
ar
X

iv
:2

00
5.

11
02

3v
3

 [
cs

.P
L

]
 2

5
M

ar
 2

02
1

Noname manuscript No.
(will be inserted by the editor)

Symbolic Reasoning about Quantum Circuits in Coq

Wenjun Shi · Qinxiang Cao ·

Yuxin Deng · Hanru Jiang · Yuan Feng

March 26, 2021

Abstract A quantum circuit is a computational unit that transforms an input quantum

state to an output state. A natural way to reason about its behavior is to compute

explicitly the unitary matrix implemented by it. However, when the number of qubits

increases, the matrix dimension grows exponentially and the computation becomes

intractable.

In this paper, we propose a symbolic approach to reasoning about quantum cir-

cuits. It is based on a small set of laws involving some basic manipulations on vectors

and matrices. This symbolic reasoning scales better than the explicit one and is well

suited to be automated in Coq, as demonstrated with some typical examples.

Keywords Symbolic reasoning · Quantum circuits · Dirac notation · Coq.

1 Introduction

A quantum circuit is a natural model of quantum computation [20]. It is a computa-

tional unit that transforms an input quantum state to an output state. Once a quantum

circuit is designed to implement an algorithm, it is indispensable to analyze the cir-

cuit and ensure that it indeed conforms to the requirements of the algorithm. When

a large number of qubits are involved, manually reasoning about a circuit’s behav-

ior is tedious and error-prone. One way of reasoning about quantum circuits (semi-)

automatically and reliably is to mechanize the reasoning procedure in an interactive

theorem prover, such as the Coq proof assistant [7]. For example, Paykin et al. [22]

verified a few quantum algorithms in Coq, using some semi-automated strategies to

generate machine-checkable proofs.

Existing approaches have apparent drawbacks in both efficiency and human read-

ability. Quantum states and operations are represented and computed using matrices

explicitly, and their comparison is made in an element-wise way, thus is highly non-

scalable with respect to qubit numbers. Furthermore, as the system dimension grows,

East China Normal University, China · Shanghai Jiao Tong University, China · East China Normal Univer-

sity, China · Peng Cheng Laboratory, China · University of Technology Sydney, Australia

http://arxiv.org/abs/2005.11023v3

2 W. Shi et al.

it is almost impossible for human beings to read the matrices printed by the theorem

prover.

In this paper, we propose a symbolic approach to reasoning about the behavior

of quantum circuits in Coq, which improves both efficiency of the reasoning proce-

dure and readability of matrix representations. The main contributions of this paper

include:

– A matrix representation in Coq using the Dirac notation [10], which is commonly

used in quantum mechanics. Matrices are represented as combinations of |0〉, |1〉,
scalars, and a set of basic operators such as tensor product and matrix multipli-

cation. Here |0〉 and |1〉 are the Dirac notation for 2-dimensional column vectors

[1 0]T and [0 1]T , respectively. In this way, we have a concise representation for

sparse matrices, commonly used in quantum computation.

– A tactic library for (semi-)automated symbolic reasoning about matrices. The

tactics are based on a small set of inference laws (lemmas in Coq). The key idea

is to reduce matrix multiplications in the form of 〈i|j〉 into scalars, and simplify

the matrix representation by absorbing ones and eliminating zeros. In this way,

our approach reasons matrices by (semi-)automated rewriting instead of actually

computing matrices, and outperforms the computational approach of Paykin et

al. [22], as shown in proving the functional correctness of some typical quantum

algorithms in Section 6.

We illustrate the intuition of our tactics by the following simple example which

computes the result of applying the Pauli-X gate to the |0〉 state. In an explicit matrix-

vector multiplication form, it reads as follows:

X |0〉 =
[

0 1
1 0

] [

1
0

]

=

[

0× 1 + 1× 0
1× 1 + 0× 0

]

=

[

0
1

]

= |1〉

and four multiplications are required for the whole computation. By contrast, if we

use the Dirac notation for X and apply distribution and associativity laws, then

X |0〉 = (|0〉 〈1|+ |1〉 〈0|) |0〉
= |0〉 〈1|0〉+ |1〉 〈0|0〉
= 0 |0〉+ 1 |1〉
= |1〉 .

Note that the two terms 〈1|0〉 and 〈0|0〉 are reduced (symbolically) to 0 and 1, respec-

tively. Consequently, no multiplication is required at all.

The rest of the paper is structured as follows. In Section 2 we recall some ba-

sic notation from linear algebra and quantum mechanics. In Section 3 we introduce

a symbolic approach to reasoning about quantum circuits. In Section 4 we discuss

some problems in representing matrices using Coq’s type system and our solutions.

In Section 5 we propose two notions of equivalence for quantum circuits. In Section 6

we conduct a few case studies. In Section 7 we discuss some related work. Finally,

we conclude in Section 8.

The Coq scripts of our tactic library and the examples used in our case studies are

available at the following link

https://github.com/Vickyswj/DiracRepr.

https://github.com/Vickyswj/DiracRepr

Symbolic Reasoning about Quantum Circuits in Coq 3

2 Preliminaries

For the convenience of the reader, we briefly recall some basic notions from linear

algebra and quantum theory which are needed in this paper. For more details, we refer

the reader to [20].

2.1 Basic linear algebra

A Hilbert space H is a complete vector space equipped with an inner product

〈·|·〉 : H×H → C

such that

1. 〈ψ|ψ〉 ≥ 0 for any |ψ〉 ∈ H, with equality if and only if |ψ〉 = 0;

2. 〈φ|ψ〉 = 〈ψ|φ〉∗;

3. 〈φ|∑i ci|ψi〉 =
∑

i ci〈φ|ψi〉,

where C is the set of complex numbers, and for each c ∈ C, c∗ stands for the complex

conjugate of c. A vector |ψ〉 ∈ H is normalised if its length
√

〈ψ|ψ〉 is equal to 1.

Two vectors |ψ〉 and |φ〉 are orthogonal if 〈ψ|φ〉 = 0. An orthonormal basis of a

Hilbert space H is a basis {|i〉} where each |i〉 is normalised and any pair of them is

orthogonal.

Let L(H) be a set of linear operators on H. For anyA ∈ L(H), A is Hermitian if

A† = AwhereA† is the adjoint operator ofA such that 〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗ for any

|ψ〉, |φ〉 ∈ H. The fundamental spectral theorem states that the set of all normalised

eigenvectors of a Hermitian operator in L(H) constitutes an orthonormal basis for

H. That is, there exists a so-called spectral decomposition for each HermitianA such

that

A =
∑

i

λi|i〉〈i|

where the set {|i〉} constitutes an orthonormal basis of H, {λi} denotes the set of

eigenvalues of A, and |i〉〈i| is the projector to the corresponding eigenspace of λi. A

linear operator A ∈ L(H) is unitary if A†A = AA† = IH where IH is the identity

operator on H. The trace of A is defined as tr(A) =
∑

i〈i|A|i〉 for some given

orthonormal basis {|i〉} of H. It is worth noting that the trace function is actually

independent of the orthonormal basis selected. It is also easy to check that the trace

function is linear and tr(AB) = tr(BA) for any A,B ∈ L(H).
Let H1 and H2 be two Hilbert spaces. Their tensor product H1⊗H2 is defined as

a vector space consisting of linear combinations of the vectors |ψ1ψ2〉 = |ψ1〉|ψ2〉 =
|ψ1〉 ⊗ |ψ2〉 with |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. Here the tensor product of two vectors

is defined by a new vector such that

(

∑

i

λi|ψi〉
)

⊗





∑

j

µj |φj〉



 =
∑

i,j

λiµj |ψi〉 ⊗ |φj〉.

4 W. Shi et al.

Then H1 ⊗ H2 is also a Hilbert space where the inner product is defined in the

following way: for any |ψ1〉, |φ1〉 ∈ H1 and |ψ2〉, |φ2〉 ∈ H2,

〈ψ1 ⊗ ψ2|φ1 ⊗ φ2〉 = 〈ψ1|φ1〉H1〈ψ2|φ2〉H2

where 〈·|·〉Hi
is the inner product of Hi. For any A1 ∈ L(H1) and A2 ∈ L(H2),

A1 ⊗A2 is defined as a linear operator in L(H1 ⊗H2) such that for each |ψ1〉 ∈ H1

and |ψ2〉 ∈ H2,

(A1 ⊗A2)|ψ1ψ2〉 = A1|ψ1〉 ⊗A2|ψ2〉.

2.2 Basic quantum mechanics

According to von Neumann’s formalism of quantum mechanics [27], an isolated

physical system is associated with a Hilbert space which is called the state space

of the system. A pure state of a quantum system is a normalised vector in its state

space, and a mixed state is represented by a density operator on the state space. Here a

density operator ρ on Hilbert space H is a positive linear operator such that tr(ρ) = 1.

Another equivalent representation of a density operator is an ensemble [20] of pure

states. In particular, given an ensemble {(pi, |ψi〉)} where pi ≥ 0,
∑

i pi = 1, and

|ψi〉 are pure states, then ρ =
∑

i pi|ψi〉〈ψi| is a density operator. Conversely, each

density operator can be generated by an ensemble of pure states in this way. Finally,

a pure state can be regarded as a special mixed state.

The state space of a composite system (for example, a quantum system consisting

of many qubits) is the tensor product of the state spaces of its components. Note

that in general, the state of a composite system cannot be decomposed into a tensor

product of the reduced states on its component systems. A well-known example is

the 2-qubit state

|Ψ〉 = 1√
2
(|00〉+ |11〉).

This kind of state is called an entangled state. Entanglement is an important feature

of quantum mechanics which has no counterpart in the classical world, and is the key

to many quantum information processing tasks.

Let |ψ〉 be a state vector and θ a real number. In quantum mechanics, the state

eiθ|ψ〉 is considered to be equal to |ψ〉, up to the global phase factor eiθ . The reason is

that from an observational point of view, global phases are irrelevant to the observed

properties of the physical system under consideration and can thus be ignored as far

as quantum states are concerned [20].

The evolution of a closed quantum system is described by a unitary operator

on its state space. If the states of the system at times t1 and t2 are |ψ1〉 and |ψ2〉,
respectively, then |ψ2〉 = U |ψ1〉 for some unitary operator U which depends only

on t1 and t2. A convenient way to understand unitary operators is in terms of their

matrix representations. In fact, the unitary operator and matrix viewpoints turn out

to be completely equivalent. An m by n complex unitary matrix U with entries Uij
can be considered as a unitary operator sending vectors in the vector space Cn to the

vector space Cm, under matrix multiplication of the matrix U by a vector in Cn.

Symbolic Reasoning about Quantum Circuits in Coq 5

We often denote a single qubit as a vector |ψ〉 = α|0〉 + β|1〉 parameterized by

two complex numbers satisfying the condition |α|2 + |β|2 = 1. A unitary operator

for a qubit is then described by a 2×2 unitary matrix. Quantum circuits are a popular

model for quantum computation, where quantum gates usually stand for basic unitary

operators whose mathematical meanings are given by appropriate unitary matrices.

Some commonly used quantum gates to appear in the current work include the 1-

qubit Hadamard gate H , the Pauli gates I2, X, Y, Z , the controlled-NOT gate CX
performed on two qubits, and the 3-qubit Toffoli gate. Their matrix representations

are given below:

I2 =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

.

