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Abstract. A schematic law dealing with localization operator is proposed for pi calculus. It is
shown that the law renders the use of distinction unnecessary in the axiomatic theory of open
congruence.

1 Introduction

The role of bisimulation equivalences in process algebra has been reinforced over the last decades. The
studies of the π-calcululs ([15]) and many of its variants have demonstrated both the diversity and the
pertinent nature of bisimulation equivalences. Bisimulation equivalences are stronger than other obser-
vational equivalences in the sense that they are not sensitive to the changes of environment. In other
words no matter how environment changes two bisimilar processes can always simulate each other. In
CCS ([14]) the bisimulation approach gives rise to a relatively small number of equivalence relations.
In the π-calculus however there is a proliferation of bisimulation equivalences, one of which is the open
equivalence ([18]). The open equivalence assumes that environments may have significant effect on pro-
cesses. The change of an environment could modify the names of process residing in the environment
although it can not alter the topological structure of the process. This requires that the definition of open
bisimulation incorporate the idea that process equivalence should be closed under substitution of names
in every bisimulation step. Recent studies on χ-calculus ([1–5, 8–10, 17]) shows that the assumption of
open bisimulation is very reasonable.

The open equivalence was proposed by Sangiorgi who did just enough to convince the reader of the
simplicity of the relation. Due to the very definition of bisimulation, proofs of theoretical properties of
bisimulation equivalences often rely on inductions on bisimulation steps. For mobile processes bisimu-
lations incur name substitutions. Therefore inductions are made easier if the subject bisimulations are
closed under substitutions. Take for example Sangiorgi’s complete axiomatization system for strong open
equivalence. The proof of the completeness theorem is a straightforward induction. It is considerably sim-
pler than the corresponding proofs for strong early equivalence and strong late equivalence using symbolic
approach ([11, 13]). However in order to deal with localization Sangiorgi’s system introduces distinctions,
which is a form of conditions as used in the symbolic framework.

The definition of weak open equivalence, for the π-calculus without the mismatch combinator, can be
obtained in the standard manner. Most part of the algebraic theory of this weak relation is simple except in
one aspect. Contrary to the popular belief, the complete system for the strong open equivalence extended
with Milner’s three tau laws does not constitute a complete system for the weak open congruence. A new
tau law, T4, proposed by the present author is necessary.

It has to be said that Sangiorgi’s definition of weak open bisimulation applies only to the π-calculus
without the mismatch operator. It was discovered by Fu and Zhang ([6, 7]) that if one applies Sangiorgi’s
definition to the π-calculus with the mismatch operator one gets a relation that is not closed under
composition! The following example is given in [6]: The processes a(x).P+a(x).[x6=y]P and a(x).[x6=y]P
should not be bisimilar; but they are indistinguishable by Sangiorgi’s original definition. To bypass the
problem Fu and Zhang have proposed two new equivalence relations. They are the early open bisimilarity
and the late open bisimilarity. The terminologies should suggest that the difference between these two
equivalence relations draws a similarity to that between the early equivalence and the late equivalence.
Fu and Zhang have investigated axiomatization systems for both early and late open congruences. The
two complete systems contain the following schematic laws:

(x)C[[x6=y]P ] = (x)C[P ] (1)
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where x, y are not bound in C[] and x 6= y. This law is equivalent to the following schematic law

(x)C[[x=y]P ] = (x)C[0] (2)

where x, y are not bound in C[] and x 6= y. It is clear that (2) is more general than (1) since it does not
refer to the mismatch combinator. These schematic laws render distinctions unnecessary.

The purpose of this paper is to show that one can use (2) to give a distinction free complete system
for the open congruence of the π-calculus without the mismatch operator. The structure of the paper
is as follows: Section 2 introduces the necessary background materials of π-calculus. Section 3 gives the
strong and the weak systems. Section 4 defines internal distinction and discusses some properties of it.
Section 5 proves a generalized completeness result.

