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Abstract—Bisimilarity is one of the most important relations
for comparing the behaviour of formal systems in concurrency
theory. Decision algorithms for bisimilarity in finite stat e sys-
tems are usually classified into two kinds: global algorithms are
generally efficient but require to generate the whole state spaces
in advance, and local algorithms combine the verification ofa
system’s behaviour with the generation of the system’s state
space, which is often more effective to determine that one
system fails to be related to another. Although local algorithms
are well established in the classical concurrency theory, the
study of local algorithms in probabilistic concurrency theory is
not mature. In this paper we propose a polynomial time local
algorithm for checking probabilistic bisimilarity. With m ild
modification, the algorithm can be easily adapted to decide
probabilistic similarity with the same time complexity.

Keywords-concurrency; probabilistic bisimilarity; local algo-
rithm; probabilistic labelled transition systems;

I. I NTRODUCTION

In the last three decades a wealth of behavioural equiv-
alences have been proposed in concurrency theory. Among
them,bisimilarity [38], [41] is probably the most studied one
as it admits a suitable semantics and an elegant co-inductive
proof technique. It can also be given an efficient decision
procedure [40]. Given a labelled transition system (LTS)
with n states andm transitions, the partition refinement
algorithm of Paige and Tarjan takes timeO(m log n) to
generate all bisimulation equivalence classes. This algorithm
belongs to a class ofglobal algorithms (e.g. [19], [22]),
as classified in [10], which require an LTS to be fully
generated a priori. However, in many cases, one may be
able to determine that one process fails to be related to
another by examining only a fraction of the state space.
One would like to have a verification algorithm that exploits
this fact. Another class of algorithms, calledlocal or “on
the fly” algorithms (e.g. [21], [6], [33], [35]), combine the
verification of a system’s behaviour with the generation of
the system’s state space.

Fernandez and Mouier [21] first proposed an “on the
fly” algorithm for checking behavioural equivalences and
preorders. LetL1 and L2 be two LTSs with initial states
s0 and t0. To decide ifs0 is bisimilar to t0, the algorithm
of [21] performs depth-first searches (DFS for short) on the
product LTSL1||L2. During a round of DFS, it is possible
to reach a state, say(s||t), which has already been visited
because of a loop, but not yet analyzed. In this case,s and

t are assumedto be bisimilar and the DFS continues. If
the two states are found to be not bisimilar after finishing
searching the loop, then we know that a wrong assumption
was used. So another round of DFS has to be performed,
with one piece of new information, namely the two states
are not bisimilar. Moreover, the basic idea illustrated above
is also applicable to checking similarity. In [33] Lin lifted
Fernandez and Mouier’s algorithm to handle value-passing
processes. The idea was later on used in [13] to verify open
bisimulation.

In recent years, probabilistic constructs have been proven
useful for giving quantitative specifications of system be-
haviour. The first papers on probabilistic concurrency theory
[23], [8], [32] proceed byreplacing nondeterministic with
probabilistic constructs. The reconciliation of nondetermin-
istic and probabilistic constructs starts with [24] and has
received a lot of attention in the literature [48], [44], [34],
[43], [25], [36], [4], [29], [39], [9], [46], [37], [16], [17],
[15]. We shall also work in a framework that features the
co-existence of probability and nondeterminism.

Decision algorithms for probabilistic bisimilarity and sim-
ilarity have been studied in [18], [2], [1], [3], [49] for
fully probabilsitic processes and in [26], [5], [1], [49] for
nondeterministic probabilistic processes. However, all these
algorithms are global because they require the whole state
space of a system to be fully generated in advance. In
[47] a local algorithm in the style of [33] is proposed to
decide probabilistic bisimilarity, but it is tailored to check
equivalence relations and thus cannot handle probabilistic
similairty which is only a preorder relation.