H =
1√
2

(

1 1
1 −1

)

, CX =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, TOF =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























.

For example, in Figure 1 we display a circuit that can generate the 3-qubit Green-

berger–Horne–Zeilinger state (GHZ state) [13], which is
|000〉+|111〉√

2
. In the circuit, a

Hadamard gate is applied on the first qubit, then two controlled-NOT gates are used,

with the first qubit controlling the second, which in turn controls the third.

|0〉 H •

|0〉 •

|0〉

Fig. 1 A circuit for creating the 3-qubit GHZ state

A quantum measurement is described by a collection {Mm} of measurement

operators, where the indices m refer to the measurement outcomes. It is required that

the measurement operators satisfy the completeness equation
∑

mM
†
mMm = IH. If

the state of a quantum system is |ψ〉 immediately before the measurement, then the

probability that result m occurs is given by

p(m) = 〈ψ|M †
mMm|ψ〉,

and the state of the system after the measurement is
Mm|ψ〉√
p(m)

. If the states of the system

at times t1 and t2 are mixed, say ρ1 and ρ2, respectively, then ρ2 = Uρ1U
† after the

unitary operation U is applied on the system. For the same measurement {Mm} as

6 W. Shi et al.

Scalars: C

Basic vectors: |0〉, |1〉
Operators: ·, ×, +, ⊗, †
Laws: L1 〈0|0〉 = 〈1|1〉 = 1, 〈0|1〉 = 〈1|0〉 = 0

L2 Associativity of ·, ×, +, ⊗
L3 0 ·Am×n = 0m×n, c · 0 = 0, 1 ·A = A
L4 c · (A+B) = c ·A+ c ·B
L5 c · (A×B) = (c ·A)× B = A× (c ·B)
L6 c · (A⊗B) = (c ·A)⊗ B = A⊗ (c ·B)
L7 0m×n × An×p = 0m×p = Am×n × 0n×p

L8 Im × Am×n = Am×n = Am×n × In, Im ⊗ In = Imn

L9 0 + A = A = A+ 0

L10 0m×n ⊗ Ap×q = 0mp×nq = Ap×q ⊗ 0m×n

L11 (A+ B) × C = A× C + B × C, C × (A+ B) = C ×A+ C × B
L12 (A+ B) ⊗ C = A⊗ C + B ⊗ C, C ⊗ (A+ B) = C ⊗A+ C ⊗ B
L13 (A⊗ B) × (C ⊗D) = (A× C)⊗ (B ×D)
L14 (c ·A)† = c∗ ·A†, (A× B)† = B† ×A†

L15 (A+ B)† = A† + B†, (A⊗B)† = A† ⊗ B†

L16 (A†)† = A

Table 1 Terms and laws

above, if the system is in the mixed state ρ, then the probability that measurement

result m occurs is given by

p(m) = tr(M †
mMmρ),

and the state of the post-measurement system is
MmρM

†
m

p(m) provided that p(m) > 0.

3 Symbolic reasoning

In this section, we first introduce the terms that will appear in our symbolic reason-

ing and some laws that are useful for reducing terms. Then we present in detail the

strategeis that we developed to simplify circuits.

3.1 Terms and laws

Our symbolic reasoning is based on terms constructed from scalars and basic vectors

using some constructors:

– Scalars are complex numbers. We write C for the set of complex numbers. Our

formal treatment of complex numbers is based on the definitions and lemmas in

the library of Paykin et al. [22] for complex numbers, which, in turn, is adapted

from the Coquelicot library [5].

– Basic vectors are the base states of a qubit, i.e., |0〉 and |1〉 in the Dirac notation.

Mathematically, |0〉 stands for the vector [1 0]T and |1〉 for [0 1]T .

– Constructors include the scalar product ·, matrix product ×, matrix addition +,

tensor product ⊗, and the conjugate transpose A† of a matrix A.

Symbolic Reasoning about Quantum Circuits in Coq 7

In Dirac notations, 〈0| represents the dual of |0〉, i.e. |0〉†; similarly for 〈1|. The

term 〈j|×|k〉 is abbreviated into 〈j|k〉, for any j, k ∈ {0, 1}. This notation introduces

an intuitive explanation of quantum operation. For example, the effect of the X oper-

ator is to map |0〉 into |1〉 and |1〉 into |0〉. Thus we defineX in Coq as |0〉〈1|+ |1〉〈0|,
instead of

[

0 1
1 0

]

. Then it is obvious that X |0〉 = |1〉〈0|0〉+ |0〉〈1|0〉 = |1〉 and simi-

larly for X |1〉.
Some commonly used vectors and gates can be derived from the basic terms. For

example, we define the vectors |+〉 and |−〉 as follows.

|+〉 =
1√
2
· |0〉+ 1√

2
· |1〉 |−〉 =

1√
2
· |0〉+ (− 1√

2
) · |1〉

We also define four simple matrices B0, ..., B3.

B0 = |0〉× 〈0| B1 = |0〉× 〈1| B2 = |1〉× 〈0| B3 = |1〉× 〈1| (1)

The Hadamard matrix H is a combination of the four matrices above.

H =
1√
2
·B0 +

1√
2
· B1 +

1√
2
· B2 + (− 1√

2
) ·B3

Similarly, the Pauli-X gate and the controlled-NOT gate CX are given as follows.

X = B1 +B2 CX = B0 ⊗ I2 +B3 ⊗X (2)

Notice that tensor products of matrices from {Bj : j = 0, 1, 2, 3} constitute an

orthonormal basis for the space of all matrices of dimension 2n, for all n ≥ 1. Thus

any matrix that appeared in the computation of a quantum circuit can be represented

as a term.

Suppose the state of a quantum system is represented by a vector. The central idea

of our symbolic reasoning is to employ the laws in Table 1 to rewrite terms, trying

to put together the basic vectors and simplify them using the laws in L1. Technically,

we design a series of strategies for that purpose.

3.2 Soundness of the laws

Let T1 = T2 be a law that relates two terms T1 and T2. We say that the law is sound if

both terms can be reduced to exactly the same matrix, after their metavariables (e.g.,

|0〉) are instantiated by concrete matrices (e.g., [1 0]T). We define a strategy called

orthogonal reduce to verify that the laws in L1 are sound. In this case, we

explicitly represent |0〉 and |1〉 as matrices. Both of them are 2 × 1 matrices, so we

can use matrix multiplication to prove that the corresponding elements in the matrices

on both sides of the equation are the same. For example, the law 〈0|0〉 = 1 is actually

shown via [1 0]

[

1
0

]

= 1. We add the laws in L1 to the set named S db. The laws in

L2-16 are also proved through explicit matrix representation.

Theorem 1 All the laws in Table 1 are sound.

8 W. Shi et al.

We have given a formal soundness proof in Coq for each of the laws in Table 1.

We collect the soundness properties in a library that contains many useful properties

about matrices.

3.3 Strategy for basic matrices

The four matrices B0, ..., B3 defined in (1) are the basic building blocks to represent

2 × 2 matrices, and are intensively used in our symbolic reasoning. We design a

strategy called base reduce to prove some equations about them acting on the

base states |0〉 and |1〉. For example, let us consider the equationB0 × |0〉 = |0〉. We

first represent B0 by |0〉 × 〈0|, then use the associativity of matrix multiplication to

form the subterm 〈0|× |0〉. Now we can use the proved laws in L1 to rewrite 〈0|× |0〉
into 1. The last step is to deal with scalar multiplications. We add these equations to

the set named B db.

3.4 Strategy for the Pauli and Hadamard gates

The Pauli and Hadamard gates are probably the most widely used single-qubit gates.

We introduce a strategy called gate reduce to prove some equations about the

matrices I2, X, Y, Z,H acting on base states. For example, consider the equation

X × |0〉 = |1〉. We first expand X into B1 + B2. In order to prove the equation

(B1+B2)×|0〉 = |1〉, we use the distributivity of matrix multiplication over addition

to rewrite the left hand side of the equation into the sum of B1 × |0〉 and B2 × |0〉.
Then we employ the proved laws in B db to rewrite them. Eventually, we deal with

scalar multiplications and cancel zero matrices. We add these equations to the set

named G db.

Furthermore, we add into S db and G db some commonly used equations about

the matricesB0, ..., B3 and I2, X, Y, Z,H acting on states |+〉 and |−〉. For example,

we have H |+〉 = |0〉 and H |−〉 = |1〉, etc.

3.5 Strategy for circuits

We propose a strategy called operate reduce that puts together all the results

above to reason about circuits applied to input states represented in the vector form.

We will have a close look at the strategy by using an example. Let us revisit the 3-

qubit GHZ state. The state can be generated by applying the circuit in Figure 1 to the

initial state |0〉⊗|0〉⊗|0〉. We would like to verify that the output state is indeed what

we expect by establishing the following equation.

(I2 ⊗ CX)× (CX ⊗ I2)× (H ⊗ I2 ⊗ I2)× (|0〉 ⊗ |0〉 ⊗ |0〉)
= 1√

2
· (|0〉 ⊗ |0〉 ⊗ |0〉) + 1√

2
· (|1〉 ⊗ |1〉 ⊗ |1〉) (3)

We first use the right associativity of tensor product and matrix multiplication to

change the expression on the left hand side in (3) into

(I2 ⊗ CX)× ((CX ⊗ I2)× ((H ⊗ (I2 ⊗ I2))× (|0〉 ⊗ (|0〉 ⊗ |0〉)))) (4)

Symbolic Reasoning about Quantum Circuits in Coq 9

Then we calculate the inner layer matrix multiplications in sequence. We first cal-

culate (H ⊗ (I2 ⊗ I2)) × (|0〉 ⊗ (|0〉 ⊗ |0〉)). We exploit the law in L13 to change

a matrix product of tensored terms into a tensor product of matrix multiplications.

Then we employ the laws established in G db and B db to rewrite terms. This trans-

formation is as follows:

(H ⊗ (I2 ⊗ I2))× (|0〉 ⊗ (|0〉 ⊗ |0〉))
= (H × |0〉)⊗ ((I2 × |0〉)⊗ (I2 × |0〉))
= |+〉 ⊗ (|0〉 ⊗ |0〉)

Correspondingly, the expression in (4) turns into

(I2 ⊗ CX)× ((CX ⊗ I2)× (|+〉 ⊗ (|0〉 ⊗ |0〉))).

The inner layer matrix multiplication to be calculated next is the following ex-

pression: (CX ⊗ I2) × (|+〉 ⊗ (|0〉 ⊗ |0〉)). Different from the calculation of the

previous layer, we have to expand the multiple-qubit quantum gates first. Here is the

CX gate. After this step, we use the distributivity of tensor product and matrix product

over addition to rewriting it. We also exploit the law in L13 as well as the equations

in G db and B db. So the inference goes as follows:

(CX ⊗ I2)× (|+〉 ⊗ (|0〉 ⊗ |0〉))
= ((B0 ⊗ I2 +B3 ⊗X)⊗ I2)× (|+〉 ⊗ (|0〉 ⊗ |0〉))
= ((B0 ⊗ I2 ⊗ I2 +B3 ⊗X ⊗ I2)× (|+〉 ⊗ (|0〉 ⊗ |0〉))
= ((B0 ⊗ (I2 ⊗ I2))× (|+〉 ⊗ (|0〉 ⊗ |0〉)) + ((B3 ⊗ (X ⊗ I2)× (|+〉 ⊗ (|0〉 ⊗ |0〉))
= ((B0 × |+〉)⊗ (I2 × |0〉)⊗ (I2 × |0〉)) + ((B3 × |+〉)⊗ (X × |0〉)⊗ (I2 × |0〉))
= 1√

2
· (|0〉 ⊗ (|0〉 ⊗ |0〉)) + 1√

2
· (|1〉 ⊗ (|1〉 ⊗ |0〉))

Other laws such as the associativity and distributivity of scalar multiplication may

also be used in the inference, though they are not demonstrated in this example.