2 Preliminaries

This section fixes up some preliminary notations of π-calculus. The grammar of the π-processes without
the mismatch operator is as follows:

P := 0 | π.P | P |P | (x)P | P+P | [x=y]P |!P

where
π := a(x) | ax | τ

The set P of processes is defined in terms of the set N of names. In both a(x).P and (x)P the name x
is bound. The notations fn( ), bn( ), n( ) are standard. A substitution σ is a function from N to N such
that {x | σ(x) 6= x} is a finite set. We write Pσ for the process obtained by substituting names in P
according to σ. The composition of two substitutions σ, σ′ is denoted by σσ′ and Pσσ′ is understood as
(Pσ)σ′. We often write {y1/x1, . . . , yn/xn} for the substitution that maps x1, . . . , xn respectively onto
y1, . . . , yn and maps any other name to itself.

The operational semantics is defined in terms of the following labelled transition system:

Prefix
π.P

π−→ P

Composition

P
λ−→ P ′

P | Q
λ−→ P ′ |Q

P
a(x)−→ P ′ Q

ay−→ Q′

P |Q τ−→ P ′{y/x} |Q′
P

a(x)−→ P ′ Q
a(x)−→ Q′

P |Q τ−→ (x)(P ′ |Q′)

Restriction
P

λ−→ P ′ x 6∈ n(λ)

(x)P λ−→ (x)P ′

P
ax−→ P ′

(x)P
a(x)−→ P ′

Condition
P

λ−→ P ′

[x=x]P λ−→ P ′

Choice
P

λ−→ P ′

P+Q
λ−→ P ′

Replication
P | !P λ−→ P ′

!P λ−→ P ′

The letter λ ranges over the set {a(x), ax, a(x) | a, x are names}∪{τ} of action labels. In what follows
µ stands for a finite sequence of match operators concatenated one after another. We will write C[] for
a context inductively defined as follows: (i) ( ) is a context; (ii) if C[] is a context then C[] |P , P |C[],
(x)C[], C[]+P , P+C[], [x=y]C[], a(x).C[], ax.C[] and τ.C[] are contexts.

A nice property about the π-calculus without the mismatch operator is that actions are preserved by
substitution of names.

Lemma 1. If P
λ−→ P ′ then Pσ

λσ−→ P ′σ for any substitution σ.



When defining bisimulation equivalences for π-processes the most subtle problem is to do with the
localization operator. Sangiorgi’s solution to the problem is to use distinctions.

Definition 2. A distinction is a finite symmetric and irreflexive relation on names. Distinctions will be
denoted by D,D′ etc.. The notation D\x denotes D \ {(x, y), (y, x) | y is a name}.

A substitution σ respects a distinction D if σ(x) 6= σ(y) whenever (x, y) ∈ D. A sequence of match
combinators µ respects a distinction D if µ 6⇒ x=y whenever (x, y) ∈ D.

The strong and weak open bisimilarities are defined as follows.

Definition 3. The set R = {RD} of binary symmetric relations on processes is an open bisimulation if
for each distinction D and for each substitution σ respecting D, PRDQ implies the following properties:
(i) If Pσ

λ−→ P ′ and λ is not a restricted output action then Q′ exists such that Qσ
λ−→ Q′ and P ′RDσQ′.

(ii) If Pσ
a(x)−→ P ′ then Q′ exists such that Qσ

a(x)−→ Q′ and P ′RD′
Q′, where D′ is Dσ∪{x}×fn(Pσ+Qσ)∪

fn(Pσ+Qσ)×{x}.
P is open bisimilar to Q with respect to D, notation P ∼D

o Q, if there exists an open bisimulation R such
that (P,Q) ∈ RD. We say that P is open bisimilar to Q if P ∼∅

o Q.

Definition 4. The set R = {RD} of binary symmetric relations on processes is a weak open bisimulation
if for each distinction D and for each substitution σ respecting D, PRDQ implies the following properties:

(i) If Pσ
λ−→ P ′ and λ is not a restricted output action then Q′ exists such that Qσ

λ̂=⇒ Q′ and P ′RDσQ′.

(ii) If Pσ
a(x)−→ P ′ then Q′ exists such that Qσ

a(x)
=⇒ Q′ and P ′RD′

Q′, where D′ is Dσ∪{x}×fn(Pσ+Qσ)∪
fn(Pσ+Qσ)×{x}.
P is weak open bisimilar to Q with respect to D, notation P ≈D

o Q, if there exists a weak open bisimulation
R such that (P,Q) ∈ RD. We say that P is weak open bisimilar to Q if P ≈∅

o Q.

As is well-known ≈D
o is not a congruence relation. The standard approach to obtain a congruence

relation from ≈D
o is given by the following definition.