In this paper we propose a local algorithm of checking
probabilistic bisimilarity for finitary probabilistic labelled
transition systems (pLTSs) which admit both probability and
nondeterminism. The basical idea is from [21] but we adapt
the algorithm of [33] by adding a procedure for comparing
two distributions. This is motivated from the definition of
probabilistic bisimulation. To see if two statess, t are related
by a probabilistic bisimulation relationR, we need to check
that each transitions a−→ ∆ must be matched by some
transition t a−→ Θ such that∆ and Θ are related by a
relationR† which is lifted fromR to distributions. Inspired
by [1], we check the validity of∆ R† Θ via a network
based technique by checking if the maximum flow of an
appropriately constructed networkN (∆, Θ,R) is 1. In the



worst case, our algorithm runs in timeO(n7/ logn) and
spaceO(n2).

In contrast to [47], our algorithm can be easily adapted
to check probabilistic simialrity, while keeping the time and
space complexities unchanged.

Outline of the paper:The paper proceeds by recalling
the definition of probabilistic similarity and bisimilarity and
some basic properties in Section II. In Section III we present
a local algorithm for checking probabilistic bisimilarityand
its adaption for checking probabilistic similarity. Section IV
concludes the paper.

II. PROBABILISTIC BISIMULATION

A (discrete) probability distribution over a setS is a
function∆: S → [0, 1] with

∑
s∈S∆(s) = 1; thesupportof

∆ is given by⌈∆⌉ = { s∈S | ∆(s) > 0 }. We writeD(S),
ranged over by∆, Θ, Φ, for the set of all distributions over
S with finite support; these finite distributions are sufficient
for the results of this paper. We also writes to denote the
point distribution assigning probability 1 tos and 0 to all
others, so that⌈s⌉ = {s}. If pi ≥ 0 and∆i is a distribution
for eachi in some finite index setI, and

∑
i∈I pi = 1, then

the probability distribution
∑

i∈I pi ·∆i ∈ D(S) is given by

(
∑

i∈I

pi · ∆i)(s) =
∑

i∈I

pi · ∆i(s) ; (1)

we will sometimes write it asp1 ·∆1 + . . . + pn ·∆n when
the index setI is {1, . . . , n}.

We now give the probabilistic generalisation of labelled
transition systems:

Definition 2.1: A probabilistic labelled transition system
(pLTS)1 is a triple 〈S, L,→〉, where

1) S is a set of states,
2) L is a set of transition labels,
3) → is a subset ofS × L ×D(S).

As with LTSs, we usually writes
α

−→∆ for (s, α, ∆)∈→,
s α−→ for ∃∆ : s

α
−→∆ ands→ for ∃α : s

α
−→. An LTS may

be viewed as a degenerate pLTS, one in which only point
distributions are used. A pLTS isfinitely branchingif the
set {∆ | s α−→ ∆, α ∈ L} is finite; if moreoverS is finite,
then the pLTS isfinitary.

In the probabilistic setting, the definitions of bisimulation-
like equivalences are somewhat complicated by the fact that
transitions go from states to distributions (see e.g. [31]). So
we need to lift relations between states to relations between
distributions (see e.g. [12]).

Definition 2.2: Given two setsS and T and a relation
R ⊆ S ×T . We lift R to a relationR† ⊆ D(S)×D(T ) by
letting ∆ R† Θ whenever

1Essentially the same model has appeared in the literature under
different names such asNP-systems[27], probabilistic processes[28],
simple probabilistic automata[43], probabilistic transition systems[29] etc.
Furthermore, there are strong structural similarities with Markov Decision
Processes[42], [17].

1) ∆ =
∑

i∈I pi · si, whereI is a countable index set
and

∑
i∈I pi = 1

2) For eachi ∈ I there is a stateti such thatsi R ti
3) Θ =

∑
i∈I pi · ti.

