A Local Algorithm for Checking Probabilistic Bisimilarity

Yuxin Deng
Shanghai Jiao Tong University, China
Email: deng-yx@cs.sjtu.edu.cn

Abstract—Bisimilarity is one of the most important relations
for comparing the behaviour of formal systems in concurreny
theory. Decision algorithms for bisimilarity in finite state sys-
tems are usually classified into two kinds: global algorithns are
generally efficient but require to generate the whole statepaces
in advance, and local algorithms combine the verification of
system’s behaviour with the generation of the system’s stat
space, which is often more effective to determine that one
system fails to be related to another. Although local algothms
are well established in the classical concurrency theory,he
study of local algorithms in probabilistic concurrency theory is
not mature. In this paper we propose a polynomial time local
algorithm for checking probabilistic bisimilarity. With m ild
modification, the algorithm can be easily adapted to decide
probabilistic similarity with the same time complexity.

Keywords-concurrency; probabilistic bisimilarity; local algo-
rithm; probabilistic labelled transition systems;

I. INTRODUCTION

Wenijie Du
Shanghai Normal University, China
Email: wenjiedu@shnu.edu.cn

t are assumedto be bisimilar and the DFS continues. If
the two states are found to be not bisimilar after finishing
searching the loop, then we know that a wrong assumption
was used. So another round of DFS has to be performed,
with one piece of new information, namely the two states
are not bisimilar. Moreover, the basic idea illustratedvabo

is also applicable to checking similarity. In [33] Lin lifte
Fernandez and Mouier’s algorithm to handle value-passing
processes. The idea was later on used in [13] to verify open
bisimulation.

In recent years, probabilistic constructs have been proven
useful for giving quantitative specifications of system be-
haviour. The first papers on probabilistic concurrency theo
[23], [8], [32] proceed byreplacing nondeterministic with
probabilistic constructs. The reconciliation of nondetir
istic and probabilistic constructs starts with [24] and has
received a lot of attention in the literature [48], [44], [34

In the last three decades a wealth of behavioural equivi43], [25], [36], [4], [29], [39], [9], [46], [37], [16], [17,
alences have been proposed in concurrency theory. Amor{d5]. We shall also work in a framework that features the
them,bisimilarity [38], [41] is probably the most studied one co-existence of probability and nondeterminism.
as it admits a suitable semantics and an elegant co-in@uctiv Decision algorithms for probabilistic bisimilarity andsi
proof technique. It can also be given an efficient decisionlarity have been studied in [18], [2], [1], [3], [49] for
procedure [40]. Given a labelled transition system (LTS)fully probabilsitic processes and in [26], [5], [1], [49]rfo
with n states andm transitions, the partition refinement nondeterministic probabilistic processes. However, tadke

algorithm of Paige and Tarjan takes tini(mlogn) to
generate all bisimulation equivalence classes. This #lgor
belongs to a class oflobal algorithms (e.g. [19], [22]),

algorithms are global because they require the whole state
space of a system to be fully generated in advance. In
[47] a local algorithm in the style of [33] is proposed to

as classified in [10], which require an LTS to be fully decide probabilistic bisimilarity, but it is tailored to etk
generated a priori. However, in many cases, one may bequivalence relations and thus cannot handle probabilisti
able to determine that one process fails to be related tsimilairty which is only a preorder relation.

another by examining only a fraction of the state space. In this paper we propose a local algorithm of checking
One would like to have a verification algorithm that exploits probabilistic bisimilarity for finitary probabilistic ladled

this fact. Another class of algorithms, calléatal or “on

transition systems (pLTSs) which admit both probabilitgdan

the fly” algorithms (e.g. [21], [6], [33], [35]), combine the nondeterminism. The basical idea is from [21] but we adapt
verification of a system’s behaviour with the generation ofthe algorithm of [33] by adding a procedure for comparing

the system’s state space.