Definition 5. P and Q are open congruent, notation P 'D
o Q, if P ≈D

o Q and, for each substitution σ
respecting D, the following conditions are satisfied:
(i) If Pσ

τ−→ P ′ then Qσ
τ=⇒ Q′ such that P ′ ≈D

o Q′.
(ii) If Qσ

τ−→ Q′ then Pσ
τ=⇒ P ′ such that P ′ ≈D

o Q′.

Before ending this section we mention some useful results.

Lemma 6. The following properties hold:
(i) If P ∼D

o Q then P ∼D′

o Q for each distinction D′ such that D ⊆ D′.
(ii) If P ≈D

o Q then P ≈D′

o Q for each distinction D′ such that D ⊆ D′.

Lemma 7. The following properties hold:
(i) If P ∼D

o Q and (x, y) 6∈ D then P{y/x} ∼D{y/x}
o Q{y/x}.

(ii) If P ≈D
o Q and (x, y) 6∈ D then P{y/x} ≈D{y/x}

o Q{y/x}.

Proof. Suppose σ respects D{y/x}. Then {y/x}σ respects D. So (i) and (ii) follow from definitions. ut

3 System

A complete system for process congruence consists of a set of equational laws and a set of inference rules.
These laws and rules contain the usual ones for equivalence and congruence. Figure 1 contains some
useful laws for the strong open congruence. It is well-known that an expansion law is necessary in order
to convert processes in parallel composition form to those in summation form. We omit the standard
expansion law in this paper as it is well-known. So in the rest of the paper we focus on the fragment of
the π-calculus with neither the composition operator nor the replication operator.

Systems for the weak open congruence enjoy the tau laws in Figure 2. Let ASw
o be the system

ASo ∪ {T1, T2, T3, T4}. The proofs of the following soundness results are straightforward.

Proposition 8. (i) ASo is sound for ∼∅
o. (ii) ASw

o is sound for '∅
o.

Most of the completeness proofs rely on some kind of normal forms. In our situation we need the
following version of normal form.



M1 µP = µ′P if µ ⇔ µ′

M2 [x=y]P = [x=y]P{y/x}
M3 [x=y](P+Q) = [x=y]P+[x=y]Q
S1 P+0 = P
S2 P+Q = Q+P
S3 P+(Q+R) = (P+Q)+R
S4 [x=y]P+P = P
L1 (x)0 = 0
L2 (x)(y)P = (y)(x)P
L3 (x)(P+Q) = (x)P+(x)Q
L4 (x)π.P = π.(x)P if x 6∈ n(π)
L5 (x)π.P = 0 if x ∈ subj(π)
L6 (x)[y=z]P = [y=z](x)P if x 6∈ {y, z}
L7 (x)C[[x=y]P ] = (x)C[0] x, y are not bound in C[] and x6=y

Fig. 1. The Strong System ASo

T1 λ.τ.P = λ.P
T2 P + τ.P = τ.P
T3 λ.(P + τ.Q) = λ.(P + τ.Q) + λ.Q
T4 τ.P = τ.(P + [x=y]τ.P )

Fig. 2. The Tau Laws

Definition 9. A process P is in strong normal form on V ⊇ fn(P ) if P ≡
∑

i∈I µiλi.Pi and the following
conditions hold
(i) For each i ∈ I and each match sequence µ satisfying fn(µ) ⊆ V there exists some j ∈ I such that
µj ⇔ µiµ, λi = λj and Pi ≡ Pj.
(ii) If λi is not an input prefix then Pi is in strong normal form on V . If λi is an input prefix a(x) then
Pi is in strong normal form on V ∪ {x}.

For a strong normal form process P let d(P ) be the maximal nested number of prefix operators of it.

Lemma 10. For each π-process P and V ⊇ fn(P ) there exists a process Q which is in strong normal
form on V such that ASo ` Q = P and d(Q) ≤ d(P ).