Note that in the decomposition of∆, the statessi are
not necessarily distinct: that is, the decomposition is not
in general unique, and similarly for the decomposition of
Θ. For example, ifR= {(s1, t1), (s1, t2), (s2, t3), (s3, t3)},
∆ = 1

2s1 + 1
4s2 + 1

4s3, and Θ = 1
3 t1 + 1

6 t2 + 1
2 t3,

then ∆ R† Θ holds because of the decompositions∆ =
1
3s1 + 1

6s1 + 1
4s2 + 1

4s3 andΘ = 1
3 t1 + 1

6 t2 + 1
4 t3 + 1

4 t3.
From the above definition, the next two properties follow.

In fact, they are sometimes used in the literature as alterna-
tive methods of lifting relations (see e.g. [44], [31]).

Proposition 2.3: 1) Let ∆ andΘ be distributions over
S and T , respectively. Then∆ R† Θ iff there exists
a weight functionw : S × T → [0, 1] such that

a) ∀s ∈ S :
∑

t∈T w(s, t) = ∆(s)
b) ∀t ∈ T :

∑
s∈S w(s, t) = Θ(t)

c) ∀(s, t) ∈ S × T : w(s, t) > 0 ⇒ s R t.
2) Let ∆, Θ be distributions overS andR be an equiv-

alence relation. Then∆ R† Θ iff ∆(C) = Θ(C) for
all equivalence classesC ∈ S/R, where∆(C) stands
for the accumulated probability

∑
s∈C ∆(s).

Proof:
1) (⇒) Suppose∆ R† Θ. By Definition 2.2, we can

decompose∆ and Θ such that∆ =
∑

i∈I pi · si,
Θ =

∑
i∈I pi · ti, and si R ti for all i ∈ I. We

define the weight functionw by letting w(s, t) =∑
{pi | si = s, ti = t, i ∈ I} for any s ∈ S, t ∈ T .

This weight function can be checked to meet our
requirements.

a) For anys ∈ S, it holds that
∑

t∈T w(s, t)
=

∑
t∈T

∑
{pi | si = s, ti = t, i ∈ I}

=
∑

{pi | si = s, i ∈ I}
= ∆(s)

b) Similarly, we have
∑

s∈S w(s, t) = Θ(t).
c) For anys ∈ S, t ∈ T , if w(s, t) > 0 then there is

somei ∈ I such thatpi > 0, si = s, andti = t.
It follows from si R ti that s R t.

(⇐) Suppose there is a weight functionw satisfying
the three conditions in the hypothesis. We construct
the index setI = {(s, t) | w(s, t) > 0, s ∈ S, t ∈ T}
and probabilitiesp(s,t) = w(s, t) for each(s, t) ∈ I.

a) It holds that∆ =
∑

(s,t)∈I p(s,t) · s because, for
any s ∈ S,

(
∑

(s,t)∈I p(s,t) · s)(s)

=
∑

(s,t)∈I w(s, t)

=
∑

{w(s, t) | w(s, t) > 0, t ∈ T}
=

∑
{w(s, t) | t ∈ T }

= ∆(s)



b) Similarly, we haveΘ =
∑

(s,t)∈I w(s, t) · t.
c) For each(s, t) ∈ I, we havew(s, t) > 0, which

implies s R t.

Hence, the above decompositions of∆ and Θ meet
the requirement of the lifting∆ R† Θ.

2) (⇒) Suppose∆ R† Θ. By Definition 2.2, we can
decompose∆ and Θ such that∆ =

∑
i∈I pi · si,

Θ =
∑

i∈I pi · ti, and si R ti for all i ∈ I. For
any equivalence classC ∈ S/R, we have that

∆(C) =
∑

s∈C ∆(s)
=

∑
s∈C

∑
{pi | i ∈ I, si = s}

=
∑

{pi | i ∈ I, si ∈ C}
=

∑
{pi | i ∈ I, ti ∈ C}

= Θ(C)

where the equality in the third line is justified by the
fact thatsi ∈ C iff ti ∈ C sincesi R ti andC ∈ S/R.
(⇐) Suppose, for each equivalence classC ∈ S/R,
it holds that∆(C) = Θ(C). We construct the index
set I = {(s, t) | s R t ands, t ∈ S} and probabilities
p(s,t) = ∆(s)Θ(t)

