
The Name-Passing Calculus

YUXI FU

and

HAN ZHU

Shanghai Jiao Tong University

Name-passing calculi are foundational models for mobile computing. Research into these models
has produced a wealth of results ranging from relative expressiveness to programming pragmatics.

The diversity of these results call for clarification and reorganization. This paper applies a model

independent approach to the study of the name-passing calculi, leading to a uniform presentation
and simplification. The technical tools and the results studied in the paper form the foundation

for a theory of name-passing calculus.

Categories and Subject Descriptors: ... [...]: ...

General Terms: Theory, Languages

Additional Key Words and Phrases: Bisimulation, pi calculus, process calculus

Corresponding Author’s postal address: BASICS, Department of Computer Science, Shanghai
Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Corresponding Author’s email address: fu-yx@cs.sjtu.edu.cn.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 0000-0000/2010/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, April 2010, Pages 1–0??.

2 · Y. Fu and H. Zhu

Contents

1 Mobility in Practice and in Theory 3

2 Pi Calculus 7
2.1 Process . 8
2.2 Semantics . 10
2.3 Variants . 12

3 Equality 15
3.1 Absolute Equality . 15

3.1.1 External Bisimilarity . 18
3.1.2 Strong Equality and Weak Equality 21
3.1.3 Remark . 22
3.1.4 Algebraic Property . 23

3.2 Testing Equivalence . 25
3.2.1 May Equivalence and Must Equivalence 26
3.2.2 Remark . 27
3.2.3 Testing Equivalence without Testing 28

3.3 Remark . 30

4 Expressiveness 31

5 Proof System 33
5.1 Normal Form . 33
5.2 Axiom for Absolute Equality . 34
5.3 Axiom for Box Equality . 37
5.4 Remark . 40

6 Future Work 43

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 3

1. MOBILITY IN PRACTICE AND IN THEORY

Mobile calculi feature the ability to pass around objects that contain channel names.
Higher order CCS [Thomsen 1989; 1990; 1993; 1995] for instance, is a calculus
with a certain degree of mobility. In a mobile calculus, a process that receives an
object may well make use of the names appeared in the object to engage in further
interactions. It is in this sense that the communication topology is dynamic. It
was soon realized that the communication mechanism that restricts the contents
of communications to the channel names gives rise to a simple yet versatile model
that is more powerful than the process-passing calculi [Sangiorgi 1992; 1993; 1996b;
1996a]. This is the π-calculus of Milner, Parrow and Walker [Milner et al. 1992].
See [Parrow 2001] for a gentle introduction to the model and the history of the
name-passing calculus and [Sangiorgi and Walker 2001b] for a broader coverage. A
seemingly innocent design decision of the π-calculus is to admit a uniform treatment
of the names. This decision is however not supported by the semantics of the mobile
calculi. From a process term T one could construct the input prefix term

a(x).T (1)

and the localization term

(x)T. (2)

According to the definition of π-calculus, the semantics of x appeared in (1) is far
different from that of x in (2). In the former x is a name variable, or a dummy
name, that can be instantiated by an arbitrary name when the prefix engages in
an interaction. In the latter x is a local name that can never be confused with
another name. The input prefix forces the unbound name x in T to be a name
variable, whereas the localization operator forces the unbound name x in T to be
a constant name. This apparent contradiction is the reason for all the semantic
complications of π-calculus. And nothing has been gained by these complications.
In what follows we take a look at some of the problems and inconveniences caused
by the confusion.

To begin with, the standard operational semantics of π-calculus has been flawed
from the outset. An extremely useful command in both practice and theory is
the two leg if-statement if ϕ then S else T . In mobile calculi this can be defined
by introducing the conditional terms [x=y]T and [x 6=y]T . The semantics of these
terms have been defined respectively by the match rule

T
λ−→ T ′

[x=x]T
λ−→ T ′

(3)

and the mismatch rule

T
λ−→ T ′

[x 6=y]T
λ−→ T ′

x 6= y. (4)

Rule (4) is unusual since it has an unusual side condition. How should we under-
stand the side condition x 6= y? If x, y were constant names, the side condition of
(4) would be pointless because x 6= y would be evaluated to logical truth. The rea-
son that (4) is necessary is precisely because x, y cannot be understood as constant

ACM Journal Name, Vol. V, No. N, April 2010.

4 · Y. Fu and H. Zhu

names in the uniform treatment of the names. The correct reading of (4) is that

“[x 6=y]T
λ−→ T ′ is admissible under the logical assumption x 6= y”. It should now

be clear that the popular semantics fails to support the following equivalence

T = [x=y]T + [x 6=y]T. (5)

To see this, let = be ∼, the strong early bisimilarity of [Milner et al. 1992]. Accord-
ing to the definition, T ∼ [x=y]T + [x 6=y]T if and only if Tσ∼̇([x=y]T + [x 6=y]T)σ
for every substitution σ, where ∼̇ is the strong ground bisimulation equivalence. If
σ is the identity substitution, it boils down to establishing the following equivalence

T ∼̇ [x=y]T + [x 6=y]T. (6)

We may prove (6) under the assumption x 6= y. But we cannot prove (6) under the
assumption x = y since rule (3) does not allow us to do that. The failure of (5)
necessarily implies that a number of the axiomatic systems for the π-calculus with
the mismatch operator studied in literature are actually not sound since equality
(5) is either an axiom or a derivable law in all these systems. A related mistake
is to introduce a boolean evaluation function beval() whose inductive definition
includes following clauses:

beval(x=y)
def
= ⊥,

beval(x 6=y)
def
= >.

This would lead to the axioms

[x=y]T = 0,

[x 6=y]T = T,

which are ridiculous if observational equivalences are closed under prefix opera-
tions. Even without mismatch operator, the standard definition of the operational
semantics is problematic. Take for example the following instance of the expansion
law

xx | y(v) = xx.y(v) + y(v).xx+ [x=y]τ. (7)

The right hand side of (7) can do a τ -action under the assumption x = y. However
the operational semantics of π-calculus does not admit a τ -action of the left hand
side of (7) even if the logical assumption x = y is made.

The correct formulation of the operational semantics of the π-calculus is given
by Lin [1995a; 1995b; 1996; 1998; 2003], using the symbolic approach developed

by Hennessy and Lin [1995]. In the symbolic semantics, one has that [x 6=y]T
x 6=y,λ−→

T ′, meaning that the action is admissible under the logical assumption x 6= y.

Similarly one has [x=y]T
x=y,λ−→ T ′. Notice that this transition is very different from

the transition [x=x]T
>,λ−→ T ′. In the symbolic approach the action T

>,λ−→ T ′ is

simulated by the combined effect of [x 6=y]T
x 6=y,λ−→ T ′ and [x=y]T

x=y,λ−→ T ′, not by

any single action sequence of [x=y]T + [x 6=y]T . Similarly xx | y(v)
x=y,τ−→ 0 |0 can

be derived from xx
>,xx−→ 0 and y(v)

>,yx−→ 0. If we think of it, the symbolic semantics
not only provides the correct labeled transition semantics upon which we may study

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 5

the observation theory of the π-calculus, but also makes clear the problem caused
by the confusion of the name variables and the names.

Secondly the observational theory of the mobile processes is made more complex
than it is. One well-known phenomenon is that, unlike in CCS [Milner 1989a; Milner
and Sangiorgi 1992], some standard definitions of process equivalence lead to differ-
ent equality relations. The standard definition of bisimulation gives rise to ground
bisimilarity that is not closed under input prefix operation. The solution proposed
in [Milner et al. 1992] is to take the substitution closure. The resulting relation
is the early equivalence. If substitution closure is required in every bisimulation
step, one obtains Sangiorgi’s open bisimilarity [Sangiorgi 1996c]. The open bisimi-
larity is strictly finer than the early equivalence, which is in turn much finer than
the ground bisimilarity. The open bisimilarity can be further improved to quasi
open bisimilarity [Sangiorgi and Walker 2001a], which lies nontrivially between the
open bisimilarity and the early equivalence. The barbed equivalence can be defined
by placing substitution closure at the beginning of bisimulations, which gives rise
to the equivalence studied by Milner and Sangiorgi [1992]. It can also be defined
by requiring that every bisimulation step should be closed under substitutions of
names. It is shown by Sangiorgi and Walker [2001a] that the latter coincides with
the quasi open bisimilarity. It is easy to see that the barbed equivalence is weaker
than the early equivalence. It is not yet clear however if it is subsumed by the early
equivalence. Putting aside the issue of which of these equivalences is more author-
itative than the others, we would like to point out that the substitution closure
requirement is an algebraic requirement rather than an observational requirement.
From the true spirit of the observation theory, an environment can never detect
any difference between a(x).bc + bc.a(x) and a(x) | bc, since it can never force the
distinct names a, b to be equal. This issue of reconciling the inconsistency between
the observational view and the algebraic view must be addressed to achieve a better
theory of the mobile processes.

The algebraic requirement also makes testing theory of mobile processes hard to
comprehend. In the testing theory developed by De Nicola and Hennessy [1984], the
behaviors of a process are judged by testers. Two processes are testing equivalent if
no testing can detect any behavioral difference between them. Like the bisimulation
approach, the testing approach fails to give rise to a reasonable equivalence on the
mobile processes. In order to respect the name uniformity and obtain a useful
equivalence at the same time, the algebraic condition must be imposed. See [Boreale
and De Nicola 1995] for more on this issue. In some sense the substitution closure
condition completely defeats the philosophy of the testing theory.

In retrospect, the confusion of the names and the name variables is not out of the
desire to model mobility, since mobility can be achieved by using the name variables
any way. If channels have a physical existence, computations or interactions really
should not manipulate channels. What they are supposed to do is to make use
of the channels for the purpose of interaction. According to this interpretation,
all channel names ought to be constant. To model mobility, the introduction of a
dichotomy between the names and the name variables is not only an obvious choice,
it is the only choice. The variables are there for mobility.

In theory of expressiveness, the name dichotomy provides a basis for comparing

ACM Journal Name, Vol. V, No. N, April 2010.

6 · Y. Fu and H. Zhu

the relative expressive powers of calculi. The straightforward translation from CCS
to π-calculus for instance is fully abstract if in π-calculus a line is drawn between the
names and the name variables. The translation takes the equivalent CCS processes,
say a | b and a.b + b.a, to the equivalent π-processes a(x) | b(y) and a(x).b(y) +
b(y).a(x). If the names are treated uniformly, the target model would have a much
stronger process equality than the source model. In such a framework it is not even
clear if a reasonably good fully abstract translation from CCS to π-calculus exists.
Other expressiveness results can also be best interpreted using the name dichotomy.
Sangiorgi-Thomsen’s encoding of the higher order CCS in the π-calculus is another
example. The process variables of the higher order CCS are translated to the name
variables of the π-calculus, while the names of the former are the names of the
latter. This encoding is shown to be fully abstract by Sangiorgi [1992; Sangiorgi
[1993]. Again if the names of the π-calculus are treated uniformly, the encoding
would not even be sound. We could give more examples to support the proposition
that a dichotomic understanding should be preferred. But the point is already
made. The names play a universal role in process theory. Without the assumption
that all names are constant, expressiveness results about process calculi are bound
to be chaotic [Nestmann 2006].

When applying the mobile calculi to interpret programming phenomena, the
name dichotomy has always been enforced. It is sufficient to give just one example.
An early work was done by Walker [1991; Walker [1995], who defines the operational
semantics of an object oriented language in terms of the operational semantics of
the π-calculus. The idea of the interpretation can be summarized as follows. An
object is modeled by a prefix process of the form objn(x).O, where objn is the
name of the object. A method is interpreted as a replicated process of the form
!mthd(z).M , where mthd is the method name. The method can be invoked by a
process of the form mthd(v).P that supplies the value v to the method parameter.
Without going into details, it is already obvious that for this interpretation to make
sense, it is important to maintain a distinction between the names and the name
variables. We could give many other applications of the mobile calculi. But it
suffices to say that in all these applications, there is a clear cut distinction between
the names and the name variables.

The above discussions lead to the conclusion that, for both theoretical and prac-
tical reasons, the π-calculus should be defined using the name dichotomy. The
dichotomy has been introduced in literature using type systems. If one thinks of
the type of a channel name as defining the interface property of the channel, then
the type theoretical solution does not seem appropriate since the difference between
a name and a name variable is not about interface property. It is our view that the
issue should be treated at a more fundamental level.

This paper presents a simple theory of the π-calculus. The simplification is
achieved in a number of ways. Apart from the consideration on the issue about the
names, a general motivation for what are to be presented in the paper is that all
proper process calculi ought to share a core theory that is model independent. By
developing such a core theory, a lot of the investigations into a particular process
calculus are rendered unnecessary and the comparisons of different process calculi
and variants are made possible. A study into the core theory is carried out in [Fu

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 7

2010b]. The present paper is an application of that general theory to the name-
passing calculi. The following three goals will be achieved:

—We show that a concise operational semantics of the π-calculus is available.

—We demonstrate that the observational theory of the π-calculus is far less diverse
than it has been perceived.

—We confirm that the algebraic theory of the π-calculus is simpler than it has been
suggested.

The above claims are supported by the technical contributions summarized as fol-
lows:

—A general model independent process equality, the absolute equality, is applied to
the π-calculus. It is proved that the well known bisimulation equivalences of the
π-calculus, mentioned in this introduction, either coincide with a weak version of
the absolute equality or should be ignored.

—A model independent equivalence, the box equality, is defined and applied to the
π-calculus. It is demonstrated that this new equivalence coincides with a well
known rectification of the testing equivalence in the π-calculus.

—Two complete proof systems for the set of the finite π-processes are presented,
one for the absolute equality, the other for the box equality.

The rest of the paper is organized into five sections. Section 2 defines our version
of the π-calculus. Section 3 studies the model independent observation theory of
the π-calculus. Section 4 discusses the relative expressiveness of some well known
variants of the π-calculus. Section 5 presents a uniform account of the proof systems
for the finite π-processes. Section 6 points out how a theory of π-calculus can be
developed using the framework set up in this paper.

In order to make the paper self-contained, some of the definitions and motivating
remarks from [Fu 2010b] are reiterated in this paper. Most of the lammas are stated
without proofs. A well-informed reader would have no problems in supplying the
proofs by oneself.

2. PI CALCULUS

We assume that there is an infinite countable set N of names, an infinite countable
set Nv of name variables. These sets will be ranged over by different lower case
letters. Throughout the paper the following conventions will be enforced:

—The set N is ranged over by a, b, c, d, e, f, g, h.

—The set Nv is ranged over by u, v, w, x, y, z.

—The set N ∪Nv is ranged over by l,m, n, o, p, q.

A name variable acts as a place holder that need be substantiated by a name. By its
very nature, a name variable can not be used as a channel for interaction. Similarly
it can not be used as a message passed around in a communication.

ACM Journal Name, Vol. V, No. N, April 2010.

8 · Y. Fu and H. Zhu

2.1 Process

To give a structural definition of processes, we need to introduce terms. The set T
of π-terms is inductively generated by the following BNF:

T := 0 |
∑
i∈I

n(x).Ti |
∑
i∈I

nmi.Ti | T |T ′ | (c)T | [p=q]T | [p6=q]T | !π.T,

where I is a finite nonempty indexing set and

π := n(x) | nm.

Here n(x) is an input prefix and nm an output prefix. The nil process 0 cannot do
anything in any environment. For each i ≤ n, the component n(x).Ti is a summand
of the input choice term

∑
i∈I n(x).Ti, where the name variable x is bound. A name

variable is free if it is not bound. Similarly the component nmi.Ti is a summand
of the output choice term

∑
i∈I nmi.Ti. Notice that input and output choices are

syntactically simpler than the separated choices [Palamidessi 2003]. The term T |T ′
is a concurrent composition. The restriction (c)T is in localization form, where the
name c is local. A name is global if it is not local. The following functions will be
used.

—gn() returns the set of the global names.

—ln() returns the set of the local names.

—n() returns the set of the names.

—fv() returns the set of the free name variables.

—bv() returns the set of the bound name variables.

—v() returns the set of the name variables.

The guard [p=q] is a match and [p6=q] a mismatch. The term !π.T is a guarded
replication and ‘!’ a replication operator. The guarded replication is equivalent
to the general replication of the form !T . The transformation from the general
replication to the guarded replication makes use of an auxiliary function ()c defined
on the replication free terms. The structural definition is as follows.

