Verifying Anonymous Credential Systems in Applied Pi
Calculus

Xiangxi Li!, Yu Zhand, and Yuxin Deng*

! Department of Computer Science and Engineering, Shangttaldng University
Shanghai, China
2 Laboratory for Computer Science, Institute of Softwarein@se Academy of Sciences
Beijing, China

Abstract. Anonymous credentials are widely used to certify propertiea cre-
dential owner or to support the owner to demand valuableicEsywhile hid-
ing the user’s identity at the same time. A credential sysf@ixa. pseudonym
system) usually consists of multiple interactive proceduretween users and or-
ganizations, including generating pseudonyms, issuiadesttials and verifying
credentials, which are required to meet various securitypgnties. We propose
a general symbolic model (based on the applied pi calcubrsgrionymous cre-
dential systems and give formal definitions of a few impadr&aturity properties,
including pseudonym and credential unforgeability, credd safety, pseudonym
untraceability. We specialize the general formalizatiod apply it to the verifi-
cation of a concrete anonymous credential system propogéthimenisch and
Lysyanskaya. The analysis is done automatically with tioé PooVerif and sev-
eral security properties have been verified.

1 Introduction

The use of anonymous credential systems (sometimes caliadipnym systems) [11]
is by far the best known idea to protect personal informatimommunications. These
systems use pseudonyms generated by special random meaestead of users’ pri-
vate information to identify the user in order to guarante @anonymity of users. A
credential can be issued to a pseudonym, and the corresoumskr can show her pos-
session of the credential, without revealing any inforovatieyond the bare fact that
she owns such a credential. For a credential system to belusefe basic properties
must be satisfied. For example, a user should not be able te maksactions with
others by using a credential not issued by some valid org#aiz credential unforge-
ability), and transactions carried out by the same user cannotkesllfanlinkability or
untraceability. In some applications it might be desirable that a credéoéin only be
used oncedne-show credentiabor a user cannot lend her credentials to otham(
transferability).

It is widely known that designing good security protocolsis error-prone task.
There were protocols which had been used in practical afaits for many years but

* The first and the third authors are supported by the Natiomalifdl Science Foundation of
China (Grant No. 60703033).

later on were found to be flawed. Examples include Needhame8der [14], SSL [19]
and PKCS [20]. Formal methods were introduced as a promisitignique to analyze
security protocols and in many cases the analysis can bewdtmautomatic tools. As
a case study in this respect, we formalize the anonymougetiedl system proposed
by Camenisch and Lysyanskaya [10] (which we shall refer ttha<CL system in the
sequel) in the applied pi calculus [3] and we employ the taoMerif [8] to analyze
several security properties of the system.

To our knowledge, this is the first formal, automated verifara (at the symbolic
level) of this type of security systems, although many cnéidé systems, as a main
research concern of cryptography, have been verified usidgibnal, semi-formal ap-
proaches in cryptography. The main part of our work is detiéhe mechanized anal-
ysis of the CL system, which is probably the most complex geaym system targeting
many security requirements but remainirficéent. We have checked that the system
satisfies two very basic properties: unforgeability (offhyogeudonyms and credentials)
and user privacy (pseudonym untraceability). A less angsiroperty, which we call
credential safetynd aims at preventing unauthorized use (or stealing) decrials, is
not met by the system — the traditional replay attack breafetg

However, we regard our contribution as more than just a dasly sising ProVerif.
As credential systems become more and more widely usedde-krale security ap-
plications and many protocols have been proposed, we hareusry careful in for-
malizing the system to make our model scalable. In particula provide a general
modeling framework in the applied pi calculus and we belithat the formalization
of most credential systems falls into it. In fact, we are ently studying other systems
with significantly diferent implementation from the CL system.

The rest of the paper is structured as follows: In Section Drefly introduce the
applied pi calculus, as well as the formalization of zerowledge proofs by Backes
et al. Section 3 gives a general description of credential systand an overall mod-
eling structure in applied pi. The next section formalizesrfmost important security
properties: pseudonym unforgeability, credential unéaifgjlity, credential safety and
pseudonym untraceability, and summarizes the verificatsults in ProVerif of the
basic credential system of Camenisch and Lysyanskayaio8egtdiscusses related
work and Section 6 concludes the paper.

2 The applied pi calculus

2.1 Syntax and semantics

We briefly recall the syntax and operational semantics offtygied pi calculus; more
details can be found in [3].

A signatureX is a finite set of function symbols. Given a signat&itean infinite set
of termsis defined by the following grammar:

M,N:=ahb,c,...,k, ... names
| XV,2 variables
| f(Mg,..., M) function applications

wheref ranges over the functions Biandl matches the arity of. Terms are equipped
with anequational theory Bvhich consists of a set of equations over terms. We write
2+ M = N when the equatioM = N is in the theory associated wiff} andX ¥ M =
N for the opposite.

The grammar foplain processs similar to the one in the pi calculus [16], except
that here messages can contain terms rather than names.