∆([s]R) for each (s, t) ∈ I, where [s]R
stands for the equivalence that containss.

a) It holds that∆ =
∑

(s,t)∈I p(s,t) · s because, for
any s ∈ S,

(
∑

(s,t)∈I p(s,t) · s)(s)

=
∑

(s,t)∈I p(s,t)

=
∑

{∆(s)Θ(t)
∆([s]R) | s R t, t ∈ S}

=
∑

{∆(s)Θ(t)
∆([s]R) | t ∈ [s]R}

= ∆(s)
∆([s]R)

∑
{Θ(t) | t ∈ [s]R}

= ∆(s)
∆([s]R)Θ([s]R)

= ∆(s)
∆([s]R)∆([s]R)

= ∆(s)

b) Similarly, we haveΘ =
∑

(s,t)∈I p(s,t) · t.
c) For each(s, t) ∈ I, we haves R t.

Hence, the above decompositions of∆ and Θ meet
the requirement of the lifting∆ R† Θ.

Definition 2.4: A binary relationR⊆ S × S is a simula-
tion if whenevers R t:

• if s a−→ ∆, there exists someΘ such thatt a−→ Θ and
∆ R† Θ.

The relationR is a bisimulation if both R and R−1 are
simulations.Similarity (resp.Bisimilarity), written � (resp.
∼), is the union of all simulations (resp. bisimulations).

Bisimilarity can be approximated by a family of induc-
tively defined relations. Similarity can be approximated ina
similar way.

Definition 2.5: Let S be the state set of an LTS. We
define:

• ∼0:= S × S

• s ∼n+1 t, for n ≥ 0, if

1) if s a−→ ∆, there exists someΘ such thatt a−→ Θ
and∆ ∼n

† Θ;
2) if t a−→ Θ, there exists some∆ such thats a−→ ∆

and∆ ∼n
† Θ.

• ∼ω:=
⋂

n≥0 ∼n

In general,∼ is a strictly finer relation than∼ω. However,
the two relations coincide when limited to finitely branching
pLTSs.

Proposition 2.6:On finitely branching pLTSs,∼ω coin-
cides with∼.

Proof: It is trivial to show by induction thats ∼ t
implies s ∼n t for all n ≥ 0, thuss ∼ω t.

Now we show that∼ω is a bisimulation. Supposes ∼ω t
and s a−→ ∆. We have to show that there is someΘ with
t a−→ Θ and∆ ∼ω

† Θ. Consider the set

T := {Θ | t a−→ Θ ∧ ∆ 6∼ω
† Θ}.

For eachΘ ∈ T , we have∆ 6∼ω
† Θ, which means that

there is somenΘ > 0 with ∆ 6∼nΘ

† Θ. Sincet is finitely
branching,T is a finite set. LetN = max{nΘ | Θ ∈ T }.
It holds that ∆ 6∼N

† Θ for all Θ ∈ T , since by a
straightforward induction onm we can show thats ∼n t
implies s ∼m t for all m, n ≥ 0 with n > m. By the
assumptions ∼ω t we know thats ∼N+1 t. It follows that
there is someΘ with t a−→ Θ and∆ ∼N

† Θ, soΘ 6∈ T and
hence∆ ∼ω

† Θ. By symmetry we also have that ift a−→ Θ
then there is some∆ with s a−→ ∆ and∆ ∼ω

† Θ.
In the sequel, we consider finitary LTSs, which are finitely

branching, thus allow us to use the above proposition.

III. C HECKING PROBABILISTIC BISIMULATION

We see from Definition 2.4 that to check if a relationR
is a bisimulation we need to check if two distributions are
related by a lifted relationR†. The latter can be solved by
using network-based techniques, as already observed in [1].