(0)c
def
= 0,

(π.T)c
def
= π.(cc |T c),

(T1 |T2)c
def
= T c1 |T c2 ,

((a)T)c
def
= (a)T c,

([p=q]T)c
def
= [p=q]T c,

([p6=q]T)c
def
= [p 6=q]T c.

If neither c nor z appears in T , then we may define (!T)c by the process (c)(cc | !c(z).T c).
It is clear that there would be no loss of expressive power if guarded replication is
further restrained to the form !p(x).T or !pq.T .

A finite π-term is one that does not contain any replication operator. A π-term
is open if it contains free name variables; it is closed otherwise. A closed π-term is

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 9

also called a π-process. We write P for the set of the π-processes, ranged over by
L,M,N,O, P,Q. Some derived prefix operators are defined as follows.

n(c).T
def
= (c)nc.T,

n.T
def
= n(z).T for some z /∈ fv(T),

n.T
def
= n(c).T for some c /∈ gn(T),

τ.T
def
= (c)(c.T | c) for some c /∈ gn(T).

Furthermore we introduce the following polyadic prefixes:

n(x1, . . . , xn).T
def
= n(z).z(x1). · · · .z(xn).T for some z /∈ fv(T),

n〈p1, . . . , pn〉.T
def
= n(c).cp1. · · · .cpn.T for some c /∈ gn(T),

where n > 1. These two derived operator makes it clear how to simulate the
polyadic π-calculus [Milner 1993b] in the (monadic) π-calculus.

Both bound name variables and local names are subject to α-conversion. Through-
out the paper, it is assumed that α-conversion is applied whenever it is necessary
to avoid confusion. This will be called α-convention. In for example the struc-
tural composition rule to be defined later, the side conditions are redundant in the
presence of α-convention.

A condition, denoted by φ, ϕ, ψ, is a finite concatenation of matches and/or
mismatches. The concatenation of zero match/mismatch is denoted by >, and
its negation is denoted by ⊥. We identify syntactically (>)T with T and (⊥)T
with 0. If F is the finite name set {n1, . . . , ni}, the notation [p6∈F]T stands for
[p 6=n1] . . . [p6=ni]T .

A renaming is a partial injective map α : N ⇀ N whose domain of definition
dom(α) is finite. A substitution is a partial map σ : Nv ⇀ N ∪ Nv whose domain
of definition dom(σ) is finite. An assignment is a partial map ρ : Nv ⇀ N that
associates a name to a name variable in the domain of ρ. It is convenient to extend
the definition of an assignment ρ by declaring ρ(a) = a for all a ∈ N . Renaming,
substitution and assignment are used in postfix. We often write {n1/x1, . . . , ni/xi}
for a substitution, and similar notation is used for renaming. The notation ρ[x 7→ a]
stands for the assignment that differs from ρ only in that ρ[x 7→ a] always maps x
onto a whereas ρ(x) might be different from a or undefined. Whenever we write
ρ(x) we always assume that ρ is defined on x.

An assignment ρ satisfies a condition ψ, denoted by ρ |= ψ, if ρ(m) = ρ(n) for
every [m=n] in ψ, and ρ(m)6=ρ(n) for every [m 6=n] in ψ. We write ρ |= ψ ⇒ φ
to mean that ρ |= φ whenever ρ |= ψ, and ρ |= ψ ⇔ φ if both ρ |= ψ ⇒ φ and
ρ |= φ⇒ ψ. We say that ψ is valid, notation |= ψ (or simply ψ), if ρ |= ψ for every
assignment ρ. A useful valid condition is the following one.

(x/∈F) ∨
∨
n∈F

(x=n), (8)

where F is a finite subset of N ∪ Nv. Given a condition ϕ, we write ϕ= and ϕ6=

respectively for the condition
∧
{m=n | m,n ∈ n(ϕ) ∪ v(ϕ) and ϕ ⇒ m=n} and

the condition
∧
{m6=n | m,n ∈ n(ϕ) ∪ v(ϕ) and ϕ⇒ m 6=n}.

ACM Journal Name, Vol. V, No. N, April 2010.

10 · Y. Fu and H. Zhu

2.2 Semantics

The semantics is defined by a labeled transition system structurally generated by
a set of rules. The set L of labels for π-terms, ranged over by `, is

{ab, ab, a(c) | a, b, c ∈ N}

where ab, ab, a(c) denote respectively an input action, an output action and a bound
output action. The set L∗ of the finite strings of L is ranged over by `∗. The empty
string is denoted by ε. The set A = L ∪ {τ} of actions is ranged over by λ and its
decorated versions. The set A∗ of the finite strings of A is ranged over by λ∗. With
the help of the action set, we can define the operational semantics of π-calculus by
the following labeled transition system.

Action ∑
i∈I a(x).Ti

ac−→ Ti{c/x}
i ∈ I ∑

i∈I aci.Ti
aci−→ Ti

i ∈ I

Composition

T
λ−→ T ′

S |T λ−→ S |T ′
S

ab−→ S′ T
ab−→ T ′

S |T τ−→ S′ |T ′
S

ac−→ S′ T
a(c)−→ T ′

S |T τ−→ (c)(S′ |T ′)

Localization

T
ac−→ T ′

(c)T
a(c)−→ T ′

T
λ−→ T ′

(c)T
λ−→ (c)T ′

c 6∈ n(λ)

Condition

T
λ−→ T ′

[a=a]T
λ−→ T ′

T
λ−→ T ′

[a6=b]T λ−→ T ′

Replication

!ab.T
ab−→ T | !ab.T !a(x).T

ab−→ T{b/x} | !a(x).T

The first composition rule takes care of the structural property. The second
and the third define interactions. Their symmetric versions have been omitted.
Particular attention should be paid to the action rules. An input action may receive
a name from another term. It is not supposed to accept a name variable. This is
because an output action is allowed to release a name, not a name variable. To go
along with this semantics of interaction, the rule for mismatch operator is defined
accordingly. Since distinct names are different constant names, the condition a6=b is

equivalent to >. The transition [x 6=c]ab.T ab−→ T for instance is not admitted since
the name variable x need be instantiated before the mismatch can be evaluated.
One advantage of this semantics is the validity of the following lemma.

Lemma 2.1. The following statements are valid whenever S
λ−→ T .

(1) Sα
λα−→ Tα for every renaming α.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 11

(2) Sσ
λ−→ Tσ for every substitution σ.

(3) Sρ
λ−→ Tρ for every assignment ρ.

The operational semantics of a process calculus draws a sharp line between inter-
nal actions (τ -actions) and external actions (non-τ -actions). From the point of view
of interaction, the former is unobservable and the latter is observable. A complete
internal action sequence of a process P is either an infinite τ -action sequence

P
τ−→ P1

τ−→ . . .
τ−→ Pi

τ−→ . . .

or a finite τ -action sequence P
τ−→ P1

τ−→ . . .
τ−→ Pn, where Pn cannot perform

any τ -action. A process P is divergent if it has an infinite internal action sequence;
it is terminating otherwise.

In the π-calculus with the uniform treatment of names, if then else command
is defined with the help of the unguarded choice operator. A nice thing about the
present semantics is that one may define if then else command in the following
manner.

if m=n then S else T
def
= [m=n]S | [m 6=n]T.

The idea can be generalized. Suppose {ϕi}1≤i≤n is a finite collection of disjoint
conditions, meaning that |= ϕi ∧ ϕj ⇔ ⊥ for all i, j ≤ n such that i 6= j. The
conditional choice

∑
i∈{1,..,n} ϕiTi is defined in the following fashion.∑

1≤i≤n

ϕiTi
def
= ϕ1T1 | . . . |ϕnTn. (9)

In practice most choice operations are actually conditional choices [Cai and Fu
2010a]. Another form of choice is the so-called internal choice, defined as follows:∑

1≤i≤n

ψiτ.Ti
def
= (c)(ψ1c.T1 | . . . |ψnc.Tn | c), (10)

where {ψi}1≤i≤n is a collection of conditions and c appears in none of T1, . . . , Tn.
In [Fu and Lu 2010] it is shown that the replication, the fixpoint operation and

the parametric definition are equivalent in π-calculus, as long as all the choices
are guarded. The fixpoint operator plays an indispensable role in proof systems
for regular processes. The parametric definition is strictly more powerful in some
variants of the π-calculus. Proof systems for regular π-processes will not be a major
concern of this paper. In all the qualified name-passing calculi studied in the present
paper the parametric definition is equivalent to the replicator. We shall therefore
ignore both the fixpoint and the parametric definition in the rest of the paper.

A few more notations and terminologies need be fixed. Given an action λ, we
may define λ as follows:

λ
def
=

ab, if λ = ab,
ab, if λ = ab,
ab, if λ = a(b),
τ, if λ = τ.

The notation ` should be understood accordingly. We shall write ˜ for a finite
sequence of something of same kind. For example a finite sequence of the names

ACM Journal Name, Vol. V, No. N, April 2010.

12 · Y. Fu and H. Zhu

c1, . . . , cn can be abbreviated to c̃. Let =⇒ be the reflexive and transitive closure of
τ−→. We write

λ̂−→ for ≡ if λ = τ and for
λ−→ otherwise. The notation

λ̂
=⇒ stands

for =⇒ λ̂−→=⇒. If λ∗ = λ1 . . . λn, we write P
λ∗

=⇒ if P
λ1=⇒ P1 . . .

λn=⇒ Pn for some

P1, . . . , Pn. If P
λ∗

=⇒ P ′, we say that P ′ is a descendant of P . Notice that P is a
descendant of itself.

In sequel a relation always means a binary relation on the processes of π-calculus
or one of its variants. If R is a relation, R−1 is the reverse of R and PRQ for mem-
bership assertion. If R′ is another relation, the composition R;R′ is the relation
{(P,Q) | ∃L.PRL ∧ LR′Q}.

2.3 Variants

A number of ‘subcalculi’ of π have been studied. These variants are obtained
by omitting some operators. They can also be obtained by restricting the use of
received names, or the use of continuation, or the forms of prefix etc.. In this section
we give a brief summary of some of the variants. Our definitions of the variants
are slightly different from the popular ones, since we attempt to give a systematic
classification of the π-variants.

The guarded choice is a useful operator in encoding [Cai and Fu 2010b]. It is
also a basic operator in proof systems. The independence of the choice operator
from the other operators of π-calculus is established in for example [Palamidessi
2003; Fu and Lu 2010]. A lot of programming can be carried out in π-calculus
using prefix terms rather than the guarded choice terms [Walker 1991; 1995]. We
will write π− for the subcalculus of π obtained by replacing the guarded choice
terms by the prefix terms of the form π.T . In many aspects π− is just as good
as π. It is for example complete in the sense that one may embed the recursion
theory [Rogers 1987] in π−. See [Fu 2010b] for detail. The calculus π− can be
further slimmed down by removing the match and the mismatch operators. We
shall call it the minimal π-calculus and shall denote it by πM . It is conjectured
that πM is considerably weaker than π−. The intuition behind the conjecture is
that the if-command can not be faithfully encoded in πM .

Some of the syntactical simplifications of π-calculus have been studied in litera-
ture. Here are some of them:

—Merro and Sangiorgi’s local π-calculus forbids the use of a received name as an
input channel [Merro 2000; Merro and Sangiorgi 2004]. The word ‘local’ refers
to the fact that a receiving party may only use a received local name to call
upon subroutines staying within the sending party. The calculus can be seen as
a theoretical foundation of the concurrent and distributed languages Pict [Pierce
and Turner 2000] and Join [Fournet and Gonthier 1996]. The local variants we
introduce in this paper are obtained from π-calculus by restricting the use of the
received names. A received name may be used as an output channel or an input
channel. It may also appear in the object position. This suggests the following
three variants. In πL the grammar for prefix is

π := a(x) | nm.
ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 13

In πR the syntax of prefix is

π := n(x) | am,

and in π1 it is

π := n(x) | nc.

In π1 only control information may be communicated, data information may not
be passed around. A piece of control information may be sent once, it may not
be resent.

Other well known variants are syntactical simplifications of π−. Let’s see a couple
of them.

—The π-process !a(x).T can be seen as a method that can be invoked by a process
of the form ac.S. This object oriented programming style is typical of the name-
passing calculi. The object may invoke the method several times. It follows that
the method must be perpetually available. The minimal modification of π that
embodies this idea is πO-calculus with following grammar:

T := 0 | nm.T | T |T ′ | (c)T | [p=q]T | [p6=q]T | !n(x).T.

The superscript O refers to the fact that πO-calculus has only proper output
prefix; it also reminds of the object oriented programming style. The dual of
πO-calculus, πI -calculus, is defined by the following grammar.

T := 0 | n(x).T | T |T ′ | (c)T | [p=q]T | [p6=q]T | !nm.T.

The relationship between πI and πO is intriguing. There is a straightforward
encoding J Kι from the former to the latter defined as follows:

Jn(x).T Kι def
= n(c).!c(x).JT Kι,

J!nm.T Kι def
= !n(x).xm.JT Kι.

The soundness of this encoding is unknown. Both πO and πI have too weak
control power to be considered as proper models. In πO for example, a name
can not be used to input two ordered pieces of information since a sending party
would get confused. There is no way to define for example a polyadic prefix term
like a(x, y).T . We shall not consider these two variants in the rest of the paper.

—Honda and Tokoro’s object calculus [Honda and Tokoro 1991a; 1991b; Honda and
Yoshida 1995] and Boudol’s asynchronous π-calculus [Boudol 1992] are based on
the idea that an output prefix with a continuation does not interact with any en-
vironment. Instead it evolves into a process representing the continuation and an
atomic output process whose sole function is to send a name to an environment.
This is captured by the following transitions.

ac.T
τ−→ ac |T, (11)

ac | a(x).T
τ−→ 0 |T{c/x}. (12)

(12) is absolutely necessary, whereas (11) can be avoided in view of the fact that
ac.T must be equal to ac |T . Moreover if we think asynchronously the replication,

ACM Journal Name, Vol. V, No. N, April 2010.

14 · Y. Fu and H. Zhu

match and mismatch operators should not apply to the processes of the form nm.
This explains the following grammar of πA:

T := 0 | nm | ψini(x).T | T |T ′ | (c)T | !n(x).T,

where ψ is a finite sequence of match/mismatch operations. The standard prefix
operators can be mimicked in πA in the following way [Boudol 1992]:

Jp(x).SK def
= p(u).(d)(ud | d(x).JSK), (13)

Jpq.T K def
= (c)(pc | c(v).(vq | JT K)). (14)

This encoding of the output prefix is however not very robust from the obser-
vational point of view. In fact Cacciagrano et al. [2006] have proved that no
encodings of the output prefix exist that preserve must equivalence. If diver-
gence is not seen as an important issue, then there are interesting encodings
into the asynchronous π-calculus as shown in [Nestmann and Pierce 1996] and
in [Nestmann 2000]. The asynchronous calculi have a very different flavor from
the synchronous calculi. We will not discuss πA in the rest of the paper. But
see [Fu 2010a] for an alternative approach to the asynchronous process calculi.

—A more distant relative is Sangiorgi’s private π-calculus [Sangiorgi and Walker
2001b], initially called πI-calculus [Sangiorgi 1996b]. The grammar of πP differs
from that of π in the definition of prefix. In πP it is given by the following BNF.

π := n(x) | n(c).

Unlike all the above variants, the πP -calculus has a different action set than
π-calculus. There are no free output actions. One has typically that

a(x).S | a(c).T
τ−→ (c)(S{c/x} |T).

In πP the name emitted by an output action is always local. It is worth re-
marking that this particular πP -calculus is not equivalent to the version in which
replications are abolished in favor of parametric definitions [Sangiorgi 1996b; Fu
and Lu 2010]. It is interesting to compare πP -calculus with π1-calculus. In both
models the messages communicated in run time are foreordained at compile time.
The difference is that in πP -calculus only local messages can be released, whereas
in π1-calculus global messages may also be transmitted. Despite of results estab-
lished in [Boreale 1996], the variant πP appears much less expressive than π1.
For one thing the match and mismatch operators in πP are redundant. So it is
more precise to say that πP is a variant of πM . Since πP has a different action
set than πM , and it appears too weak, we shall not discuss it in this paper.

One may combine the restrictions introduced in the above variants to produce
even more restricted ‘subcalculi’. Some of these ‘subcalculi’ can be rejected right
away. For example the variant in which the received names can only be used as
data is equivalent to CCS, which is not Turing complete [Fu and Lu 2010]. Another
counter example is the variant in which both the input capability and the output
capability are perpetual. This calculus is utterly useless since no computations in
this model ever terminate. It simply does not make sense to talk about Turing com-
pleteness for this particular calculus. Merro and Sangiorgi’s local π-calculus is the

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 15

asynchronous version of πL without the match/mismatch operators. In [Palamid-
dessi et al. 2006; Cacciagrano et al. 2008] the authors look at some asynchronous
versions of πI and πO. Their work emphasizes more on the perpetual availability
of the input/output actions.