PQR: =0 null processes
| PIQ parallel composition
| 'P replication
| vn.P name restriction
| if M =N thenPelse Q conditional
| u(x).P message input
| u(N).P message output

The null process 0 does nothing and is usually omitted frootess specifications.
The proces$|Q executesP and Q in parallel, and P stands for an infinite copies
of P running in parallel. The proces#.P generates a fresh nameand behaves as
P. The procesif M = N then P else Q behaves a® if X + M = N, and as
Q otherwise. The input procesgx).P can receive a messade from channela and
behaves a®{N/x}. We often take the abbreviatiorgu).P for vus.--- .vu,.P andu(=
M).P for

u(x).if x= M then P else 0.

The output procesxN).P sends messadé¢ on channeh and behaves a2.
Extended processese defined wittactive substitutions

A BC:=P plain process
| AB parallel composition
| vx.A variable restriction
| {M/x} active substitution

| event(xy,..., X)) events

where{M/x} is the substitution that replaces the variableith the termM. The process
vX.({M/x}|P) restricts the scope of substitution Piand is often written aget x =
M in P. As usual, names and variables have scopes, which are thalitni restrictions
and inputs. We writd v(A) andbv(A) (resp.fn(A) andbn(A)) for the sets of free and
bound variables (resp. names)AafAn extended process @édosedwhen every variable
is either bound or defined by an active substitution. Evergssapported by ProVerif
and are used to define traces of processes.

Every extended process can be mapped ti@ime ¢(A) by replacing every plain
process embedded Mwith 0. Thus, a frame is built up from 0 and active substitasio
by parallel composition and restriction. The frag@) can be viewed as the static
knowledge exposed by A to the environment, but noAasdynamic behavior. The
domaindon{y) of a framey is the set of variables thatexports.

An evaluation contexis a context (a process with a hole) whose hole is not under a
replication, a conditional, an input, or an output. A conték] closesA whenC[A] is
closed.

The semantics of the applied pi calculus are defined by stralcequivalence and
internal reductionStructural equivalence is the smallest equivalence relation on ex-
tended processes that satisfies the following rules andsleiised undet-renaming
of names and variables and under application of evaluatiorexts.

A= A0 PAR-0 vn0=0 NEW-0
A(BIC) = (AB)C PAR-A ymvnA=ynvmA NEW-C
AB = BJA PAR-C wx{M/x}=0 ALIAS
IP=P|IP REPL (M/x) = (N/x),

{M/x}|A= A(M/x} SUBST fxrMm=N REWRITE

Internal reduction— is the smallest relation on extended processes closeduntiatal
equivalence and application of evaluation contexts suah th

ux).Plu(x.Q - P|Q COMM

if M =M then Pelse Q —» P THEN

if M =Nthen Pelse Q —» Q ELSE
for all ground termaM,Ns.t.2 ¥ M =N

Observational equivalence is an important relation forapplied pi calculus. In-
tuitively, two processes are observationally equivalenbievaluation context can dis-
tinguish them; evaluation contexts are often used to matkstlkers. We writéA || a
whenA can send a message ani.e A —»* C[a(M).P] for some evaluation contex@
that does not bind.

Definition 1. Observational equivalencer is the largest symmetric relatioR be-
tween closed extended processes with the same domain sti¢tiRIB implies:

1. ifAl a, then B| a;
2. if A—>* A, then B—»* B’ and X R B’ for some B.
3. C[A] R C[B] for all closing evaluation contexts[d.

Trace properties are also important in process cal@drrespondenceas intro-
duced to capture these properties [8].

Definition 2 (Correspondence).The closed process P satisfies ttoerespondence
P - event(f(xs,..., X)) ~ event(f'(ys,...,V)))

means that if the even(y, . . ., X is executed, then event(y,, . . ., y;) must have been
executed. The closed process P satisfiesjeetive correspondence

P event(f(xs,..., X)) «» event(f'(yi,...,Y;))

means that for each evenpds, . . ., x;) being executed, there is a unique eveiiyif . . ., y;)
which has been previously executed.

We refer the reader to [8] for the technical definition of espondences.

2.2 Representing zero-knowledge proofs in applied pi

Zero-knowledge proofs become a widely used technique istoaecting modern cryp-
tographic protocols [18], including many credential sys¢eLoosely speaking, a zero-
knowledge proof consists of a message or a sequence of nesgkatjconstitute a proof
of a statement, which yields nothing but the validity of thatement. The applied pi
calculus does not natively support the verification of siggrotocols involving zero-
knowledge proofs, but Backes al. have extended the tool ProVerif to enable modeling
and analyzing non-interactive zero-knowledge proofs [5].

Let Zhase be a base signature including logic and arithmetic oparatas well as
basic cryptographic primitives such as encryption, detoyp digital signature, etc.,
andEp,sebe an equational theory fdk,se FOr representing zero-knowledge, we need
to extend the equational theory, based on an extended signat

27k = ZpaseU {ZK; j, Ver; j, Publici, Formula, true | i, j € N}

A non-interactive zero-knowledge proof is formalized aerthKi,j(M, N, F), where
M denotes the term sequenide, . . ., M; which represent therivate componenisf the
statement that are not revealed to the verifier and the aalyeendN denotes the term
sequenceNy, . .., Nj which represent thpublic componentsf the statement, and
constitutes a formula over these terms. In particular, wa fikstinguished set of vari-
ableszV = {ay,a,...,B1,B2, ...} which are only used to construct zero-knowledge
formulas. Intuitively,a variables can be substituted by private componentgarati-
ables by public components. We call a tefnan (, j)-formulaif it contains no names
andfv(F) C {a@1,...,ai,B1,....B;}. Public, Formula are operations for retrieving,
respectively, the-th public element and the formula from a proof, anek; ; is the
function which verifies a proof against a formula. We shatipfomit the arities oZK;
andVer; j when they are clear from the context.

