of deriving some undecidability results.

The next two processes are used to describe the configurations of R.

ConfigA(i; c1, c2)
def= (ĩnc)(d̃ec)(z̃ero)(tt)(ff)(Pi | Counter1(c1) | Counter2(c2))

ConfigB(i; c1, c2)
def= (ĩnc)(d̃ec)(z̃ero)(tt)(ff)(Qi | Counter1(c1) | Counter2(c2))

Some of the properties of these definitions are described in the next two lemmas.
The first one is immediate by definition.

Lemma 2. Let (i; c1, c2) be a configuration of R and the i-th instruction is
(i : Succ(rj)), then there is a unique continuation of the bisimulation game from
the pair of processes ConfigA(i; c1, c2) and ConfigB(i; c1, c2) such that after
one round, the players reach the pair ConfigA(i; c′1, c

′
2) and ConfigB(i; c′1, c

′
2)

where c′j = cj + 1 and c′3−j = c3−j.

Lemma 3. Let (i; c1, c2) be a configuration of R and the i-th instruction is
(i : Decjump(rj , s)). Assume that a bisimulation game is played from the pair
ConfigA(i; c1, c2) and ConfigB(i; c1, c2). The followings hold:

(a) If cj = 0, then there is a unique continuation of the game such that after three
rounds, the players reach the pair ConfigA(s; c1, c2) and ConfigB(s; c1, c2).

(b) If cj > 0 and the attacker chooses the τ action induced by the synchronization
via channel decj, then the defender has a way to continue the game such
that, after two rounds, ConfigA(i; c′1, c

′
2) and ConfigB(i; c′1, c

′
2) are reached,

where c′j = cj−1 and c′3−j = c3−j. If the defender does not play in this way,
there is a way for the attacker to win the game.

(c) If cj > 0 and the attacker chooses the τ action induced by the synchronization
via channel zeroj, then there is a way for the defender to win the game.

Proof. Without loss of generality, assume that j = 1 and the attacker always
chooses the process containing Pi at the first step. For part (a), the players’
choices cannot affect the continuation of the game. See the following diagram-
matic illustration:
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(. . . )(Pi|O1| . . . )

τ

y
(. . . )((tt.z.Ps + ff.z.Qs)|tt.O1| . . . )

τ

y
(. . . )(z.Ps|O1| . . . )

z

y
(. . . )(Ps|O1| . . . )

(. . . )(Qi|O1| . . . )

τ

y
(. . . )((tt.z.Qs + ff.z.Ps)|tt.O1| . . . )

τ

y
(. . . )(z.Qs|O1| . . . )

z

y
(. . . )(Qs|O1| . . . )

For part (b), if the attacker chooses the τ action induced by Pi
decj−−→ d.Pi+1 and

Cj
decj−−→ 0, the defender’s match is induced by Qi

decj−−→ d.Qi+1 and Cj
decj−−→ 0. See

(. . . )(Pi| . . . |C1|O1| . . . )

τ

y
(. . . )(d.Pi+1| . . . |O1| . . . )

d

y
(. . . )(Pi+1| . . . |O1| . . . )

(. . . )(Qi| . . . |C1|O1| . . . )

τ

y
(. . . )(d.Qi+1| . . . |O1| . . . )

d

y
(. . . )(Qi+1| . . . |O1| . . . )

If the defender chooses the other τ action, say the one induced by Qi
zeroj−−→

tt.z.Qs + ff.z.Ps and Cj
zeroj−−→ ff.Cj (or Oj

zeroj−−→ tt.Oj), the attacker can win the
game by performing d in the next round.

(. . . )(Pi| . . . |C1|O1| . . . )

τ

y
(. . . )((tt.z.Ps + ff.z.Qs)| . . . |ff.Cj |O1| . . . )

τ

y
(. . . )(z.Qs| . . . |Cj |O1| . . . )

(. . . )(Qi| . . . |C1|O1| . . . )

τ

y
(. . . )((tt.z.Qs + ff.z.Ps)| . . . |Cj |tt.O1| . . . )

τ

y
(. . . )(z.Qs| . . . |Cj |O1| . . . )

For part (c), there are two choices for the attacker. In the first case, the attacker

chooses the τ action induced by Pi
zeroj−−→ tt.z.Ps + ff.z.Qs and Cj

zeroj−−→ ff.Cj .
The defender can simulate this action by performing the τ -action induced by

Qi
zeroj−−→ tt.z.Qs + ff.z.Ps and Oj

zeroj−−→ tt.Oj . See the above diagram for illus-
tration. When the play arrives at this position, the two processes would become
syntactically the same! The other case is similar. ut
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The next two lemmas relate the termination of the machine R to the inequal-
ity of the processes ConfigA(1; 0, 0), ConfigB(1; 0, 0).