Networks: We briefly recall the basic definitions of
networks. More details can be found in e.g. [20]. Anetwork
is a tupleN = (N, E,⊥,⊤, c) where (N, E) is a finite
directed graph (i.e.N is a set of nodes andE ⊆ N × N is
a set of edges) with two special nodes⊥ (the source) and
⊤ (the sink) and acapability c, i.e. a function that assigns
to each edge(v, w) ∈ E a non-negative numberc(v, w). A
flow functionf for N is a function that assigns to edgee a
real numberf(e) such that

• 0 ≤ f(e) ≤ c(e) for all edgese.
• Let in(v) be the set of incoming edges to nodev and

out(v) the set of outgoing edges from nodev. Then,
for each nodev ∈ N\{⊥,⊤},

∑

e∈in(v)

f(e) =
∑

e∈out(v)

f(e).



The flow F (f) of f is given by

F (f) =
∑

e∈out(⊥)

f(e) −
∑

e∈in(⊥)

f(e).

The maximum flowin N is the supremum (maximum) over
the flowsF (f), wheref is a flow function inN .

The test whether∆ R† Θ: SupposeR⊆ S × S and
∆, Θ ∈ D(S). We will see that the question whether∆ R†

Θ can be reduced to a maximum flow problem in a suitably
chosen network. LetS′ = {s′ | s ∈ S} wheres′ are pairwise
distinct new states, i.e.s′ ∈ S′ for all s ∈ S. We create
two states⊥ and⊤ not contained inS ∪ S′ with ⊥ 6= ⊤.
We associate with the pair(∆, Θ) the following network
N (∆, Θ,R).

• The nodes areN = S ∪ S′ ∪ {⊥,⊤}.
• The edges are E = {(s, t′) | (s, t) ∈R} ∪

{(⊥, s) | s ∈ S} ∪ {(s′,⊤) | s ∈ S}.
• The capability c is defined by c(⊥, s) = ∆(s),

c(t′,⊤) = Θ(t) andc(s, t′) = 1 for all s, t ∈ S.
The following lemma is taken from Lemma 5.1 of [1].
Lemma 3.1:The following statements are equivalent.
1) There exists a weight functionw for (∆, Θ) with

respect toR.
2) The maximum flow inN (∆, Θ,R) is 1.
Corollary 3.2: ∆ R† Θ iff the maximum flow in

N (∆, Θ,R) is 1.
Proof: Combining Proposition 2.3(1) and Lemma 3.1.

Corollary 3.2 provides a method for deciding whether
∆ R† Θ. We construct the networkN (∆, Θ,R) and
compute the maximum flow with well-known methods, as
sketched in Algorithm 1.

Algorithm 1 Check(∆, Θ,R)

Input: A nonempty finite setS, distributions
∆, Θ ∈ D(S) andR⊆ S × S

Output: If ∆ R† Θ then “yes” else “no”
Method:

Construct the networkN (∆, Θ,R)
Compute the maximum flowF in N (∆, Θ,R)
If F < 1 then return “no” else “yes”.

As shown in [7], computing the maximum flow in a
network can be done in timeO(n3/ log n) and spaceO(n2),
where n is the number of nodes in the network. So we
immediately have the following result.

Lemma 3.3:The test whether∆ R† Θ can be done in
time O(n3/ logn) and spaceO(n2).

Checking probabilistic bisimilarity:We now present a
bisimilarity-checking algorithm by adapting the algorithm
originally proposed in [33] for value-passing processes.

The main procedure in the algorithm isBisim(s, t). It
starts with the initial state pair(s, t), trying to find the

Algorithm 2 Bisim (s, t)

Bisim(s, t) = {
NotBisim := {}
fun Bis(s, t)={

V isited := {}
Assumed := {}
Match(s, t)}

} handle WrongAssumption ⇒ Bis(s, t)
return Bis(s, t)

Match(s, t) =
V isited := V isisted ∪ {(s, t)}
b =

∧
a∈A MatchAction(s, t, a)

if b = false then
NotBisim := NotBisim ∪ {(s, t)}
if (s, t) ∈ Assumed then

raise WrongAssumption
end if

end if
return b

MatchAction(s, t, a) =
for all s a−→ ∆i do

for all t a−→ Θj do
bij = MatchDistribution (∆i, Θj)

end for
end for
return (

∧
i(

∨
j bij))∧(

∧
j(

∨
i bij))