two distributions. This is motivated from the definition of

Fernandez and Mouier [21] first proposed an “on theprobabilistic bisimulation. To see if two stateg are related
fly” algorithm for checking behavioural equivalences andby a probabilistic bisimulation relatioR, we need to check

preorders. Letl; and £, be two LTSs with initial states
sp andty. To decide ifsq is bisimilar toty, the algorithm

that each transitios - A must be matched by some
transitiont %> © such thatA and © are related by a

of [21] performs depth-first searches (DFS for short) on theelation R which is lifted fromR to distributions. Inspired
product LTSL;||£2. During a round of DFS, it is possible by [1], we check the validity ofA R' © via a network
to reach a state, say||t), which has already been visited based technique by checking if the maximum flow of an

because of a loop, but not yet analyzed. In this casand

appropriately constructed netwof{(A, ©,R) is 1. In the

worst case, our algorithm runs in tim@(n”/logn) and 1) A =) .., pi-5, Wherel is a countable index set
spaceO(n?). and) ., pi =1
In contrast to [47], our algorithm can be easily adapted 2) For eachi € I there is a state; such thats; R ¢;

to check probabilistic simialrity, while keeping the timeda 3) ©=3cpiti
space complexities unchanged. Note that in the decomposition of\, the statess; are

Outline of the paper:The paper proceeds by recalling not necessarily distinct: that is, the decomposition is not
the definition of probabilistic similarity and bisimilayiand in general unique, and similarly for the decomposition of
some basic properties in Section Il. In Section 11l we presene. For example ifR= {(51, t1), (81, tg) (s2, tg) (s3,t3)},

a local algorithm for checking probabilistic bisimilarignd A = 551 + 52 4 53, and ® = —t1 4 —t2 4 1t3,
its adaption for checking probabilistic similarity. SextilV then A yrl @ holds because of the decomposmaﬁs—
concludes the paper. 15T+ s+ i+ Isg ando = 17 + 1% + 15 + 1%

From the above definition, the next two properties follow.
) T _ In fact, they are sometimes used in the literature as akerna
A (discrete) probability distribution over a se&t is a tive methods of lifting relations (see e.g. [44], [31]).

Il. PROBABILISTIC BISIMULATION

functionA S — [0,1] with - . sA(s) = 1; thesupportof Proposition 2.3: 1) LetA and®© be distributions over
Alis givenby[A] = {s€S | A(s) > 0}. We writeD(S), S and T, respectively. Them\ R © iff there exists

ranged over byA, ©, ®, for the set of all distributions over a weight functionw : S x T — [0, 1] such that

S with finite support; these finite distributions are suffi¢ien a) Vs € 5: 3, cpw(s,t) = A(s)

for the results of this paper. We also writeto denote the b) VteT: Zte w(s,t) = O(t)

point distribution assigning probability 1 to and O to all ¢) V(s,t) €S if% w(s,t) >0=s Rt

others, so thafs] = {s}. If p; > 0 and A, is a distribution
for eachi in some finite index sef, and) _,_; p; = 1, then
the probability distributior) _,; p; - A; € D(S) is given by

2) Let A, © be distributions oveS and’R be an equiv-
alence relation. Thelh R' © iff A(C) = ©(C) for
all equivalence classes € S/R, whereA(C) stands

A, _ - Ai(s) 1 for the accumulated probability . A(s).

O pi-A)(s) > i Ails) 1) Proof:

i€l el
1) (=) SupposeA R' ©. By Definition 2.2, we can

we will sometimes write it a®; - Ay + ...+ p, - A, When = _
the index setl is {1,...,n}. decomposeA and © such thatA = >, _;p; - 5,

We now give the probabilistic generalisation of labelled © = Yierpi L ands; R ¢; for all i € 1. We
") define the weight functionv by letting w(s,t) =
transition systems:

Definition 2.1: A probabilistic labelled transition system 2Api|si=sti=ti€l} foranys € 5t €T
(PLTS)! is a triple (S, L, —), where This weight function can be checked to meet our

1 S of stat requirements.

is a set of states .