4 Internalizing Distinction

In the rest of this paper we show that ASo is complete for ∼∅
o and that ASw

o is complete for '∅
o. If a proof

for the former is available then it is routine to obtain a proof for the latter. So we will be confining our
attention to the strong case. For that purpose we need the operation ( )D, for a distinction D, defined as
follows:

0D def= 0

(a(x).P )D def= a(x).PD, where x 6∈ n(D)

(ax.P )D def= ax.PD

(τ.P )D def= τ.PD

((x)P )D def= (x)PD, where x 6∈ n(D)

(P + Q)D def= PD + QD

([x=y]P )D def= [x=y](P{y/x})D{y/x}, where (x, y) 6∈ D

([x=y]P )D def= 0, where (x, y) ∈ D

The role of the operation ( )D is to transfer a D-equivalent pair to an ∅-equivalent pair. Notice that this
definition can not be applied to the π-calculus with parallel combinator. But thanks to the expansion
law, in axiomatization one can remove the parallel operator in favour of the choice combinator. One of



the properties of ( )D is that it should preserve observational equivalence. This property would be lost
had we replaced the seventh clause of the above definition by the following:

([x=y]P )D def= [x=y]PD,where (x, y) 6∈ D

Suppose D = {(x, y), (y, x)}. It is easy to see that

[x=z]ax.[x=y][y=z]P ∼∅
o [x=z]ax.[y=z]P

but
([x=z]ax.[x=y][y=z]P )D 6∼∅

o ([x=z]ax.[y=z]P )D

had we used the alternative definition.

Lemma 11. Suppose σ respects D. Then (PD)σ ≡ (Pσ)Dσ.

Proof. The lemma can be proved by structural induction. Suppose for instance (x, y) 6∈ D. Then

(([x=y]P )D)σ = ([x=y](P{y/x})D{y/x})σ
= [xσ=yσ](P{y/x})D{y/x}σ

I.H.= [xσ=yσ](P{y/x}σ)D{y/x}σ

M2= [xσ=yσ](P{y/x}σ)D{y/x}σ{yσ/xσ}
I.H.= [xσ=yσ](P{y/x}σ{yσ/xσ})D{y/x}σ{yσ/xσ}

= [xσ=yσ](Pσ{yσ/xσ})Dσ{yσ/xσ}

= ([xσ=yσ]Pσ)Dσ

= (([x=y]P )σ)Dσ

If (x, y) ∈ D then (([x=y]P )D)σ ≡ 0 ≡ (([x=y]P )σ)Dσ. ut

Lemma 12. If PD λ−→ P ′ then there exists some P1 such that P
λ−→ P1 and PD

1 ≡ P ′.

Proof. We take a look at only one case. Suppose P ≡ [x=y]P2. Then by definition it must be the case
that (x, y) 6∈ D and x = y. So P ≡ [x=x]P2 and PD ≡ [x=x]PD

2 . Consequently PD
2

λ−→ P ′. By induction
hypothesis P2

λ−→ P1 for some P1 such that PD
1 ≡ P ′. It follows that P

λ−→ P1. ut

Lemma 13. If P
λ−→ P1 then PD λ−→ PD

1 .

Proof. Suppose P is [x=y]P2. Then it must be the case that x = y. Therefore PD ≡ [x=y]PD
2 . The rest

of the argument is easy. ut

Corollary 14. Suppose σ respects D. If Pσ
λ−→ P ′ then (PD)σ λ−→ (P ′)Dσ.

Lemma 15. Suppose D1 and D2 are distinctions. If PD1 ∼D2
o QD1 then P ∼D1∪D2

o Q.

Proof. Suppose D is a distinction. Let RD be

{(P,Q) | PD1 ∼D2
o QD1 , D1 and D2 are distinctions, D1 ∪D2 = D}

We prove that R = {RD} is a strong open bisimulation. Suppose σ respects D and Pσ
λ−→ P ′. Then

(PD1)σ λ−→ (P ′)D1σ by Corollary 14. It follows from PD1 ∼D2
o QD1 and Lemma 11 that (QD1)σ ≡

(Qσ)D1σ λ−→ Q1 for some Q1 to match up the action (PD1)σ λ−→ (P ′σ)D1σ. By Lemma 12 some Q′

exists such that Qσ
λ−→ Q′ and (Q′)D1σ ≡ Q1. There are two cases:

– λ is not a restricted output action. Then (P ′)D1σ ∼D2σ
o (Q′)D1σ by the choice of Q′. Consequently

(P ′, Q′) ∈ RDσ.
– λ is a restricted output action, say a(x). Then (P ′)D1σ ∼D′

o (Q′)D1σ by the choice of Q′, where D′ is
D2σ∪{x}×fn(PD1σ+QD1σ)∪fn(PD1σ+QD1σ)×{x}. Notice that fn(PD1σ+QD1σ) ⊆ fn(Pσ+Qσ).
By Lemma 6 one has (P ′)D1σ ∼D′′

o (Q′)D1σ, where D′′ is D2σ∪{x}×fn(Pσ+Qσ)∪fn(Pσ+Qσ)×{x}.
It follows that (P ′, Q′) ∈ RDσ∪{x}×fn(Pσ+Qσ)∪fn(Pσ+Qσ)×{x}.