A crucial question can be asked about each of the variants: which can be seen
as an extension of the recursion theory? This is very much a question about the
legitimacy of the variants. At the moment we only know that π, πL, πR are legal
in this sense. See [Fu 2010b] for a formal account of this issue.

3. EQUALITY

The starting point of observational theory is to do with the definition of process
equality. It was realized from the very beginning [Milner 1980; Sangiorgi 2009]
that the equalities for processes ought to be observational since it is the effects
that processes place on the environments that really matter. Different application
platforms may demand different observing powers, giving rise to different process
equalities. This interactive viewpoint [Milner 1993a] lies at the heart of the theory of
equality. In a distributed environment for example, a process is subject to perpetual
interventions from a potentially unbounded number of observers in an interleaving
manner. Here the right equivalences are bisimulation equivalences. In a one shot
testing scenario, equivalent processes are indistinguishable by any single tester in
an exclusive fashion. It is nobody’s business what the equivalent processes would
turn into after a test. This is the testing equivalence. In this section we take a look
at both the bisimulation approach and the testing approach.

3.1 Absolute Equality

A reasonable criterion for the equality on the self evolving objects is the famous
bisimulation property of Milner [1989a] and Park [1981].

Definition 3.1. A relation R is a weak bisimulation if the following statements
are valid.

(1) If QR−1P τ−→ P ′ then Q =⇒ Q′R−1P ′ for some Q′.

(2) If PRQ τ−→ Q′ then P =⇒ P ′RQ′ for some P ′.

The bisimulation property captures the intuition that an equivalence for self evolv-
ing objects should be maintainable by the equivalent objects themselves when left
alone. It is no good if two self evolving objects were equivalent one minute ago and
will have to evolve into inequivalent objects one minute later. Bisimulation is about
self evolving activities, not about interactive activities. What more can be said
about self evolution? An evolution path may experience a series of state changes.
At any particular time of the evolution, the process may turn into an equivalent
state, and it may also move to an inequivalent state. Inequivalent states gener-
ally exert different effects on environments, while equivalent states always have the
same interactive behaviors. Definition 3.1 can be criticized in that it overlooks the
important difference between these two kinds of state transitions. The rectification
of Definition 3.1 is achieved in van Glabbeek and Weijland [1989] by the branching
bisimulation. The following particular formulation is proposed by [Baeten 1996].

ACM Journal Name, Vol. V, No. N, April 2010.

16 · Y. Fu and H. Zhu

Definition 3.2. A binary relation R is a bisimulation if it validates the following
bisimulation property.

(1) If QR−1P τ−→ P ′ then one of the following statements is valid.
(a) Q =⇒ Q′ for some Q′ such that Q′R−1P and Q′R−1P ′.
(b) Q =⇒ Q′′R−1P for some Q′′ such that Q′′

τ−→ Q′R−1P ′ for some Q′.

(2) If PRQ τ−→ Q′ then one of the following statements is valid.
(a) P =⇒ P ′ for some P ′ such that P ′RQ and P ′RQ′.
(b) P =⇒ P ′′RQ for some P ′′ such that P ′′

τ−→ P ′RQ′ for some P ′.

Since we take the branching bisimulations as the bisimulations, we leave out the
adjective.

A process not only evolves on its own, it also interacts with other processes. A
plain criterion for the equalities of interacting objects is that an equality between
two objects should be maintainable no matter how environments may interact with
them. It is extremely important to get it right what an environment can and cannot
do. In a distributed scenario, an environment may interact with a process placed
in the regional network. An environment is not capable of grabbing a running
process and reprogram it as it were. So it would not be appropriate to admit, say
a(x).({x/a} |O), as an environment.

Definition 3.3. An environment is a process of the form (c̃)(|O) with the spec-
ified hole indicated by ‘ ’.

A prerequisite for two processes P,Q to be observationally equivalent is that no
environment can tell them apart. But saying that the environment (c̃)(|O) cannot
observe any difference between P and Q is nothing but saying that (c̃)(P |O) and
(c̃)(Q |O) are observationally equivalent. Hence the next definition.

Definition 3.4. A relation R is extensional if the following statements are valid.

(1) If LRM and PRQ then (L |P) R (M |Q).

(2) If PRQ then (c)P R (c)Q.

Process equivalences are observational. A process P is observable, written P⇓, if

P =⇒ `−→ P ′ for some P ′. It is unobservable, written P 6⇓, if it is not observable.

Occasionally we write P⇓` for ∃P ′.P =⇒ `−→ P ′ and similarly P↓` for ∃P ′.P `−→ P ′.
It should be apparent that two equivalent processes must be both observable or both
unobservable.

Definition 3.5. A relation R is equipollent if P⇓ ⇔ Q⇓ whenever PRQ.

Equipollence is the weakest condition that an observational equivalence has to
satisfy. Now suppose P and Q are observationally inequivalent. If we ignore the
issue of divergence, then there must exist some ` such that P⇓` and for all `′ such
that Q⇓`′ , the actions ` and `′ exert different effects on some environment (c̃)(|O).
As we mentioned just now, what this means is that (c̃)(P |O) and (c̃)(Q |O) are
observationally inequivalent. So we may repeat the argument for (c̃)(P |O) and
(c̃)(Q |O). But if the calculus is strong enough, say it is complete, then the in-
equivalence eventually boils down to the fact that one delivers a result at some

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 17

name and the other fails to do so at any name. Notice that the localization oper-
ator plays a crucial role in this argument. So for a large number of process calculi
the equipollence condition is strong enough to characterize the observability.

The theory of process calculus has been criticized for not paying enough attention
to the issue of divergence. This criticism is more or less to the point. If the
theory of process calculus is meant to be an extension of the theory of computation,
a divergent computation must be treated in a different way than a terminating
computation. How should we formulate the requirement that process equivalences
should be divergence respecting. A property that is not only divergence preserving
but also consistent with the idea of bisimulation is codivergence.

Definition 3.6. A relation is codivergent if PRQ implies the following property.

(1) If Q
τ−→ Q1

τ−→ · · · τ−→ Qn
τ−→ · · · is an infinite internal action sequence, then

there must be some k ≥ 1 and P ′ such that P
τ

=⇒ P ′ R Qk.

(2) If P
τ−→ P1

τ−→ · · · τ−→ Pn
τ−→ · · · is an infinite internal action sequence, then

there must be some k ≥ 1 and Q′ such that Q
τ

=⇒ Q′ R−1 Pk.

Using the codivergence condition, one may define an equivalence that is advo-
cated in [Fu 2010b] as the equality for process calculi.

Definition 3.7. The absolute equality = is the largest relation such that the fol-
lowing statements are valid.

(1) It is reflexive.

(2) It is equipollent, extensional, codivergent and bisimilar.

Alternatively we could define the absolute equality as the largest equipollent codi-
vergent bisimulation that is closed under the environments.

The virtue of Definition 3.7 is that it is completely model independent, as long
as we take the view that the composition operator and the localization operator
are present in all process calculi. From the point of interaction, there cannot be
any argument against equipollence and extensionality. From the point of view of
computation, there is no question about codivergence and bisimulation. The only
doubt one may raise is if Definition 3.7 is strong enough. We shall demonstrate in
this paper that as far as π-calculus is concerned, the absolute equality is the most
appropriate equivalence relation.

This is the right place to state an extremely useful technical lemma [Fu 1999],
the Bisimulation Lemma. Although worded for =, Bisimulation Lemma, called
X-property by De Nicola et al. [1990], is actually valid for all the observational
equivalences of this paper except for the strong equality.

Lemma 3.8. If P =⇒= Q and Q =⇒= P , then P = Q.

A distinguished property about the absolute equality is stated in the next lemma.
It is discovered by van Glabbeek and Weijland [1989] for the branching bisimilarity.

Lemma 3.9. If P0
τ−→ P1

τ−→ . . .
τ−→ Pn = P0 then P0 = P1 = . . . = Pn.

A consequence of Lemma 3.9 is that if P = Q
λ−→ Q′, then any simulation

P
τ−→ P1

τ−→ . . .
τ−→ Pn

λ−→ P ′ of Q
λ−→ Q′ by P must satisfy the property that

P = P1 = . . . = Pn. This phenomenon motivates the following terminologies.

ACM Journal Name, Vol. V, No. N, April 2010.

18 · Y. Fu and H. Zhu

(1) P
τ−→ P ′ is a computation if P = P ′. In this case we write P → P ′.

(2) P
τ−→ P ′ is a change-of-state if P 6= P ′. In this case we write P

ι−→ P ′.

A computation can be ignored. A change-of-state has to be properly simulated.
The notation →∗ stands for the reflexive and transitive closure of → and →+ for
the transitive closure. We will write P 9 to indicate that P → P ′ for no P ′.

Since the absolute equality applies not just to π and its variants but to all process
calculi, the notation ‘=’ could be confusing when more than one models are dealt
with. To remove the ambiguity, we sometimes write =M for the absolute equality
of model M. The same notations will be applied to other process equivalences. In
this paper, we write V an arbitrary π-variant.

3.1.1 External Bisimilarity. The external bisimilarity requires that all observ-
able actions are explicitly simulated. This is commonly referred to as branching
bisimilarity if the codivergence is dropped [van Glabbeek and Weijland 1989].

Definition 3.10. A codivergent bisimulation of V is a V-bisimulation if the fol-
lowing statements are valid for every ` ∈ L.

(1) If QR−1P `−→ P ′ then Q =⇒ Q′′
`−→ Q′R−1P ′ and PRQ′′ for some Q′, Q′′.

(2) If PRQ `−→ Q′ then P =⇒ P ′′
`−→ P ′RQ′ and P ′′RQ for some P ′, P ′′.

The V-bisimilarity 'V is the largest V-bisimulation.

V-bisimilarity is a more effective counterpart of the absolute equality =V. The
latter provides the intuition, while the former offers a tool for establishing equa-
tional properties. The proof of following fact is a standard textbook application of
the bisimulation argument.

Fact 3.11. The equivalence 'V is closed under input choice, output choice, com-
position, localization, match, mismatch, and guarded replication.

An immediate consequence of Fact 3.11 is the inclusion described in the following
lemma.

Lemma 3.12. 'V ⊆ =V.

If the processes of a model has strong enough observing power, then the absolute
equality is as strong as the external bisimilarity. This is the case for the π-calculus.
The proof of the following theorem resembles a proof in [Fu 2005].

Theorem 3.13. The π-bisimilarity 'π coincides with the absolute equality =π.

Proof. In view of Lemma 3.12, we only have to prove = ⊆ '. Let R be the
relation (P,Q)

∣∣∣∣∣∣
(c1, . . . , cn)(a1c1 | . . . | ancn |P) =
(c1, . . . , cn)(a1c1 | . . . | ancn |Q),
{a1, . . . , an} ∩ gn(P |Q) = ∅, n ≥ 0

 .

To appreciate the relation notice that (c′c′′)(a′c′ | a′′c′′ |P) 6= (c)(a′c | a′′c |Q) for all
P,Q such that {a′, a′′}∩gn(P |Q) = ∅. We prove that R is an external bisimulation

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 19

up to ∼, where ∼ is defined in Section 3.1.2. Now suppose A = B where

A
def
= (c1, . . . , cn)(a1c1 | . . . | ancn |P),

B
def
= (c1, . . . , cn)(a1c1 | . . . | ancn |Q),

such that {a1, . . . , an} ∩ gn(P |Q) = ∅ and n ≥ 0. Consider an action A
`−→ A′ of

A. There are five situations in which the action may be induced.

(1) ` = ab. Let C be ab + ac.d for some fresh names c, d. By equipollence and

extensionality, A |C τ−→ A′ |0 must be matched up by B |C =⇒ B′′ |C τ−→
B′ |0 for some B′, B′′. Since B′′ |C τ−→ B′ |0 must be a change of state, it must
be the case that A |C = B′′ |C. It follows easily from Bisimulation Lemma that

B →∗ B′′ ab−→ B′ = A′. Clearly

A′ ≡ (c1, . . . , cn)(a1c1 | . . . | ancn |P ′),
B′ ≡ (c1, . . . , cn)(a1c1 | . . . | ancn |Q′),
B′′ ≡ (c1, . . . , cn)(a1c1 | . . . | ancn |Q′′),

for some P ′, Q′, Q′′. It follows from B →∗ B′′ ab−→ B′ that Q =⇒ Q′′
ab−→ Q′.

Moreover PRQ′′ and P ′RQ′ by definition.

(2) ` = ab for some b 6∈ {c1, . . . , cn}. Let c, d be fresh and let D be defined as
follows:

D
def
= a(x).([x=b]c | [x=c]d).

Now A |D τ−→ A′ | [b=b]c | [b=c]d must be simulated by

B |D =⇒ B′′ |D τ−→ B′ | [b=b]c | [b=c]d.

The rest of the argument is the same as in the previous case.

(3) ` = a(c) and c 6∈ {c1, . . . , cn}. Let E be the following process

a(x).(an+1x | [x=d]e | [x /∈ gn(P |Q)]f),

where d, e, f, an+1 are fresh. The rest of the argument is similar.

(4) ` = a(ci) for some i ∈ {1, . . . , n}. Let F be the process

a(x).([x=d]e | ai(y).(a′iy | [x=y]f)),

where d, e, f, a′i are fresh. The rest of the argument is again similar.

(5) ` = ai(ci) for some i ∈ {1, . . . , n}. Let G be the process ai(x).a′ix, where a′i is
fresh. This is a simpler case.

Additionally we need to consider the external actions of P,Q that communicate
through one of the names c1, . . . , cn. There are seven cases. In each case we are
content with defining an environment that forces external bisimulation.

(1) P
cib−→ P ′. Let H be the following process

ai(z).((zb+ zc.de) | a′iz)

for some fresh c, d, e, a′i.

ACM Journal Name, Vol. V, No. N, April 2010.

20 · Y. Fu and H. Zhu

π π− πM πL πR π1

√
? ? ? ? ?

Fig. 1. Coincidence of 'V and =V.

(2) P
cicj−→ P ′ such that i 6= j. Let I be the following process

ai(z).aj(y).((zy + zc.de) | a′jy | a′iz)

for some fresh c, d, e, a′i, a
′
j .

(3) P
cici−→ P ′. Let J be the following process

ai(z).((zz + zc.de) | a′iz)

for some fresh c, d, e, a′i.

(4) P
cib−→ P ′. Let K be the following process

ai(z).(z(x).([x=b]c | [x=c]d) | a′iz)

for some fresh c, d, a′i.

(5) P
ci(c)−→ P ′. Let L be the following process

ai(z).(z(x).(an+1x | [x=d]e | [x /∈ gn(P |Q)]f) | a′iz),

where d, e, f, an+1, a
′
i are fresh.

(6) P
cicj−→ P ′ such that i 6= j. Let M be the following process

ai(z).(z(x).([x=d]e | aj(y).[x=y]a′jy) | a′iz)

for some fresh d, e, a′i, a
′
j .

(7) P
cici−→ P ′. Let N be the following process

ai(z).(z(x).([x=d]e | [x 6=z]d) | a′iz)

for some fresh d, e, a′i.

We are done.

The reader must have noticed that the output choice is crucial in the above proof,
but the input choice is unnecessary. At the moment we do not see how the theorem
can be established without using the output choice.

The external characterization of the absolute equality for a particular model is
an important issue. It is definitely a technically interesting but probably tricky
exercise to remove the question marks in Fig. 1.

Problem 3.14. What are the answers to the questions raised in Fig. 1?

There is a standard way to extend the absolute equality from processes to terms.
The following definition is well-known.

Definition 3.15. Let � be a process equivalence. Then S � T if Sρ � Tρ for
every assignment ρ such that fv(S |T) ⊆ dom(ρ).

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 21

The equivalence = on π-terms satisfies two crucial equalities. One is

T = [x=y]T | [x 6=y]T. (15)

The other is

[x6=y]λ.T = [x 6=y]λ.[x 6=y]T. (16)

Both equalities explain the role of the name variables. It is the viewpoint of this
paper that all process equivalences should validate both (15) and (16).

3.1.2 Strong Equality and Weak Equality. The only way to refine the absolute
equality in a model independent way is to strengthen the bisimulation property.
Among all the refinements of Definition 3.2, the most well known one is Milner and
Park’s strong bisimulation [Park 1981; Milner 1989a].