: " a) For an S, it holds that
2) L is a set of transition labels,) ys €

3) — is a subset o5 x L x D(S). Drer w(s,t) .
As with LTSs, we usually writes -~ A for (s, a, A) € —, = Lier 21pi | i =51t =1,1€ 1}
s -9 for 3A : s A ands— for Ja: s —%. An LTS may = XApilsi=si€l}
be viewed as a degenerate pLTS, one in which only point = Als)
distributions are used. A pLTS ffnitely branchingif the b) Similarly, we haved_ s w(s,t) = O(t).
set{A|s % A,a € L} is finite; if moreoversS is finite, c) Foranys € S,t €T, if w(s,t) > 0 then there is
then the pLTS idinitary. somei € I such thatp; > 0, s; = s, andt; =t.
In the probabilistic setting, the definitions of bisimutati It follows from s; R ¢; thats R ¢.
like equivalences are somewhat complicated by the fact that (<) Suppose there is a weight functian satisfying
transitions go from states to distributions (see e.g. [339) the three conditions in the hypothesis. We construct
we need to lift relations between states to relations batwee the index setl = {(s,t) | w(s,t) >0,s € S,t € T}
distributions (see e.g. [12]). and probabilitieg, ;) = w(s, t) for each(s t)el.
Definition 2.2: Given two setsS and T and a relation a) Itholds thatA = Y7, , ¢, p(s.1) - 5 because, for
R CSx T.TWe lift R to a relationR' C D(S) x D(T) by anys € S, ’
letting A R' © whenever (Z(s,t)ezp(s,t 3)(s)
'1Essentia||y the same model has appeareci_ ir_t the literatuderun = Z(S_’t)d w(s,
Simple probabiisi aUtomatis3]. probablist wansiion Systen(g) etd = Ylwls,) uwls,t)>0,t €T}
Furthermore, there are strong structural similaritieshwitarkov Decision = Z{w(s, t) | te }

Processe$42], [17]. = A(s)

b) Similarly, we have® = -, , ., w(s,t) - .
c) For each(s,t) € I, we havew(s,t) > 0, which
implies s R t.

Hence, the above decompositions &Afand © meet
the requirement of the lifting\ R ©
(=) SupposeA R' ©. By Definition 2.2, we can
decomposeA and © such thatA = Zlelpz - 5,
© = > ,cpi-ti,ands; R t; for all i € I. For
any equivalence class € S/R, we have that

A(C) >sec Als)

Ysecc 2 Apili €1, si = s}
Y Apiliel,s; € C}
Z{pl | RS I,ti S C}

0(0)

where the equality in the third line is justified by the
factthats; € C iff t; € C sinces; R t; andC € S/R.
(<) Suppose, for each equivalence cl@ss S/R,
it holds thatA(C) = ©(C). We construct the index
setl = {(s,t) | s Rt ands,t € S} and probabilities
Do) = Apps for each(s,t) € I, where [s]x
stands for the equivalence that contains

a) It holds thatA = 3_ , c; p(s,) - 5 because, for

anys € .S,

2)

(Z(s,t)EI P(s,t) - 5)(5)
Z(s t)el P(s,t)

z{ﬂ@“ |sRt, teS}

= Z{A”O”ueu }
= s y{ew |tels)x)
- ?i]il)@(u)

- A[S]R A([s]r)

A(
Als)
b) Similarly, we haved ==, ;P - E.
c) For each(s,t) € I, we haves R .
Hence, the above decompositions &fand © meet
the requirement of the lifting\ R" ©
[|
Definition 2.4: A binary relationRC S x S is asimula-
tion if whenevers R ¢
o if s % A, there exists som® such thatt -~ © and
AR'O.
The relationR is a bisimulationif both R and R~! are
simulations.Similarity (resp.Bisimilarity), written < (resp.
~), is the union of all simulations (resp. bisimulations).
Bisimilarity can be approximated by a family of induc-
tively defined relations. Similarity can be approximatein
similar way.
Definition 2.5: Let S be the state set of an LTS. We
define:

. N()Z:SXS

o S~py1t, for n >0, if
1) if s % A, there exists som® such that <~ ©
andA ~,,f ©;
2) if t % O, there exists somA such thats %> A
andA ~,, ©.

ﬂnZO ~n
In general,~ is a strictly finer relation than-,,. However,
the two relations coincide when limited to finitely branafin
pLTSs.

Proposition 2.6:On finitely branching pLTSss,, coin-
cides with~.

Proof: It is trivial to show by induction thats ~ ¢

implies s ~,, t for all n > 0, thuss ~, t.