MatchDistribution (∆, Θ) =
Assume⌈∆⌉ = {s1, ..., sn} and⌈Θ⌉ = {t1, ..., tm}
R:= {(si, tj) | Close(si, tj) = true}
return Check(∆, Θ,R)

Close(s, t) =
if (s, t) ∈ NotBisim then

return false
else if (s, t) ∈ V isited then

Assumed := Assumed ∪ {(s, t)}
return true

else
return Match (s, t)

end if



smallest bisimulation relation containing the pair by match-
ing transitions from each pair of states it reaches. It uses
three auxiliary data structures:

• NotBisim collects all state pairs that have already
been detected as not bisimilar.

• V isited collects all state pairs that have already been
visited.

• Assumed collects all state pairs that have already been
visited and assumed to be bisimilar.

The core procedure,Match, is called from functionBis
inside the main procedureBisim. Whenever a new pair
of states is encountered it is inserted intoV isited. If
two states fail to match each other’s transitions then they
are not bisimilar and the pair is added toNotBisim. If
the current state pair has been visited before, we check
whether it is inNotBisim. If this is the case, we return
false. Otherwise, a loop has been detected and we make
assumption that the two states are bisimilar, by inserting
the pair intoAssumed, and returntrue. Later on, if we
find that the two states are not bisimilar after finishing
searching the loop, then the assumption is wrong, so we first
add the pair intoNotBisim and then raise the exception
WrongAssumption, which forces the functionBis to run
again, with the new information that the two states in this
pair are not bisimilar. In this case, the size ofNotBisim
has been increased by at least one. Hence,Bis can only
be called for finitely many times. Therefore, the procedure
Bisim(s, t) will terminate. If it returnstrue, then the set
(V isited − NotBisim) constitutes a bisimulation relation
containing the pair(s, t).

The main difference from the local algorithm of checking
non-probabilistic bisimilarity in [33] is the introduction of
the procedureMatchDistribution (∆, Θ), where we approx-
imate ∼ by a binary relationR which is coarser than
∼ in general, and we check the validity of∆ R† Θ.
If ∆ R† Θ does not hold, then∆ ∼† Θ is invalid
either andMatchDistribution (∆, Θ) returnsfalsecorrectly.
Otherwise, the two distributions∆ and Θ are considered
equivalent with respect toR and we move on to match
other pairs of distributions. The correctness of the algorithm
is stated in the following theorem.

Theorem 3.4:Given two finitary pLTSs with initial states
s0 and t0, the function Bisim(s0, t0) terminates, and it
returnstrue if and only if s0 ∼ t0.

Proof: Let Bisi stand for thei-th execution of the
function Bis. Let Assumedi and NotBisimi be the set
Assumed and NotBisim at the end of Bisi. When
Bisi is finished, either aWrongAssumption is raised
or no WrongAssumption is raised. In the former case,
Assumedi ∩ NotBisimi 6= ∅; in the latter case, the
execution of the functionBisim is completed. From function
Close we know that Assumedi ∩ NotBisimi−1 = ∅.
Now it follows from the simple factNotBisimi−1 ⊆
NotBisimi that NotBisimi−1 ⊂ NotBisimi. Since we

are considering finitary pLTSs, there is somej such that
NotBisimj−1 = NotBisimj, when all the non-bisimilar
state pairs reachable froms0 and t0 have been found and
Bisim must terminate.