Lemma 4. If the execution of R from the configuration (1; 0, 0) terminates, then
ConfigA(1; 0, 0) 6∼ ConfigB(1; 0, 0).

Proof. We show that the attacker has a winning strategy to win the bisimulation
game if the run of R from the configuration (1; 0, 0) terminates. The attacker
starts the game by choosing the process ConfigA(1; 0, 0), and he always chooses
this process during the play. When the process reaches ConfigA(i; c1, c2) and
the i-th instruction of R is ‘i : Decjump(rj , s)’ and cj > 0, the attacker always
chooses the τ action induced by the synchronization via channel decj, i.e. the at-
tacker let the process simulate the execution of R honestly. According to part (b)
of Lemma 3, the defender must play the corresponding moves in order not to lose
immediately. However, since R will terminate eventually, the attacker can reach
to ConfigA(n; c1, c2) and forces the defender to reach to ConfigB(n; c1, c2). Now
the attacker performs ConfigA(n; c1, c2)

halt−−→ and the defender gets stuck. ut

Lemma 5. If the execution of R from the configuration (1; 0, 0) does not termi-
nate, then ConfigA(1; 0, 0) ∼ ConfigB(1; 0, 0).

Proof. We show that the defender has a winning strategy to win the bisimulation
game if the execution of R from the configuration (1; 0, 0) does not terminate.
During the play, if the attacker chooses a process and lets it simulate the exe-
cution of R honestly, the defender can do the same thing on the other process.
If the play goes this way, no one gets stuck and the defender wins. If the at-
tacker chooses ConfigA(i; c1, c2) or ConfigB(i; c1, c2) and the i-th instruction
is ‘i : Decjump(rj , s) and cj > 0, it may perform the τ action induced by the
synchronization via channel zeroj. But then according to part (c) of Lemma 3,
the defender has a way to win the game. ut

To state the main result of this section, we need to define the restriction
prenex normal form.

Definition 1. A process is in restriction prenex normal form if P is of the form
(a1)(a2) . . . (ak)P ′ for some restriction free P ′.

Theorem 1. The strong bisimilarity of CCSµ is Π0
1 -complete even for the re-

striction prenex normal forms.

Proof. Two CCSµ processes, ConfigA(i; 0, 0) and ConfigB(i; 0, 0), have been
effectively constructed from the Minsky Machine R. By Lemma 4 and Lemma 5,
the execution of R from the initial configuration (1; 0, 0) terminates if and only
if ConfigA(i; 0, 0) 6∼ ConfigB(i; 0, 0). Therefore a many-one reduction from
HaltingMinskyMachine to the complement of CCSµ∼CCSµ has been cre-
ated. By Lemma 1, the complement of CCSµ∼CCSµ is Σ0

1 -hard, which means
that CCSµ∼CCSµ is Π0

1 -hard. On the other hand, since ∼=
⋃

i∈ω ∼i for the
finite-branching processes, there is a trivial procedure that can find a witness if
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the two input processes are not bisimilar, which means that CCSµ∼CCSµ is in
Π0

1 . Hence the Π0
1 -completeness is established. Notice that both ConfigA(i; 0, 0)

and ConfigB(i; 0, 0) are in restriction prenex normal form. So Π0
1 -completeness

still holds when restricted to the restriction prenex normal forms. ut

3.2 Generalization to CCS!

In the CCS-hierarchy established in [4], CCSµ is strictly more expressive than
CCS! in the sense of weak bisimilarity. In the strong case, CCSµ is strictly more
expressive than CCS! even if all the choices are guarded. One can show, for
example, that µX.a.b.c.X is not strongly bisimilar to any process of CCS!. A
consequence of this observation is that the previous result does not immediately
imply the same result for CCS!. The proof can be repeated but need some careful
modifications. The intuition of the next encoding is to interpret every instruction
by a process of the form !addr.opr, where addr should be perceived as the address
of the instruction and opr the operation of the instruction.

