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Mathematic proofs, like computations, are energy consuming
business. There are mathematical theorems, and computational
tasks, that require more resources than what are available to us.

A mathematical proof, and a program as well, must be short
enough to be practically relevant.

Computability Theory, by Y. Fu XI. Computational Complexity 1 / 34



In real world we are not only interested in if a problem is solvable
but also how costly it is to solve the problem.
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Synopsis

1. Complexity Measure

2. Blum’s Speedup Theorem

3. Gap Theorem
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1. Complexity Measure
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Time appears to be the best criterion for the amount of energy
necessary to execute a program.
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Time Function

Given a program P, the time function t
(n)
P (x̃) is defined by

t
(n)
P (x̃) = µt.(P(x̃) terminates in t steps).

We write t
(n)
e (x̃) for t

(n)
Pe

(x̃).

Remark:

I The time function is computable since‘P(x̃) ↓ in t steps’ is a
primitive recursive predicate.

I We shall omit the superscript (n) when n = 1.
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Time Function

Fact.

(i) dom(t
(n)
e (x̃)) = dom(φ

(n)
e (x̃)) for all n, e.

(ii) The predicate “t
(n)
e (x̃) ≤ y” is decidable for all n.
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Blum Complexity Measure

(φi ,Φi ) is a Blum complexity measure if the following hold:

I Φi (x) is defined iff φi (x) is defined.

I Φi (x) ≤ n is decidable.

Manuel Blum

I A Machine-Independent Theory of the Complexity of
Recursive Functions. J. ACM 14:322-336, 1967.
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We are mainly interested in asymptotic behaviour of time function.

A predicate M(n) holds almost everywhere (a.e.) if M(n) holds for
all but finitely many natural numbers n.
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Theorem. Given a total computable function b(x), there is a total
computable function f (x) with range {0, 1} such that te(x) > b(x)
a.e. for every index e of f (x).

There are arbitrarily complex time functions.
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Define f so that it differs from every function in the sequence

φj0 , φj1 , φj2 , . . . , φjk , . . . . (1)

A function φi appears in (1) if φi (m) ≤ b(m) for infinitely many m.

Suppose f (0), f (1), . . . , f (n − 1) have been defined. Let in be

µi .(i ≤ n, ti (n) ≤ b(n), i is not yet defined)

and let f (n) be defined by

f (n) =

{
1, if in is defined and φin(n) = 0,
0, otherwise.

1. If φe = f , then e 6= in whenever in is defined.

2. If ti (m) ≤ b(m) for infinitely many m then i = in for some n.
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2. Blum’s Speedup Theorem
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Is there always a best program that solves a problem?

Blum’s Speedup Theorem says that the answer is negative.
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Speedup Theorem

Lemma. Let r be a total computable function. There is a total
computable function f such that given any program Pi for f we can
construct effectively a program Pj with the following properties:

1. φj is total and φj(x) = f (x) a.e..

2. r(tj(x)) < ti (x) a.e..

Computability Theory, by Y. Fu XI. Computational Complexity 14 / 34



Proof of the Lemma

By S-m-n Theorem, there is a total computable function s st

φs(e,u)(x) ' φ(2)e (u, x). (2)

We will construct some e using Recursion Theorem such that

φ
(2)
e (u, x) ' g(e, u, x), (3)

where g(e, u, x) is obtained by the diagonalisation construction
described on the next slide.
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Proof of the Lemma

Suppose some finite sets of canceled indices Ce,u,0, . . . ,Ce,u,x−1
have been defined.

If ts(e,i+1)(x) is defined for all i ∈ {u, . . . , x − 1}, then let

Ce,u,x =
{
i | u ≤ i < x , ti (x) ≤ r(ts(e,i+1)(x))

}
\
⋃
y<x

Ce,u,y ;

otherwise let Ce,u,x be undefined.

Clearly Ce,u,x is computable, and if i ∈ Ce,u,x then φi (x) ↓.

Now g(e, u, x) is defined by

g(e, u, x) =

{
1 + max{φi (x) | i ∈ Ce,u,x}, if Ce,u,x is defined,
↑, otherwise.
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Proof of the Lemma

Ce,0,0, Ce,0,1, Ce,0,2, . . . , Ce,0,x , Ce,0,x+1, . . .
∪ ∪ ∪ ∪ ∪

Ce,1,0, Ce,1,1, Ce,1,2, . . . , Ce,1,x , Ce,1,x+1, . . .
∪ ∪ ∪ ∪ ∪
...

...
...

...
...

∪ ∪ ∪ ∪ ∪
Ce,x ,0, Ce,x ,1, Ce,x ,2, . . . , Ce,x ,x , Ce,x ,x+1, . . .
∪ ∪ ∪ ∪ ∪
...

...
...

...
...

The unary function g(e, u, ) is defined to differ from all functions
eliminated in

⋃
x∈ω Ce,u,x .
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Proof of the Lemma

For each pair of e, x we show that g(e, u, x) is total.

I If u ≥ x , then Ce,u,x = ∅ and consequently g(e, u, x) = 1.

I Suppose u < x and g(e, x , x), . . . , g(e, u + 1, x) are defined.