The equational theorfzk for representing zero-knowledge is the smallest the-
ory satisfying all equations iEp,seand the following equations defined over all terms
M, N, F:

Publiq(zKij(M,N,F)) =N, 1<I<]

Formula(ZK;, J(M N,F)) =F,

Ver; (F,ZK j(M,N,F)) = true iff Ezx v F{M/a}{N/B} = true
andF is an (, j)-formula.

Backeset al.also supply several techniques for dealing with infinitestpnal theories,
so as to enforce the termination of the verification in Prif\V&We refer the reader
to [18] for details.

3 A general description of credential systems in applied pi

In general, a credential system consists of two types oftageserswho wish to anony-
mously prove part of their personal information or use valea&ervices through cre-
dentials, andbrganizationswho issue credentials to users and verify the validity of

credentials shown by users. &amonymougredential systems, a user needs first to in-
teract with an organization to establish a pseudonym befereanding a credential.
The user is then known at the organization by the pseudonyrichws usually based
on some information known by the organization about the (€. an account in a
bank). A real individual can have a pseudonym at each orgtaiz, or even multiple
pseudonyms at one organization. However, organizatiomggimot be able to link two
different pseudonyms belonging to the same user. Credentiissared by organiza-
tions to pseudonyms instead of real identities: when deingral credential, the user
interacts with the organization in the name of the pseudothanhe has established,
and obtains a credential which can be shown by the user th@notganization in the
verifying procedure.

3.1 Modeling credential systems

We give a general framework of modeling credential systenapplied pi, by defining
the overall structure of processes without concrete defirst In later sections we shall
see how a real credential system can be modeled followingttheture. The model of
a credential system in applied pi generally consists of ype$ of processes: the user
processes and the organization processes.

When a user enters the system, she must first demand a pseudbsgme orga-
nization, and then use this pseudonym to demand and showrtdiald, hence a user
process can be generally defined as

UP E' (@) Ickey(j. pk;) . UN(j. pkj) . (UC(j, pk;. nymy) | TUV(j, pk;, nymy))

U'is a set of secret channels inside the user process whiclasielbly used to transmit
secret data like keys, randoms, and so on. The prddégg, pkj) models the user’s
behavior of establishing a pseudonym at the organiz&dioand the user must receive
the correct public keyk; properly (e.g., from a secret chanm&ky shared between
users and organizations). The proceks(j, pkj, nymy) models the user’s behavior of
demanding a credential from the organizatiop in name of the pseudonymymny
that has been establishedUWN(j, pk;). In the end of the process, the generated cre-
dential must be recorded together with the ID of the issuirgpnization. The pro-
cessUV(j, pkj, nym) models the user’s behavior of showing a credential usireg th
pseudonymmymy. There are in general two manners of showing a credential:

UV(j, pki, nym) € 1u(= j, cred) . UV(j, pk;, cred))
| tui(l, cred) . UVZ(j, pkj, nym, 1, pk;, cred),

whereUV(j, pk;, cred;) models the behavior of showing a single credertial, is-
sued by the organizatia@; andUV?2(j, pk;, nym;, |, pk, cred) models the behavior of
showing a credentialred issued by the organizatidd;, using the pseudonymyrmy
(known atO;j. Note that in the first procedure, the credential can be éisfigrshown
to any valid organization, while in the latter it can only bewn to O, i.e., the or-
ganization who knows the pseudonymym. If the system guarantees unlinkability of
pseudonyms, this does not break the anonymity.

Correspondingly, an organization process consists ofrgéing a pseudonym, is-
suing a credential and verifying a credential:

oP £ (). 10N. (10C(nym) | 'OV2(l, pk, cred) | 'OVA(l, pk, nym cred)),

where the proces®N models the organization’s behavior of establishing a pseyih
nym OC(nym) models the behavior of issuing a credentiainion OV2(l, pk, cred)
models the behavior of verifying the credentiaéd andOV?(l, pk, nym cred) models
the behavior of verifying the credentiated, plus the statement that its owner has the
pseudonymrmym Note thatnymin UV?2 must be the pseudonym established by the
organization, bueredin UV! andUV? can be an arbitrary credential issued by a valid
organization (presumably the organizatioy). It is possible that some organizations
only do the verification and never issue credentials, andddeting a concrete system,
one can safely remove the corresponding processes.

The whole credential system is then modeled as a set of useegses and organi-
zation processes running in parallel.

3.2 Events

As we shall see in Section 4, many security properties areekttfising the notion of
correspondencbetween events, which must be added at right places when fiveede
processes. We summarize here a set of events which can beardyrohefined in many
credential systems and ardiscient for defining and verifying their security properties.

— NymGenerated(U, n): The uset) executes this event when she establishes a pseudonym
n with some organization.