Definition 3.16. A symmetric relationR is a strong bisimulation if P
τ−→ P ′RQ′

for some P ′ whenever PRQ τ−→ Q′.

It is clear that a strong bisimulation is automatically codivergent. Hence the next
definition.

Definition 3.17. The strong equality =s is the largest reflexive, equipollent, ex-
tensional, strong bisimulation.

The strong equality is the same as the strong bisimilarity of Milner [1989a].

Definition 3.18. A strong bisimulation is an external strong bisimulation if the
following statements are valid for every ` ∈ L.

(1) If QR−1P `−→ P ′ then Q
`−→ Q′R−1P ′ for some Q′.

(2) If PRQ `−→ Q′ then P
`−→ P ′RQ′ for some P ′.

The external strong bisimilarity ∼ is the largest external strong bisimulation.

One finds a very useful application of the strong equality in the ‘bisimulation up
to ∼’ technique [Sangiorgi and Milner 1992]. The strong equality equates all the
structurally equivalent processes. Some well known equalities are stated below.

Fact 3.19. The following equalities are valid.

(1) P |0 ∼ P ; P |Q ∼ Q |P ; P | (Q |R) ∼ (P |Q) |R.

(2) (c)0 ∼ 0; (c)(d)P ∼ (d)(c)P .

(3) (c)(P |Q) ∼ P | (c)Q if c 6∈ gn(P).

(4) [a=a]P ∼ [a6=b]P ∼ P ; [a6=a]P ∼ [a=b]P ∼ 0.

(5) !π.P ∼ π.P | !π.P .

In the other direction we may weaken the absolute equality by relaxing the bisim-
ulation property a la Definition 3.1.

Definition 3.20. The weak equality =w is the largest reflexive, equipollent, ex-
tensional, codivergent, weak bisimulation.

The external characterization of the weak equality is Milner’s weak bisimilar-
ity [Milner 1989a] enhanced with the codivergence condition.

ACM Journal Name, Vol. V, No. N, April 2010.

22 · Y. Fu and H. Zhu

Definition 3.21. A codivergent bisimulation is an external weak bisimulation if
the following statements are valid for every ` ∈ L.

(1) If QR−1P `−→ P ′ then Q
`

=⇒ Q′R−1P ′ for some Q′.

(2) If PRQ `−→ Q′ then P
`

=⇒ P ′RQ′ for some P ′.

The external weak bisimilarity ' is the largest external weak bisimulation.

The proof of Theorem 3.13 can be extended to a proof of the following coincidence
result.

Proposition 3.22. The equivalences =w,' coincide in πM , π− and π.

The relationships between the strong equality, the absolute equality and the weak
equality are stated in the next proposition.

Proposition 3.23. The inclusions =s (= (=w are strict.

Proof. It is well known that a.(τ.b + τ.c) =w a.(τ.b + τ.c) + a.c holds but
a.(τ.b+ τ.c) = a.(τ.b+ τ.c) + a.c is not valid.

3.1.3 Remark. In the theory of bisimulation semantics, the three major con-
tributions are the bisimulation of Milner [1989a] and Park [1981], the branching
bisimulation of van Glabbeek and Weijland [1989], and the barbed bisimulation
of Milner and Sangiorgi [1992]. Despite of its nice properties [De Nicola et al.
1990; van Glabbeek 1994; De Nicola and Vaandrager 1995; Baier and Hermanns
1997], the branching bisimulation is not as widely appreciated as it deserves. The
absolute equality is introduced in [Fu 2010b] with three points of view. The first
is that bisimulation is a defining property for the internal actions, it is a derived
property for the external actions. This is very much the motivation for the barbed
bisimulation. The second is that not all internal actions are computations. Only
those that evolve to equivalent states are computations. This is in our opinion the
philosophy of the branching bisimulation. The third is that bisimilar objects should
also bisimulate each other’s infinite computations. Codivergence and bisimulation
complements to each other. The point is that computations are ignorable locally
but not globally. The notion of codivergence is formulated by Priese [1978]. The
correlation of the codivergence property to the bisimulation property is emphasized
independently by Fu [2010b] and by van Glabbeek et al. [2009].

Several other bisimulation based equivalences have been proposed for π-calculus.
First of all let’s take a look at the first equivalence proposed for π-calculus [Milner
et al. 1992], the early equivalence. For the sake of illustration let’s denote by
≈̇ the largest equipollent codivergent weak bisimulation. We say that P,Q are
early equivalent, notation P ≈e Q, if (c̃)(P |O)≈̇(c̃)(Q |O) for every environment
(c̃)(|O). Despite the result in [Sangiorgi 1992], it is still an open problem if ≈e
coincides with the weak bisimilarity '. But the issue is not worth any serious effort
in view of the following contradiction one finds in the definition of ≈e.

—The bisimulation property together with the equipollence property assume that
environments are dynamically changing.

—The closure under environments in the beginning of the observation says the
opposite.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 23

The so-called late equivalence [Milner et al. 1992] has also been studied in literature,
especially when one constructs proof systems. If we think of it, the late equivalence
is not really an observational equivalence. As long as the one step interactions are
atomic actions, there is no way to tell apart by a third party the difference between
a(x).P + a(x).Q and a(x).P + a(x).Q + a(x).([x=d]P + [x 6=d]Q). Even if the late
equivalence is useful when names are treated uniformly, it is a dubious equivalence
when name dichotomy is applied.

Another well known equivalence for π-calculus is the open bisimilarity [Sangiorgi
1996c]. The open approach was meant to deal with the open π-terms head-on.
A closely related equivalence is the quasi open bisimilarity [Sangiorgi and Walker
2001a; Fu 2005]. An open bisimulation is a distinction indexed set of relations. In
the presence of the name dichotomy, an indexed family of relations is no longer
necessary. The following is the standard definition of the open bisimilarity iterated
in the present framework.

A codivergent bisimulation R on T is an open bisimulation if the follow-
ing statements are valid.
(1) If SRT then Sσ R Tσ for every substitution σ.

(2) If TR−1S `−→ S′ then T
`

=⇒ T ′R−1S′ for some T ′.

(3) If SRT `−→ T ′ then S
`

=⇒ S′RT ′ for some S′.
The open bisimilarity ≈o is the largest open bisimulation.

The relation ≈o should definitely be given up. For one thing it fails (15). The term
aa for example cannot be simulated by [x=y]aa | [x 6=y]aa. If one tries to correct
the above definition, one soon realizes that what one gets is the weak equality.

3.1.4 Algebraic Property. This section takes a closer look at the absolute equal-
ity on π-terms. The goal is to reduce the proof of an equality between π-terms
to the proof of an equality between π-processes. To describe the reductions, we
need to fix some terminologies and notations. We will write ⊆f for the finite subset
relationship. If F ⊆f N ∪Nv, then Fc stands for F ∩N and Fv for F ∩Nv. Given
such a finite set F , a condition ψ may completely characterize the relationships
between the elements of F . This intuition is formalized in the next definition.

Definition 3.24. Suppose F ⊆f N ∪ Nv. We say that a satisfiable condition ψ
is complete on F , if Fc = n(ψ), Fv = v(ψ) and for every x ∈ Fv and every q ∈ F
it holds that either ψ ⇒ x = q or ψ ⇒ x 6= q. A condition ψ is complete if it is
complete on n(ψ) ∪ v(ψ).

The defining property of Definition 3.24 immediately implies the following lemma.

Lemma 3.25. Suppose ϕ is complete on F and n(ψ) ∪ v(ψ) ⊆ F . Then either
ϕ⇒ ψ or ϕψ ⇒ ⊥.

It follows from Lemma 3.25 that if both ϕ,ψ are complete on F then either
ϕ ⇔ ψ or ϕψ ⇔ ⊥. This fact indicates that we may apply complete conditions
to carry out case analysis when reasoning about term equality. A case analysis is
based on a complete disjoint partition.

Definition 3.26. Suppose F ⊆f N ∪ Nv. A finite set {ϕi}i∈I is a complete
disjoint partition of F if the following conditions are met.

ACM Journal Name, Vol. V, No. N, April 2010.

24 · Y. Fu and H. Zhu

(1) ϕi is complete on F for every i ∈ I.

(2)
∨
i∈I ϕi ⇔ >.

(3) ϕi ∧ ϕj ⇒ ⊥ for all i, j such that i 6= j.

Given a set F ⊆f N ∪Nv, there is always a complete disjoint partition on F . So
one can always apply a partition to a π-term.

Lemma 3.27. T ∼
∑
i∈I ϕiT , where {ϕi}i∈I is a complete disjoint partition of

gn(T) ∪ fv(T).

Now suppose ϕ is complete on gn(S |T)∪ fv(S |T). Usually it is much easier to
prove ϕS ' ϕT than to prove S ' T . So there is a strong interest in the result
stated next.

Lemma 3.28. Let {ϕi}i∈I be a complete disjoint partition of gn(S |T)∪fv(S |T).
Then S ' T if and only if ϕiS ' ϕiT for every i ∈ I.

How can we reduce the equality proof of ϕS ' ϕT further if ϕ is complete
on gn(S |T) ∪ fv(S |T)? Consider [x=y][z=a][z′=b]S ' [x=y][z=a][z′=b]T . This
equality is the same as

[x=y][z=a][z′=b]S{y/y, y/x, a/z, b/z′} ' [x=y][z=a][z′=b]T{y/y, y/x, a/z, b/z′},

which can be reduced to

S{y/y, y/x, a/z, b/z′} ' T{y/y, y/x, a/z, b/z′}.

The substitution {y/y, y/x, a/z, b/z′} has the property that it agrees with the condi-
tion x=y∧z=a∧z′=b and its domain set and range set are subsets of {x, y, z, a, z′, b}.
Substitutions of this kind are very useful when rewriting π-terms.

Definition 3.29. An assignment ρ agrees with ψ, and ψ agrees with ρ, if the
following statements are valid.

(1) v(ψ) ⊆ dom(ρ).

(2) For each x ∈ v(ψ) and each a ∈ n(ψ), ψ ⇒ x = a if and only if ρ(x) = a.

(3) For all x, y ∈ v(ψ), ψ ⇒ x = y if and only if ρ(x) = ρ(y).

A substitution σ is induced by ψ if the following statements are valid.

(1) n(σ) ⊆ n(ψ), v(σ) ⊆ v(ψ) and dom(σ) = v(ψ).

(2) ψ ⇒ x = a if and only if σ(x) = a.

(3) σ(x) = σ(y) if and only if ψ ⇒ x = y.

(4) For each x ∈ v(ψ), σ(x) is some name c if and only if ψ ⇒ x = c.

There could be many assignments that agree with ψ and many substitutions that
are induced by ψ. We shall write ρψ for some assignment that agrees with ψ and σψ
for some substitution that is induced by ψ. It should be clear that if ψ is complete,
then σψ(x) 6= σψ(y) if and only if ψ ⇒ x 6= y if and only if ρψ(x) 6= ρψ(y). The
validity of the next lemma is obvious.

Lemma 3.30. ϕT ∼ ϕTσϕ.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 25

So we have reduced the proof of S ' T to the proof of ϕSσϕ ' ϕTσϕ for some
ϕ complete on gn(S |T) ∪ fv(S |T). Now the match conditions appeared in ϕ are
inessential. We may apply the following lemma to remove all the match conditions.

Lemma 3.31. The following statements are valid.

(1) If n /∈ gn(S |T) ∪ fv(S |T), then [x 6=n]S ' [x 6=n]T if and only if S ' T .

(2) If x /∈ fv(S |T), then [x=n]S ' [x=n]T if and only if S ' T if and only if
[x 6=n]S ' [x 6=n]T .

After Lemma 3.31 we may assume that an equality to be proved is of the form
δFS ' δFT , where F = gn(S |T) ∪ fv(S |T) and δF is the conjunction∧

{x 6= n | x ∈ Fv, n ∈ F and x, n are distinct}.

In the last step of the reduction we apply the following result.

Lemma 3.32. δFS ' δFT if and only if SρδF ' TρδF , where F = gn(S |T) ∪
fv(S |T).

It should be remarked that δFS ' δFT is an equality between two open π-
terms, whereas SρδF ' TρδF is an equality between two π-processes. The proof of
Lemma 3.32 is immediately from the following fact.

Lemma 3.33. If P ' Q then Pα ' Qα for every renaming α.

We conclude that all equality proofs for π-terms can be transformed to equality
proofs for π-processes.

Lemma 3.28, Lemma 3.31, Lemma 3.32 and Lemma 3.33 are also valid for ∼.
It is difficult to attribute the above lemmas to the original authors. It would be

fair to say that most early researchers on π-calculus were aware of the properties
described in these lemmas. See for example the work of Lin [2003] and Parrow and
Sangiorgi [1995].

3.2 Testing Equivalence

The testing equivalence of De Nicola and Hennessy [De Nicola and Hennessy 1984;
Hennessy 1988] is probably the best known nonbisimulation equivalence for pro-
cesses. In the testing approach, one only cares about the result of observation, not
the course of observation. To define a testing equivalence, one needs to explain
what the observers are, how the observers carry out tests, and what counts as the
result of a test. In the spirit of observation theory, there is not much room for
variation. The observers are the environments. A test by the observer (c̃)(|O) on
a process P is a complete internal action sequence of (c̃)(P |O). The result of a test
can be either successful or unsuccessful. From the point of view of observation, the
success of a test can only be indicated by an observable action. The only variations
that may arise are concerned with the way the successes are reported.

This subsection serves two purposes. One is to demonstrate that the testing
theory for π-calculus is just as simple as that for CCS. The second is to give a
model independent characterization of the testing equivalence.

ACM Journal Name, Vol. V, No. N, April 2010.

26 · Y. Fu and H. Zhu

3.2.1 May Equivalence and Must Equivalence. The testing machinery of De Nicola
and Hennessy [1984] can be summarized as follows.

—Success is indicated by the special action ω.

—In the presence of ω, the observers can be simplified to the environments of the
form |O. There is no need for the localization operator. An observer O is
obtained from some process by replacing some occurrences of 0 by ω.

—A test of P by O is a complete internal action sequence of P |O.

—A test of P by O is DH-successful if at some state of the test, the ω action is
immediately fireable. It is unsuccessful otherwise.

—A binary relation R on processes satisfies may predicate if PRQ implies that, for
every observer O, some test of P |O is DH-successful if and only if some test of
Q |O is DH-successful.

—A binary relation R on processes satisfies must predicate if PRQ implies that,
for every observer O, all tests of P |O are DH-successful if and only if all tests of
Q |O are DH-successful.

Using the above terminologies, we may define the may equivalence ≈may, respec-
tively the must equivalence ≈must, as the largest relation on the π-processes that
satisfies the may predicate, respectively the must predicate. Let’s see some illus-
trating examples.

—A | !τ ≈may A. The may equivalence ignores divergence.

—A | !τ 6≈must A if A is terminating. The must equivalence is discriminating against
divergent processes.

—A | !τ ≈must B | !τ even if A 6≈must B. It is often said that divergence is catas-
trophic for must equivalence.

It is obvious from these examples that ≈must is incompatible to both ≈may and Mil-
ner’s weak bisimilarity, which is really undesirable. The may equivalence behaves
better. It is well known that ≈may is nothing but the so called trace equivalence.
A proof of this coincidence, Lemma 3.34, can be found in [De Nicola and Hennessy
1984].

Lemma 3.34. P ≈may Q if and only if (P
`∗

=⇒)⇔ (Q
`∗

=⇒) for all `∗∈L∗.

All observational equivalences should subsume the trace equivalence [van Glabbeek
1990]. For the must equivalence this is true only for a set of hereditarily terminating
processes. The following definition and the next lemma are from [De Nicola and
Hennessy 1984].

Definition 3.35. A process is strongly convergent if all the descendants of the
process are terminating.

Lemma 3.36. P ≈must Q implies P ≈may Q if P,Q are strongly convergent.

Proof. We start by defining the trace observer generated by some `∗ ∈ L∗ and
some finite subset F of N . The structural definition is given in Figu. 2. Notice that
the input choice and the output choice are necessary to define the trace observer.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 27

OFε
def
= τ.0

OFab,`∗
def
= τ.ω + ab.OF`∗

OFab,`∗
def
= τ.ω + a(z).(τ.ω + [z=b]τ.O

F∪{b}
`∗)

OFa(b),`∗
def
= τ.ω + a(z).(τ.ω + [z /∈F]τ.O

F∪{z}
`∗)

Fig. 2. Trace Observer.