Now we show that-,, is a bisimulation. Suppose~,, ¢
and s % A. We have to show that there is sor@ewith
t % 0O andA ~,1 ©. Consider the set

o Y=

T:={0|t-%0ANAx,TO}.

For each©® € T, we haveA %, ©, which means that
there is somewg > 0 with A %, ©. Sincet is finitely
branching,T is a finite set. LetN = max{ne | © € T}.
It holds that A %y © for all © € T, since by a
straightforward induction onn we can show that ~,, ¢
implies s ~,,, t for all m,n > 0 with n > m. By the
assumptiors ~,, t we know thats ~y 1 ¢. It follows that
there is som® with t % © andA ~xT ©, s00 ¢ T and
henceA ~,T ©. By symmetry we also have thattf-* ©
then there is somé with s <% A andA ~,T 6.]
In the sequel, we consider finitary LTSs, which are finitely
branching, thus allow us to use the above proposition.

We see from Definition 2.4 that to check if a relatih
is a bisimulation we need to check if two distributions are
related by a lifted relatiorR'. The latter can be solved by
using network-based techniques, as already observed.in [1]
Networks: We briefly recall the basic definitions of
networks. More details can be found in e.g. [20]n&twork
is a tupleN' = (N, E, L, T,c) where (N, E) is a finite
directed graph (i.eN is a set of nodes anil C N x N is
a set of edges) with two special nodés(the sourc§ and
T (the sink) and acapability ¢, i.e. a function that assigns
to each edgév, w) € E a non-negative numbefv, w). A
flow functionf for A/ is a function that assigns to edge
real numberf(e) such that
e 0< f(e) < c(e) for all edgese.
« Letin(v) be the set of incoming edges to nodeand
out(v) the set of outgoing edges from node Then,
for each nodey € N\{L, T},
> fe)

> fle) =
ecout(v)

ecin(v)

CHECKING PROBABILISTIC BISIMULATION

Theflow F(f) of f is given by
E(fy = > fle- > [
ecout(L) ecin(Ll)

The maximum flowin N is the supremum (maximum) over

the flows F'(f), where f is a flow function in\. Algorithm 2 Bisim (s, t)

The test whetheA RT ©: SupposeRC S x S and Bisim(s, £) — {
A, 0 € D(S). We will see that the question whethArR' NotBisim — 0
© can be reduced to a maximum flow problem in a suitably ¢ Bis(s tj={
chosen network. Let’ = {s’ | s € S} wheres’ are pairwise Visi;fed — 0
distinct new states, i.es’ € S’ for all s € S. We create Assumed := {}
two statesl and T not contained inS U S" with L # T. Match (s, £)}
We associate with the paitA, ©) the following network } handle Wr;mgAssumptioné Bis(s,)

N(A,©,R). return Bis (s, t)
e The nodes arév = SUS"U{L,T}.
o The edges areE = {(s,t')|(s,t) €ER} U Match (s, t) =
_‘E_EF]J-’ s)|s El‘i} U {'(S/an)' | Sdel;g}.(J_) AGs) Visited := Visisted U {(s,t)}
« The capability ¢ is defined byc(L,s) = s), _ i
c(t’, T)=0(t) andc(s,t’) =1 for all s,t € S. |bf b i\(}ceﬁsl\éle::]cehr?ctlon(s,t,a)
The following lemma is taken from Lemma 5.1 of [1]. NotBisim := NotBisim U {(s,t)}
Lemma 3.1:The following statements are equivalent. if (s,t) € Assumed then
1) There exists a weight functiom for (A,©) with raise WrongAssumption
respect toR. end if
2) The maximum flow itV (A, 0, R) is 1. end if
Corollary 3.2: A R © iff the maximum flow in return b
N(A,0,R) is 1.
Proof: Combining Proposition 2.3(1) and Lemma 3.1. MatchAction(s,t,a) =
] for all s 2 A; do
Corollary 3.2 provides a method for deciding whether for all t - ©; do
A R' ©. We construct the networlV(A,©,R) and b;; = MatchDistribution (A;, ©;)
compute the maximum flow with well-known methods, as end for
sketched in Algorithm 1. end for

return (A; (V; b)AA,; (Vi bi))