— NymApproved(O, n): The organizatio® executes this event when he approves that
the pseudonym is correctly formed.

— CredIssued(O,c, n): The organizatiorD executes this event after she issues the
credentiak to the pseudonym.

— UserShow(U, €): A user executes this event when he starts a session of shawi
credentiak with a verifying organization.

— CredVerified(O, c, O'): Verifier O executes this event after the credentidlas
been shown to her and she is convinced thadis been issued by organizatioh

— CredNymVerified(O, n, c, O’): The verifying organizatiot® executes this event
after the credentiat has been shown to her with the pseudonyand she is con-
vinced thatt has been issued Iy to the user. Note thatis not the pseudonym to
whichc has been issued to, but the one that is known by the ve@figr principle,
the user must possess another pseudomyfknown byO’)and has used’ to get
the credentiat before she shows it, but this pseudonym is irrelvant in thifyieg
procedure. in shorf) hides the user’s identity at the verifying organization ahd
protects her at the issuing organization.

We remark that events are not necessary for modeling pristdmat rather for speci-
fying security properties based on traces, so only prosegggesenting honest agents
will execute these events — adversaries never executesewwhen defining security
properties using these events, we often omit some parasi{etptaced by) when they
are irrelevant.

4 Security analysis of an anonymous credential system

In this section we apply the general modeling of the prevgagion to the anonymous
credential system proposed by Camenisch and Lysyansk@ayaafid do a verification
using ProVerif. The basic system consists of four protofmisespectively, pseudonym
generation, credential generation, showing a single atialend showing a credential
w.r.t. a pseudonym. Due to the page limit, we only presere harabstract definition of
the whole system. Detailed description of protocols andesponding process specifi-
cations in applied pi can be found in Appendix A.

Definition 3 (Basic credential system)Thebasic credential systeof the CL system
is a process in applied pi:

BCS L' y(ckey).(UPy| ... |UP,|OP; |...| OPw),

whereckey is a secret channel for transferring organizations’ pulkays between hon-
est agents, UF’d§f v(cu;) . (ckey(l, pk) . UNi(l, pk)), modeling each user agent, and

OP; def v(seed) . let pkj = pkey(seed), skj = skey(seeq) in
Ickey (], pk;) I'e(j, pkj) I'ON; ['VP;

modeling each organization agent, wheris a public channel allowing agents includ-
ing adversaries to communicate with each other.

Definitions of the processésN;, ON;, VP; can be found in Appendix A.

The rest of the section is devoted to the formalization amdieation of basic secu-
rity properties: unforgeability of credentials and psewgtuos, safety of credentials and
user privacy (pseudonym untraceability), which are supgas be met by the CL basic
system.

Let CS be a model of a credential system defined in applied pi, sudBGSin
Definition 3. We writel/(CS) for the set{Us, ..., U,} where eacl; is a process rep-
resenting an honest user agent, a{gS) for the set{O, ... Oy} where eacl®; is a
process representing an honest organization agent.

4.1 Unforgeability

Unforgeability of pseudonyms and credentials is the very basic securityinegent
of anonymous credential systems, which in principle prevadversaries from forging
fake credentials. Fake pseudonyms must be prevented tme, siedentials are issued
to pseudonyms, never to real identities.

Definition 4 (Pseudonym unforgeability). A credential system CS respects
pseudonym unforgeability whenever an organization’Os O(CS) issues a creden-
tial ¢ to a pseudonym’nshe must have established this pseudonym with a user:

CS Ir CredIssued(O’, c,n’) ~ NymApproved(O’,n’), (1)

and whenever an organization ©O(CS) verifies a credential ¢ that is shown to her
w.r.t. a pseudonym n and is claimed to be issuedh@ verifier must have established
the pseudonym with the user:

CS CredNymVerified(O, n, c, O') ~» NymApproved(O, n), (2)

Definition 5 (Credential unforgeability). A credential system CS respectedential
unforgeabilityif every successful showing (either single or with a pseydon at orga-
nization O) of a credential ¢, being claimed to be issued bgrganization O € O(CS),
implies that O has previously issued ¢ to some pseudonym n

CS - CredVerified(_, c,O') ~ CredIssued(Q’,c,n). 3)
CS Ir CredNymVerified(O, n,c, O’) ~ CredIssued(O’,c,n’). 4)

If a credential system respects both pseudonym unforgsadnild credential unforge-
ability, we say that it is amnforgeable credential system

The definition of credential unforgeability does not exaube case where the ad-
versary can forge malid credential that has indeed been generated by an honest orga-
nization, but not to the adversary. We shall consider it astfety of credentials.

Theorem 1. The CL basic credential system (Definition 3) is an unfordeeatedential
system, i.e., it respects the unforgeability of both psaydts and credentials.