This completes the proof. ut

Corollary 16. If PD ∼∅
o QD then P ∼D

o Q.



5 A General Completeness Result

We first prove some auxiliary lemmas.

Lemma 17. If µ ⇔ µ′ then ASo ` (µP )D = (µ′P )D.

Proof. Suppose µ is [x1=y1] . . . [xn=yn] and µ′ is [a1=b1] . . . [am=bm]. Then

(µP )D = µ(P{y1/x1} . . . {yn/xn})D{y1/x1}...{yn/xn}

= µµ′(P{y1/x1} . . . {yn/xn})D{y1/x1}...{yn/xn}

= µµ′(P{y1/x1} . . . {yn/xn}{b1/a1} . . . {bm/am})D{y1/x1}...{yn/xn}{b1/a1}...{bm/am}

= µµ′(P{b1/a1} . . . {bm/am})D{b1/a1}...{bm/am}

= µ′(P{b1/a1} . . . {bm/am})D{b1/a1}...{bm/am}

= (µ′P )D

The third equality holds because {b1/a1} . . . {bm/am} and {y1/x1} . . . {yn/xn}{b1/a1} . . . {bm/am} are
the same map using the fact that µ ⇔ µ′. ut

Lemma 18. Suppose µ respects D. Then ASo ` (µP )D = µ(Pσµ)Dσµ .

Proof. Suppose σµ is {a1/x1
1, . . . , a1/x1

m1
, . . . , an/xn

1 , . . . , an/xn
mn
}. Then clearly

σµ = {a1/x1
1} . . . {a1/x1

m1
} . . . {an/xn

1} . . . {an/xn
mn
}

as functions. Let µ′ be [a1 = x1
1] . . . [a1 = x1

m1
] . . . [an = xn

1 ] . . . [an = xn
mn

]. Then µ ⇔ µ′. By Lemma 17,

(µP )D = (µ′P )D

= µ′(P{a1/x1
1} . . . {a1/x1

m1
} . . . {an/xn

1} . . . {an/xn
mn
})D{a1/x1

1}...{a1/x1
m1

}...{an/xn
1 }...{an/xn

mn
}

= µ′(Pσµ)Dσµ

= µ(Pσµ)Dσµ

We are done. ut

The next lemma describes a generalized completeness result.

Lemma 19. If P ∼D
o Q then ASo ` PD = QD.

Proof. The proof is carried out by induction on d(P ) + d(Q). We may assume that both P and Q are
strong normal forms on fn(P+Q). Suppose P ≡

∑
i∈I µiλi.Pi and Q ≡

∑
j∈J µjλj .Qj . Let (µiλi.Pi)D

be a summand of PD, meaning that µiλi.Pi is a summand of P and µi respects D. Let σ be σµi . It is

easy to see that σ respects D. It follows from Pσ
λiσ−→ Piσ and P ∼D

o Q that Q must contain a summand

µjλj .Qj such that µi ⇒ µj , λiσ ≡ λjσ and that Qσ
λjσ−→ Qjσ matches up Pσ

λiσ−→ Piσ. Since Q is in
strong normal form on fn(P + Q), there must be a summand µj′λj .Qj of Q such that µj′ ⇔ µi.

– If λiσ is not a restricted output action then Piσ ∼Dσ
o Qjσ. It follows by induction hypothesis that

ASo ` (Piσ)Dσ = (Qjσ)Dσ. Consequently

ASo ` QD = QD + (µj′λj .Qj)D

= QD + (µiλj .Qj)D

= QD + µi(λjσ.Qjσ)Dσ

= QD + µiλjσ.(Qjσ)Dσ

I.H.= QD + µiλiσ.(Piσ)Dσ

= QD + (µiλi.Pi)D

where the second equality holds by Lemma 17 and the third equality holds by Lemma 18.