Theorem 2. The strong bisimilarity of CCS! is Π0
1 -complete for the restriction

prenex normal forms.

Proof. The simulation of the Minsky Machine defined in the previous section is
modified in a way that the role of the fixpoint operator is replaced by that of
the replication operator.

– If the i-th instruction is (i : Succ(rj)), let

Pi
def= !instiP .incj .insti+1

P

Qi
def= !instiQ.incj .insti+1

Q

– If the i-th instruction is (i : Decjump(rj , s)), let

Pi
def= !instiP .(decj .d.insti+1

P + zeroj .(tt.τ.τ.z.instsP +ff.rdy.z.instsQ))

Qi
def= !instiQ.(decj .d.insti+1

Q + zeroj .(tt.τ.τ.z.instsQ+ff.rdy.z.instsP ))

– For the n-th instruction (n : halt), let

Pn
def= !instnP .halt.0

Qn
def= !instnQ.0

The counter must be redefined in CCS! without using any restrictions.

Oj
def= !(incj.Cj + zeroj.tt)

Cj
def= !(decj + zeroj.ff.mj) | !mj.rdy(decj + zeroj.ff.mj)
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Notice that there are extra τ ’s and the new name rdy in the definition of Pi

and Qi. This is because the counter defined here may perform some extra com-
putation steps during the zero-testing wrongfully chosen. The mj’s are bound
names in the configuration. The configuration (i; c1, c2) of R is interpreted by
ConfigA(1; c1, c2) and ConfigB(1; c1, c2) defined as follows:

ConfigA(i; c1, c2)
def= (ĩnst)(ĩnc)(d̃ec)(z̃ero)(m̃)(tt)(ff)(rdy)

(instiP |
n∏

i=1

Pi |
n∏

i=1

Qi |Counter1(c1) |Counter2(c2))

ConfigB(i; c1, c2)
def= (ĩnst)(ĩnc)(d̃ec)(z̃ero)(m̃)(tt)(ff)(rdy)

(instiQ |
n∏

i=1

Pi |
n∏

i=1

Qi |Counter1(c1) |Counter2(c2))

Using the same argument given in the previous subsection, it is routine to show
that R terminates if and only if ConfigA(1; c1, c2) 6∼ ConfigB(1; c1, c2). ut

Notice that the processes in restriction prenex normal form are automatically
in CCSµ

0/CCS!
0. Thus, both CCSµ

0 ∼CCSµ
0 and CCS!

0∼CCS!
0 are Π0

1 -complete.

4 Strong Bisimilarity on Finite State Process

The choice operator is very much a specification combinator whereas the com-
position operator and the localization operator are purely implementation com-
binators. A specification defined in CCS is a finite state process since it does not
contain any occurrences of the composition and the localization operators. An
abundance of specification examples in CCS are given in [14]. If an implemen-
tation Imp of a specification Spec are both defined in CCS, the correctness of
the implementation boils down to the question “Is Imp ≈ Spec?”. The problem
is undecidable. A less ambitious question asks if Imp ∼ Spec? We investigate in
this section the (un)decidability of this problem.

The following definition introduces a classification of processes that helps to
give a precise answer to the problem.

Definition 2. The restriction depth of a process P of CCS!, denoted by RD(P ),
is defined inductively as follows: RD(P ) = 0 if there is no restriction operator
under any replication. For k > 0, RD(P ) = k if the maximum RD(P ′) is k − 1
for those sub-processes P ′ of P that are under one replication operator.

The class of all the processes in CCS! with restriction depth no more than k
is denoted by CCS!

k.

A similar notion can be defined for CCSµ. Notice that the processes in restriction
prenex normal form are all in CCS!

0. Conversely, every process in CCS!
0 can

be converted to a restriction prenex normal form by applying α-conversion if
necessary.

11



4.1 The General Case

In this section we consider the following general problem:

Problem: CCS!∼FS

Instance: A CCS! process P and a finite state process F .
Question: P ∼ F?

This problem is undecidable even for CCS!
1.

Theorem 3. The strong bisimilarity between a process P ∈ CCS!
1 and a finite

state process F ∈ FS is Π0
1 -complete, even if F is fixed.

The proof of theorem 3 is strongly affected by the construction of Busi et al [3],
which reveals that CCS!