Proof. We check the four correspondences (1), (2), (3) and (4) ivétib O

4.2 Credential safety

Credentiakafetyaims at preventing adversaries fratealingor using unauthorizedly
a valid credential. In other words, no one other than the siobmger, to whom a valid
credential has been issued to, can successfully show tderaial to a verifier. How-
ever, there is a subtle situation where safety can be comfuigh unforgeability: if an
adversary can forge a credential which has been generatad hgnest organization
to an honest user, we shall consider it as an attack to safstgaid of unforgeability.
In fact, when we talk about credential safety, we actuallamsafety ofunforgeable
credentials or safety inunforgeable credential systems

Definition 6 (Credential safety). A credential ¢ in an unforgeable credential system
CS issafeif there is an injective correspondence between the evelntdting that c
(being issued by G Org(CS)) is successfully verified, and the event indicating that
some user Ue U(CS), who must be the owner of the credential, starts to show ¢, i.e
for all pseudonym™ny

CS i CredVerified(_, c,O’) ~ CredIssued(Q’,c,n')
= CS CredVerified(., c, O') «» UserShow(U, C) (5)
A NymApproved(O’, n’) ~» NymGenerated(U, r').

If ¢ is shown with respect to a pseudonym n at @(CS), then the user must be the
owner of n, i.e., there exists another pseudonym n

CS I CredNymVerified(O, n,c, O’) ~ CredIssued(O/,c,n’)
= CS I CredNymVerified(O, n, ¢, O') «» UserShow(U, ¢)
A NymApproved(O’, n') ~» NymGenerated(U, n’)
A NymApproved(O, n) ~» NymGenerated(U, n)

(6)

If an unforgeable credential system respects credenfizthsave say it is aafe creden-
tial system

Unfortunately, the CL basic system is not safe if we assuraettannels between
users and organizations is insecure as in normal netwokirgonment. There is a
replay attack to safety, which works as follows: in the casghowing a single creden-
tial, the adversary can recofd B in Protocol 3 and all messages in the zero-knowledge
proof, then sends them repeatedly to a verifier. The reuseekamwledge proof simply
passes. ProVerif actually shows that the injective comrdpnce in (5) fails. The same
attack simply applies in the case of showing a credentiat.vampseudonym, but the
adversary can only show the credential to the organizattoorthe user has shown it
to, since she cannot change the pseudonym that is used inriffieation.

Note that an adversary can steal a pseudonym too and eventoseimand a new
credential, but she cannot show it as in that case she capongat & proof for showing
the credential. In fact, in credential systems, what we ahmut is what people can do
with credentials, not what they can do with pseudonyms, sdaveot define a property
like pseudonym safety.

4.3 Pseudonym untraceability

Anonymous credential systems are designed essentialydoiding user privacy. Cre-
dentials are issued to pseudonyms, so user privacy in diatgystems indeed depends
on what we can deduce based on pseudonyms. In particulaniaegions should not be
able to collectively distinguish pseudonyms that belondifferent users. We call this
propertypseudonym untraceabilitgnd in the applied pi calculus, this is formalized by
the popular notion obbservational equivalence

Definition 7 (Pseudonym-untraceability). A credential system CS respects
pseudonym untraceability for arbitrary users U,U; € U(CS) and a well formed
public key pk,

UNi(-, pko) = UN;(-, pko),
where UN (resp. UN), as defined in Definition 3, models the procedure of estaiblis
a pseudonym by the usey esp. U) and all her behavior involving the pseudonym in
the system.

Theorem 2. The basic credential system respects pseudonym untrditgabe.
UNi(l, pk) ~ UN;(l, pk).

Proof. ProVerif supports proving observational equivalence af pvocesses which
differ only in the choice of some terms. In our definition of psewsho untraceability,
we are actually proving: for all;, U; € U(BCS), UN;(0, pko) ~ UN;(0, pko)[X;/Xi].
ProVerif shows that the above observational equivalentisho O

5 Related work

A security model for anonymous credential systems was m@gpdy Pashalidis and
Mitchell [17]. It follows the idea of Bellare and Rogaway [Bhsed on complexity
theoretic arguments, which potentially leads to informatiheoretic anonymity met-
rics. The model does not specify how the credential systdme®es its goals but de-
fines what the goals are. Some basic properties such as tedderiorgeability, non-
transferability, pseudonym unlinkability, and pseudorowmer protection are formally
defined and the relationships between them are exploredp&eu with our defini-
tions, their definitions are based on a computational moéi@devours are based on the
applied pi calculus and allow an automatic verification.

Abadiand Fournet introduced the applied pi calculus [3]lasguage for reasoning
about security protocols. The calculus inherits commuitoand concurrency for the
pure pi calculus [16], and introduces functions and equatto reason about complex
messages transmitted in security protocols. ProVerif§@n automatic cryptographic
protocol verifier for the analysis of trace-based securiypprties and observational
equivalence. It accepts applied pi processes as inputsransldtes them into Horn
clauses. Using this tool, Blanchet al. verified a protocol for certified emails [1], a
protocol for secure file sharing on untrusted storage [Q)elbas the JFK protocol [2].
Luo et al.[15] analyzed an electronic cash protocol, and Kremer arahRy2] verified
an electronic voting protocol. Backes al. [5] introduced an implementation of zero-
knowledge in equational theories acceptable by ProVedfapplied it to the analysis
of a remote electronic voting protocol [4].

6 Conclusion

In this paper we have presented a general formalizationeafesttial systems and some
important security properties. We apply them to the corcoeedential system pro-
posed by Camenisch and Lysyanskaya and have verified thaaghe system satisfies
unforgeability for both pseudonyms and credentials, ardiganym untraceability. We
also reveal an attack to the system which allow adversaristetll and unauthorizedly
use a credential.