Without loss of generality assume that P 6≈may Q. Then there must exist some

nonempty `∗1 ∈ L∗ such that P
`∗1=⇒ and ¬(Q

`∗1=⇒). Let F ′ be gn(P |Q). Obviously
P |OF ′`∗1 has an unsuccessful test. Since Q is strongly convergent, it does not induce

any infinite computation. It follows that all the tests of Q |OF ′`∗1 are successful.

3.2.2 Remark. The proceeding section has pinpointed the problems with the
must equivalence. Let’s summarize.

I. Something must be wrong with the fact that Milner’s weak bisimilarity is not
a sub-relation of the testing equivalence. Both the weak bisimilarity and the
testing equivalence are to blame since neither deals with divergence properly.
Moreover there is no excuse for ≈must 6⊆≈may.

II. It is a little discomfort to introduce a special symbol ω to indicate success. The
action ω introduces an asymmetry between testers and testees. In De Nicola
and Hennessy’s approach, a testing equivalence is always defined for a particular
process calculus. The definition may vary from one calculus to another. If
the testing equivalence is really a fundamental equivalence for processes, there
ought to be a model independent definition of the equivalence that applies to
all calculi. The model independent characterization should be able to provide
some canonicity for the testing approach.

In literature there have been several attempts to modify the definition of must equiv-
alence in order to resolve issues I and II, see for example [Phillips 1987; Brinksma
et al. 1995; Natarajan and Cleaveland 1995; Boreale et al. 1999; 2001]. Let’s review
some of the proposals.

I. Brinksma, Rensink and Volger’s should equivalence [Brinksma et al. 1995] and
Natarajan and Cleaveland’s fair testing equivalence [Natarajan and Cleaveland
1995] are two modifications proposed to address issue I. These two variants
are essentially defined over the same success predicate. A test of P by O is
FS-successful if Q

ω
=⇒ whenever P |O =⇒ Q. A binary relation R on processes

satisfies fair/should predicate if PRQ implies that, for every observer O, all
tests of P |O are FS-successful if and only if all tests of Q |O are FS-successful.
Let ≈FS be the largest relation that satisfies this predicate. This equivalence
stays between Milner’s weak bisimilarity and trace equivalence.

II. Boreale, De Nicola and Pugliese address issue II in [Boreale et al. 1999; 2001].
Instead of using the special symbol ω, they let all the observable actions to
indicate success. Their version of the fair/should predicate is based on a slightly

different notion of success. A test of P by O is BDP-successful at ` if Q
`

=⇒
ACM Journal Name, Vol. V, No. N, April 2010.

28 · Y. Fu and H. Zhu

whenever P |O =⇒ Q. Notice that there is a guarantee at ` predicate for
every ` ∈ L. Boreale, De Nicola and Pugliese’s equivalence ≈BDP is the largest
reflexive contextual relation satisfying all the guarantee at ` predicates. It is
proved in [Boreale et al. 1999] that ≈BDP coincides with ≈FS for the calculus
considered in [Boreale et al. 1999]. The significance of their approach is that
it provides a characterization of the must equivalence without resorting to any
testing machinery.

We shall cast more light on ≈FS and ≈BDP next.

3.2.3 Testing Equivalence without Testing. Although the study in [Boreale et al.
1999] is carried out for a particular calculus with a particular notion of context,
Boreale, De Nicola and Pugliese’s approach to testing equivalence is basically model
independent. In this subsection we shall give an even more abstract characterization
of ≈BDP in the style of the absolute equality. We start with a similar abstract
characterization of the trace equivalence. The proof of the following lemma is
essentially given in [Boreale et al. 1999].

Lemma 3.37. The equivalence ≈may is the largest reflexive, equipollent, exten-
sional relation.

In view of Lemma 3.37 we may introduce the following definition.

Definition 3.38. The diamond equality =3 is the largest reflexive, equipollent,
extensional relation.

The diamond equality is about the existence of a successful testing. A logical
dual would be about the inevitability of successful testings. For the purpose of
introducing such a dual, one need to strengthen the equipollence condition.

Definition 3.39. A process P is strongly observable, notation P�, if P ′⇓ for all
P ′ such that P =⇒ P ′. A relation R is strongly equipollent if P�⇔ Q� whenever
PRQ.

After Definition 3.39, the following definition must be expected.

Definition 3.40. The box equality =2 is the largest reflexive, strongly equipollent,
extensional relation.

The first indication that the box equality offers a better process equivalence than
the must equivalence is the property described in the next lemma.

Lemma 3.41. The strict inclusion =2 (=3 holds.

Proof. The proof of Lemma 3.36 can be reiterated. Notice that the strongly
convergent condition is not necessary in this case. The strictness is witnessed by
the process pair a.(!b | !c) and a.b.(!b | !c) + a.c.(!b | !c).

The next lemma confirms that the box equality captures the essence of the must
semantics.

Lemma 3.42. The box equality and the must equivalence coincide on the strongly
convergent processes.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 29

Proof. Suppose P 6≈must Q. Without loss of generality, assume that there is
some observer O such that P |O has an unsuccessful test and all the tests of Q |O
are successful. Suppose the failure test of P |O is the infinite tau action sequence

P |O τ−→ (c̃1)(P1 |O1) . . .
τ−→ (c̃i)(Pi |Oi) (17)

If O performs an infinite consecutive tau action sequence in (17) then it must be the
case that P 6=� Q. If not then by the strong convergence property P must perform
an infinite number of external actions in (17). It follows from the assumption that
Q can not perform the same infinite number of external actions. So P 6=� Q also
holds in this case. If the failure test of P |O is the finite internal action sequence

P |O τ−→ (c̃1)(P1 |O1) . . .
τ−→ (c̃i)(Pi |Oi),

then either P 6=� Q or there exists some `∗ such that for each fresh name f one has
(c̃)(Q | `∗ff) � but not (c̃)(P | `∗ff) �, where {c̃} ⊆ gn(P |Q). We conclude that
=2 ⊆ ≈must.

Suppose P 6=2 Q for strongly convergent processes P and Q. We prove the
contrapositive of ≈must ⊆ =2. Without loss of generality, assume that there were c̃
and O such that (c̃)(P |O)� holds but (c̃)(Q |O)� is not valid. Let (c̃′)(Q′ |O′) be
such that (c̃)(Q |O) =⇒ (c̃′)(Q′ |O′) 6⇓. Then there must be a sequence of actions

`∗1 such that Q
`∗1=⇒ Q′ and O

`∗1=⇒ O′. If ¬(P
`∗1=⇒), then let `∗ be `∗1. If P

`∗1=⇒ P ′ for
some P ′ then (c̃′)(P ′ |O′)⇓ by definition. So there is some observer (c̃′′)(|O′′) and
some non-tau action λ such that (c̃′)(P ′ |O′) =⇒ (c̃′′)(P ′′ |O′′)↓λ. Assume that

P ′
`∗2=⇒ P ′′. If Q′

`∗2=⇒ Q′′ for some Q′′, then (c̃′′)(P ′′ |O′′)↓λ implies P ′′↓λ since

(c̃′′)(Q′′ |O′′)6↓λ. In this case let `∗ be `∗1`
∗
2λ. If ¬(Q′

`∗2=⇒), then let `∗ be `∗1`
∗
2. Let

F = gn(P |Q). It is easy to see that P |OF`∗ has an unsuccessful test but Q |OF`∗
does not. This completes the proof of ≈must ⊆ =2.

We can now summarize the main result of this section by the following theorem.
It says that the box equality improves upon the testing equivalence in the best way
one could expect.

Theorem 3.43. The following statements are valid.

(1) The strict inclusions =(=2 (=3 hold.

(2) The equivalences =2,≈must coincide on the strongly convergent processes.

So far all the results in testing theory are model dependent. For example the
coincidence between ≈FS and ≈BDP cannot be established in a model independent
way. This is because to make sense of the fair/should testing one has to incorporate
the special symbol ω into a calculus, which is impossible without knowing the details
of the model. Similarly the coincidence of ≈FS , ≈BDP , ≈must on the strongly
convergent processes is also model specific. For a particular model like π-calculus
one may show that ≈BDP is the largest reflexive, strongly equipollent, extensional
relation. But there is no way to prove the validity of this characterization for all
models. Similarly the coincidence between ≈BDP and =2 can only be proved for
individual models. The same remark applies to the trace equivalence. There are
labeled transition systems for which one might not like to talk about traces at all.

ACM Journal Name, Vol. V, No. N, April 2010.

30 · Y. Fu and H. Zhu

An example is a labeled transition semantics for a higher order calculus that defines
transitions from processes to abstractions or concretions.

It is in the light of the above discussion that the significance of the diamond
equality and the box equality emerge. The former is the universal definition of
the trace equivalence, whereas the latter is the universal definition of the testing
equivalence. These definitions apply to all models of interaction. For a particular
model it is possible to give an explicit counterpart of =2 or =3. The explicit
versions of =3 and =2 may depend heavily on the details of the model. The
relationship between =2 and its explicit characterization is like that between the
absolute equality and the external bisimilarity.

The outline for a model independent testing theory is now complete.

3.3 Remark

The model independent methodology can be applied to analyze dozens of process
equivalences defined in literature. In particular it can be applied to evaluate the
equivalence relations for example in the linear time branching time spectrum [van
Glabbeek 1990]. We have confirmed in this paper that the diamond equality is the
right generalization of the trace equivalence, the bottom of the spectrum. On the
top of the spectrum, the absolute equality and the weak equality enjoy the model
independent characterizations. It would be interesting to take a look at the other
equivalences of the spectrum from this angle. Good process equivalences are defined
in a model independent way.

Having said that it must be emphasized that it is often difficult to come up with
an external characterization of an equality defined in a model independent manner.
Let’s take a look at an interesting example. An explicit characterization of the
absolute equality for πA-calculus is tricky. The asynchronous equivalence studied
by Honda and Tokoro [1991a], and by Amadio et al. [1996], satisfies the following
equality, where 'b stands for the barbed equivalence.

a(x).ax 'b 0. (18)

The equality (18) does not hold for the absolute equality since it violates the equipol-
lence condition. Another equality validated by the asynchronous equivalence is (19).

!a(x).ax 'b a(x).ax (19)

Equality (19) is rejected by the absolute equality because ac | !a(x).ax is divergent
but ac | a(x).ax is not. However the following absolute equality holds.

a(x).ax | a(x).ax =πA a(x).ax (20)

So an external characterization of =πA is yet to be worked out. The asynchronous π-
calculus suggests that there is a discrepancy between the absolute equality and the
asynchronous equivalence. How should we reconcile the difference? A new approach
to the asynchronous calculus that gives a satisfactory answer to the question is
outlined in [Fu 2010a].

We conclude this section by remarking that the branching style bisimulation
property is what makes the coincidence proofs difficult. External characterizations
of the weak equalities of the π-variants are much easier to come by.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 31

4. EXPRESSIVENESS

How do different variants of π-calculus compare? One fundamental criterion for
comparison is relative expressiveness. Is a calculus M as powerful as another cal-
culus L? Or are L and M incomparable in terms of expressiveness? To answer
these questions, we need a notion of relative expressiveness that does not refer to
any particular model. The philosophy developed in [Fu 2010b] is that relative ex-
pressiveness is the same thing as the process equality. The latter is a relation on
one calculus, whereas the former is a relation from one calculus to another. To
say that M is at least expressive as L means that for every process L in L there
is some process M in M such that M is somehow equal to L. It is clear from this
statement that relative expressiveness must break the symmetry of the absolute
equality. Condition (2) of Definition 3.7 can be safely kept when comparing two
process calculi. But condition (1) has to be modified. The reader is advised to
consult [Fu 2010b] for the argument why the reflexivity condition for the abso-
lute equality turns into totality condition and soundness condition. The following
definition is taken from [Fu 2010b].

Definition 4.1. Suppose L,M are two process calculi. A binary relation < from
the set PL of L-processes to the set PM of M-processes is a subbisimilarity if the
following statements are valid.

(1) < is reflexive from L to M in the sense that the following properties hold.
(a) < is total, meaning that ∀L ∈ PL.∃M ∈ PM.L<M .
(b) < is sound, meaning that M1<−1L1 =L L2<M2 implies M1 =M M2.

(2) < is equipollent, extensional, codivergent and bisimilar.

We say that L is subbisimilar to M, notation L v M, if there is a subbisimilarity
from L to M.

It is shown in [Fu 2010b] that in general there are an infinite number of pairwise
incompatible subbisimilarities from L to M.

An elementary requirement for the relative expressiveness relationship is tran-
sitivity. The subbisimilarity relationship is well defined in this aspect since its
transitivity is apparent from the definition.

So we have formalized the intuitive notion “M being at least as expressive as L”
by “L v M”. We write L @ M if L v M and M 6v L, meaning that M is strictly
more expressive than L. The reader might wonder why the soundness condition
of Definition 4.1 is not strengthened to the full abstraction. The truth is that
the soundness condition is equivalent to the full abstraction condition as far as
Definition 4.1 is concerned.

Consider the self translation J K./ from π-calculus to itself. The nontrivial part
of the translation is defined as follows.

Ja(x).T K./
def
= a(c).c(x).JT K./,

Jab.T K./
def
= a(y).(yb | JT K./).

It is structural on the non-prefix terms. Is J K./; = a subbisimilarity? The negative
answer is given in [Fu 2010b]. This is an example of a typical phenomenon. With-
out the soundness condition, many liberal encodings like the above one would be

ACM Journal Name, Vol. V, No. N, April 2010.

32 · Y. Fu and H. Zhu

v π πL πR π1

π - ? ? ?

πL ? - ? ?

πR ? ? - ?

π1 ? ? ? -

Fig. 3. Expressiveness Relationship

admitted. In most cases soundness is the only thing to prove when comparing a
syntactical subcalculus against the super calculus. Now suppose the external bisim-
ilarity coincides with the absolute equality in π-variants π1 and π2, then π1 v π2

if there is a total relation < from π1 to π2 such that the following statements are
valid.

(1) If Q<−1P `−→ P ′ then Q =⇒ Q′′
`−→ Q′<−1P ′ and P<Q′′ for some Q′, Q′′.

(2) If P<Q `−→ Q′ then P =⇒ P ′′
`−→ P ′<Q′ and P ′′<Q for some P ′, P ′′.

Such an external characterization is also difficult to come by. So far we have not
been able to confirm that πM v π− v π, although the following negative results
are easy to derive.

Proposition 4.2. π 6v π− 6v πM .

Proof. Using the same idea from [Fu 2010b] it is routine to show that the π-
process a(x).bb+ a(x).cc can not be defined in π− and the π−-process a(x).[x=c]bb
can not be defined in πM .

Proposition 4.2 is all we know about the relative expressiveness of the π-variants.
The relative expressiveness between π, πL, πR, π1 is important enough to be stated
as an open problem.

Problem 4.3. What are the answers to the questions posed in Fig. 3?

Again the branching style bisimulation is what makes things difficult.
Before ending this section, let’s see a positive result. Consider the boolean ex-

pressions constructed from the binary relation = and the logical operators ∧,¬. For
example ¬(¬(x = a) ∧ ¬(x = b)) is such an expression, which is normally abbrevi-
ated to x = a∨ x = b. Let π∨ denote the π-calculus with the match and mismatch
operators replaced by the operator [ϕ](), where ϕ is a boolean expression.

Proposition 4.4. π v π∨ v π.

Proof. The external bisimilarity and the absolute equality coincide for π∨. So
π v π∨ is obvious. The proof of the converse is equally simple as soon as the
encodings of processes of the form [ϕ]T become clear. Given any ϕ, one may
transform it into a disjunctive normal form

∨
i∈I ϕi. By applying the equivalence∨

i∈I
ϕi ⇔

∨
i∈I

ϕi ∧ (u = v) ∨
∨
i∈I

ϕi ∧ (u 6= v),

one gets a complete disjoint partition
∨
j∈J ψj of ϕ on fv([ϕ]T) ∪ gn([ϕ]T). It

follows that [ϕ]T =
∏
j∈J [ψj]T holds in π∨. Therefore [ϕ]T can be bisimulated by∏

j∈J [ψj]T .

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 33

5. PROOF SYSTEM

An important issue for a process calculus is to design algorithms for the decidable
fragments of the calculus. The behavior of a finite term can be obviously examined
by a terminating procedure [Milner 1989a]. More generally if a term that has only
a finite number of descendants and is finite branching, then there is an algorithm
that generates its transition graph [Lin 1996], which can be seen as the abstract
representation of the term. An equivalence checker for the terms now works on
the transitions graphs. To help transform the terms to their underlying transition
graphs, a recursive enumerable equational rewrite system would be helpful.