For the correctness of the algorithm, we consider the
relation Ri= V isitedi − NotBisimi, whereV isitedi is
the setV isited at the end ofBisi. Let Bisk be the last
execution ofBis. For eachi ≤ k, the relationRi can be
regarded as an approximation of∼, as far as the states
appeared inRi are concerned. Moreover,Ri is a coarser
approximation because if two statess, t are re-visited but
their relation is unknown, they are assumed to be bisimilar.
Therefore, ifBisk(s0, t0) returnsfalse, thens0 6∼ t0. On the
other hand, ifBisk(s0, t0) returnstrue, thenRk constitutes
a bisimulation relation containing the pair(s0, t0). This
follows becauseMatch(s0, t0) = true which basically
means that whenevers Rk t ands a−→ ∆i there exists some
transitiont a−→ Θi such thatCheck(∆, Θ,Rk) = true, i.e.
∆ Rk

† Θ. Indeed, this rules out the possibility thats0 6∼ t0
as otherwise we would haves0 6∼ω t0 by Proposition 2.6,
that iss0 6∼n t0 for somen > 0. The latter means that some
transitions a−→ ∆ exists such that for allt a−→ Θ we have
∆ 6∼n−1

† Θ, i.e. ∆ andΘ can be distinguished at leveln,
so a contradiction arises.

Below we consider the time and space complexities of the
algorithm.

Theorem 3.5:Let s andt be two states in a pLTS withn
states in total. The functionBisim(s, t) terminates in time
O(n7/ logn) and spaceO(n2).

Proof: The number of state pairs is bounded byn2.
In the worst case, each execution of the functionBis(s, t)
only yields one new pair of states that are not bisimilar.
The number of state pairs examined in the first execution
of Bis(s, t) is at mostO(n2), in the second execution is
at mostO(n2 − 1), · · ·. Therefore, the total number of state
pairs examined is at mostO(n2+(n2−1)+· · ·+1) = O(n4).
When a state pair(s, t) is examined, each transition ofs is
compared with all transitions oft labelled with the same ac-
tion. Since the pLTS is finitely branching, we could assume
that each state has at mostc outgoing transitions. Therefore,
for each state pair, the number of comparisons of transitions
is bound byc2. As a comparison of two transitions calls the
function Check once, which requires timeO(n3/ logn) by
Lemma 3.3. As a result, examining each state pair takes time
O(c2n3/ log n). Finally, the worst case time complexity of
executingBisim(s, t) is O(n7/ log n).

The space requirement of the algorithm is easily seen to
be O(n2), in view of Lemma 3.3.

Checking probabilistic similarity:With mild modifica-
tion, the above algorithm can be adapted to check prob-
abilistic similarity. We simply remove the underlined part
in the function MatchAction; the rest of the algorithm
remains unchanged. Similar to the analysis in Theorems 3.4
and 3.5, the new algorithm can be shown to correctly



check probabilistic similarity over finitary pLTSs; its worst
case time and space complexities are stillO(n7/ log n) and
O(n2), respectively.

IV. CONCLUDING REMARKS

We have presented a polynomial time local algorithm for
checking probabilistic bisimilarity over finitary pLTSs. With
mild modification, it can be used to check probabilistic
similarity. As far as we know, this is the first time that
local algorithms are investigated in the area of probabilistic
concurrency theory.

In the nonprobabilistic setting there is an approach to
checking bisimilarity between two states by first constructing
a characteristic formula[45] for one state in the modal
µ-calculus [30] and check if the other state satisfies the
formula. This approach yields efficient algorithms for check-
ing behavioural relations [11]. In the probabilistic setting,
characteristic formulae also exist in the probabilistic modal
µ-calculus [14]. We believe that it is promising to check
probabilistic bisimilarity in a logical way, along the lineof
consideration proposed in [11].

There are other local algorithms for checking nonprob-
abilistic behavioural relations. For example, Celikkan [6]
proposed a preorder-checking algorithm by recursively con-
structing a graph whose vertices are pairs of related states.
Mateescu and Oudot [35] proposed an algorithm by first
encoding a bisimulation relation as a boolean equation
system (BES) and then employing a local BES resolution
algorithm. It is unclear if those algorithms can be adapted
to the probabilistic setting but remain effective for checking
behavioural relations.
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