We continue in this way until no more matrix multiplication is possible. It is

worth noting that if there is a zero matrix in the summands of a certain layer of

calculation, it can be eliminated immediately, without being carried into the next

layer of calculation. Finally, we simplify the expressions about complex numbers.

The above steps appear a bit complex, but they can be fully automated in Coq, for-

tunately. The script for implementing the strategy operate reduce is as follows:

Ltac inner_reduce :=

unfold_operator;

kron_plus_distr;

isolate_scale;

assoc_right;

try repeat rewrite Mmult_plus_distr_l;

try repeat rewrite Mmult_plus_distr_r;

repeat rewrite <- Mscale_kron_dist_r;

repeat mult_kron;

repeat rewrite Mscale_mult_dist_r;

repeat (autorewrite with G_db;

repeat cancel_0;

repeat rewrite Mscale_kron_dist_r);

repeat rewrite <- Mmult_plus_distr_l.

10 W. Shi et al.

Ltac operate_reduce :=

assoc_right;

repeat inner_reduce;

reduce_scale;

unified_base.

In summary, using the strategy operate reduce, we can formally prove the

equation in (3) automatically.

As we can see, our general framework is to formalize circuits symbolically as

terms, and simplify terms involving matrices by (semi-)automated term rewriting in-

stead of actually computing the matrices. The strategies in Sections 3.2-3.5 are de-

signed with the common goal: to reduce matrix multiplications in the form of 〈i|j〉
into scalars, and simplify the matrix representation by absorbing ones and eliminating

zeros. This symbolic approach of reasoning about circuits turns out to be effective;

see Section 6.7 for more detailed discussion.

3.6 Density matrices as quantum states

Although it is very intuitive to represent pure quantum states by vectors, there is an

inconvenience. In quantum mechanics, the global phase of a qubit is often ignored.

For example, we would not distinguish |ψ〉 from eiθ|ψ〉 for any θ. However, when

written in vector form, |ψ〉 and eiθ|ψ〉 may be different because of the coefficient eiθ

present in the latter but not in the former. Therefore, we use the symbol ≈ to denote

such an equivalence, i.e. eiθ|ψ〉 ≈ |ψ〉. As a matter of fact, we can be more general

and define an observational equivalence for matrices, as given below.

Definition obs_equiv {m n : nat} (A B : Matrix m n) : Prop :=

exists c : C, Cmod c = R1 /\ c .* A = B.

Infix "≈" := obs_equiv.

In the above definition, the condition Cmod c = R1 means that the norm of the

complex number c is one and c .* A = B says that the matrix A is equal to B after

a scalar product with the coefficient c. See Section 6.1 for more concrete examples

that use the relation ≈.

Note that if quantum states are represented by density matrices, we have

(eiθ|ψ〉)(eiθ |ψ〉)† = (eiθ|ψ〉)(e−iθ〈ψ|) = |ψ〉〈ψ|.

Therefore, the discrepancy entailed by the global phase disappears: the two vectors

eiθ|ψ〉 and |ψ〉 correspond to the same density matrix |ψ〉〈ψ|. Representing states by

density matrices can thus omit unnecessary details and in some cases simplify our

reasoning. This is a small but useful trick in formal verification of quantum circuits,

which does not seem to have been exploited in the literature. In Sections 6.2 and 6.3,

we give two examples where the input and output quantum states of the circuits are

given in terms of density matrices.

If the state of a quantum system is represented by a density matrix, the reason-

ing strategies discussed above can still be used. For instance, suppose a system is

in the initial state given by density matrix ρ. After the execution of a quantum cir-

cuit implementing some unitary transformation U , the system changes into the new

Symbolic Reasoning about Quantum Circuits in Coq 11

state ρ′ = UρU †. Let ρ =
∑

j λj |j〉〈j| be its spectral decomposition, where λj are

eigenvalues of ρ and the vectors |j〉 the corresponding eigenvectors. It follows that

ρ′ = U(
∑

j

λj |j〉〈j|)U † =
∑

j

λjU |j〉(U |j〉)† . (5)

Therefore, we can first simplify U |j〉 into a vector, take its dual and then obtain ρ′

easily. Our approach to symbolic reasoning also applies in this setting.

We define two functions density and super in advance. The former converts

states in the vector form into corresponding states in the density matrix form. The

latter formalizes the transformation process between states in the density matrix form.

Definition density {n} (φ : Matrix n 1) : Matrix n n := φ × φ†.
Definition super {m n} (M : Matrix m n) : Matrix n n -> Matrix m m :=

fun ρ => M × ρ × M†.

We introduce the simplification strategy called super reduce for states in the

density matrix form.
Ltac super_reduce:=

unfold super,density;

(* Expand super and density *)

match goal with

(* Match the pattern of target

with U × φ × φ† × U† *)

||-context [(?A × ?B) × ?A†] =>

match B with

| (?C × ?C†) =>

transitivity ((A × C) × (C† × A†)

(* Cast uniform types *)

end

end;

[repeat rewrite <- Mmult_assoc; reflexivity|..];

rewrite <- Mmult_adjoint;

(* Extract adjoint *)

let Hs := fresh "Hs" in

match goal with

||-context [(?A × ?B) × ?C†) = ?D × ?D†]=>

match C with

| ?A × ?B=> assert (A × B = D) as Hs

end

end;

(* Use operate_reduce to prove vector states

and rewrite it in density matrix form *)

[try reflexivity; try operate_reduce |

repeat rewrite Hs; reflexivity].

In the above strategy, we first expand the density and super functions in the

target. Next, we match the pattern of the target to see whether it is in the form U ×
|ψ〉 × 〈ψ| × U † (the middle of the equation in (5)) and cast uniform types, for the

reasons to be discussed in Section 4. Then we exploit the law in L14 to extract adjoint

of multiplication terms so the target becomes U × |ψ〉 × (U × |ψ〉)† as in the right

hand side of the equation in (5). Finally, we use the strategy operate reduce to

conduct the proof for states in vector form and rewrite it back in density matrix form.

Note that we omit dimensions for presentation purpose, in practice we need to specify

these implicit arguments.

12 W. Shi et al.

3.7 Mixed state

As mentioned in Section 2.2, the mixed state ρ =
∑

i pi|ψi〉〈ψi| is an ensemble

{(pi, |ψi〉)} of pure states |ψi〉, where pi is the probability of the pure state |ψi〉 with
∑

i pi = 1. In Coq, we use a list of pairs of real numbers and density operators to

define mixed states.

Definition Pure n := (R * (Matrix n n)).

Definition Mix n := (list (Pure n)).

Recall that the application of unitary operator U on the mixed state ρ is in the

following form:

ρ =
∑

i

pi|ψi〉〈ψi| U−→ UρU † =
∑

i

pjU |ψi〉〈ψi|U †. (6)

We formalize (6) in Coq as follows.

Fixpoint UnitMix {n} (A : Matrix n n) (m : Mix n): Mix n :=

match m with

| [] => []

| a :: b => (match a with

|(x , y) => (x , super A y)

end) :: (UnitMix A b)

end.

After a measurement, results can be expressed with mixed states, as introduced

in Section 2.2. For simplicity, we use projection measurements, so for each mea-

surement operator Mm we have M †
mMm = Mm. We first define the measurement

operators of any dimension as follows, where the two parameters n and k stand for

the space dimension and the position of an active qubit.

Definition Mea0 (n k : N) := (I (2^k) ⊗ |0〉〈0| ⊗ I (2^(n-k))).

Definition Mea1 (n k : N) := (I (2^k) ⊗ |1〉〈1| ⊗ I (2^(n-k))).

Definition Mea (n k : N) := Mea0 n k .+ Mea1 n k.

Then we formalize measurements on the mixed state in Coq as follows. Note that a

pure state ρ can be regarded as a special mixed state [(1, ρ)].

Fixpoint MeaMix {n} (m k : N) (l : Mix n) : Mix n :=

match l with

| [] => []

| a :: b => match a with

| (x , y) =>

[((x * (trace((Mea0 m k) × y))), /(trace ((Mea0 m k)× y)).* super(Mea0 m k) y);

((x * (trace((Mea1 m k) × y))), /(trace ((Mea1 m k)× y)).* super(Mea1 m k) y)]

end ++ (MeaMix m k b)

end.

4 Problems from Coq’s type system and our solution

In principle, the Dirac notation is fully symbolic, i.e. no matter how we formalize it,

the relevant laws and their proofs should remain unchanged. However, it turns out

that different design choices in formalization do make a difference.

Symbolic Reasoning about Quantum Circuits in Coq 13

In Coq, there are three kinds of equivalence between expressions: (1) syntactic

equality, (2) βη-reduction, and (3) provable equivalence. Specifically, a and b are

syntactically equal if they are the same Coq expression. If a and b are not the same

Coq expression, it is still possible for them to be βη-reducible to the same term.1

In that case, a and b can be used interchangeably in Coq, i.e. if P (a) is a well-

typed proposition, then so is P (b), and every proof of P (a) is also a proof of P (b).
Moreover, if T (a) is a legal Coq type, then so is T (b), and every element of T (a) is

also an element of T (b). If a and b are not βη-equivalent, it is still possible for them

to be provably equivalent. For example, the two expressions (1 + n) and (n + 1)
are not βη-equivalent in Coq for a general variable n but they are provably equal

to each other. In other words, a proof of P (1 + n) is NOT necessarily a proof of

P (n+1) although we can always derive a proof of P (n+1) from a proof of P (1+n).
Moreover, if T (1 + n) is a type, its element is not necessarily an element of type

T (n+ 1).

Matrix definition. When it comes to matrix definitions. The first problem is to decide

whether 2n+1 × 2n+1 matrices and 21+n × 21+n matrices are βη-equivalent Coq

types or not. Intuitively, since these two kinds of matrices are mathematically the

same object, they should be used interchangeably. However, (1 + n) and (n + 1)
are not βη-equivalent. Thus, we have to carefully define the Coq type of matrices so

that those two kinds above are βη-equivalent types. We follow the approach used in

QWIRE [22] and define matrices (no matter how large they are) to be functions from

two natural numbers (row and column numbers) to complex numbers:

Definition Matrix (m n : N) := nat -> nat -> C.

But still, there are two problems that need to be solved.

The elements outside the range of a matrix. Intuitively, this definition above says

that, given a pair of numbers (k, l), if k < m and l < n then the entry of the matrix

in the k-th row and l-th column is a complex number determined by the mapping.

However, if k ≥ m or l ≥ n then the number determined by the mapping does not

correspond to a valid entry in the matrix. In manual proofs we can simply ignore

those elements.