Algorithm 1 Check(A,©,R)

Input A nonempty finite setS, distributions MatchDistribution (A, ©) =

A,© € D(S) andRC S x S Assume[A] = {s1,...,8,} and [O] = {¢t1, ..., tm }
Output If A RT © then “yes” else “no” R:={(si,t;) | Closg(s;, ;) = true}
Method return Check(A, ©,R)

Construct the networkV(A, 0, R)

Compute the maximum flow in N (A, 0,R) Close(s,t) =

If F <1 then return “no” else “yes”. if (s,t) € NotBisim then

return false

else if (s,t) € Visited then
Assumed := Assumed U {(s,t)}
return true

As shown in [7], computing the maximum flow in a
network can be done in tim@(n?/logn) and space(n?),
where n is the number of nodes in the network. So we

immediately have the following result else
Lemma 3.3:The test whether R © can be done in enrdetilfjrn Match (s,)

time O(n?®/logn) and space)(n?).

Checking probabilistic bisimilarity:We now present a
bisimilarity-checking algorithm by adapting the algorith
originally proposed in [33] for value-passing processes.

The main procedure in the algorithm Bisim(s,t). It
starts with the initial state paifs,t), trying to find the

smallest bisimulation relation containing the pair by nhatc are considering finitary pLTSs, there is someuch that
ing transitions from each pair of states it reaches. It usesVotBisim;_1 = NotBisim;, when all the non-bisimilar

three auxiliary data structures: state pairs reachable fromy and ¢, have been found and
« NotBisim collects all state pairs that have already Bisim must terminate.
been detected as not bisimilar. For the correctness of the algorithm, we consider the
« Visited collects all state pairs that have already beerrelation R;= Visited; — NotBisim,;, where Visited, is
visited. the setVisited at the end ofBis;. Let Bis, be the last
« Assumed collects all state pairs that have already beenexecution ofBis. For eachi < k, the relationR; can be
visited and assumed to be bisimilar. regarded as an approximation ef, as far as the states

The core procedureMatch, is called from functionBis appeared irR; are concerned. MoreoveR; is a coarser
inside the main procedurBisim. Whenever a new pair approximation because if two statest are re-visited but
of states is encountered it is inserted int&isited. If their relation is unknown, they are assumed to be bisimilar.
two states fail to match each other's transitions then theyherefore, ifBis (so, to) returnsfalse, thensg o to. On the
are not bisimilar and the pair is added Mot Bisim. If ~ other hand, iBisy (so,%0) returnstrue, thenRy, constitutes
the current state pair has been visited before, we checi bisimulation relation containing the pafso, o). This
whether it is in NotBisim. If this is the case, we return follows becauseMatch(so,t9) = true which basically
false. Otherwise, a loop has been detected and we makaeans that wheneverr,, ¢t ands - A; there exists some
assumption that the two states are bisimilar, by insertingransitiont - ©; such thatCheck(A, ©, Ry) = true, i.e.
the pair into Assumed, and returntrue. Later on, if we A Ry ' ©. Indeed, this rules out the possibility that to
find that the two states are not bisimilar after finishingas otherwise we would have ., t, by Proposition 2.6,
searching the loop, then the assumption is wrong, so we firghat isso %, to for somen > 0. The latter means that some
add the pair intoNotBisim and then raise the exception transitions <~ A exists such that for al <~ © we have
WrongAssumption, which forces the functioBis to run A 7,17 ©, i.e. A and© can be distinguished at level
again, with the new information that the two states in thisSO a contradiction arises. [
pair are not bisimilar. In this case, the size BbtBisim Below we consider the time and space complexities of the
has been increased by at least one. Hefig,can only algorithm.
be called for finitely many times. Therefore, the procedure Theorem 3.5:Let s andt be two states in a pLTS with
Bisim(s,t) will terminate. If it returnstrue, then the set states in total. The functioBisim(s,) terminates in time
(Visited — NotBisim) constitutes a bisimulation relation O(n”/logn) and space)(n?).
containing the paifs, t). Proof: The number of state pairs is bounded h¥.
The main difference from the local algorithm of checking In the worst case, each execution of the functiia(s, t)
non-probabilistic bisimilarity in [33] is the introductioof only yields one new pair of states that are not bisimilar.
the procedurdlatchDistribution (A, ©), where we approx- The number of state pairs examined in the first execution
imate ~ by a binary relation®R which is coarser than of Bis(s,t) is at mostO(n?), in the second execution is
~ in general, and we check the validity &k R’ ©. at mostO(n? — 1), - - -. Therefore, the total number of state
If A R'T © does not hold, therA ~' © is invalid pairs examined is at moét(n?+(n?—1)+---+1) = O(n?).
either andVatchDistribution (A, ©) returnsfalsecorrectly. ~ When a state pais, t) is examined, each transition efis
Otherwise, the two distributiond and © are considered compared with all transitions d@flabelled with the same ac-
equivalent with respect t® and we move on to match tion. Since the pLTS is finitely branching, we could assume
other pairs of distributions. The correctness of the athari that each state has at mesbutgoing transitions. Therefore,
is stated in the following theorem. for each state pair, the number of comparisons of transition
Theorem 3.4:Given two finitary pLTSs with initial states is bound byc?. As a comparison of two transitions calls the
so and to, the function Bisim(sy,to) terminates, and it function Check once, which requires tim&(n?/logn) by
returnstrue if and only if so ~ . Lemma 3.3. As a result, examining each state pair takes time
Proof: Let Bis; stand for thei-th execution of the O(c?n3/logn). Finally, the worst case time complexity of
function Bis. Let Assumed; and NotBisim; be the set executingBisim(s,t) is O(n”/logn).