In this section we construct two equational systems of the finite π-terms, one for
the absolute equality and the other for the box equality. Our prime objective is to
demonstrate how the name dichotomy simplifies equational reasoning.

5.1 Normal Form

To construct an equational system, it is always necessary to introduce a combinator
that is capable of describing the nondeterministic choices inherent in concurrent
systems. This is the general choice operator ‘+’. The semantics of this operator is
defined by the following rules.

S
λ−→ S′

S + T
λ−→ S′

T
λ−→ T ′

S + T
λ−→ T ′

The choice operation is both commutative and transitive. We will write T1+. . .+Tn
or
∑
i∈I Ti, called a summation, without further comment. Here Ti is a summand.

Occasionally this notation is confused with the one defined in (9) or (10). When
this happens, the confusions are harmless. Using the unguarded choice operator,
one may define for example [p 6∈ F]T by∑

m∈F
[p = m]T.

In general one could define (ϕ)T for a boolean expression constructed from =,∧,¬.
It follows that if ϕ then S else T is definable using the general choice operator. The
choice operator is a debatable operator since it destroys the congruence property
of the absolute equality. In most of the axiomatic treatment of this operator an
induced congruence relation is introduced. This is avoided in this paper since we
see the choice operator not as a proper process operator but as an auxiliary one
used in the proof systems.

One criterion for an equational system is if it allows one to reduce every term to
some normal form. The exercise carried out in Section 3.1.4 suggests the following
definitions.

Definition 5.1. Let F be gn(T) ∪ fv(T). The π-term T is a normal form if it is
of the form ∑

i∈I
λi.Ti

such that for each i ∈ I one of the followings holds.

(1) If λi = τ then Ti is a normal form on F .

ACM Journal Name, Vol. V, No. N, April 2010.

34 · Y. Fu and H. Zhu

L1 (c)0 = 0

L2 (c)(d)T = (d)(c)T
L3 (c)π.T = π.(c)T if c /∈ n(π)

L4 (c)π.T = 0 if c = subj(π)
L5 (c)ϕT = ϕ(c)T if c /∈ n(ϕ)
L6 (c)[x=c]T = 0

L7 (c)(S + T) = (c)S + (c)T

M1 (>)T = T

M2 (⊥)T = 0
M3 ϕT = ψT if ϕ⇔ ψ

M4 [x=p]T = [x=p]T{p/x}
M5 [x 6=p]π.T = [x 6=p]π.[x 6=p]T if x /∈ bv(π) 63 p
M6 ϕ(S + T) = ϕS + ϕT

S1 T + 0 = T
S2 S + T = T + S

S3 R+ (S + T) = (R+ S) + T
S4 T + T = T
S5 T = [x=p]T + [x 6=p]T
S6 n(x).S + n(x).T = n(x).S + n(x).T + n(x).([x=p]S + [x 6=p]T)

C1 λ.τ.T = λ.T
C2 τ.(S + T) = τ.(τ.(S + T) + T)

Fig. 4. Axioms for Absolute Equality.

(2) If λi = nm then Ti is a normal form on F .

(3) If λi = n(c) then Ti ≡ [c/∈F]T ci for some normal form T ci on F ∪ {c}.
(4) If λi = n(x) then Ti is of the form

[x/∈F]T 6=i +
∑
m∈F

[x=m]Tmi

such that T 6=i is a normal form on F ∪ {x} and, for each m ∈ F , x /∈ fv(Tmi)
and Tmi is a normal form on F .

Definition 5.2. T is a complete normal form on F if it is of the form δFT
′ for

some normal form T ′ such that gn(T ′) ∪ fv(T ′) ⊆ F ⊆f N ∪Nv.

5.2 Axiom for Absolute Equality

The equational system for the absolute equality on the finite π-terms is given in
Fig. 4. The axioms C1 and C2 are computation laws. Notice that C2 implies the
following equality

τ.T = τ.(T + τ.T).

We write AS ` S = T if S = T can be derived from the axioms and the rules
in Fig. 4 and the equivalence and congruence rules. Some derived axioms are
summarized in the next lemma. The proofs of these derived axioms can be found
in for example [Fu and Yang 2003].

Lemma 5.3. The following propositions are valid.

(1) AS ` T = T + ϕT .

(2) AS ` ϕπ.T = ϕπ.ϕT .

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 35

(3) AS ` (c)[x 6=c]T = (c)T and (c)[x=c]T = 0.

(4) AS ` ϕT = ϕTσϕ.

(5) AS ` λ.ϕτ.T = λ.ϕT .

(6) AS `
∑k
i=1m(x).Ti =

∑k
i=1m(x).Ti + m(x).([x /∈ F]Tk+1 +

∑k
i=1[x=ni]Ti),

where F is the set {n1, . . . , nk}.

Using these derived axioms it is easy to prove the following lemma by structural
induction.

Lemma 5.4. Suppose T is a finite π-term and ϕ is complete on a finite set
F ⊇ gn(T) ∪ fv(T). Then AS ` ϕT = ϕ=δT ′ for some complete normal form δT ′

on gn(δT ′) ∪ fv(δT ′).

Proof. To start with, AS ` ϕT = ϕ=ϕ6=T = ϕ=(ϕ6=T)σϕ= . In the second step
observe that within AS we can carry out the reductions, explained in Section 3.1.4,
to (ϕ6=T)σϕ= . Notice that, for each F ⊆f N ∪Nv, although {x/∈F}∪{x=m}m∈F is
not a complete disjoint partition of F∪{x}, the set {(x/∈F)∧δF}∪{(x=m)∧δF}m∈F
is a complete disjoint partition of F ∪ {x}.

Suppose we are to prove AS ` ϕS = ϕT where ϕ is complete on gn(S |T) ∪
fv(S |T). According to Lemma 5.4 we only need to prove AS ` δS′ = δT ′ for some
complete normal forms δS′, δT ′. In the light of this fact the next lemma should
play a crucial role in the completeness proof.

Lemma 5.5. Suppose S, T are normal forms on the finite set F ⊇ gn(S |T) ∪
fv(S |T). If δFS ' δFT then AS ` δFτ.S = δFτ.T .

Proof. Assume that S ≡
∑
i∈I λi.Si and T ≡

∑
j∈J λj .Tj and that δFS ' δFT

for some F ⊇ gn(S |T) ∪ fv(S |T). Let ρ be an assignment that agrees with δF .
We are going to establish by simultaneous induction on the structure of S, T the
properties stated below.

(S) If Tρ→+ T ′ρ9 then AS ` δFτ.T = δFτ.(T + T ′) = δFτ.T
′.

(P) If δFS ' δFT then AS ` δFτ.S = δFτ.(S + T) = δFτ.T .

Suppose Tρ → T1ρ → . . . → Tnρ → T ′ρ 9. Lemma 3.32 and Lemma 3.33 imply
that δFT1 ' . . . ' δFTn ' δFT

′. By induction hypothesis on (P), AS ` δFτ.T1 =
. . . = δFτ.Tn = δFτ.T

′. Therefore

AS ` δFτ.T = δFτ.(T + τ.T ′).

Let λj .Tj be a summand of T . Consider how T ′ρ might bisimulate Tρ
λj−→ Tjρ.

There are four cases.

(1) λi = τ and Tρ
τ−→ Tjρ. Suppose the τ -action is bisimulated by T ′ρ

τ−→ T ′jρ '
Tjρ for some T ′j . Then δFT

′
j ' δFTj by Lemma 3.32 and Lemma 3.33. It follows

from the induction hypothesis on (P) that AS ` δFτ.T ′j = δFτ.Tj . Using (2) of
Lemma 5.3 one gets the following inference

AS ` δFτ.(T + τ.T ′) = δFτ.(T + τ.(T ′ + τ.T ′j))

= δFτ.(T + τ.(T ′ + τ.Tj)).

ACM Journal Name, Vol. V, No. N, April 2010.

36 · Y. Fu and H. Zhu

If Tρ
τ−→ Tjρ is bisimulated vacuously by T ′ρ. Then δFTj ' δFT

′ according
to Lemma 3.32 and Lemma 3.33 and consequently AS ` δFτ.Tj = δFτ.T

′ by
the induction hypothesis on (P). It follows from C2 that

AS ` δFτ.(T + τ.T ′) = δFτ.(T + τ.(T ′ + τ.T ′))

= δFτ.(T + τ.(T ′ + τ.Tj)).

(2) λi = nm and Tρ
ab−→ Tjρ for some a, b. We can prove as in the next case that

AS ` δFτ.(T + τ.T ′) = δFτ.(T + τ.(T ′ + nm.Tj)).

(3) λi = m(c) and Tρ
a(c)−→ Tjρ for some a. Suppose this action is bisimulated by

T ′ρ
a(c)−→ T ′jρ ' Tjρ for some T ′j . Then δF [c/∈F]T ′j ' δF [c/∈F]Tj and

AS ` δF [c/∈F]τ.T ′j = δF [c/∈F]τ.Tj

by induction hypothesis on (P). Therefore

AS ` δFm(c).[c/∈F]T ′j = δFm(c).[c/∈F]Tj .

If follows from (3) of Lemma 5.3 that

AS ` δFτ.(T + τ.T ′) = δFτ.(T + τ.(T ′ +m(c).Tj)).

(4) λi = m(x). Assume that ρ(m) = a and gn((S |T)ρ) = {b1, . . . , bn}. Let
nk ∈ F be such that nk = bk if bk ∈ F and ρ(nk) = bk if bk 6∈ F . There are
two subcases.
(a) For every k ∈ {1, . . . , n}, one has Tρ

abk−→ Tjρ{bk/x}. Let this action be

bisimulated by T ′ρ
abk−→ T ′nk

ρ{bk/x} ' Tjρ{bk/x}. Then

AS ` δF [x=nk]τ.T ′nk
= δF [x=nk]τ.Tj

by induction hypothesis on (P). Consequently

δFτ.(T + τ.T ′) = δFτ.(T + τ.(T ′ +m(x).T ′nk
))

= δFτ.(T + τ.(T ′ +m(x).([x 6=nk]τ.T ′nk
+ [x=nk]τ.T ′nk

)))

= δFτ.(T + τ.(T ′ +m(x).([x 6=nk]τ.T ′nk
+ [x=nk]τ.Tj))).

(b) Suppose Tρ
ad−→ Tjρ{d/x}, where d 6∈ F , is simulated by

T ′ρ
ad−→ Txρ{d/x} ' Tjρ{d/x}.

Like in the previous subcase, we may prove that

AS ` δFτ.(T + τ.T ′) = δFτ.(T + τ.(T ′ +m(x).([x∈F]τ.Tx + [x/∈F]τ.Tj))).

Putting together the two equalities obtained in (a) and (b), we get the following
equational rewriting

AS ` δFτ.(T + τ.T ′) = δFτ.(T + τ.(T ′ +m(x).([x∈F]τ.Tx + [x/∈F]τ.Tj)

+

n∑
j=1

m(x).([x 6=nk]τ.Tnk
+ [x=nk]τ.Tj)))

= δFτ.(T + τ.(T ′ +m(x).Tj)),

where the second equality holds by (6) of Lemma 5.3.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 37

In summary we may prove by simple induction that

AS ` δFτ.T = δFτ.(T + τ.(T ′ + T)).

Resorting to the full power of C2 we get from the above equality the following.

AS ` δFτ.T = δFτ.(T + T ′). (21)

If we examine the proof of (21) carefully we realize that it also establishes the
following.

AS ` δFτ.(T + T ′) = δFτ.T
′.

This finishes the inductive proof of (S).
The inductive proof of (P) is now simpler. Suppose δFS ' δFT . Let S′, T ′ be

such that Sρ→∗ S′ρ9 and Tρ→∗ T ′ρ9. According to the induction hypothesis
of (S), the followings hold.

AS ` δFτ.S = δFτ.S
′,

AS ` δFτ.T = δFτ.T
′.

The inductive proof of (S) can be reiterated to show AS ` δFτ.S′ = δFτ.T
′. Hence

AS ` δFτ.S = δFτ.T .

It is a small step from Lemma 5.5 to the completeness result.

Theorem 5.6. Suppose S, T are finite π-processes. Then S ' T if and only if
AS ` τ.S = τ.T .

Proof. Let F be gn(S |T) ∪ fv(S |T) and let {ϕi}i∈I be a complete disjoint
partition F . Then S ' T if and only if ϕiS ' ϕiT for every i ∈ I. For each
i ∈ I, ϕiS ' ϕiT can be turned into an equality of the form ϕ=

i (ϕ6=i S
′)σϕ=

i
'

ϕ=
i (ϕ6=i T

′)σϕ=
i

. Using Lemma 3.31 and Lemma 5.4, this equality can be simplified
to δS′′ ' δT ′′, where δS′′ and δT ′′ are complete normal forms. We are done by
applying Lemma 5.5.

5.3 Axiom for Box Equality

According to Lemma 3.42, a proof system for the box equality on the finite π-terms
is the same as a proof system for the testing equivalence on the finite π-terms.
De Nicola and Hennessy have constructed an equational system for the testing
equivalence on the finite CCS processes [De Nicola and Hennessy 1984]. Built upon
that system, Boreale and De Nicola have studied the equational system for the
testing equivalence on the finite π-processes [Boreale and De Nicola 1995]. So there
is not much novelty about an equational proof system for the box equality on the
finite π-terms. It would be however instructive in the present framework to give an
outline of the proof technique that reduces the completeness for the box equality
to the completeness for the absolute equality.

Since '⊆=2, one may devise an equational system for the latter by extending
the system given in Fig. 4. The additional axioms are given in Fig. 5. These laws
are the well known axioms for the testing equivalence of De Nicola and Hennessy
[1984] adapted to the π-calculus. It is well known that they subsume Milner’s τ -
laws (See Fig. 6). Let ASb be the system AS \ {C1, C2} ∪ {N1, N2, N3, N4}. It is

ACM Journal Name, Vol. V, No. N, April 2010.

38 · Y. Fu and H. Zhu

N1 λ.S + λ.T = λ.(τ.S + τ.T)

N2 S + τ.T = τ.(S + T) + τ.T
N3 n(x).S + τ.(n(x).T +R) = τ.(n(x).S + n(x).T +R)

N4 nl.S + τ.(nm.T +R) = τ.(nl.S + nm.T +R)

Fig. 5. Axioms for Box Equivalence.

T1 λ.τ.T = λ.T
T2 T + τ.T = τ.T

T3 λ.(S + τ.T) = λ.(S + τ.T) + λ.T

Fig. 6. Milner’s Tau Laws.

routine to check that ASb is sound for the box equality. To prove that the system
is also complete, we apply the following strategy.

S =2 T if and only if there exist some S′, T ′ such that ASb ` S = S′,
ASb ` T = T ′ and S′ = T ′.

The soundness of the strategy relies on the fact that ASb is complete for =w. To
make the strategy work, we need to introduce a special set of π-terms, different
from the complete normal forms, so that the box equality and the absolute equality
coincide on these special π-terms.

Axiom N1 suggests that a summation may be rewritten to a form in which no
two summands have identical non-tau prefix. For instance

ASb ` a(x).S + a(y).T = a(z).(τ.S{z/x}+ τ.T{z/y})

and

ASb ` a(b).S + a(c).T = a(d).(τ.S{d/b}+ τ.T{d/c}).

Axiom N2 implies that either all the summands of a summation are prefixed by τ ,
or none of them is prefixed by τ . Moreover N1 actually says that one does not have
to consider any τ -prefix immediately underneath another τ -prefix. Axioms N3 and
N4 can be used to expand a summation

∑
i∈I τ.Ti to a saturated form. We say that∑

i∈I τ.Ti is saturated if τ.(λ1.T1 + Tj) is a summand of
∑
i∈I τ.Ti whenever there

is a summand λ1.T1 of Ti such that for every summand λ2.T2 of Tj it holds up to
α-conversion that λ2 6= λ1. These observations lead to the following definition.

Definition 5.7. Let F be gn(T)∪fv(T). A finite π-term T is a box normal form
if it is in one of the following two forms:

(1) There are A,B,C ⊆f N , where C ⊆ B, such that T is of the shape:∑
a∈A

a(x).