Am×n =

















a00 · · · a0(n−1) 0 · · ·
...

...
...

a(m−1)0 · · · a(m−1)(n−1) 0 · · ·
0 · · · 0 0 · · ·
...

...
...

















(7)

1 Coq is an extension of the lambda calculus. The βη-reduction here means the βη-reduction of the

underlying lambda calculus.

14 W. Shi et al.

Bm×n =

















a00 · · · a0(n−1) 1 · · ·
...

...
...

a(m−1)0 · · · a(m−1)(n−1) 1 · · ·
1 · · · 1 1 · · ·
...

...
...

















(8)

For example, in (7) and (8) we give two mappings in the form of two infinite-

dimensional matrices Am×n and Bm×n, respectively. Basically, Am×n is the same

as Bm×n except that all the elements with rows (resp. columns) greater than or equal

to m (resp. n) are 0 in the former but they are 1 in the latter. In computer-aided

proofs, we could choose to only reason about well-formed matrices whose “outside

elements” are all zero like Am×n above. Rand et al. [22] heavily used this approach

in their work. They would consider Am×n well-formed but Bm×n ill-formed. How-

ever, only reasoning about well-formed matrices imposes a heavy burden for formal

proofs because the condition of well-formedness needs to be checked each time we

manipulate matrices. In our development, we choose a relaxed notion of matrix equiv-

alence, which also appeared in [22], so that two matrices are deemed to be equivalent

if they are equal component-wisely within the desired dimensions, and outside the

dimensions the corresponding elements can be different. For instance, this notion of

equivalence allows us to identify Am×n with Bm×n. With a slight abuse of notation,

we still use the symbol = to denote the newly defined matrix equivalence2, and prove

its elementary properties about scale product, matrix product, matrix addition, tensor

product and conjugate transpose. Reasoning about matrices modulo that equivalence

turns out to be convenient in Coq. Specifically, the automation of the rewriting strate-

gies mentioned above does not require side condition proofs about well-formedness.

Coq type casting for rewriting. In math, |0〉 ⊗ |0〉 is a 4 × 1 matrix and it is only

verbose to say it is a (2 ·2) × (1 ·1) matrix. Even though (2 ·2) × (1 ·1) is convertible

to 4 × 1, thees two typing claims are not syntactically identical in Coq but only βη-

equivalent to each other. This difference is significant in rewriting. For example, the

associativity of matrix multiplication is usually described as follows:

A× (B × C) = (A×B)× C.

But more formally, the associativity means for any natural numbers m, n, o, p and

m× n matrix A, n× o matrix B and o× p matrix C,

A ×
m,n,p

(B ×
n,o,p

C) = (A ×
m,n,o

B) ×
m,o,p

C

where we use subscripts under × to indicate matrices’ dimensions. These parameters

do appear (implicitly) in Coq’s formalization of matrix multiplication’s associativity.

2 Nevertheless, we keep our Coq script in the repository at Github more rigid. There we use ≡ to stand

for the relaxed notion of matrix equivalence and reserve = for the stronger notion of equivalence in the

sense that A = B means the two matrices A and B are equal component-wisely both within and outside

their dimensions.

Symbolic Reasoning about Quantum Circuits in Coq 15

XX = I2
1√
2
· (X + Z) = H

Y Y = I2 H2 × CX ×H2 = CZ
ZZ = I2 CX ×X1 × CX = X1 ×X2

HH = I2 CX × Y1 × CX = Y1 ×X2

CX × CX = I4 CX × Z1 × CX = Z1

HXH = Z CX ×X2 × CX = X2

HYH = −Y CX × Y2 × CX = Z1 × Y2
HZH = X CX × Z2 × CX = Z1 × Z2

Fig. 2 More laws

Thus rewriting does not work in the following case:

A ×
1,1,1

(B ×
1·1,1,1·1

C)

because rewriting uses an exact syntax match. This problem of type mismatch often

occurs after we use the law L13 for rewriting. We choose to build a customized

rewrite tactic to overcome this problem. Using the example above, we want to rewrite

via the associativity of multiplication. We first do a pattern matching for expressions

of the form

A ×
m,n1,p1

(B ×
n2,o,p2

C)

no matter whether n1 and p1 coincide with n2 and p2, respectively. We then use

Coq’s built-in unification to unify n1, p1 with n2, p2. This unification must succeed

or else the original expression of matrix computation is not well-formed. After the

expression is changed to

A ×
m,n1,p1

(B ×
n1,o,p1

C)

we can use Coq’s original rewrite tactic via the associativity of multiplication.

We handle the above mentioned type problems silently and whoever uses our

system to formalize his/her own proof will not even feel these problems.

5 Equivalences of circuits

In order to judge whether two circuits have the same behavior, we need to formally

define reasonable notions of equivalence for circuits in the first place. In this section,

we propose two candidate relations: one is called matrix equivalence and the other

observational equivalence.

5.1 Matrix equivalence

A natural way of interpreting a quantum circuit without measurements is to consider

each quantum gate as a unitary matrix and the whole circuit as a composition of

matrices that eventually reduces to a single matrix. From this viewpoint, two circuits

are equivalent if they denote the same unitary matrix, that is, matrix equivalence =
suffices to stand for circuit equivalence.

16 W. Shi et al.

• • ×
=

• ×
(a)

X • X

=

(b)

•
[

1 0
0 eiα

]

=
[

eiα 0
0 eiα

]

(c)

• • •

=

(d)

Fig. 3 Some equivalent circuits

Directly showing that two matrices are equivalent requires to inspect their ele-

ments and compare them component-wisely. Instead, we can take a functional view

of matrix equivalence. Let A,B be two 2m × 2m matrices, then A = B if and only

if A|v〉 = B|v〉 for any vector |v〉 ∈ H, where H is the space of all m-qubit states.

Lemma MatrixEquiv_spec: forall {n} (A B: Matrix n n),

A = B <-> (forall v: Vector n, A × v = B × v).

At first sight, it appears difficult to verify whether A|v〉 = B|v〉 for all vectors |v〉,
since there are infinitely many vectors in the state space H. However, both matricesA
and B represent linear operators, which means that it suffices to consider the vectors

in an orthonormal basis of H, where there are only 2m vectors.

In Figure 2 we list some laws that are often useful in simplifying circuits before

showing that they are equivalent. Let us verify the validity of the laws. Take the first

one as an example. Its validity is stated in Lemma unit X. In order to prove that

lemma, we apply MatrixEquiv spec and reduce it to Lemma unit X’, which

can be easily proved by the strategy operate reduce.

Lemma unit_X : X × X = I_2.

Lemma unit_X’ : forall v : Vector 2, X × X × v = I_2 × v.

In the right column of Figure 2, the subscripts of X,Y, Z and H indicate on

which qubits the quantum gates are applied. For example,X2 means that the Pauli-X

gate is applied on the second qubit. Thus, the operation Y1 ×X2 actually stands for

(Y ⊗ I2)× (I2 ⊗X).
In Figure 3, we display some equivalent circuits. In diagram (a), on the right of

= is a schematic specification of swapping two qubits, which is implemented by the

circuit on the left. Mathematically, the equality is described by Lemma Eq1 below.

Definition SWAP := B0 ⊗ B0 .+ B1 ⊗ B2 .+ B2 ⊗ B1 .+ B3 ⊗ B3.

Definition XC := X ⊗ B3 .+ I_2 ⊗ B0.

Lemma Eq1 : SWAP = CX × XC × CX.

In diagram (b), there is a controlled operation performed on the second qubit, condi-

tioned on the first qubit being set to zero. It is equivalent to a CX gate enclosed by

two Pauli-X gates on the first qubit. The equality is specified by Lemma Eq2 below.

Definition not_CX := B0 ⊗ X .+ B3 ⊗ I_2.

Lemma Eq2 : not_CX = (X ⊗ I_2) × CX × (X ⊗ I_2).

Symbolic Reasoning about Quantum Circuits in Coq 17

x H •
βxy

y

Fig. 4 The Bell states

|β00〉 = 1√
2
· |0〉 ⊗ |0〉+ 1√

2
· |1〉 ⊗ |1〉

|β01〉 = 1√
2
· |0〉 ⊗ |1〉+ 1√

2
· |1〉 ⊗ |0〉

|β10〉 = 1√
2
· |0〉 ⊗ |0〉 − 1√

2
· |1〉 ⊗ |1〉

|β11〉 = 1√
2
· |0〉 ⊗ |1〉 − 1√

2
· |1〉 ⊗ |0〉

In diagram (c), the controlled phase shift gate on the left is equivalent to a circuit for

two qubits on the right. Lemma Eq3 gives a description of this equality.

Definition CE (u: R) := B0 ⊗ I_2 .+ B3 ⊗ (Cexp u .* B0 .+ Cexp u .* B3).

Lemma Eq3 : CE u = (B0 .+ Cexp u .* B3) ⊗ I_2.

In diagram (d), a controlled gate with two targets is equivalent to the concatenation

of two CX gates. This is formalized by Lemma Eq4 below.

Definition CXX := B0 ⊗ I_2 ⊗ I_2 .+ B3 ⊗ X ⊗ X.

Definition CIX := B0 ⊗ I_2 ⊗ I_2 .+ B3 ⊗ I_2 ⊗ X.

Lemma Eq4 : CXX = CIX × (CX ⊗ I_2).

The previous four lemmas can all be proved by using the strategyoperate reduce

in conjunction with MatrixEquiv spec.

In Section 3 we have formalized the preparation of the 3-qubit GHZ state (cf.

Figure 1). Now let us have a look at the Bell states. Depending on the input states,

the circuit in Figure 4 gives four possible output states. The correctness of the circuit

is validated by the four lemmas below, where the states are given in terms of density

matrices and the circuit is described by a super-operator. It is easy to prove them by

using our strategy super reduce.

Definition bl00 := /
√
2 .* (|0,0〉) .+ /

√
2 .* (|1,1〉).

Definition bl01 := /
√
2 .* (|0,1〉) .+ /

√
2 .* (|1,0〉).

Definition bl10 := /
√
2 .* (|0,0〉) .+ (-/

√
2) .* (|1,1〉).

Definition bl11 := /
√
2 .* (|0,1〉) .+ (-/

√
2) .* (|1,0〉).

Lemma pb00 : super (CX × (H ⊗ I_2)) (density |0,0〉) = density bl00.

Lemma pb01 : super (CX × (H ⊗ I_2)) (density |0,1〉) = density bl01.

Lemma pb10 : super (CX × (H ⊗ I_2)) (density |1,0〉) = density bl10.

Lemma pb11 : super (CX × (H ⊗ I_2)) (density |1,1〉) = density bl11.

5.2 Observational equivalence

An alternative way of interpreting a quantum circuit without measurements is to con-

sider it as an operator that changes input quantum states to output states and abstracts

away unobservable details. Therefore, we reuse the notion of matrix equivalence ≈
introduced in Section 3 and call it observational equivalence for quantum circuits.

The rationale of using ≈ is that from an observational point of view, global phases

are irrelevant to the observed properties of the physical system under consideration

and can be ignored as far as quantum states are concerned.

The following lemma provides a functional view of observational equivalence.

It is a counterpart of MatrixEquiv spec given in Section 5.1. Let A,B be two

operators, we have A ≈ B if and only if A|ψ〉 ≈ B|ψ〉 for any state |ψ〉.