I φs(e,x)(x), . . . , φs(e,u+1)(x) are defined according to (3).
I Hence ts(e,x)(x), . . . , ts(e,u+1)(x) are defined.
I It follows that Ce,u,x is defined.
I Consequently g(e, u, x) is also defined.

This completes the downward induction.

We conclude that g is a total function, which implies that
ts(e,u+1)(x) is always defined.
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Proof of the Lemma

Fact. Some v exists such that φ2e(0, x) = φ2e(u, x) for all x > v .

Proof.
By definition Ce,u,x = Ce,0,x ∩ {u, u + 1, . . . , x − 1}.
Let v = max{x | Ce,0,x contains an index i < u}.
It is clear that Ce,0,x ⊆ {u, u + 1, . . . , x − 1} for all x > v .

Hence Ce,0,x = Ce,u,x for all x > v .
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Proof of the Lemma

Fact. If φi = φ2e(0, x), then r(ts(e,i+1)(x)) < ti (x) a.e..

Proof.
Let i be an index for φ2e(0, x). It should be clear that for all x > i ,
the following holds:

r(ts(e,i+1)(x)) < ti (x).

If not, i would have been canceled at some stage, say i ∈ Ce,0,w .

But then φi (w) 6= g(e, 0,w) by definition.

That is φi (w) 6= φ2e(0,w), contradicting to the assumption.
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Proof of the Lemma

Let f (x) = φ
(2)
e (0, x).

We have proved that f satisfies the property stated in the lemma.
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Theorem (Blum, 1967). Let r be a total computable function.
There is a total computable function f such that given any
program Pi for f there is another program Pj for f satisfying
r(tj(x)) < ti (x) a.e..
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W.l.o.g. assume that r is increasing.

By a slight modification of the proof of the lemma, we get a total
computable function f such that given any program Pi for f there
is a program Pk for f satisfying the following:

I φk(x) is total and φk(x) = f (x) a.e..

I r(tk(x) + x) < ti (x) a.e..

Some c exists such that φk(x) = f (x) whenever x > c. We get a
program Pj from Pk by short-cutting computations at inputs ≤ c .

If c is large enough such that the additional computation cost is
less than c , then the program Pj satisfies r(tj(x)) < ti (x) a.e..
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We cannot define time complexity for problems.

We can however define time complexity for solutions.
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Hartmanis and Stearns’ Linear Speedup Theorem

Theorem (Hartmanis and Stearns, 1965).

If L is decidable in T (n) time, then for any ε > 0 it is decidable in
εT (n) + n + 2 time.
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Hartmanis and Stearns’ Linear Speedup Theorem

Proof.
Suppose a k-tape TM M = (Q, Γ, δ) accepts L in time T (n).
Design a k-tape TM M̃ that encodes m symbols of M by one
symbol of M̃.

The alphabet of M̃ is Γ ∪ Γm. In n + 2 steps M̃ converts the input.
M̃ then uses n/m steps to realign the head.

In state (q, h1, . . . , hk), where h1, . . . , hk ≤ m, M̃ moves
right one step, left two steps, right one step to gather information.
It then takes two steps to update data.

The overall time it takes is n + 2 + n
m + 6

mT (n) ≤ n + 2 + 7
mT (n).

So let m be 7/ε.
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3. Gap Theorem
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Complexity Class

Let b(x) be total and computable. The time complexity class of
b(x), denoted by TIME(b(x)), is the following set

{φe | φe(z) is total and te(z) ≤ b(|z |) a.e.}.
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Is it true that for every total computable function b(x) the
inclusion TIME(b(x)) ⊆ TIME(2b(x)) is strict?
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Boris Trakhtenbrot. Turing Computations with Logarithmic
Delay. Algebra and Logic 3(4):33-48, 1964. (in Russian)

Allan Borodin. Computational Complexity and the Existence of
Complexity Gaps. Journal of the ACM 19(1):158-174, 1972.
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Gap Theorem (Trakhtenbrot, 1964; Borodin, 1972).

Let r(x) be a total computable function such that r(x) ≥ x .
Then there is a total computable function b(x) such that
TIME(b(x)) = TIME(r(b(x))).
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Proof of Gap Theorem

Define a sequence of numbers k0 < k1 < k2 < . . . < kx by

k0 = 0,

ki+1 = r(ki ) + 1, for i < x .

The x + 1 intervals [k0, r(k0)], . . . , [kx , r(kx)] are disjoint.

Let P(i , k) denote the following decidable property:

I On every input of length i , each of M0, . . . ,Mi either halts in
k steps or does not halt in r(k) steps.
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Proof of Gap Theorem

Let ni be
∑i

j=0 |Γj |i , the number of input of size i in M0, . . . ,Mi .

I The ni input strings of size i cannot fill all the ni + 1 intervals
[k0, r(k0)], . . . , [kni , r(kni )].

I It follows that there is some j ≤ ni such that P(i , kj) is true.

I Let b(i) be the least such kj .

Suppose Mh accepts L ∈ TIME(r(b(n))).

For every x with |x | ≥ h then by definition Mh(x) either halts in
b(|x |) steps or does not halt in r(b(|x |)) steps.

It follows that L ∈ TIME(b(x)).
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The growth of b(x) is too fast for r to make any difference.
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