1 processes can simulate Minsky Machines in a nonde-
terministic fashion. For completeness the construction and the proof details are
sketched. Busi et al’s translation of a Minsky Machine R to a CCS! process is
presented at first:

– If the i-th instruction is (i : Succ(rj)), let

Pi
def= !insti.(incj |inc.insti+1)

– If the i-th instruction is (i : Decjump(rj , s)), let

Pi
def= !insti.(decj |(dec.insti+1 + zero.insts))

– If the n-th instruction is (n : halt), let

Pn
def= !instn.0

The counters and the configurations are defined in Fig. 4. In the definition of
Config(i; c1, c2) the components G1 and G2 are the deadlock garbages produced
during computation.

Lemma 6. Let (i; c1, c2) be a configuration of a Minsky Machine R. If the com-
putation of R from (i; c1, c2) terminates, then Config(i; c1, c2) converges, i.e.
there exists a computation that terminates. Otherwise Config(i; c1, c2) ∼ !τ .

The proof of Lemma 6 is nothing more than a careful examination. Theorem 3
can be derived directly from the lemma.

Since CCSµ is stronger than CCS!
1, the next corollary is immediate.

Corollary 1. The strong bisimilarity between a process P ∈ CCSµ and a finite
state process F ∈ FS is Π0

1 -complete, even if F is fixed.

Another class of problems, which is closely related to the problem of the
strong bisimilarity on the finite state process, is concerned with the reachability
HM property. Given a process P , and a logic formula ϕ which specifies a property,
the reachability property problem asks whether P can reach some states that
satisfy the property ϕ; in other words, it asks whether P |= EFϕ, where EF
is a connective in the logic CTL. In the case of ReachabilityHMProperty
defined below, the logic formula ϕ is confined in Hennessy-Milner Logic [14].

12



Counterj(k)
def
= nrj | !nrj .(m)(i)(d)(u)( m | !m.(incj .i + decj .d) |

!i.(m|inc|u|d.u.(m|dec)) | d.(zero|u.DIV |nrj) |∏
k(u|d.u.(m|dec)) )

Config(i; c1, c2)
def
= (ĩnst)(ĩnc)(d̃ec)(ñr)(inc)(dec)(zero)(inst1 |

∏n
i=1 Pi |

Counter1(c1) | Counter2(c2) |
∏

k1
G1 |

∏
k2

G2)

Gj
def
= (m)(i)(d)(u)(

!m.(incj .i + decj .d) | !i.(m|inc|u|d.u.dec) | u.DIV )

Fig. 4. Counters and Configurations Defined in CCS!
1

Problem: ReachabilityHMProperty(X)
Instance: A process P ∈ X, and a formula ϕ in Hennesy-Milner Logic.
Question: P |= EFϕ?

In the Theorem 22 of [7], Jančar, Kučera and Mayr establishes the following.

Lemma 7. Let X be a process class. If ReachabilityHMProperty(X) is
decidable, then X ∼FS is also decidable.

Notice that, in the proof of Theorem 22 of [7], a many-one reduction is set
up from X ∼FS to ReachabilityHMProperty(X). Since CCS!

1∼FS and
CCSµ

1 ∼FS are both shown Π0
1 -complete, ReachabilityHMProperty(CCS!

1)
and ReachabilityHMProperty(CCSµ

1 ) must be Π0
1 -complete. Hence we have

the next corollary.

Corollary 2. The reachability HM property problem for CCS!
1 and CCSµ is

Π0
1 -complete.

4.2 The Case of Restriction Prenex Normal Form

Although both CCS!∼FS and CCSµ∼FS are undecidable in the general case,
their restricted versions, CCS!

0∼FS and CCSµ
0 ∼FS, turn out to be decidable.

These results are summarized in the following theorem.

Theorem 4. The strong bisimilarity between a process P ∈ CCS!
0 (or P ∈

CCSµ
0 ) and a finite state process F ∈ FS is decidable. The reachability HM

property problem for CCS!
0 (or CCSµ

0 ) is also decidable.

The proof of Theorem 4 is indirect. A bisimilarity preserving translation
from CCS!

0 (or CCSµ
0 ) to Labeled Petri Net is created. With the help of Jančar

et al. [8, 7], we know that the same problems for Labeled Petri Net are decidable.
Hence our decidability proof.