(
[x 6∈F]Ta +

∑
n∈F

[x=n]Tna

)
+
∑
b∈B

∑
n∈Nb

bn.Tnb +
∑
c∈C

c(d).Tc (22)

where Nb ⊆f N ∪Nv; and moreover the following properties hold:
(a) for all a ∈ A, Ta is a box normal form on F ∪ {x};
(b) for all a ∈ A and all n∈F , x 6∈ fv(Tna) and Tna is a box normal form on F ;
(c) for all b ∈ B and all n∈Nb, Tnb is a box normal form on F ;

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 39

(d) for all c ∈ C, Tc is a box normal form on F ∪ {d}.
(2) There is some finite set I such that T is of the following form∑

i∈I
τ.Ti (23)

such that the following properties hold:
—For each i ∈ I, Ti is a box normal form on F of the shape (22);
—
∑
i∈I τ.Ti is saturated.

In the above definition we have ignored the conditionals. This is rectified in the
next definition.

Definition 5.8. T is a complete box normal form if T ≡ δFT ′ for some box normal
form T ′ such that gn(T ′) ∪ fv(T ′) ⊆ F ⊆f N ∪Nv.

We can now state a lemma that correlates Lemma 5.4.

Lemma 5.9. Suppose T is a finite π-term and ϕ is complete on a finite set
F ⊇ gn(T)∪ fv(T). Then ASb ` ϕT = ϕ=δT ′ for some complete box normal form
δT ′ on gn(δT ′) ∪ fv(δT ′).

Proof. The proof is a modification of the proof of Lemma 5.4 with additional
rewriting using N-laws.

We could have a lemma that parallels Lemma 5.5. But the following result is
more revealing.

Lemma 5.10. Suppose S, T are complete box normal forms on the finite set F =
gn(S |T) ∪ fv(S |T). Then S =2 T if and only if S = T .

Proof. Suppose S =2 T . By Lemma 5.9 we may assume that S ≡ δS′ and
T ≡ δT ′. Let ρ be an assignment that agrees with δ. Then S′ρ =2 T

′ρ. In view of
Lemma 3.32, we only need to show that S′ρ = T ′ρ. So let R be the relation

{(P,Q) | P =2 Q, and P,Q are box normal forms}.

There are three crucial properties about this relation.

(1) If P is of type (23) and Q is of type (22), then P ′RQ whenever P
τ−→ P ′. This

is so simply because Q cannot do any τ -action.

(2) If both P and Q are of type (23), then P
τ−→ P ′ implies Q

τ−→ Q′RP ′.
(3) If both P and Q are of type (22), then P

λ−→ P ′ implies Q
λ−→ Q′RP ′.

For the detailed proofs of these claims, the reader is advised to consult [De Nicola
and Hennessy 1984; Boreale and De Nicola 1995]. So R is a π-bisimulation.

Theorem 5.6, Lemma 5.10 and the fact that complete box normal forms are
complete normal forms immediately imply the completeness of ASb.

Theorem 5.11. Suppose S, T are finite π-processes. Then S =2 T if and only
if ASb ` τ.S = τ.T .

It is remarkable that the axioms N1 through N4 actually reduces the box equality
on the finite terms to the absolute equality. This is yet another support to the
branching style bisimulation.

ACM Journal Name, Vol. V, No. N, April 2010.

40 · Y. Fu and H. Zhu

5.4 Remark

In theory of CCS, Milner’s equational systems for the strong and the weak congru-
ences on the finite CCS-processes [Hennessy and Milner 1985; Milner 1989a] and De
Nicola and Hennessy’s system for the testing congruence are well known. A com-
plete system for the branching congruence is given by van Glabbeek and Weijland
[1989] in the first paper on branching bisimulation, in which the following single
tau law is proposed.

λ.(τ.(S + T) + T) = λ.(S + T). (24)

Their proof of the completeness makes use of a graph rewriting system. The ax-
iom (24) is clearly equivalent to the combination of C1 and C2.

The extension of these systems to the value-passing framework is not trivial, the
reason being that every value-passing calculus is built on top of an oracle domain,
say D. Early inference systems studied by Hennessy and Ingólfsdóttir [Hennessy
1991; Hennessy and Ingólfsdóttir 1993a; 1993b] are based on concrete semantics.
An uncomfortable rule in all these systems, from the point of view of a proof system,
is the so-called ω-data-rule (25).

∀v ∈ D.S{v/x} = T{v/x}
a(x).S = a(x).T

(25)

A significant step was made by Hennessy and Lin [1995] that introduces a whole
new approach to the study of the value-passing calculi. The symbolic semantics
dispenses with (25) by introducing a strong logic. One could argue that this use
of a logic is cheating because it essentially makes use of a universal quantification
operator that ranges over the oracle domain D. But the virtue of the symbolic
approach is that one could define a value-passing calculus using a moderate logic
that makes a lot of sense from a programming point of view, and then works out
the observational theory with the help of the logic. Using this idea Hennessy and
Lin [1996] propose several symbolic proof systems for finite value-passing processes.
A survey of the symbolic approach is given in [Ingólfsdóttir and Lin 2001].

For the name-passing calculi, the study on the proof systems was initiated in
the pioneering paper of Milner et al. [1992]. The system of [Milner et al. 1992] is
complete for the strong early equivalence. It contains the ω-name-rule (26), which
is a variant of (25).

∀n ∈ N .S{n/x} = T{n/x}
a(x).S = a(x).T

(26)

In the presence of the finite branching property, (26) is not as bad as (25) since only
a finite number of the premises of (26) have to be verified. A beautiful alternative
to rule (26) is Parrow and Sangiorgi’s set of axioms for match/mismatch [Parrow
and Sangiorgi 1995], among which the following one, S5, plays an indispensable
role.

[x=y]T + [x 6=y]T = T (27)

Axiom (27) offers the possibility to carry out case analysis within an equational
system. It is obvious from (27) that Parrow and Sangiorgi’s systems are only good
for the π-calculi with the mismatch operator. The mismatch is also necessary to

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 41

state the following law, S6, which first appeared in [Parrow and Sangiorgi 1995].

n(x).S + n(x).T = n(x).S + n(x).T + n(x).([x=y]S + [x 6=y]T) (28)

Axiom (28) characterizes the atomic nature of interactions. The symbolic approach
to proof systems however makes use of neither (26) nor (28). Lin’s symbolic proof
systems [Lin 1995a; 2003] are capable of dealing with calculi with or without mis-
match operator. Instead of (28), the systems in [Lin 1995a; 2003] resort to a less
attractive rule (29). ∑

i∈I τ.Si =
∑
j∈J τ.Tj∑

i∈I a(x).Si =
∑
j∈J a(x).Tj

(29)

A proof system for the strong open bisimilarity is given in [Sangiorgi 1996c], in which
all axioms are indexed by distinctions. The system without using distinctions is
proposed in [Fu and Yang 2003]. Since the following law, M5,

[x 6=y]π.T = [x 6=y]π.[x 6=y]T (30)

is invalid in the open semantics, axiom (31) is proposed in [Fu and Yang 2003] as
a substitute for (30).

(a)C[[x=a]T] = (a)C[0] (31)

It is worth remarking that (31) is equivalent to (a)C[[x 6=a]T] = (a)C[T] in the
presence of (27). So it is enough even for the π-calculus with the mismatch operator.

The first complete proof system for the weak congruence on finite π-processes is
Lin’s symbolic system [Lin 1995b; 1998]. The nonsymbolic systems were proposed
by Parrow [1999] using (29), and by Fu and Yang [2003] using (28). In [Fu and
Yang 2003] the authors have also discussed complete equational systems for the
weak open congruence. It is revealed that the open bisimilarities, as well as the
quasi open bisimilarities [Fu 2005], are quite complicated in the presence of the
mismatch operator. It has been wrongly suggested that the complications are due
to the introduction of the mismatch operator. The real culprit is actually the
confusion of the names and the name variables. Study on the weak open systems
pointed out that Milner’s three τ -laws are insufficient [Fu and Yang 2003]. An
additional τ -law

τ.T = τ.(T + ϕτ.T) (32)

is necessary. Notice that (32) is derivable from (30).
All of these tiny discrepancies appear a little confusing. What the present paper

suggests is that the proof system AS is the only one we need for the finite π-
processes. Moreover, since the mismatch operator comes hand in hand with the
match operator, there is no real interest in systems without the mismatch operator.

A more challenging issue is to construct proof systems for the regular pro-
cesses [Milner 1984]. A regular process is not necessarily finite state [Milner 1989a];
it is finite control [Lin 1998]. Milner addressed the issue in the framework of
CCS. His strong complete proof system [Milner 1984] and weak complete proof
system [Milner 1989b] make crucial use of the following fixpoint induction rule

F{E/X} = E

E = µX.F
X is guarded in F. (33)

ACM Journal Name, Vol. V, No. N, April 2010.

42 · Y. Fu and H. Zhu

Milner’s approach has been applied to branching congruence by van Glabbeek
[1993a]. It has been extended and applied to the value-passing calculi by Hennessy,
Lin and Rathke [Hennessy and Lin 1997; Rathke 1997; Hennessy et al. 1997] and to
the π-calculus by Lin [Lin 1995b; 1998]. All these more complicated complete proof
systems are of a symbolic nature. The side condition of the fixpoint induction (33)
renders the rule truly unwelcome. But as Sewell has proved in [Sewell 1994; 1997]
there is no finitely axiomatizable complete system for the finite controls. In order
to derive the following equality

µX.a.X = µX.a. · · · .a.X

from a finite system, one needs rule(s) in addition to axioms. It is possible to come
up with a complete proof system in which all the rules are unconditional [Sewell
1995]. But it would probably not pay off when it comes down to implementation.
Now if we have to stick to the fixpoint induction, how should we make use of it?
Milner’s straightforward answer [Milner 1984], adopted in almost all following-up
works, is to introduce process equation systems. However process equations are not
that innocent. Consider the equation system

X = a(y).Y +G, (34)

Y = b(x).X +H. (35)

The disassociation between the right hand side of (35) and the explicit Y in (34)
is not intended. All the occurrences of y in H are bound by the prefix operation
in a different equation. To avoid this embarrassment one has to resort to abstrac-
tions, which introduces extra complexity as can be seen from the systems studied
in [Hennessy et al. 1997; Lin 1998]. Completeness proofs without using any equation
systems is presented in [Fu and He 2010].

The finite states/controls raise the question of divergence. The axiomatic treat-
ment to divergence has been borrowing ideas from domain theory [Amadio and
Curien 1998]. Scott’s denotational approach is too abstract to give a proper ac-
count of interactions, and in the case of divergence, non-interactions. Early treat-
ment of divergence in process algebra is more influenced by the domain theoretical
approach [De Nicola and Hennessy 1984; Walker 1990]. It is our opinion that the
first successful operational approach to divergence is achieved in Lohrey, D’Argenio
and Hermanns’ work [Lohrey et al. 2002; 2005] on the axioms for divergence. Cru-
cial to their approach is the observation that all divergence of a finite control is
due to self-looping. The ∆-operator, defined below, is isolated to play a key role in
their inference systems.

∆(T)
def
= µX.(τ.X + T) (36)

Lohrey, D’Argenio and Hermanns’ systems consist of the laws to convert divergence
from one form to another so that the fixpoint induction can be applied without any
regards to divergence. One axiom proposed in [Lohrey et al. 2002; 2005] is the
following axiom

∆(∆(T) + T ′) = τ.(∆(T) + T ′). (37)

The law (37) is sound for the termination preserving weak congruence. But it fails
to meet the codivergence property. Based on Lohrey, D’Argenio and Hermanns’

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 43

work, Fu and He discussed the axioms for the codivergence in the framework of
CCS [Fu and He 2010]. The codivergent version of (37) for example is

∆(∆(T)) = ∆(T). (38)

It is worth remarking that (38) is valid for the strong equality. The proof systems
using the ∆-operator begin to unveil the rich structure of divergence.

The above discussion is meant to bring out the following point. The system AS
plus the axioms of codivergence proposed in [Fu and He 2010] give rise to a complete
proof system for the absolute equality on the regular π-processes, which is much
more accessible than the symbolic proof system. We leave it as an exercise to the
reader. A related question can be asked about the box equality. The crucial step is
to prove for the regular π-processes a property corresponding to the one stated in
Lemma 5.10. It could turned out that axiomatization for the box equality on the
regular π-processes is far more difficult than one would have perceived. The reader
is referred to the work of Rensink and Vogler [2007] for a counter example showing
the failure of the fixpoint induction for the fair testing equivalence.

Unlike the pure algebraic view of process [Baeten and Weijland 1990], we tend to
think of AS and ASb as proof systems that help derive process equalities. This ex-
plains the particular statements of Theorem 5.6 and of Theorem 5.11. The emphasis
on equational proof systems rather than on axiomatic systems has the advantage
that the introduction of congruence relations can be avoided. What is stated in
Theorem 5.6 is called promotion property in [Fu and Yang 2003]. It is pointed
out by Fu and Yang [2003] that this property is absolutely necessary to prove
that an algebraic system of π-calculus is complete, the reason being that Hennessy
Lemma [Milner 1989a] fails for the π-calculus.

6. FUTURE WORK

We have presented a comprehensive summary of the foundational theory of the
name-passing calculi. The presentation follows the general principles and method-
ologies of Theory of Interaction developed in [Fu 2010b]. The prime motivation of
Theory of Interaction can be summarized as follows:

There are two universal relations for all models, the equality relation
(absolute equality) between the programs of a model and the expres-
siveness relation (subbisimilarity) between the models. By using these
two fundamental relations, one may introduce a number of basic pos-
tulates that formalize the foundational assumptions widely adopted in
computer science. Let M be the class of all models of interaction. The
first postulate has to assert that M is nonempty.

Axiom of Foundation. I ∈M.
One may think of I as the least expressive model supported by the
Turing/von Neumann architecture. It lays down the physics foundation
of computer science. See [Fu 2010b] for the definition of I. A model is
interesting if it subsumes I. This leads to the next postulate.

Axiom of Completeness. ∀M ∈M. I vM.
Axiom of Completeness can be seen as a formalization of Church-Turing
Thesis. It imposes the condition that every model is a conservative

ACM Journal Name, Vol. V, No. N, April 2010.

44 · Y. Fu and H. Zhu

extension of the initial model I. The two postulates already put a con-
siderable constraints on the world M of models.

In [Fu 2010b] it is shown that π, π−, πL and πR are complete in the sense that
they satisfy the Axiom of Completeness. These are the basic facts that justify the
present paper. We now know that not all variants of the π-calculus satisfy Axiom
of Completeness, and that the completeness of some other π-variants, like πM , is
still unknown. So the general framework helps to evaluate the different variants of
the π-calculus and tells us which variants are the proper ones.

The model independent approach not only cleans up the syntax of the π-calculus,
it also clears up the intriguing issue about the equivalence and the expressiveness
relations for mobile processes. Moreover it helps to crystalize the problems for
further investigation. Problem 3.14 and Problem 4.3 for example would be much
easier to resolve if the branching bisimulation condition is replaced by the weak
bisimulation property. In the present framework these problems can not be solved
without a deeper understanding of the models. To some extent this is precisely
what is needed at the moment. Our understanding of the name-passing calculi
would not advance significantly if these questions remain unanswered.

The studies in process algebra over the last thirty years largely fall into two main
categories:

I. The first is to do with models. A lot of process calculi have been proposed and
researched [Nestmann 2006].

II. The second is about process equivalences. Many observational equivalences
and algebraic equalities have been suggested, axiomatized and compared [van
Glabbeek 2001; 1993b].

In the literature on process algebra there is only a small number of papers that deal
with the expressiveness of process calculi [Palamidessi 2003; Gorla 2009; Fu and
Lu 2010]. If we understand the situation correctly [Abramsky 2006], the biggest
problem currently facing the process algebraic community is this: “where should we
go from here?”. It is our personal view that we should go from the process algebra,
which discusses models and algebraic properties, to process theory that studies
problem solving with process calculi. Results in I and II tell us which process
calculi we should be concerned with and what foundational theories are available
to support problem solving. What is achieved in this paper is a condensed account
of the status quo of the research on the π-models. Based on these results, the
π-models can be studied in three directions.

III. A theory of π-solvability that goes beyond the traditional recursion theory
should be useful to understand the power of the name-passing calculi. It can
be shown that a pseudo natural number generator is solvable in π. But a
genuine natural number generator is π-unsolvable. It would be useful to develop
a theory of π-solvability and investigate the diagonal methods for tackling π-
unsolvability. Other possible issues to look at are nondeterministic functions
definable in π, π-enumerators, and recursion theorem in the π-framework.