We argue that the model that we propose in the paper is fhghfaugh. However,
as the original protocol itself is not written in a formal farage, there is no way to
formally prove that our model faithfully specify the origihprotocol. Nevertheless, if
we assume that the specification is correct, then the sosedifeProtoVerif already
guarantees the correctness of the verification output.

One novelty of the CL system, compared with other credestisiems, is the im-
plementation of non-transferable credentials which prewssers from lending their
credentials. As part of the future work, we shall invesiighow to formalize non-
transferability, as well as other interesting, advancegerties like non-reshowability.
We are also trying to transplant our model to other credesyistems, in order to es-
tablish a scalable model of analyzing credential systentis thie applied pi calculus.
Another interesting work would be to focus on improving ttigcgency for verifying
complex systems using zero-knowledge proofs heavily. Howtimize equational
theories to speed up termination is still a challenging fmob

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Martin Abadi and Bruno Blanchet. Computer-Assistedfid@tion of a Protocol for Certi-
fied Email. InProceedings of the 10th International Symposium on Stataysis volume
2694 ofLecture Notes on Computer Scienpages 316—335. Springer Verlag, 2003.

. Martin Abadi, Bruno Blanchet, and Cédric Fournet. Jast keying in the pi calculus. In

Proceedings of the 13th European Symposium on Programmaigme 2986 ofLecture
Notes in Computer Scienggages 340-354. Springer, 2004.

. Martin Abadi and Cédric Fournet. Mobile values, new rapand secure communication. In

Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium oeiplés of Programming
Languagesvolume 36, pages 104-115. ACM, 2001.

. Michael Backes, Catalin Hritcu, and Matteo fila. Automated verification of remote elec-

tronic voting protocols in the applied pi-calculus.Pmoceedings of the 21st IEEE Computer
Security Foundations Symposiupages 195-209. IEEE Computer Society, 2008.

. Michael Backes, Matteo Mgei, and Dominique Unruh. Zero-knowledge in the applied

pi-calculus and automated verification of the direct anomysnattestation protocol. Bro-
ceedings of the IEEE Symposium on Security and Priaages 202-215. IEEE Computer
Society, 2008.

. Mihir Bellare and Phillip Rogaway. Entity authenticatiand key distribution. IfProceed-

ings of the 13th Annual International Cryptology Confergnmlume 773 of_ecture Notes
in Computer Scien¢gages 232-249. Springer, 1993.

. Bruno Blanchet. Proverif: Cryptographic protocol verifin the formal model. Available at

http://www.proverif.ens. fr/.

. Bruno Blanchet. Automatic verification of correspondenéor security protocolsournal

of Computer Security2008. To appear, Available at httfarxiv.orgabg0802.3444.

. Bruno Blanchet and Avik Chaudhuri. Automated formal gsial of a protocol for secure

file sharing on untrusted storage. Pnoceedings of the IEEE Symposium on Security and
Privacy, pages 417-431. IEEE Computer Society, 2008.

Jan Camenisch and Anna Lysyanskaya. #ligient system for non-transferable anonymous
credentials with optional anonymity revocation.Rroceedings of the International Confer-
ence on the Theory and Application of Cryptographic Teahegqvolume 2045 of_ecture
Notes in Computer Scienggages 93—-118. Springer, 2001.

David Chaum. Security without identification: Transactsystems to make big brother
obsolete.Communications of the ACN8(10):1030-1044, 1985.

Steve Kremer and Mark Ryan. Analysis of an electronigngoprotocol in the applied pi
calculus. InProceedings of the 14th European Symposium on Programmatgme 3444

of Lecture Notes in Computer Scienpages 186—200, 2005.

Xiangxi Li, Yu Zhang, and Yuxin Deng. ProVerif scripts rfoveri-
fying a non-transferable anonymous credential system. ildle at
http://basics.sjtu.edu.cn/ "xiangxi/credentialsys.rar.

Gavin Lowe. An attack on the needham-schroeder puklycakthentication protocolln-
formation Processing Letter§6:131-133, 1995.

Zhengqin Luo, Xiaojuan Cai, Jun Pang, and Yuxin Deng. lywiag an electronic cash
protocol using applied pi calculus. Proceedings of the 5th International Conference on
Applied Cryptography and Network Securityolume 4521 ofLecture Notes in Computer
Sciencepages 87-103. Springer, 2007.

Robin Milner. Communicating and Mobile Systems: th€alculus Cambridge University
Press, 1999.

Andreas Pashalidis and Chris J. Mitchell. A security edddr anonymous credential sys-
tems. InProceedings of the 19th International Workshop on InfoioraSecurity pages
183-198. Kluwer, 2004.

18. Shafi Goldwasser Silvio Micali Charles RafikoThe knowledge complexity of interactive
proof-systemsSIAM Journal on Computind.8(1):186—207, 1989.

19. Kurt Seifried. The end of ssl and ssh? Available at
http://seifried.org/security/cryptography
/20011108-end-of-ssl-ssh.html.