18 W. Shi et al.

Lemma ObsEquiv_operator: forall {n} (A B: Matrix n n),

A ≈ B <-> (forall ψ: Matrix n 1, A × ψ ≈ B × ψ).

Furthermore, two states are equal modulo a global phase, i.e. |ψ〉 ≈ |φ〉 if and only if

their density matrices are exactly the same, i.e. |ψ〉〈ψ| = |φ〉〈φ|. We formally prove

this property as it motivated us to introduce density matrices to represent quantum

states in Section 3.6.

Lemma ObsEquiv_state: forall {n} (ψ φ: Matrix n 1),

ψ ≈ φ <-> ψ × (ψ†) = φ × (φ†) .

Although both matrix equivalence= and observational equivalence≈ can be used

for relating circuits, the former is strictly finer than the latter in the sense that A = B
implies A ≈ B but not the other way around. Therefore, in the rest of the paper, we

relate circuits by = whenever possible, as they are also related by ≈. Moreover, it

is not difficult to see that = is a congruence relation. For example, if A,B are two

quantum gates and A = B, then we can add a control qubit to form controlled-A
and controlled-B gates, which are still identified by =. However, the relation ≈ does

not satisfy such kind of congruence property. To see this, note that I ≈ −I . But

the controlled-I gate is quite different from controlled-(−I): the latter transforms
1√
2
(|00〉 + |11〉) into 1√

2
(|00〉 − |11〉) whereas the former keeps it unchanged. In

Section 6.1 we will see a concrete example of using ≈, where quantum states are

identified by purposefully ignoring their global phases.

6 Case studies

To illustrate the power of our symbolic approach of reasoning about quantum circuits,

we conduct a few case studies and compare the approach with the computational one

in [22].

6.1 Deutsch’s algorithm

Given a boolean function f : {0, 1} → {0, 1}, Deutsch [9] presented a quantum

algorithm that can compute f(0) ⊕ f(1) in a single evaluation of f . The algorithm

can tell whether f(0) equals f(1) or not, without giving any information about the

two values individually. The quantum circuit in Figure 5 gives an implementation of

the algorithm. It makes use of a quantum oracle that maps any state |x〉 ⊗ |y〉 to the

state |x〉 ⊗ |y ⊕ f(x)〉, where x, y ∈ {0, 1}. More specifically, the unitary operator

Uf can be in one of the following four forms:

– if f(0) = f(1) = 0, then Uf = Uf00 = I2 ⊗ I2;

– if f(1) = f(1) = 1, then Uf = Uf11 = I2 ⊗X ;

– if f(0) = 0 and f(1) = 1, then Uf = Uf01 = CX ;

– if f(0) = 1 and f(1) = 0, then Uf = Uf10 = B0 ⊗X +B3 ⊗ I2.

We formalize Deutsch’s algorithm in Coq and use our symbolic approach to prove

its correctness. Let us suppose that |ψ0〉 = |01〉 is the input state. There are three

Symbolic Reasoning about Quantum Circuits in Coq 19

|0〉 H x x

Uf

y y ⊕ f(x)

H

|1〉 H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Fig. 5 Deutsch’s algorithm

phases in this quantum circuit. The first phase applies the Hadamard gate to each of

the two qubits. So we define the initial state and express the state after the first phase

as follows:

Definition ψ0 := |0〉 ⊗ |1〉.
Definition ψ1 := (H ⊗ H) × ψ0.

Lemma step1 : ψ1 = |+〉 ⊗ |-〉.
Lemma step1 claims that the intermediate state after the first phase is |+〉 ⊗ |−〉.
We can use the strategy operate reduce designed in Section 3 to prove its cor-

rectness.

The second phase applies the unitary operator Uf to |ψ1〉. Since Uf has four

possible forms, we consider four cases.

Definition ψ20 := (I_2 ⊗ I_2) × ψ1.
Definition ψ21 := (I_2 ⊗ X) × ψ1.
Definition ψ22 := CX × ψ1.
Definition ψ23 := (B0 ⊗ X .+ B3 ⊗ I_2) × ψ1.

Lemma step20 : ψ20 = |+〉 ⊗ |-〉.
Lemma step21 : ψ21 = -1 .* |+〉 ⊗ |-〉.
Lemma step22 : ψ22 = |-〉 ⊗ |-〉.
Lemma step23 : ψ23 = -1 .* |-〉 ⊗ |-〉.
Each of the above four lemmas corresponds to one case. They claim that the inter-

mediate state |ψ2〉 is ±1 · |+〉 ⊗ |−〉 after the second phase when f(0) = f(1), and

±1 · |−〉⊗ |−〉 when f(0) 6= f(1). We prove the four lemmas by rewriting |ψ1〉 with

Lemma step1 and using the strategy operate reduce again.

The last phase applies the Hadamard gate to the first qubit of |ψ2〉. So we still

have four cases.

Definition ψ30 := (H ⊗ I_2) × ψ20.
...

Lemma step30 : ψ30 = |0〉 ⊗ |-〉.
Lemma step31 : ψ31 = -1 .* |0〉 ⊗ |-〉.
Lemma step32 : ψ32 = |1〉 ⊗ |-〉.
Lemma step33 : ψ33 = -1 .* |1〉 ⊗ |-〉.
Observe that the only difference between |ψ30〉 and |ψ31〉 lies in the global phase

−1, which can be ignored. Similarly for |ψ32〉 and |ψ33〉. Formally, we can prove the

following lemmas.

Lemma step31’ : ψ31 ≈ |0〉 ⊗ |-〉.
Lemma step33’ : ψ33 ≈ |1〉 ⊗ |-〉.

Therefore, after the last phase, we have |ψ3〉 = |0〉⊗ |−〉 when f(0) = f(1), and

|ψ3〉 = |1〉⊗ |−〉 when f(0) 6= f(1). This is proved by using the intermediate results

obtained in the first two phases and the strategy operate reduce.

20 W. Shi et al.

|ϕ〉 • H M1 •

M2 •

XM2 ZM1 |ϕ〉







|β00〉

|ϕ0〉 |ϕ1〉 |ϕ2〉 |ϕ3〉 |ϕ4〉

Fig. 6 Teleportation [20]

The above reasoning about the Deutsch’s algorithm proceeds step by step and

shows all the intermediate states in each phase. Alternatively, one may be only inter-

ested in the output state of the circuit once an input state is fed. In other words, we

would like to show a property like

|ψ3ij〉 = (H ⊗ I2)× Ufij × (H ⊗H)× |ψ0〉.

Formally, we need to prove four equations depending on the forms of Uf .

Lemma deutsch00 :

(H ⊗ I_2) × (I_2 ⊗ I_2) × (H ⊗ H) × (|0〉 ⊗ |1〉) = |0〉 ⊗ |-〉 .

Lemma deutsch01 :

(H ⊗ I_2) × (I_2 ⊗ X) × (H ⊗ H) × (|0〉 ⊗ |1〉) = -1 .* |0〉 ⊗ |-〉 .

Lemma deutsch10 :

(H ⊗ I_2) × CX × (H ⊗ H) × (|0〉 ⊗ |1〉 = |1〉 ⊗ |-〉 .

Lemma deutsch11 :

(H ⊗ I_2) × (B0 ⊗ X .+ B3 ⊗ I_2) × (H ⊗ H) × (|0〉 ⊗ |1〉) = -1 .* |1〉 ⊗ |-〉.

The second and fourth equations can be written in a simpler form as follows.

Lemma deutsch01’ :

(H ⊗ I_2) × (I_2 ⊗ X) × (H ⊗ H) × (|0〉 ⊗ |1〉) ≈ |0〉 ⊗ |-〉 .

Lemma deutsch11’ :

(H ⊗ I_2) × (B0 ⊗ X .+ B3 ⊗ I_2) × (H ⊗ H) × (|0〉 ⊗ |1〉) ≈ |1〉 ⊗ |-〉 .

Using our symbolic reasoning, these lemmas can be easily proved by rewrite

ObsEquiv state and operate reduce. Thus, we know that the first qubit

of the result state is |0〉 when f(0) = f(1), and |1〉 otherwise. That is, |ψ3ij〉 =
|f(0)⊕ f(1)〉|−〉 as expected.

6.2 Teleportation

Quantum teleportation [2] is one of the most important protocols in quantum in-

formation theory. It teleports an unknown quantum state by only sending classical

information, by making use of a maximally entangled state. In particular, the algo-

rithm involves performing intermediate measurements on the quantum state and then

applying different operations on the intermediate measurement results represented by

mixed states.

Let the sender and the receiver beAlice andBob, respectively. The quantum tele-

portation protocol goes as follows, as illustrated by the quantum circuit in Figure 6.

1. Alice and Bob prepare an EPR state |β00〉q2,q3 together. Then they share the

qubits, Alice holding q2 and Bob holding q3.

Symbolic Reasoning about Quantum Circuits in Coq 21

2. To transmit the state |ϕ〉 of the quantum qubit q1, Alice applies a CX operation

on q1 and q2 followed by an H operation on q1.

3. Alice measures q1 and q2 and sends the outcome x to Bob.
4. WhenBob receives x, he applies appropriate Pauli gates on his qubit q3 to recover

the original state |ϕ〉 of q1.

We formalize the quantum teleportation protocol in Coq and use our symbolic

approach to prove its correctness. Let |ϕ〉 = α |0〉 + β |1〉 be any vector used as

a part of the input state. The other part is |β00〉, which needs extra preparation. For

simplicity, we directly represent |β00〉 with a combination of |0〉 and |1〉. So we define

the input state |ϕ0〉 as follows.

Variables (α β : C).

Hypothesis Normalise: |α|^2 + |β|^2 = 1.

Definition ϕ : Vector 2 := α .* |0〉 .+ β .* |1〉.
Definition ϕ0 := ϕ ⊗ bl00.

The input state goes through the quantum circuit that comprises four phases. We

can easily define the quantum pure state |ϕ2〉 after the second phase as follows, and

prove Lemma tele1 by operate reduce.

Definition ϕ2 := (H ⊗ I_2 ⊗ I_2) × (CX ⊗ I_2) × ϕ0.

Lemma tele1 : ϕ2 = α .* (|+〉 ⊗ bl00) .+ β .* (|-〉 ⊗ bl01).

In the third phase, due to the measurement with measurement operators {N0, N1},

where N0 = B0 and N1 = B3, there are four possible cases for the state |ϕ3〉, and

the probability for each case can be calculated as

〈ϕ2| × (Ni ⊗Nj ⊗ I2)
† × (Ni ⊗Nj ⊗ I2)× |ϕ2〉 = 1/4.

So we define pij and ρ3ij as follows, where i, j ∈ {0, 1} are the measurement out-

comes for the top two qubits. Then we prove Lemma tele2 about mixed states by

super reduce and some data processing. (We only consider projection operators

as measurement operators, so we can replace N † ×N with N).

Definition p0 := ϕ2 × (B0 ⊗ B0 ⊗ I_2) × ϕ2
Definition ρ30 :=

1/p0 .* (super (B0 ⊗ B0 ⊗ I_2)(density ϕ2)).
...