IV. A comparative study of the complexity classes defined by the π-programs
against the standard complexity classes [Papadimitriou 1994] would be instruc-
tive for a better understanding of the impact of different forms of nondetermin-

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 45

ism to computation theory. Such a study may begin with a formulation of the
class Pπ of the problems decidable in π in polynomial time in a way similar to
the definition of NP in terms of the Nondeterministic Turing Machine Model,
and then investigate the relationship between Pπ and NP .

V. At a more applied level, one could try to develop a hierarchy of programming
languages on top of π. Previous studies in the program theory of π have focused
on the object oriented feature of π and its specification capacity. A great deal
more has to be learned before we are confident of using π as a target model to
interpret a full fledged typed functional language.

One may question the practical significance of these new research directions. After
all the π-calculus, unlike the Deterministic Turing Machine Model, does not have
a physical implementation. The rapid development of computing technology has
actually provided an answer. The Internet is an approximate implementation of
π-calculus! It is not completely, as one might argue, a physical implementation.
But it is the kind of computing environment for which a theory of π-calculus might
provide just the right foundation.

ACKNOWLEDGMENTS

This work has been supported by NSFC (60873034). The authors would like to
thank the members of BASICS for their interest and feedbacks. Especially they
would like to thank Xiaojuan Cai for proof reading the paper and to Chaodong
He for pointing out to us that our previous proof of Lemma 5.5 was mistaken (He
actually demonstrated to us how to correct the mistake).

REFERENCES

Abramsky, S. 2006. What are the Fundamental Structures of Concurrency? We still do not know.

Electronic Notes in Theoretical Computer Science. 37–41.

Amadio, R., Castellani, I., and Sangiorgi, D. 1996. On bisimulations for the asynchronous
π calculus. In Proc. CONCUR’96. Lecture Notes in Computer Science, vol. 1119. Springer,

147–162.

Amadio, R. and Curien, P. 1998. Domains and lambda-calculi. Cambridge Tracts in Theoretical

Computer Science.

Baeten, J. 1996. Branching bisimilarity is an equivalence indeed. Information Processing Let-
ters 58, 141–147.

Baeten, J. and Weijland, W. 1990. Process Algebra. Cambridge Tracts in Theoretical Computer
Science, vol. 18. CUP.

Baier, C. and Hermanns, H. 1997. Weak bisimulation for fully probabilistic processes. In Proc.

CAV’97. Lecture Notes in Computer Science, vol. 1254. 119–130.

Boreale, M. 1996. On the expressiveness of internal mobility in name-passing calculi. In Proc.

CONCUR’96. Lecture Notes in Computer Science, vol. 1119. 161–178.

Boreale, M. and De Nicola, R. 1995. Testing equivalence for mobile processes. Information
and Computation 120, 279–303.

Boreale, M., De Nicola, R., and Pugliese, R. 1999. Basic observables for processes. Infor-

mation and Computation 149, 77–98.

Boreale, M., De Nicola, R., and Pugliese, R. 2001. Divergence in testing and readiness
semantics. Theoretical Computer Science 266, 237–248.

Boudol, G. 1992. Asynchrony and the π-calculus. Tech. Rep. RR-1702, INRIA Sophia-Antipolis.

Brinksma, E., Rensink, A., and Vogler, W. 1995. Fair testing. In Proc. CONCUR’95. Lecture
Notes in Computer Science, vol. 962. 313–327.

ACM Journal Name, Vol. V, No. N, April 2010.

46 · Y. Fu and H. Zhu

Cacciagrano, D., Corradini, F., Aranda, J., and Valencia, F. 2008. Linearity, persistence and

testing semantics in the asynchronous pi-calculus. Electronic Notes in Theoretical Computer

Science 194, 59–84.

Cacciagrano, D., Corradini, F., and Palamidessi, C. 2006. Separation of synchronous and
asynchronous communication via testing. Electronic Notes in Theoretical Computer Sci-

ence 154, 95–108.

Cai, X. and Fu, Y. 2010a. The λ-calculus in the π-calculus, http://basics.sjtu.edu.cn/~

yuxi/papers/.

Cai, X. and Fu, Y. 2010b. Machine models for interaction.

De Nicola, R. and Hennessy, M. 1984. Testing equivalence for processes. Theoretical Computer

Science 34, 83–133.

De Nicola, R., Mantanari, U., and Vaandrager, F. 1990. Back and forth bisimulations. In

Proc. CONCUR’90. Lecture Notes in Computer Science, vol. 458. 152–165.

De Nicola, R. and Vaandrager, F. 1995. Three logics for branching bisimulation. Journal of

ACM 42, 458–487.

Fournet, C. and Gonthier, G. 1996. The reflexive chemical abstract machines and the join

calculus. In Proc. POPL’96. ACM Press.

Fu, Y. 1999. Variations on mobile processes. Theoretical Computer Science 221, 327–368.

Fu, Y. 2005. On quasi open bisimulation. Theoretical Computer Science 338, 96–126.

Fu, Y. 2010a. Theory defined by process, http://basics.sjtu.edu.cn/~ yuxi/papers/.

Fu, Y. 2010b. Theory of interaction.

Fu, Y. and He, C. 2010. Axiom for codivergence.

Fu, Y. and Lu, H. 2010. On the expressiveness of interaction. Theoretical Computer Science 411,

1387–1451.

Fu, Y. and Yang, Z. 2003. Tau laws for pi calculus. Theoretical Computer Science 308, 55–130.

Gorla, D. 2009. On the relative power of calculi for mobility. In Proc. MFPS’09. Electronic

Notes in Theoretical Computer Science, vol. 249. 269–286.

Hennessy, M. 1988. An Algebraic Theory of Processes. MIT Press, Cambridge, MA.

Hennessy, M. 1991. A proof system for communicating processes with value-passing. Journal of

Formal Aspects of Computer Science 3, 346–366.

Hennessy, M. and Ingólfsdóttir, A. 1993a. Communicating processes with value-passing and

assignment. Journal of Formal Aspects of Computing 5, 432–466.

Hennessy, M. and Ingólfsdóttir, A. 1993b. A theory of communicating processes with value-

passing. Information and Computation 107, 202–236.

Hennessy, M. and Lin, H. 1995. Symbolic bisimulations. Theoretical Computer Science 138,

353–369.

Hennessy, M. and Lin, H. 1996. Proof systems for message passing process algebras. Formal
Aspects of Computing 8, 379–407.

Hennessy, M. and Lin, H. 1997. Unique fixpoint induction for message-passing process calculi.
In Proc. Computing: Australian Theory Symposium (CAT’97). Vol. 8. 122–131.

Hennessy, M., Lin, H., and Rathke, J. 1997. Unique fixpoint induction for message-passing
process calculi. Science of Computer Programming 41, 241–275.

Hennessy, M. and Milner, R. 1985. Algebraic laws for nondeterminism and concurrency. Journal

of AC 32, 137–161.

Honda, K. and Tokoro, M. 1991a. An object calculus for asynchronous communications. In
Proc. ECOOP’91. Lecture Notes in Computer Science, vol. 512. Geneva, Switzerland, 133–147.

Honda, K. and Tokoro, M. 1991b. On asynchronous communication semantics. In Proc.

Workshop on Object-Based Concurrent Computing. Lecture Notes in Computer Science, vol.

615. 21–51.

Honda, k. and Yoshida, M. 1995. On reduction-based process semantics. Theoretical Computer
Science 151, 437–486.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 47

Ingólfsdóttir, A. and Lin, H. 2001. A symbolic approach to value-passing processes. In

Handbook of Process Algebra, J. Bergstra, A. Ponse, and S. Smolka, Eds. North-Holland, 427–

478.

Lin, H. 1995a. Complete inference systems for weak bisimulation equivalences in the π-calculus.
In Proceedings of Sixth International Joint Conference on the Theory and Practice of Software

Development. Lecture Notes in Computer Science, vol. 915. 187–201.

Lin, H. 1995b. Unique fixpoint induction for mobile processes. In Proc. CONCUR ’95. Lecture

Notes in Computer Science, vol. 962. 88–102.

Lin, H. 1996. Symbolic transition graphs with assignment. In Proc. CONCUR ’96. Lecture Notes

in Computer Science, vol. 1119. 50–65.

Lin, H. 1998. Complete proof systems for observation congruences in finite-control π-calculus. In

Proc. ICALP ’98. Lecture Notes in Computer Science, vol. 1443. 443–454.

Lin, H. 2003. Complete inference systems for weak bisimulation equivalences in the pi-calculus.

Information and Computation 180, 1–29.

Lohrey, M., D’Argenio, P., and Hermanns, H. 2002. Axiomatising divergence. In Proc. ICALP

2002. Lecture Notes in Computer Science, vol. 2380. Springer, 585–596.

Lohrey, M., D’Argenio, P., and Hermanns, H. 2005. Axiomatising divergence. Information

and Computatio 203, 115–144.

Merro, M. 2000. Locality in the π-calculus and applications to object-oriented languages. Ph.D.
thesis, Ecole des Mines de Paris.

Merro, M. and Sangiorgi, D. 2004. On asynchrony in name-passing calculi. Mathematical
Structures in Computer Science 14, 715–767.

Milner, R. 1980. A calculus of communicating systems. Lecture Notes in Computer Science 92.

Milner, R. 1984. A complete inference system for a class of regular behaviours. Journal of

Computer and System Science 28, 439–466.

Milner, R. 1989a. Communication and Concurrency. Prentice Hall.

Milner, R. 1989b. A complete axiomatization system for observational congruence of finite state

behaviours. Information and Computation 81, 227–247.

Milner, R. 1993a. Elements of interaction. Communication of the ACM 36, 78–89.

Milner, R. 1993b. The polyadic π-calculus: a tutorial. In Proceedings of the 1991 Marktoberdorf

Summer School on Logic and Algebra of Specification. NATO ASI, Series F. Springer-Verlag.

Milner, R., Parrow, J., and Walker, D. 1992. A calculus of mobile processes. Information

and Computation 100, 1–40 (Part I), 41–77 (Part II).

Milner, R. and Sangiorgi, D. 1992. Barbed bisimulation. In Proc. ICALP’92. Lecture Notes

in Computer Science, vol. 623. 685–695.

Natarajan, V. and Cleaveland, R. 1995. Divergence and fair testing. In Proc. ICALP’95.

Lecture Notes in Computer Science, vol. 944. 648–659.

Nestmann, U. 2000. What is a good encoding of guarded choices? Information and computa-

tion 156, 287–319.

Nestmann, U. 2006. Welcome to the jungle: A subjective guide to mobile process calculi. In
Proc. CONCUR’06. Lecture Notes in Computer Science, vol. 4137. 52–63.

Nestmann, U. and Pierce, B. 1996. Decoding choice encodings. In Proc. CONCUR’96, U. Mon-
tanari and V. Sassone, Eds. Lecture Notes in Computer Science, vol. 1119. 179–194.

Palamiddessi, C., Saraswat, V., Valencia, F., and Victor, B. 2006. On the expressiveness of
linearity vs. persistence in the asynchronous pi calculus. In Proc. LICS’06. IEEE press, 59–68.

Palamidessi, C. 2003. Comparing the expressive power of the synchronous and the asynchronous
π-calculus. Mathematical Structures in Computer Science 13, 685–719.

Papadimitriou, C. 1994. Computational Complexity. Addison-Wesley, Reading, MA.

Park, D. 1981. Concurrency and automata on infinite sequences. Lecture Notes in Computer
Science 104, 167–183.

Parrow, J. 1999. On the relationship between two proof systems for the pi-calculus.

Parrow, J. 2001. An introduction to the π-calculus. In Handbook of Process Algebra, J. Bergstra,

A. Ponse, and S. Smolka, Eds. North-Holland, 478–543.

ACM Journal Name, Vol. V, No. N, April 2010.

48 · Y. Fu and H. Zhu

Parrow, J. and Sangiorgi, D. 1995. Algebraic theories for name-passing calculi. Information

and Computation 120, 174–197.

Phillips, I. 1987. Refusal testing. Theoretical Computer Science 50, 241–284.

Pierce, B. and Turner, D. 2000. Pict: A programming language based on the pi calculus. In

Proof, Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling,

and M. Tofts, Eds. MIT Press.

Priese, L. 1978. On the concept of simulation in asynchronous, concurrent systems. Progress in

Cybernatics and Systems Research 7, 85–92.

Rathke, J. 1997. Unique fixpoint induction for value-passing processes. In Proc. LICS ’97. IEEE

Press.

Rensink, A. and Vogler, W. 2007. Fair testing. Information and Computation 205, 125–198.

Rogers, H. 1987. Theory of Recursive Functions and Effective Computability. MIT Press.

Sangiorgi, D. 1992. Expressing mobility in process algebras: First order and higher order

paradigm. Ph.D. thesis, Department of Computer Science, University of Edinburgh.

Sangiorgi, D. 1993. From π-calculus to higher order π-calculus–and back. In Proc. TAPSOFT’93.

Lecture Notes in Computer Science, vol. 668. 151–166.

Sangiorgi, D. 1996a. Bisimulation for higher order process calculi. Information and Compta-

tion 131, 141–178.

Sangiorgi, D. 1996b. π-calculus, internal mobility and agent-passing calculi. Theoretical Com-

puter Science 167, 235–274.

Sangiorgi, D. 1996c. A theory of bisimulation for π-calculus. Acta Informatica 3, 69–97.

Sangiorgi, D. 2009. On the origin of bisimulation and coinduction.

Sangiorgi, D. and Milner, R. 1992. Techniques of “weak bisimulation up to”. In Proc. CON-

CUR’92. Lecture Notes in Computer Science, vol. 630. 32–46.

Sangiorgi, D. and Walker, D. 2001a. On barbed equivalence in π-calculus. In Proc. CON-

CUR’01. Lecture Notes in Computer Science, vol. 2154. 292–304.

Sangiorgi, D. and Walker, D. 2001b. The π Calculus: A Theory of Mobile Processes. Cam-

bridge University Press.

Sewell, P. 1994. Bisimulation is not finitely (first order) equationally axiomatisable. In Proc.

LICS’94. IEEE. 62–70.

Sewell, P. 1995. The algebra of finite state processes. Ph.D. thesis, The University of Edinburgh.

Sewell, P. 1997. Nonaxiomatisability of equivalence over finite state processes. Annals of Pure

and Applied Logic 90, 163–191.

Thomsen, B. 1989. A calculus of higher order communicating systems. In Proc. POPL’89.

143–154.

Thomsen, B. 1990. Calculi for higher order communicating systems. Ph.D. thesis, Department

of Computing, University of London.

Thomsen, B. 1993. Plain chocs–a second generation calculus for higher order processes. Acta

Informatica 30, 1–59.

Thomsen, B. 1995. A theory of higher order communicating systems. Information and Compu-

tation 116, 38–57.

van Glabbeek, R. 1990. Linear time – branching time spectrum. In Proc. CONCUR’90. Lecture

Notes in Computer Science, vol. 458. 278–297.

van Glabbeek, R. 1993a. A complete axiomatization for branching bisimulation congruence
of finite-state behaviours. In Proc. MFCS’93. Lecture Notes in Computer Science, vol. 711.

473–484.

van Glabbeek, R. 1993b. Linear time – branching time spectrum (ii). In Proc. CONCUR’93.
Lecture Notes in Computer Science, vol. 715. 66–81.

van Glabbeek, R. 1994. What is branching time semantics and why to use it? In Current

Trends in Theoretical Computer Science; Entering the 21th Century, G. Paun, G. Rozenberg,
and A. Salomaa, Eds. World Scientific. 469–479.

van Glabbeek, R. 2001. Linear time – branching time spectrum (i). In Handbook of Process
Algebra, J. Bergstra, A. Ponse, and S. Smolka, Eds. North-Holland, 3–99.

ACM Journal Name, Vol. V, No. N, April 2010.

Name-Passing Calculus · 49

van Glabbeek, R., Luttik, B., and Trčka, N. 2009. Branching bisimilarity with explicit

divergence. Fundamenta Informaticae 93, 371–392.

van Glabbeek, R. and Weijland, W. 1989. Branching time and abstraction in bisimulation
semantics. In Information Processing’89. North-Holland, 613–618.

Walker, D. 1990. Bisimulation and divergence. Information and Computation 85, 202–241.

Walker, D. 1991. π-calculus semantics for object-oriented programming languages. In Proc.

TACS ’91. Lecture Notes in Computer Science, vol. 526. 532–547.

Walker, D. 1995. Objects in the π-calculus. Information and Computation 116, 253–271.

ACM Journal Name, Vol. V, No. N, April 2010.