Assumed and NotBisim at the end ofBis;. When The space requirement of the algorithm is easily seen to
Bis; is finished, either aWWrongAssumption is raised be O(n?), in view of Lemma 3.3. [|
or no WrongAssumption is raised. In the former case, Checking probabilistic similarity:With mild modifica-

Assumed; N NotBisim; # (; in the latter case, the tion, the above algorithm can be adapted to check prob-
execution of the functioBisim is completed. From function abilistic similarity. We simply remove the underlined part
Close we know that Assumed; N NotBisim;_1 = 0. in the function MatchAction; the rest of the algorithm
Now it follows from the simple factNotBisim;_1 C remains unchanged. Similar to the analysis in Theorems 3.4
NotBisim; that NotBisim;_1 C NotBisim,;. Since we and 3.5, the new algorithm can be shown to correctly

check probabilistic similarity over finitary pLTSs; its v&ir
case time and space complexities are §}lh”/logn) and
O(n?), respectively.

IV. CONCLUDING REMARKS

We have presented a polynomial time local algorithm for
checking probabilistic bisimilarity over finitary pLTSs.it
mild modification, it can be used to check probabilistic
similarity. As far as we know, this is the first time that
local algorithms are investigated in the area of probathilis
concurrency theory.

In the nonprobabilistic setting there is an approach to

checking bisimilarity between two states by first consingt

a characteristic formula[45] for one state in the modal
p-calculus [30] and check if the other state satisfies th
formula. This approach yields efficient algorithms for dkec
ing behavioural relations [11]. In the probabilistic sedt
characteristic formulae also exist in the probabilisticdalo
p-calculus [14]. We believe that it is promising to check
probabilistic bisimilarity in a logical way, along the liref
consideration proposed in [11].

There are other local algorithms for checking nonprob-

abilistic behavioural relations. For example, Celikka [6
proposed a preorder-checking algorithm by recursively con
structing a graph whose vertices are pairs of related state

J10]

[6] U. Celikkan. Semantic Preorders in the Automated Verification
of Concurrent Systems PhD thesis, North Carolina State
University, 1995.

[7] J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a maximum
flow be computed on O(nm) time? Froc. ICALP’9Q volume
443 of LNCS pages 235-248. Springer, 1990.

[8] I. Christoff. Testing equivalences and fully abstraaidels for

probabilistic processes. roc. CONCUR’90 volume 458 of

LNCS pages 126-140. Springer, 1990.

[9] R. Cleaveland, S. P. lyer, and M. Narasimha. Probaliltsim-

poral logics via the modal mu-calculu¥heoretical Computer

Science 342(2-3):316-350, 2005.