Lemma tele2 :

MeaMix 2 1 (MeaDen 2 0 (density ϕ2)) .=

[(1/4, 4 .* density (/
√
2 .* (|00〉 ⊗ (α .* |0〉 .+ β .* |1〉))));

[(1/4, 4 .* density (/
√
2 .* (|01〉 ⊗ (α .* |1〉 .+ β .* |0〉))));

[(1/4, 4 .* density (/
√
2 .* (|10〉 ⊗ (α .* |0〉 .+ -β .* |1〉))));

[(1/4, 4 .* density (/
√
2 .* (|11〉 ⊗ (α .* |1〉 .+ -β .* |0〉))))].

Finally, according to the different measurement results on the first two qubits, we

apply corresponding Pauli gates on the third qubit. So the quantum state after the

fourth phase becomes |ϕ4ij〉. We can formalize it in Coq as follows.

|ϕ4ij〉 := (I2 ⊗ I2 ⊗ Zi)× (I2 ⊗ I2 ⊗Xj)× |ϕ3ij〉

22 W. Shi et al.

Definition ρ40 := ρ30.
Definition ρ41 := super (I_2 ⊗ I_2 ⊗ X) ρ31.
Definition ρ42 := super (I_2 ⊗ I_2 ⊗ Z) ρ32.
Definition ρ43 := super ((I_2 ⊗ I_2 ⊗ Z)×(I_2 ⊗ I_2 ⊗ X)) ρ33.

Lemma tele3 :

[(1/4, ρ40);[(1/4, ρ41); [(1/4, ρ42);[(1/4, ρ43)] .=

[(1/4, density (|0,0〉 ⊗ ψ); (1/4, density (|0,1〉 ⊗ ψ);
[(1/4, density (|1,0〉 ⊗ ψ); (1/4, density (|1,1〉 ⊗ ψ)].

Using the simplification strategies discussed in Section 3, it is easy to prove that

|ϕ4ij〉 can be simplified to be |i〉 ⊗ |j〉 ⊗ |ϕ〉, and the probability of each case is 1
4 .

In summary, we can use the following equality to express the whole protocol.

|ϕ4ij〉 = (I2 ⊗ I2 ⊗ Zi)× (I2 ⊗ I2 ⊗Xj)× (Ni ⊗Nj ⊗ I2)
×(H ⊗ I2 ⊗ I2)× (CX ⊗ I2)× (|ϕ〉 ⊗ |β00〉).

It shows that the third qubit of the result state is always equal to |ϕ〉, the state to be

teleported from Alice to Bob.

6.3 Simon’s Algorithm

The Simon’s problem was raised in 1994 [26]. Although it is an artificial problem, it

inspired Shor to discover a polynomial time algorithm to solve the integer factoriza-

tion problem.

Given a function f : {0, 1}n → {0, 1}n, suppose there exists a string s ∈ {0, 1}n
such that the following property is satisfied:

f(x) = f(y) ⇔ x = y or x⊕ y = s (9)

for all x, y ∈ {0, 1}n. Here ⊕ is the bit-wise modulo 2 addition of two n bit-strings.

The goal of Simon’s algorithm is to find the string s. The algorithm consists of iter-

ating the quantum circuit and then performing some classical post-processing.

1. Set an initial state |0〉⊗n ⊗ |0〉⊗n, and apply Hadamard gates to the first n qubits

respectively.

2. Apply an oracle Uf to all the 2n qubits, where Uf : |x〉|y〉 7→ |x〉|f(x) ⊕ y〉.
3. Apply Hadamard gates to the first n qubits again and then measure them.

When s 6= 0n, the probability of obtaining each string y ∈ {0, 1}n is

py =

{

2−(n−1) if s · y = 0
0 if s · y = 1.

Therefore, it can be seen that the result string y must satisfy s · y = 0 and be evenly

distributed. Repeating this process n−1 times, we will get n−1 strings y1, · · · , yn−1

so that yi · s = 0 for 1 ≤ i ≤ n − 1. Thus we have n − 1 linear equations with n
unknowns (n is the number of bits in s). The goal is to solve this system of equations

to get s. We can get a unique non-zero solution s if we are lucky and y1, ..., yn−1 are

linearly independent. Otherwise, we repeat the entire process and will find a linearly

independent set with a high probability.

Symbolic Reasoning about Quantum Circuits in Coq 23

|0〉 H • H

|0〉 H • H

|0〉

|0〉 X

Fig. 7 Simon’s algorithm with n = 2 and s = 11

As an example, we consider the Simon’s algorithm with n = 2. The quantum

circuit is displayed in Figure 7. We design the oracle as the gates in the dotted box

Uf = (I2⊗CX⊗ I2)× (CIX⊗X), where the gate CIX is defined in page 17. For

this oracle, s = 11 satisfies property (9). The change of states can be seen as follows:

|0000〉 H⊗H⊗I2⊗I2−−−−−−−−→ |++〉|00〉
Uf−−→ 1

2 [(|00〉+ |11〉)|01〉+ (|01〉+ |10〉)|11〉]
H⊗H⊗I2⊗I2−−−−−−−−→ 1

2 [(|00〉+ |11〉)|01〉+ (|00〉 − |11〉)|11〉]

We can establish the following lemma with our symbolic approach and use the

strategy super reduce to prove it.

Lemma simon : super ((H ⊗ H ⊗ I_2 ⊗ I_2) × (I_2 ⊗ CX ⊗ I_2) ×
(CIX ⊗ X) × (H ⊗ H ⊗ I_2 ⊗ I_2)) (density |0,0,0,0〉) = density

(/2 .* |0,0,0,1〉 .+ /2 .* |1,1,0,1〉 .+ /2 .* |0,0,1,1〉 .+ -/2 .* |1,1,1,1〉).

We analyze the cases where the last two qubits are in the state |01〉 or |11〉. The

corresponding first two qubits are in |00〉 or |11〉, each occurs with equal probability.

By property (9), it means that x⊕ y = 00 or 11, so we obtain that s = 11.

6.4 Grover’s algorithm

In this section we consider Grover’s search algorithm . The algorithm starts from the

initial state |0〉⊗n. It first uses H⊗n (the H gate applied to each of the n qubits) to

obtain a uniform superposition state, and then applies the Grover iteration repeatedly.

An implementation of the Grover iteration has four steps:

1. Apply the oracle O.

2. Apply the Hadamard transformH⊗n.

3. Perform a conditional phase shift on |x〉, if |x〉 6= |0〉.
4. Apply the Hadamard transformH⊗n again.

Here the conditional phase-shift unitary operator in the third step is 2|0〉〈0| − I . We

can merge the last three steps as follows:

H⊗n × (2|0〉〈0| − I)×H⊗n = 2|φ〉〈φ| − I

24 W. Shi et al.

(a) ORA0

•

(b) ORA1

•

(c) ORA2

•

•

(d) ORA3

Fig. 8 The quantum circuit of different Oracle

H

ORA

H X • X H

H H X H H X H

H H

Fig. 9 the Grover’s algorithm with two qubits

where |φ〉 = 1√
N

N−1
∑

x=0
|x〉 with N = 2n. Therefore, the Grover iteration becomes

G = (2|φ〉〈φ| − I)×O.

As a concrete example, we consider the Grover’s algorithm with two qubits. The

size of the search space of this algorithm is four. So we need to consider four search

cases with x∗ = 0, 1, 2, 3. The oracle must satisfy that if x = x∗, then f(x∗) = 1,

otherwise f(x) = 0. So in accordance with x∗ = 0, 1, 2, 3, we design four oracles

ORA0, ..., ORA3, which are implemented by the four circuits in Figure 8.

Definition ORA0 := B0 ⊗ (B0 ⊗ X .+ B3 ⊗ I_2) .+ B3 ⊗ I_2 ⊗ I_2.

Definition ORA1 := B0 ⊗ CX .+ B3 ⊗ I_2 ⊗ I_2.

Definition ORA2 := B0 ⊗ I_2 ⊗ I_2 .+ B3 ⊗ (B0 ⊗ X .+ B3 ⊗ I_2).

Definition ORA3 := B0 ⊗ I_2 ⊗ I_2 .+ B3 ⊗ CX.

The whole algorithm is illustrated by the circuit in Figure 9. The gates in the

dotted box perform the conditional phase shift operation 2|0〉〈0| − I . We then merge

the front and back H ⊗H gates to it and get the operation CPS as follows.
Definition MI := (B0 .+ B1 .+ B2 .+ B3) ⊗ (B0 .+ B1 .+ B2 .+ B3).

Definition CPS := (((/2 .* MI) .+ (-1) .* (I_2 ⊗ I_2)) ⊗ I_2).

So we have the Grover iteration G = (2|φ〉〈φ| − I) × O = CPS × ORAi. Let

the initial state be |0〉 ⊗ |0〉 ⊗ |1〉. After the Hadamard transform H⊗3, we only

perform Grover iteration once to get the search solution. In summary, we formal-

ize the Grover’s algorithm with two qubits in the vector form as follows, and use

operate reduce to prove them. The reasoning using density matrices can also

be done.
Lemma Gro0:

(I_2 ⊗ I_2 ⊗ H) × CPS × ORA0 × (H ⊗ H ⊗ H) × |0,0,1〉 = |0,0,1〉.
Lemma Gro1:

(I_2 ⊗ I_2 ⊗ H) × CPS × ORA1 × (H ⊗ H ⊗ H) × |0,0,1〉 = |0,1,1〉.
Lemma Gro2:

(I_2 ⊗ I_2 ⊗ H) × CPS × ORA2 × (H ⊗ H ⊗ H) × |0,0,1〉 = |1,0,1〉.
Lemma Gro3:

(I_2 ⊗ I_2 ⊗ H) × CPS × ORA3 × (H ⊗ H ⊗ H) × |0,0,1〉 = |1,1,1〉.

Symbolic Reasoning about Quantum Circuits in Coq 25

|0〉 /n H⊗ x x

Uf

y y ⊕ f(x)

H⊗

|1〉 H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Fig. 10 Deutsch-Jozsa algorithm

• •
• •

· · · · · ·
• •

•

Fig. 11 The circuit of Uf

For all the case studies in the current and previous subsections, we employ the

same schema: first represent the quantum circuits and input states symbolically, and

then apply the strategies developed in Section 3 to show that the output states are

equal to our desired states. When the states are in the vector form, we use the strategy

operate reduce. When the states are in the density matrix form, we make use

of the strategy super reduce, which decomposes density matrices into multipli-

cations of vectors and then essentially resort to operate reduce, as discussed in

Section 3. In addition, if it is necessary to identify states up to an ignorance of global

phases, we have the extra task of rewriting terms with ObsEquiv state.

6.5 Deutsch-Jozsa algorithm family

Representing a family of algorithms with unbounded qubit size, the Deutsch-Jozsa

algorithm is a generalization application of the Deutsch algorithm on n qubits. Given

a boolean function f : {0, 1}n → {0, 1} as a quantum oracle, the algorithm judges

whether f is a constant or a balanced function. Here f(x) is balanced if it is equal to

1 for half of the input x, and 0 for the other half. As shown in Figure 10, the overall

steps of the Deutsch-Jozas algorithm are as follows,

1. Apply Hadamard gates to all the n+ 1 qubits respectively.

2. Apply the oracle Uf to the n+ 1 qubits, where Uf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉.
3. Apply Hadamard gates to the first n qubits again and then measure them.