20. Jean sbastien Coron, Marc Joye, David Naccache, PaB'kt'mer'EcoIe Normale Supérieure,
Gemplus Card International, and Gemplus Card Interndtidtew attacks on pkcs #1 v1.5
encryption. Inn Advances in Cryptology — Eurocrypt 2QQiages 369-379. Springer Verlag,
2000.

A Description and modeling of the CL basic system

A.1 Setup of the CL system

The CL system uses the asymmetric cryptography (typicadiRo implement anony-
mous pseudonyms and credentials. Each organiz&jonill have a public keyPK;
consisted of alRS Amodulusn;, and five elements ®R,, : (a;, bj, dj, g;, h;), the cor-
responding secret key that contains the factorization;oEach uset); has a master
secret key.

A pseudonymN;; — a name forU; being known atO; — consists of a user-
generated par; and organization-generated p&i. Every pseudonyni;; will be
tagged with avalidating tag R;. A credential issued b@; to a pseudonyni\;; is pair
(e ©), whereeis a sdficiently long prime chosen b®;, andc = Pijdjl/e (mod nj). Un-
der the strondRS Aassumption, such tuples cannot be existentially forgeddarectly
formed tags even by an adaptive attack, since no one canajecdrom e without
knowing the factorization ofi;.

Zero knowledge is applied in the system to protect usersapyi. A proof of pos-
session of a credential is realized by a proof of knowledga obrrectly formed tag
Pi; and a credential on it. This is done by publishing stati#ificsecure commitments
to both the validating tag and the credential, and provitatienships between these
commitments. It can also include a proof that the underlgiegret key is the same in
both the committed validating tag (corresponding to thaugdeaym formed with the
issuing organization) and the validating tag with the wenij organization.

The base signature for analyzing the CL system consistsdipsof two sorts of
functions: basic crytpographic primitives (e.gnc, dec for encryption and decryption
andpkey, skey for generating asymmetric key pairs) and cyclic group ariétic oper-
ations (e.g.add, mult, exp andinv for group addition, multiplication, exponentiation
and inverse operation). The equational theory for thisatigire contains standard equa-
tions for cryptography and RSA arithmetic. Detailed deiimtcan be found in [13].

A.2 Basic credential system and its model in applied pi

The CL basic system consists of four protocols for, respelsti pseudonym genera-
tion, credential generation, showing a single credentidl showing a credential w.r.t.
a pseudonym. We briefly describe these protocols and givesbeand organization
processes corresponding their behavior in each protocol.

Protocol 1 (Pseudonym generation)UserU; follows the protocol below to establish
a pseudonym at organizati@:

1. U; chooses valueN, r1, o, r3, setsCy = grjlhrjz,Cg = g}‘i hrj3 and send¥\;, Cy,C,
to O;. U; proves thaC, andC; are formed correctly in

PK{(Q’]_, o, a3, a4) C = g(J_Ylhlez ANCy = g(;sh(jm}.

2. Oj generates two randomsN, and sends them tg;.
3. Uj computessj = ry + 1, sets the pseudonyM; = (N1, N) and the validating tag
Pij = a? b?j, then send®;; to O;. U; proves thaP;; is formed correctly in

PK{(.5.7.6.€) : C1 = g A Co = gl A Pyj = albf}

In this protocol, every generated pseudonin corresponds to a validating tag;,
and they are stored in pair by bdth andO;. HereP;; is used to distinguish fierent
pseudonyms, and the representatiofgfwith respect tay; andh; is an essential part
when showing a credential.

The user process and the organization process for the pt@medefined as:

UNi(j., pky) <" v(Ny, 11,12, 13).
let Cq = exp((gj, h)), (r1,r2)), C2 = exp((gj, hj), (i, r3)) in
let zpL = ZK(ry, 12, X, r3; C1,Co, 9j, hj; F1) in
€0j((N1,C41,C2),zpy) . cu(r, N2) .
let Nij = (N1, N2), sj =r1+r1, Pij = exp((aj, bj), (%, 5j)) in
let zp = ZK(ry, o, X, 3, Si; C1,Co, gj, hj, aj, bj, Pij; F2) in
NymGenerated(Ui, Nij) . COj(Pij s sz) .
((UCi(j, Nij, Pij) 11(cui(l, cred) . UVE(j. I, cred Nij))),

ONJ‘ = COj(Nl, C.,Cy, Zl) .

if Ver(Fi,z) = true then
V(r, Nz) .E((r, Nz)) . COj(P, Zz) .
if Ver(F,,z) = true then
let N = (Nl, Nz) in
NymApproved(Oj, N). (!OCj(N, P) [!OV;j(N, P))

where

F1 £ (81 = exp((83, Ba), (@1, @2)) A B2 = exp((Bs, Ba), (a3, @),
Fo &' (81 = exp((Bs. a). (@1, 2)) A B2 = exp((Bs, Ba). (3, @a)
A B7 = exp((Bs, Be), (a3, a5))),

andcoj andcu are public channelsu; is a secret channel inside the procesdJaf
UCi(j, Nij, Pij) is the user process of demanding a credential fBynusing the pseudonym

Nij (together with the validating ta&;;). UViz(j,I,cred, Nij) is the user process of
showing, to organizatio@®;, the credentiatred issued by organizatio®,, using the
pseudonyniN;;. OC;(N, P) andOV;j(N, P) represent, respectively, the organization pro-
cesses of issuing a credential to the pseudoNyand of verifying a credential sent by a
user using the pseudonyih Note that the credential issue and verification can be done
separately at the organization side (bffelient processes in parallel), but they must be
done sequentially in the user process.