We begin with the definition of the Petri Nets and the Labeled Petri Nets.
We write N for the set of natural numbers.
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Definition 3. A Petri Net is a tuple N = (Q,T, F,M0) and a Labeled Petri
Net is a tuple N = (Q,T, F, L,M0), where Q and T are finite disjoint sets of
places and transitions respectively, F : (Q×T )∪ (T ×Q) → N is a flow function
and L : T → A is a labeling. M0 is the initial marking, where a marking M is
a function Q → N assigning the number of tokens to each place.

A transition t ∈ T is enabled at a marking M , denoted by M
t−→, if M(p) ≥

F (p, t) for every p ∈ Q. A transition t enabled at M may fire yielding the
marking M ′, denoted by M

t−→ M ′, where M ′(p) = M(p)− F (p, t) + F (t, p) for
all p ∈ Q. For each λ ∈ A, we write M

λ−→, respectively M
λ−→ M ′ to mean that

M
t−→, respectively M

t−→ M ′ for some t with L(t) = λ.

Some remarks are called for. In the above definition A is the set of ac-
tion labels. A process may contain only a finite number of action labels. A
Labeled Petri Net N can be viewed as a labeled transition system (M,A,→)
with M being the markings of N . The strong bisimilarity is defined accordingly.
Suppose Q = {S1, S2, . . . , Sn} is the set of places. We use labeled transition
rules of the form Sm1

1 Sm2
2 . . . Smn

n
λ−→ S

m′
1

1 S
m′

2
2 . . . S

m′
n

n to indicate that there is
a transition t whose label is λ and the flow function is such that t is defined by
F (Si, t) = mi and F (t, Si) = m′

i for every i = 1, . . . , n. A marking M is denoted
by S

M(S1)
1 S

M(S2)
2 . . . S

M(Sn)
n , which can be viewed as a multiset over Q. Thus N

is specified by (Q,A,Tr,M0), where Tr is the set of the labeled transition rules.
The next lemma is due to Jančar, Moller [8] and Jančar, Kučera, Mayr [7].

Lemma 8. The strong bisimilarity between a marking M0 of a Labeled Petri Net
N and a finite state process F ∈ FS is decidable. The corresponding reachability
HM property problem is also decidable.

For the description of our translation, the following three definitions and the
lemma, borrowed from [4], are needed.

Definition 4. A CCS!
0 process P is in concurrent normal form if P is of the

form (m̃)
∏

i∈I Pi for some names m̃ and, for each i ∈ I, Pi is restriction free
and not a composition. We say that Pi, for each i ∈ I, is a concurrent component
of P .

Definition 5. Suppose that P is a restriction free CCS! process. The concur-
rent subprocesses of P , denoted by Csub(P ), is defined inductively as follows:
Csub(0) def= ∅; Csub(λ.P ′) def= {λ.P ′} ∪ Csub(P ′); Csub(P ′ |P ′′) def= Csub(P ′) ∪
Csub(P ′′); Csub(P ′+P ′′) def= {P ′+P ′′} ∪ Csub(P ′) ∪ Csub(P ′′); Csub(!P ′) def=
{!P ′} ∪ Csub(P ′).

Suppose that P is a CCS!
0 process in concurrent normal form (m̃)P ′ where

P ′ is restriction free, then Csub(P ) is defined by Csub(P ′).

Definition 6. The set of the descendants of a process P , denoted by Dscd(P ),
is the set of the processes P ′ such that P

λ1−→ . . .
λn−−→ P ′ for some n ≥ 0 and

λ1, . . . , λn ∈ A.
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Lemma 9. For every process P of CCS!
0 in concurrent normal form, Csub(P )

is finite, and for every P ′ ∈ Dscd(P ), Csub(P ′) ⊆ Csub(P ).

Since every CCS!
0 process can be transformed into a concurrent normal form

easily, our translation will only be given on the concurrent normal forms. The key
observation is that, in concurrent normal form, no new bound name is produced
during the evolution.

Lemma 10. There is an algorithm such that, given process P of CCS!
0 in con-

current normal form, it outputs a Labeled Petri Net NP with the same action
set and P ∼ NP .

Proof. Let Csub(P ) = {Ci | i ∈ I} and P = (m̃)(
∏

i∈I Cni
i ). The Labeled Petri

Net NP = (Q,A,→,M0) is defined as follows. The places and the initial marking
are defined as follows:

Q
def= {[Ci] | i ∈ I}

M0
def=

∏
i∈I

[Cni
i ]

The transition rules are defined inductively:

– If Ci
λ−→

∏
j∈I C

nj

j then [Ci]
λ−→

∏
j∈I [Cj ]nj is a rule provided that λ 6∈ m̃.