R. Cleaveland and O. Sokolskfquivalence and Preorder
Checking for Finite-State Systenthapter 12, pages 391-424.
North-Holland, 2001.

[11] R. Cleaveland and B. Steffen. Computing behavioural re
lations, logically. InProc. ICALP’9], volume 510 ofLNCS
pages 127-138. Springer, 1991.

[12] Y. Deng and W. Du. Probabilistic barbed congrueriedTCS
190(3):185-203, 2007.

(13]
S

Y. Deng and Y. Fu. Algorithm for verifying strong open
bisimulation in full pi-calculus.Journal of Shanghai Jiaotong
University, E-5(2):147-152, 2001.

Mateescu and Oudot [35] proposed an algorithm by first
encoding a bisimulation relation as a boolean equatioiil4] Y. Deng and R. van Glabbeek. Characterising probaitailis

system (BES) and then employing a local BES resolution

algorithm. It is unclear if those algorithms can be adapte
to the probabilistic setting but remain effective for chieck
behavioural relations.
ACKNOWLEDGMENT
We thank Dr. Lijun Zhang for the interesting initial

discussion that we had. Deng would like to acknowledge
the support of the National Natural Science Foundation of

China (Grant No. 60703033).

REFERENCES

[1] C. Baier, B. Engelen, and M. Majster-Cederbaum. Degdin
bisimilarity and similarity for probabilistic processedournal
of Computer and System Sciencé8(1):187-231, 2000.

[2] C. Baier and H. Hermanns. Weak bisimulation for fully
probabilistic processes. [Rroc. CAV'97 volume 1254 of
LNCS pages 119-130. Springer, 1997.

[3] C. Baier, H. Hermanns, and J.-P. Katoen. Probabilisteaky
simulation is decidable in polynomial time. Information
Processing Letters89(3):123-130, 2004.

[4] E. Bandini and R. Segala. Axiomatizations for probatbit
bisimulation. InProc. ICALP’01, volume 2076 oL NCS pages
370-381. Springer, 2001.

[5] S. Cattani and R. Segala. Decision algorithms for prdtzic
bisimulation. InProc. CONCUR'02 volume 2421 ofLNCS
pages 371-285. Springer, 2002.

processes logically, 2009. Submitted.

cilS] Y. Deng, R. van Glabbeek, M. Hennessy, and C. Morgan.

Characterising testing preorders for finite probabiligti®-
cesses. Logical Methods in Computer Sciencé(4:4):1-33,
2008.

[16] Y. Deng, R. J. vanGlabbeek, M. Hennessy, C. C. Morgad, an
C. Zhang. Remarks on testing probabilistic procesB&TCS
172:359-397, 2007.

[17] Y. Deng, R. J. vanGlabbeek, C. C. Morgan, and C. Zhang.
Scalar outcomes suffice for finitary probabilistic testintn
Proc. ESOP’07 volume 4421 of LNCS pages 363-378.
Springer, 2007.

[18] S. Derisavi, H. Hermanns, and W. Sanders. Optimal state
space lumping in markov chains.Information Processing
Letters 87(6):309-315, 2003.

[19] A. Dovier, C. Piazza, and A. Policriti. An efficient aldgtihhm
for computing bisimulation equivalenc&heoretical Computer
Science 311(1-3):221-256, 2004.

[20] S. Even.Graph Algorithms Computer Science Press, 1979.

[21] J.-C. Fernandez and L. Mounier. Verifying bisimulaiso‘on

the fly”. In Proc. FORTE'90 pages 95-110. North-Holland,
1990.

[22] K. Fisler and M. Y. Vardi. Bisimulation minimization &n

symbolic model checkingFormal Methods in System Design
21(1):39-78, 2002.