– If λiσ is a restricted output action a(x) then Piσ ∼D′

o Qjσ where D′ is Dσ ∪ {x}×fn(Pσ+Qσ) ∪
fn(Pσ+Qσ)×{x}. By induction hypothesis one has that ASo ` (Piσ)D′

= (Qjσ)D′
. Suppose we can

prove

ASo ` a(x).(Piσ)Dσ = a(x).(Qjσ)Dσ (3)

Then

ASo ` QD = QD+(µia(x).Qj)D

= QD + µiaσ(x).(Qjσ)Dσ

(3)
= QD + µiaσ(x).(Piσ)Dσ

= QD + (µia(x).Pi)D

It follows that ASo ` QD = QD + PD. Similarly ASo ` PD = PD + QD. Hence ASo ` PD = QD.
It remains to establish (3). First we show that ASo ` a(x).(Piσ)Dσ = a(x).(Piσ)D′

. There are two
cases:

– Suppose there is no context C[] such that Piσ ≡ C[[x=y]R] or Piσ ≡ C[[y=x]R] for a free name y
in fn(Pσ+Qσ) and a process R. Then it is easy to see from the definition of ( )D that (Piσ)D′ ≡
(Piσ)Dσ. Consequently ASo ` a(x).(Piσ)Dσ = a(x).(Piσ)D′

.
– If there is a context C[] such that Piσ ≡ C[[x=y]R] for some free name y in fn(Pσ+Qσ) and some

process R. Then by definition one has that

(Piσ)D′
≡ (C[0])D′

and by L8a that
ASo ` a(x).(Piσ)Dσ = a(x).(C[0])Dσ

Repeat the above construction until we get some P1 such that

(Piσ)D′
≡ PD′

1

and
ASo ` a(x).(Piσ)Dσ = a(x).PDσ

1

Now the previous case applies to P1, meaning that

ASo ` a(x).PDσ
1 = a(x).PD′

1

It follows that
ASo ` a(x).(Piσ)Dσ = a(x).(Piσ)D′

Similarly ASo ` a(x).(Qjσ)Dσ = a(x).(Qjσ)D′
. Then (3) follows from ASo ` (Piσ)D′

= (Qjσ)D′
. ut

Corollary 20. For the finite π-processes without the mismatch combinator the following equivalences
hold: PD ∼∅

o QD if and only if P ∼D
o Q if and only if ASo ` PD = QD.

Proof. By Corollary 16, PD ∼∅
o QD implies P ∼D

o Q. By Lemma 19, P ∼D
o Q implies ASo ` PD = QD.

By Proposition 8, ASo ` PD = QD implies PD ∼∅
o QD. ut

Theorem 21. ASo is complete for ∼∅
o on the π-processes without the mismatch combinator.

Proof. Take D in the Corollary 20 to be the empty distinction. ut

Using the technique that should be familiar to the reader by now, one can generalize the above
arguments to the weak case. We state the result without any proof.

Lemma 22. If P ≈D
o Q then ASw

o ` PD = QD.

Theorem 23. ASw
o is complete for '∅

o on the π-processes without the mismatch combinator.



6 Comment

The short paper focuses on a particular axiom for the localization operator in π-calculus. This problem
has been looked at by Lin in his symbolic approach to axiomatization ([13]) and by Parrow and Sangiorgi
([16]). In the symbolic approach equality reasoning is done under the assumption of a set of equational
and/or inequational conditions on names. Under a complete condition the match and mismatch operators
concerning a localized name in a process can be removed. This achieves the same effect as the law L7.
Lin’s method is applicable to π-calculus both with the mismatch combinators and without the mismatch
combinators. It has to be said however that even if the π-calculus is without the mismatch operator the
symbolic system has to deal with inequational conditions. Lin has studied the early/late strong/weak
congruences, while Li has investigated the strong/weak open congruences ([12]). Parrow and Sangiorgi
have worked on the problem in a non-symbolic framework. The π-calculus they used is the one with
the mismatch operator. The underlying idea is similar to that of Lin’s using the fact that the mismatch
operator allows to internalize conditions to a great extent. The contribution of this short paper is to
show how one can deal with the axiomatization of the π-calculus without the mismatch operator in a
non-symbolic fashion.

Acknowledgement The author would like to thank Xiaoju Dong and Zhenrong Yang for helpful dis-
cussions.
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