Preface

Probabilistic concurrency theory aims to specify and analyse quantitative behaviour of concurrent systems, which necessarily builds on solid semantic foundations of probabilistic processes. This book adopts an operational approach to describing the behavior of nondeterministic and probabilistic processes, and the semantic comparison of different systems is based on appropriate behavioural relations such as bisimulation equivalence and testing preorders.

It mainly consists of two parts. The first part provides an elementary account of bisimulation semantics for probabilistic processes from metric, logical, and algorithmic perspectives. The second part sets up a general testing framework and specialises it to probabilistic processes with nondeterministic behaviour. The resulting testing semantics is treated in depth. A few variants of it are shown to coincide, and they can be characterised in terms of modal logics and co-inductively defined simulation relations. Although in the traditional (non-probabilistic) setting simulation semantics is in general finer than testing semantics because it distinguishes more processes, for a large class of probabilistic processes, the gap between simulation and testing semantics disappears. Therefore, in this case we have a semantics where both negative and positive results can be easily proved: to show that two processes are not related in the semantics we just give a witness test, and to prove that two processes are related we only need to establish a simulation relation.

While most of the results have been announced before, they are spread over several papers in the period from 2007 to 2014, and sometimes with different terminology and notation. This prevents us from having a comprehensive understanding of the bisimulation and testing semantics of probabilistic processes. In order to improve the situation, the current work brings all the related concepts and proof techniques to form a coherent and self-contained text.

Besides presenting recent research advances in probabilistic concurrency theory, the book exemplifies the use of many mathematical techniques to solve problems in computer science, which is intended to be accessible to postgraduate students in Computer Science and Mathematics. It can also be used by researchers and practitioners either for advanced study or for technical reference. The reader is assumed to
have some basic knowledge in discrete mathematics. Familiarity with real analysis is not a prerequisite, but would be helpful.

Most of the work reported in this book was carried out during the last few years with a number of colleagues. The testing semantics for probabilistic processes was developed in conjunction with Rob van Glabbeek, Matthew Hennessy, Carroll Morgan, and Chenyi Zhang. The various characterisations of probabilistic bisimulation in Chapter 3 is based on joint work with Wenjie Du.

The BASICS laboratory at Shanghai Jiao Tong University has offered a creative and pleasant working atmosphere. Therefore, I would like to express my gratitude to Yuxi Fu and all other members of the laboratory. Thanks go also to Barry Jay, Matthew Hennessy and Carroll Morgan for having read parts of the first draft and provided useful feedback. My research on probabilistic concurrency theory has been sponsored by the National Natural Science Foundation of China under grants 61173033 and 61261130589 as well as ANR 12IS02001 “PACE”.

Finally, my special gratitude goes to my family, for their unfailing support.

Shanghai,

Yuxin Deng

September, 2014