Suppose the input state is |ψ0〉 = |0〉⊗n|1〉. After each of the above three steps,

we get three states |ψ1〉, |ψ2〉 and |ψ3〉 respectively.

|ψ1〉 :=
2n−1
∑

x=0

|x〉√
2n

|−〉

|ψ2〉 :=
2n−1
∑

x=0

(−1)f(x)|x〉√
2n

|−〉

|ψ3〉 :=
2n−1
∑

x=0

2n−1
∑

z=0

(−1)f(x)+x·z |z〉
2n |−〉

From H⊗n|0〉⊗n =
∑

x |x〉/
√
2n , we easily get |ψ1〉. Then due to the fact that

Uf |−〉 = (−1)f(x)|−〉, we have |ψ2〉. Finally, for a single qubit we know that

26 W. Shi et al.

H |x〉 =
∑

z (−1)xz|z〉/
√
2 , we obtain |ψ3〉, where x · z is the bitwise inner prod-

uct of x and z. After measuring the first n qubits, we analyse the probability of

the event that the final result is |0〉⊗n. When |z〉 is |0〉, the coefficient of |ψ3〉 is
∑

x(−1)f(x)+x·z/2n|z=0 , which is equal to
∑

x(−1)f(x)/2n . Thus, when f is a

constant function, the measurement result must be |0〉⊗n. Otherwise, when f is a

balanced one, the result would not be |0〉⊗n. In summary, based on the measurement

of the first n qubits, we can determine whether f is a constant or a balanced function

and only query the oracle once.

In particular, consider the circuit of Uf shown in Figure 11, we specify Uf in Coq

as follows,

Fixpoint Uf (n:nat): Matrix (2*2^(N.of_nat n)) (2*2^(N.of_nat n)):=

match n with

| O => I 2

| S n’ => (CX ⊗ I (2^(N.of_nat n’))) × (I 2 ⊗ (Uf n’))

× (CX ⊗ I (2^(N.of_nat n’)))

end.

For convenience, we predefine an auxiliary function kron n n A, which stands

for A⊗n. When n is 1, it degenerates into I1, i.e. 1.

Fixpoint kron_n (n:nat) m1 m2 (A : Matrix m1 m2)

: Matrix (m1^(N.of_nat n)) (m2^(N.of_nat n)) :=

match n with

| 0 => I 1

| S n’ => kron A (kron_n n’ A)

end.

According to the above three steps, we use the following three lemmas to prove the

correctness of the Deutsch-Jozsa algorithm.

Lemma DJ_0 :

((kron_n n H) ⊗ H) × ((kron_n n |0〉) ⊗ |1〉) = (kron_n n |+〉) ⊗ |-〉.
Lemma DJ_1 :

(n > 0)%nat ->

(Uf n) × ((kron_n n |+〉) ⊗ |-〉) = (kron_n n |+〉) ⊗ |-〉.
Lemma DJ_2 :

((kron_n n H) ⊗ H) × ((kron_n n |+〉) ⊗ |-〉) ≡ (kron_n n |0〉) ⊗ |1〉.

By using the proof assistant Coq, we can formalise the proof about n qubits with

induction and rewriting strategies. Since the number of n is unbounded, the correct-

ness of the algorithm is difficult to be prove without proof assistant platforms. As an

example, we consider the second lemma. We first focus on the case of n = 1,

CX × (I2 ⊗ I2)× CX × (|+〉 ⊗ |−〉) = |+〉 ⊗ |−〉.

This case can be easily proved by operate reduce. According to the inductive

hypothesis, we assume that the algorithm is correct for the case of n = k. Then we

are going to prove the case of n = k + 1 with it and some laws in Table 1. The proof

Symbolic Reasoning about Quantum Circuits in Coq 27

H • •

• •
•

· · ·
•
• •

•

Fig. 12 Preparing an entangled state

|000..00〉 −→ [1√
2
(|0〉 + |1〉)]⊗ |00..00〉

≡ 1√
2
(|000..00〉 + |100..00〉)

−→ 1√
2
(|000..00〉 + |110..00〉)

−→ 1√
2
(|000..00〉 + |111..00〉)

· · ·
−→ 1√

2
(|000..00〉 + |111..10〉)

−→ 1√
2
(|000..00〉 + |111..11〉)

steps are as follows,

Uk+1
f × (|+〉⊗(k+1) ⊗ |−〉)

= (CX ⊗ I2k)× (I2 ⊗ Ukf)× (CX ⊗ I2k)× (|+〉 ⊗ |+〉 ⊗ |+〉⊗(k−1) ⊗ |−〉)
= (CX ⊗ I2k)× (I2 ⊗ Ukf)× ((CX ⊗ I2k)× ((|+〉 ⊗ |+〉)⊗ (|+〉⊗(k−1) ⊗ |−〉)))
= (CX ⊗ I2k)× (I2 ⊗ Ukf)× ((CX × (|+〉 ⊗ |+〉))⊗ (I2k × (|+〉⊗(k−1) ⊗ |−〉)))
= (CX ⊗ I2k)× ((I2 ⊗ Ukf)× ((|+〉 ⊗ |+〉)⊗ (|+〉⊗(k−1) ⊗ |−〉)))
= (CX ⊗ I2k)× ((I2 × |+〉)⊗ (Ukf × (|+〉⊗k ⊗ |−〉)))
= (CX ⊗ I2k)× (|+〉 ⊗ (|+〉⊗k ⊗ |−〉))
= (CX ⊗ I2k)× ((|+〉 ⊗ |+〉)⊗ (|+〉⊗k−1 ⊗ |−〉))
= (CX × (|+〉 ⊗ |+〉))⊗ (I2k × (|+〉⊗k−1 ⊗ |−〉))
= |+〉⊗(k+1) ⊗ |1〉.

After apply the Hadamard gates to the first n qubits, we can get that the first n
qubits of the result is |0〉⊗n, So we know that the f described as Uf is a constant

function.

6.6 Preparation of an entangled state

So far we have seen some simple examples with only a few qubits. Now let us con-

sider a bigger example with a dozen qubits. The quantum circuit in Figure 12 can be

used to create a maximally entangled state.

We start with the initial state |000..00〉 with 12 qubits. First, we apply the H gate

on the first qubit q1 to change the global state into [1√
2
(|0〉+ |1〉)]⊗ |00..00〉 with the

first qubit in a superposition. It is equivalent to 1√
2
(|000..00〉+ |100..00〉). Then we

apply the CX gate on the first and second qubits q1 and q2, which leads to the state
1√
2
(|000..00〉 + |110..00〉). Then we apply the Toffoli gate on the first three qubits

to yield 1√
2
(|000..00〉 + |111..00〉). In a similar way, we apply the Toffoli gate on

the qubits qi, qi+1 and qi+2 for i ∈ 2, 3, ..., n− 2 in turn. Eventually, we obtain a

maximally entangled state 1√
2
(|000..00〉+ |111..11〉).

The correctness of the quantum circuit is stated by the following lemma.

28 W. Shi et al.

Deutsch Simon Teleportation Secret sharing QFT Grover

Symbolic 3656 53795 39715 68919 25096 146834

Computational 25190 180724 46450 170490 68730 934570

Table 2 Comparison of two approaches with verification time in milliseconds

Lemma Entangled_state_12 :

(I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ TOF)

× (I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ TOF ⊗ I_2)

× (I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ TOF ⊗ I_2 ⊗ I_2)

× (I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ TOF ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ TOF ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ TOF ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (I_2 ⊗ I_2 ⊗ I_2 ⊗ TOF ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (I_2 ⊗ I_2 ⊗ TOF ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (I_2 ⊗ TOF ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (TOF ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (CX ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× (H ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2 ⊗ I_2)

× |0,0,0,0,0,0,0,0,0,0,0,0〉
=≡ /

√
2 .* |0,0,0,0,0,0,0,0,0,0,0,0〉 .+ /

√
2 .* |1,1,1,1,1,1,1,1,1,1,1,1〉.

By just using the strategy operate reduce, we can prove the above property in

half an hour. Note that this example cannot be handled by the computational approach

— going beyond 6 qubits is very difficult for that approach.

6.7 Experiments

We have conducted experiments on Deutsch’s algorithm, Simon’s algorithm, quan-

tum teleportation, quantum secret sharing protocol, quantum Fourier transform (QFT)

with three qubits, and Grover’s search algorithm with two qubits. In Table 2, we

record the execution time of those examples in milliseconds in CoqIDE 8.10.0 run-

ning on a PC with Intel Core i5-7200 CPU and 8 GB RAM. As we can see in the

table, our symbolic approach always outperforms the computational one in [22].

The computational approach is slow because of the explicit representation of ma-

trices and inefficient tactics for evaluating matrix multiplications. Let us consider a

simple example. In the computational approach, the Hadamard gate H is defined by

ha below:

Definition ha : Matrix 2 2 :=

fun x y => match x, y with

| 0, 0 => (1 /
√
2)

| 0, 1 => (1 /
√
2)

| 1, 0 => (1 /
√
2)

| 1, 1 => -(1 /
√
2)

| _, _ => 0

end.

Since H is unitary, we have HH = I and the following property becomes straight-

forward.

Lemma H3_ket0: (ha ⊗ ha ⊗ ha) × (ha ⊗ ha ⊗ ha) × (|0,0,0〉) = (|0,0,0〉).

Symbolic Reasoning about Quantum Circuits in Coq 29

However, to prove the above lemma with the computational approach is far from

being trivial. To see this, we literally go through a few steps. Firstly, we apply the

associativity of matrix multiplication on the left hand side of the equation so to rewrite

it into

(H ⊗H ⊗H)× ((H ⊗H ⊗H)× (|0〉 ⊗ |0〉 ⊗ |0〉)).

Secondly, each explicitly represented matrix is converted into a two-dimensional list

and matrix multiplications are calculated in order. Finally, we need to show that each

of the eight elements in the vector on the left is equal to the corresponding element on

the right. Let A0 = (H⊗H⊗H)× (|0〉⊗ |0〉⊗ |0〉) andA1 = (H⊗H⊗H)×A0.

With the computational approach, obvious simplifications such as multiplication and

addition with 0 and 1 are carried out for the elements in A0 and A1, and no more

complicated simplification is effectively handled. So A0 is a two-dimensional list

with each element in the form 1√
2
× 1√

2
× 1√

2
andA1 is a two-dimensional list whose

first element is

(1√
2
× 1√

2
× 1√

2
× (1√

2
× 1√

2
× 1√

2
))

+(1√
2
× 1√

2
× 1√

2
× (1√

2
× 1√

2
× 1√

2
))

+ ...
+(1√

2
× 1√

2
× 1√

2
× (1√

2
× 1√

2
× 1√

2
)),

which is a summation of eight identical summands with 1√
2

multiplied with itself

six times; other elements are in similar forms. From this simple example, we can

already see that the explicit matrix representation and ineffective simplification in

matrix multiplication make the intermediate expressions very cumbersome.

On the contrary, in the symbolic approach we have

A1 = (H ⊗H ⊗H)× (H ⊗H ⊗H)× (|0〉 ⊗ |0〉 ⊗ |0〉)
= (H ⊗ (H ⊗H))× ((H ⊗ (H ⊗H))× (|0〉 ⊗ (|0〉 ⊗ |0〉)))
= (H ⊗ (H ⊗H))× ((H × |0〉)⊗ ((H × |0〉)⊗ (H × |0〉)))
= (H ⊗ (H ⊗H))× (|+〉 ⊗ (|+〉 ⊗ |+〉))
= (H × |+〉)⊗ ((H × |+〉)⊗ (H × |+〉))
= |0〉 ⊗ (|0〉 ⊗ |0〉).