– If Ci1
a−→

∏
j∈I C

mj

j and Ci2
a−→

∏
j∈I C

nj

j then [Ci1 ][Ci2 ]
τ−→

∏
j∈I [Cj ]mj+nj

is a rule.

The remaining work is to check if

{((m̃)(
∏
i∈I

Cni
i ),

∏
i∈I

[Ci]ni) | ni ≥ 0 for i ∈ I)}

is a bisimulation. ut

Using the same argument, one can show that Lemma 10 also holds for CCSµ
0 .

Theorem 4 follows directly from Lemma 10 and Lemma 8.

4.3 The Simulation Preorder

One interesting relevant problem is the decidability of the similarity equivalence
(preorder). Formally these problems can be stated as follows:

Problem: CCS! -FS

Instance: A CCS! process P and a finite state process F .
Question: P - F?

Problem: FS- CCS!

Instance: A CCS! process P and a finite state process F .
Question: F - P?
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It is shown by Kučera and Mayr [11] that for many kinds of process classes,
similarity is harder than bisimilarity. But unfortunately, their constructions can
not be used to show the similar results for CCS!. So it is worth investigating the
decidability of CCS! - FS and FS - CCS!. We remark that by the translation
provided in Section 4.2 and Theorem 3.2 and Theorem 3.5 of [8], one has the
similarity relationships stated in the next theorem.

Theorem 5. FS-CCS!
0, FS-CCSµ

0 , CCS!
0 -FS, and CCSµ

0 -FS are all de-
cidable.

The main result of this section is that FS-CCS! is decidable. For the proof,
we need a notion called well quasi order [10].

Definition 7. A well quasi order (X,≤) is a preorder such that, for every in-
finite sequence x0, x1, x2, . . . in X, there exist some indexes i < j such that
xi ≤ xj.

Next we point out that a syntactic well quasi order can be defined on CCS!.
This construction was first pointed out by Busi et al in [2]. The following par-
ticular definition is from [4].

Definition 8. The structural expansion 4 on the CCS! processes is defined
inductively as follows:

– P 4 P ;
– P 4 Q whenever Q = P | R for some R;
– (m)P 4 (m)Q whenever P 4 Q;
– P 4 Q whenever P = P1 | P2, Q = Q1 | Q2, P1 4 Q1 and P2 4 Q2.

Intuitively P 4 Q means that Q contains at least as many possible individual
processes running concurrently as P . It is not hard to see that 4 is transitive.
Due to the syntactical nature of the definition, the following fact should be clear.

Lemma 11. 4 is decidable.

The next two technical lemmas, due to Busi et al., are crucial to our proof.
The proof of Lemma 12 is straightforward. For a detailed proof of Lemma 13,
one may consult [4].

Lemma 12 (Compatibility Lemma). Suppose that P ,Q are CCS! processes.
If P 4 Q and P

λ−→ P ′, then Q′ exists such that Q
λ−→ Q′ and P ′ 4 Q′.

Lemma 13 (Expansion Lemma). For every process P of CCS!, (Dscd(P ),4)
is a well quasi order.

The technique of bisimulation bases, pioneered by Caucal, is widely used in
the proof of the decidability of bisimilarity for many classes of processes. We
make use of the simulation bases, modified from the bisimulation bases, together
with Compatibility Lemma and Expansion Lemma to establish the decidability
of FS - CCS!. For more on the technique of the bisimulation bases, the reader
is referred to [1, 6].

In the following, we use some terminologies borrowed from [6] with slightly
modification. We begin with the definition of simulation base.
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Definition 9. Let R1,R2 ⊆ FS×CCS!. The relation R2 is called a (simulation)
expansion of the relation R1, if for each (F, P ) ∈ R1 and λ ∈ A, we have:

- if F
λ−→ F ′, then P

λ−→ P ′ for some P ′ such that (F ′, P ′) ∈ R2

A binary relation R ⊆ FS×CCS! is a simulation base if �R is an expansion of
R, where �R is the least superset of R such that F �R P ′ whenever it contains
F �R P and P 4 P ′.

The next lemma tells us that, to prove similarity, it is enough to produce a
simulation base instead of producing a complete (and infinite) simulation rela-
tion.

Lemma 14. If R is a simulation base, then �R is a simulation, and conse-
quently �R⊆-.