[23] A. Giacalone, C.-C. Jou, and S. A. Smolka. Algebraicrea [40] R. Paige and R. E. Tarjan. Three partition refinemeno-alg

soning for probabilistic concurrent systems.Aroc. IFIP TC2 rithms. SIAM Journal on Computingl6(6):973-989, 1987.
Working Conference on Programming Concepts and Methods
pages 443-458. North-Holland, 1990. [41] D. Park. Concurrency and automata on infinite sequences

In Proc. the 5th Gl Conferencevolume 104 ofLNCS pages
[24] H. Hansson and B. Jonsson. A calculus for communicating 167-183. Springer, 1981.
systems with time and probabilities. Rroc. IEEE Real-Time
Systems Symposiumpages 278-287. IEEE Computer Society [42] M. L. Puterman.Markov Decision ProcessedViley, 1994.
Press, 1990.
[43] R. Segala. Modeling and verification of randomized dis-
[25] M. Huth and M. Kwiatkowska. Quantitative analysis and tributed real-time systems. Technical Report MIT/LCS/TR-
model checking. InProc. LICS'97 pages 111-122. IEEE 676, PhD thesis, MIT, 1995.
Computer Society, 1997.
[44] R. Segala and N. Lynch. Probabilistic simulations fooha-
[26] D. Huynh and L. Tian. On some equivalence relations for bilistic processes. IRroc. CONCUR’94volume 836 olLNCS

probabilistic processes:undamenta Informaticael7(3):211— pages 481-496. Springer, 1994.
234, 1992.
[45] B. Steffen and A. Ingolfsdottir. Characteristic foulae for
[27] B. Jonsson, C. Ho-Stuart, and W. Yi. Testing and refimgme processes with divergence.Information and Computatign
for nondeterministic and probabilistic processes. Hroc. 110:149-163, 1994.
FTRTFT'94 volume 863 ofLNCS pages 418-430. Springer,
1994. [46] R. Tix, K. Keimel, and G. Plotkin. Semantic domains for

combining probability and non-determinisnENTCS 129:1—
[28] B. Jonsson and W. Yi. Compositional testing preordens f 104, 2005.
probabilistic processes. IRroc. LICS'95 pages 431-441.

IEEE Computer Society, 1995. [47] P. Wu, C. Palamidessi, and H. Lin. Symbolic bisimulato
for probabilistic systems. liProc. QEST'07 pages 179-188.
[29] B. Jonsson and W. Yi. Testing preorders for probaldist IEEE Computer Society, 2007.
processes can be characterized by simulatiofitieoretical
Computer Science282(1):33-51, 2002. [48] W. Yi and K. G. Larsen. Testing probabilistic and nonde-
terministic processes. IRroc. PSTV’92 volume C-8 oflFIP
[30] D. Kozen. Results on the propositional mu-calculU$eo- Transactions pages 47—-61. North-Holland, 1992.

retical Computer Science27:333-354, 1983.
[49] L. Zhang, H. Hermanns, F. Eisenbrand, and D. Jansenw Flo

[31] K. G. Larsen and A. Skou. Bisimulation through probsti¢ faster: efficient decision algorithms for probabilistiansila-
testing. Information and Computatigrf4(1):1-28, 1991. tions. Logical Methods in Computer Sciencé(4:6):1-42,
2008.

[32] K. G. Larsen and A. Skou. Compositional verification of
probabilistic processes. Iroc. CONCUR’92 volume 630 of
LNCS pages 456-471. Springer, 1992.

[33] H. Lin. “On-the-fly instantiation” of value-passing quesses.
In Proc. FORTE'98 volume 135 oflFIP Conference Proceed-
ings pages 215-230. Kluwer, 1998.

[34] G. Lowe. Probabilistic and prioritized models of tim&sP.
Theoretical Computer Scienc#38:315-352, 1995.

[35] R. Mateescu and E. Oudot. Improved on-the-fly equiveden
checking using boolean equation systems.Phloc. SPIN'08
volume 5156 ofLNCS pages 196-213. Springer, 2008.

[36] A. Mclver and C. Morgan. An expectation-based model for
probabilistic temporal logic. Technical Report PRG-TRIB
Oxford University Computing Laboratory, 1997.

[37] A. Mclver and C. Morgan. Results on the quantitative mu-
calculus. ACM Transactions on Computational Logi8(1),
2007.

[38] R. Milner. Communication and Concurrencyrentice Hall,
1989.

[39] M. M. Mislove, J. Ouaknine, and J. Worrell. Axioms for
probability and nondeterminismtENTCS 96:7—-28, 2004.