Notice that here we have kept the structure of tensor products rather than to elim-

inate them. In fact, we lazily evaluate tensor products because they are expensive

to calculate and preserving more higher-level structures opens more opportunities

for rewriting. The symbolic reasoning not only renders the intermediate expressions

more readable, but also greatly reduces the time cost of arithmetic calculations.

In general, in the computational approach a multiplication of twoN×N matrices

of O(k)-length expressions results in a matrix of O(Nk)-length expressions, and

those expressions are not effectively simplified. At the end of the computation, a

matrix of O(Nm)-length expressions is obtained if m + 1 matrices of size N × N
are multiplied together, which takes exponential time to simplify. In our approach,

we represent matrices symbolically and simplify intermediate expressions effectively

on the fly, which has a much better performance.

30 W. Shi et al.

7 Related work

Formal verification in quantum computing has been growing rapidly, especially in

Coq. Boender et al. [4] presented a framework for modeling and analyzing quan-

tum protocols using Coq. They made use of the Coq repository C-CoRN [8] and

built a matrix library with dependent types. Cano et al. [6] specifically designed Co-

qEAL, a library built on top of ssreflect [18] to develop efficient computer algebra

programs with proofs of correctness. They represented a matrix as a list of lists for

efficient generic matrix computation in Coq but they did not consider optimizations

specific for matrices commonly used in quantum computation. Rand et al. [22] de-

fined a quantum circuit language Qwire in Coq, and formally verified some quantum

programs expressed in that language [23,24]. Reasoning using their matrix library

usually requires explicit computation, which does not scale well, as discussed in Sec-

tion 6. Hietala et al. [14] developed a quantum circuit compiler VOQC in Coq, which

uses several peephole optimization techniques such as replacement, propagation, and

cancellation as proposed by Nam et al. [19] to reduce the number of unitary trans-

formations. It is very different from our symbolic approach of simplifying matrix

operations using the Dirac notation. Mahmoud et al. [17] formalized the semantics of

Proto-Quipper in Coq and formally proved the type soundness property. They devel-

oped a linear logical framework within the Hybrid system [11] and used it to represent

and reason about the linear type system of Quipper [12].

Our formalization of matrices is partly based on QWIRE [22]. We choose to use

their formalization of matrices and matrix operations (·, ×, +, ⊗, †). For basic rules,

QWIRE proves 30 out of 35 rules in Table 13. But apart from that, our formalization

of gates using Dirac notation, the notion of observational equivalence for circuits, and

our systematic tactic library are novel.

Note that although sparse matrix computation is well studied in other areas of

Computer Science, we are not aware of any library in Coq dedicated to sparse matri-

ces. We consider the symbolic approach proposed in the current work as a contribu-

tion in this perspective. For example, let us consider the gate CX. It is represented as

a sparse 4× 4 matrix with 4 out of the 16 entries being non-zero (cf. Section 2.2). As

we can see in (2), its symblic representation is

B0 ⊗ I2 +B3 ⊗ (B1 +B2) (10)

using the terms I2 and Bj (j ∈ {0, ..., 3}). Those terms are the basic building blocks

of our formalization of quantum circuits and our symbolic reasoning. The expression

in (10) can be viewed as a compact way of representing the sparse matrix of gate

CX .

Apart from Coq, other proof assistants have also been used to verify quantum

circuits and programs. Liu et al. [15] used the theorem prover Isabelle/HOL [21] to

formalize a quantum Hoare logic [28] and verify its soundness and completeness for

partial correctness. Unruh [6] developed a relational quantum Hoare logic and im-

plemented an Isabelle-based tool to prove the security of post-quantum cryptography

3 For the rest 5 rules, QWIRE proves 4 with additional well-formness assumptions and does not prove

the associativity of tensor product.

Symbolic Reasoning about Quantum Circuits in Coq 31

and quantum protocols. Beillahi et al. [3] verified quantum circuits with up to 190

two-qubit gates in HOL Light. It relies on the formalization of Hilbert spaces in HOL

Light proposed by Mahmoud et al. in [16], where a number of laws about complex

functions and linear operators are proved. Although linear operators correspond to

matrices in the finite-dimension case, our results are not implied by those in [3,16].

For instance, a quantum state in [3] is necessarily a vector, which means that only

pure states can be represented. In contrast, we can also deal with mixed states in

the form of density matrices. Furthermore, one of our main contributions is to rep-

resent sparse matrices using Dirac notation, which is convenient for readability and

cancelling zero matrices due to orthogonality of basic vectors.

Notice that the laws in Table 1 play an important role in our symbolic reasoning of

quantum circuits. Although they resemble to some laws in a ring, the matrices under

our consideration can be of various dimensions and they do not form a ring. It is also

critical that the multiplication of two matrices, e.g. a row vector and a column vector,

could be a scalar number (and even zero). Thus, rings are not enough here. The proof-

by-reflection technique for rings might be useful but are usually hard to develop.

We have shown that the tactic-based method is already efficient in our application

scenario, and also flexible for both fully-automated and interactive proofs.

8 Conclusion and future work

We have proposed a symbolic approach to reasoning about quantum circuits in Coq. It

is based on a small set of equational laws which are exploited to design some simpli-

fication strategies. According to our case studies, the approach is more efficient than

the usual one of explicitly representing matrices and is well suited to be automated in

Coq.

Dealing with quantum circuits is our intermediate goal. More interesting algo-

rithms such as the Shor’s algorithm [25] also require classical computation. In the

near future, we plan to formalize in Coq the semantics of a quantum programming

language with both classical and quantum features.

References

1. L. Anticoli, C. Piazza, L. Taglialegne, P. Zuliani. Towards Quantum Programs Verification: From Quip-

per Circuits to QPMC. In International Conference on Reversible Computation, LNCS 9720: 213-219,

2016.

2. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters. Tele- porting an unknown

quantum state via dual classical and EPR channels. Physical Review Letters, 70:1895–1899, 1993.

3. S.M. Beillahi, M.Y. Mahmoud, S. Tahar. A Modeling and Verification Framework for Optical Quantum

Circuits. Formal Aspects of Computing 31: 321-351, 2019.

4. Jaap Boender, Florian Kammüller, Rajagopal Nagarajan. Formalization of Quantum Protocols using

Coq. In Proceedings of the 12th International Workshop on Quantum Physics and Logic, EPTCS

195:71-83, 2015.

5. Sylvie Boldo, Catherine Lelay, Guillaume Melquiond. Coquelicot. Available at

http://coquelicot.saclay.inria.fr/.

6. Guillaume Cano, Cyril Cohen, Maxime Déenès, Anders Mörtberg, Vincent Siles. CoqEAL - The Coq

Effective Algebra Library. https://github.com/CoqEAL/CoqEAL, 2016.

http://coquelicot.saclay.inria.fr/
https://github.com/CoqEAL/CoqEAL

32 W. Shi et al.

7. Coq Development Team. The Coq Proof Assistant Reference Manual. Electronic resource, available

from http://coq.inria.fr.

8. Luis Cruz-Filipe, Herman Geuvers, Freek Wiedijk. C-CoRN, the Constructive Coq Repository at Ni-

jmegen. Mathematical Knowledge Management, Lecture Notes in Computer Science 3119: 88-103,

2004.

9. David Deutsch. Quantum theory, the Church-Turing principle, and the Universal Quantum Computer.

Proceedings of the Royal Society of London A, 400:97-117, 1985.

10. P.A.M. Dirac. A New Notation for Quantum Mechanics. Mathematical Proceedings of the Cambridge

Philosophical Society 35(3): 416-418, 1939.

11. A.P. Felty, A. Momigliano. Hybrid: A Definitional Two-Level Approach to Reasoning with Higher-

Order Abstract Syntax. Journal of Automated Reasoning, 48(1): 43-105, 2012

12. A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, B. Valiron. Quipper: A Scalable Quantum Pro-

gramming Language. Acm Sigplan Notices, 48(6): 333-342, 2013.

13. Daniel M. Greenberger, Michael A. Horne, Anton Zeilinger. Bell’s theorem, Quantum Theory, and

Conceptions of the Universe. pp. 73-76, Kluwer Academics, Dordrecht, The Netherlands 1989.

14. Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, Michael Hicks. Verified Optimization in a

Quantum Intermediate Representation. In Proceedings of the 16th International Conference on Quan-

tum Physics and Logic, CoRR abs/1904.06319, 2019.

15. Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, Nai-

jun Zhan. Formal Verification of Quantum Algorithms Using Quantum Hoare Logic. In Proc. CAV

2019, LNCS 11562: 187-207. Springer, 2019.

16. M.Y. Mahmoud, Y. Aravantinos, S. Tahar. Formalization of Infinite Dimension Linear Spaces with

Application to Quantum Theory. In Nasa Formal Methods Symposium, LNCS 7871: 413-427, 2013.

17. M.Y. Mahmoud, A.P. Felty. Formalization of Metatheory of the Quipper Quantum Programming Lan-

guage in a Linear Logic. Journal of Automated Reasoning, 63(4): 967-1002, 2019.

18. Mathematical Components team. Mathematical Components. https://math-comp.github.io

19. Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, Dmitri Maslov. Automated Optimization

of Large Quantum Circuits with Continuous Parameters. npj Quantum Information, 4(1): 23, 2018.

20. M.A. Nielsen, I.L.Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edi-

tion. Cambridge University Press, 2011.

21. Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. Lecture Notes in Computer Science. Springer, 2002.

22. Jennifer Paykin, Robert Rand, Steve Zdancewic. QWIRE: A Core Language for Quantum Circuits.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, 52:

846-858, 2017.

23. Robert Rand, Jennifer Paykin, Steve Zdancewic. QWIRE Practice: Formal Verification of Quantum

Circuits in Coq. In Proceedings of the 14th International Conference on Quantum Physics and Logic,

EPTCS 266: 119-132, 2018.

24. Robert Rand, Jennifer Paykin, Dong-Ho Lee, Steve Zdancewic. ReQWIRE: Reasoning about Re-

versible Quantum Circuits. In Proceedings of the 15th International Conference on Quantum Physics

and Logic, EPTCS 287: 299-312, 2019.

25. P.W. Shor. Algorithms for Quantum Computation: Discrete Log and Factoring. In Proc. FOCS 1994,

124-133, IEEE Computer Society, 1994.

26. Daniel R. Simon, On the power of quantum computation, SIAM Journal on Computing 26 (5), 1474

- 1483, 1997.

27. J. von Neumann. States, Effects and Operations: Fundamental Notions of Quantum Theory. Princeton

University Press, 1955.

28. Mingsheng Ying. Foundations of Quantum Programming. Morgan Kaufmann, 2016.

http://coq.inria.fr
https://math-comp.github.io

	1 Introduction
	2 Preliminaries
	3 Symbolic reasoning
	4 Problems from Coq's type system and our solution
	5 Equivalences of circuits
	6 Case studies
	7 Related work
	8 Conclusion and future work