Proof. Let F ∈ FS, P ∈ CCS!, and F �R P . By the definition of �R, it is not
hard to see that there exists Q ∈ CCS! such that FRQ and Q 4 P . Assume
that F

λ−→ F ′. Since R is a simulation base, we have Q
λ−→ Q′ for some Q′ such

that F ′ �R Q′. Now that Q 4 P , by the Compatibility Lemma (Lemma 12), we
also have P

λ−→ P ′ for some P ′ such that Q′ 4 P ′. Thus F ′ �R Q′ 4 P ′, which
implies F ′ �R P ′.

In the proof of Theorem 6 we need to use expansion trees, which is first
adopted in [5].

Definition 10. An expansion tree is a (generally infinite) rooted tree whose
nodes are labeled by sets of pairs of FS× CCS! such that the children of a node
are precisely the (finite many) expansions of that node. A leaf is a node without
any children.

A branch in an expansion tree is successful if it is infinite or it finishes with
a node labeled by the empty set; otherwise it is unsuccessful.

The following proposition provides a characterization of the similarity rela-
tionship in terms of the expansion tree. It is the ‘similarity’ version of Fact 8
in [6].

Proposition 1. F0 - P0 if and only if the expansion tree rooted at {(F0, P0)}
has a successful branch.

Proof. The union of all pairs in one successful branch is a simulation.

As the expansion tree is infinite in general, F0 - P0 can not be decided by
constructing the whole tree. However, there is no need to produce a complete
simulation relation for our purpose. We can modify the expansion tree by omit-
ting some pairs to produce a finite simulation base for one successful branch.

Definition 11. A reduced expansion tree is a rooted tree whose nodes are labeled
by sets of pairs of FS× CCS! such that the children of a node are precisely the
expansions of that node in which a pair (F, P ) is omitted whenever there is
P ′ 4 P such that the pair (F, P ′) already appears aa an ancestor node.

The Successful and unsuccessful branches are defined in the same way.
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Proposition 2. F0 - P0 if and only if the reduced expansion tree rooted at
{(F0, P0)} has a successful branch.

Proof. The union of all the pairs in a successful branch is a simulation base. ut

The reduced expansion tree has the following crucial property.

Lemma 15. The reduced expansion tree is finite.

Proof. It is enough to show that there is no infinite branch in a reduced expansion
tree. It would then follow from König Lemma that the tree is finite. Notice that
the union of all the pairs in an infinite branch is infinite. Let’s denote it by R.
Since the first element of each pair in R is generated by the same finite state
process, there must be some Fc that relates to an infinite umber of P ’s in R,
say, (Fc, P1), (Fc, P2), (Fc, P3), . . . . Without loss of generality we may assume
that (Fc, Pi) occurs before (Fc, Pj) in the branch whenever i < j. By Lemma 13,
there exist i and j with i < j such that Pi 4 Pj , which contradicts to the
omitting rule in the definition of the reduced expansion trees. ut

Theorem 6. FS - CCS! is decidable.

Proof. By Lemma 11 and Lemma 15, The reduced expansion tree can be con-
structed effectively. By Proposition 2, the remaining job is to search for a suc-
cessful branch in the tree. ut

5 Remark

We have established several decidability and undecidability results on bisimilar-
ity/similarity checking problems related to CCSµ and CCS!. Fig. 5 summarizes
the status quo of our understanding of the decidability property for several pro-
cess calculi.

X X ∼X X ∼FS FS- X X -FS

CCS!
ν− X X X X

CCSµ
ν− X X X X

CCS!
0 × X X X

CCSµ
0 × X X X

CCS! × × X ?

CCSµ × × ? ?

CCSdµ × × × ×

“∼” for strong bisimilarity
“-” for strong similarity

“X” for decidable
“×” for undecidable
“?” for unknown

Fig. 5. Summary of the Results

The three open problems indicated in Fig. 5 deserve further comment. If
the problem FS - CCSµ would turn out to be undecidable, it would go along
with a result of [4] that CCSµ is strictly more powerful than CCS!. The problem
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CCS! - FS is even more interesting. For about two decades, there has been a
general belief that simulation is harder than bisimulation [11]. It is a corollary
of this belief that the problem should be undecidable. But nothing seems to
indicate that a positive answer is unlikely. The importance of the third question
really depends on the answers to these two questions. So we will not comment
on that.
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