The eventsNymGenerated and NymApproved are executed in this protocol:
NymGenerated is executed by the user right after he receives the orgaoizatart
of the pseudonym, aritymApproved is executed by the organization at the end of the
protocol, when he receives the validating tag and verifiesv#lidity of its form.

Note that the user is assumed to communicate with the orgtimizvia ananony-
mouschannel, which is modeled using a global public chamneind we rely on the
scheduler to determine the right destination of messagestitted on the channel.
In particular, there is no successful trace where the respohan organization is sent
to a wrong user, as in that case the organization will failheaking the the second
zero-knowledge proof.

Protocol 2 (Credential generation) UserU; follows the protocol below to demand a
credential from organizatio®;:

1. U; sends l;j, Pjj) to O; and proves the ownership in
PK{(e.B) : Pij = ajbf).

2. Oj checks thatl;;, P;j) is in its database, chooses a random preneomputes
¢ = (P;jd;)*® modn;, sends andeto U; and storesq, €) in its record forN;;.

3. U; checks ifc® = Pj;d; mod nj; if so, she storesc(€) in its record with organiza-
tion O;. The tuple ¢, €) is called acredential record

The cryptographic assumption ensures that an adversargled®not know the factor-
ization ofn; should not be able to generatérom e.
The user process and the organization process of credgetiatation are:

UGi(j, Nij, Pij) def let zp; = ZK(X;, Sijs Pij,aj,bj; F3) in
co;(Nij, Pij, zps) . cu(cij, &;) -
if exp(Cij,Q]‘) = mult(Pi,j,dj) then
let cred; = (cjj, &) in
Icui(j, cred;) [TUV2(j, cred;)

OC;(N,P) &' co (N, P, zs).

if Ver(Fs,z3) = true then
v(€).let ¢ = exp(mult(P, d;), inv(e)), cred= (c,€) in
CredIssued(O;, cred N).cu(c,e),

where def
F3s € B1 = exp((B2, Ba), (a1, @2)).

UVil(j,credj) is the user processes of showing the credewtiatl; to an arbitrary
organization (verifier).

WhenU; receives a credential, she broadcasts it via the internstsehannetu; to
all other sub-processes; whenwants to show a credential with respect to a pseudonym
Nij, she invokes the procedmcla\/i2 by sending the credential to the procedureotia

The eventCredIssued is executed by the organization in this protocol after the
credential is generated.

Protocol 3 (Showing a single credential)UserU; follows the protocol below to show
a credential, issued W9;, to a verifierV (without revealing the combined pseudonym):

1. U; chooses’, r;, computesA = Cijhrji, B= hrj/lg;/z, and send#\, B with the creden-
tial to V.
2. U proves the validity of the credential in

PK{(a1, a2, a3, @a, as, as, a7) :

1 1 1 1 1
o AQ1(T \a2f T \az(_— \aa — h¥% % — Ra(s a7
d) = A" ()" ()" () A B =g A L= BY ()" (0)")

Those who can successfully show a single credential areregbto know the represen-

tation of P;; with respect tayj, h; as well as the credential paij, 6;), so the protocol

should dfer suficiently security even when the transmission of a credeistiahsafe.
The two processes engaged in this protocol are:

UVA(j, cred;) € v(rl.r5).
let A= exp((cij, hy), (L,r), B = exp((h;,gj),(r.r3)) in
let zp = ZK(8j, X, Sij, mult(ry, &;), ry, ro, mult(rs, €;);
A B, aj, bj, dj, gj, hj; F4) in
UserShow(U;, cred;) . cv(j, Gij, &j, A, B, zp),

def .
VP, = cv(= j.cj.ej.A B,z).
if Ver(F4,z) = true then CredVerified(_, cred O;),

where

Fa def Bs = exp((B1, inv(B3), inv(Ba), inv(B7)), (a1, a2, a3, 1))
A B2 = exp((B7, Be), (as, as)) A 1 = exp((B2, inv(B7), inv(Be)), (a1, a4, a7))

The event@iserShow andCredVerified are executed in this protoc@lserShow
is executed by the user right before he starts to show a ctietiendCredVerified is
executed by the verifier after verifying the validity of theedential (the first parameter
is omitted since in this protocol the identity of the verifigiirrelevant). In the process
model, we explicitly let the user transmit the credentiattie verifier, which is not
included in the original protocol. This is only for the veeifiprocess to be able to
execute the eveliredVerified. It is no harm of sending the credential over a public
channel since any valid credential has been sent over acpehdinnel when it is first
generated.

Protocol 4 (Showing a credential w.r.t. a pseudonym)User U; follows the protocol
below to show a credential issued by organiza@prto another organizatiod;, using
a pseudonyni;; that she has established with:

1. U; chooses’, r;,, computesA = ¢ hlr/1 andB = hlr/lglr/z, and send$\;j, A, Bto O;.
2. U proves the validity of the credential and the ownershiplgfin

PK{(a1, a2, a3, @a, as, @, @7, ag) :

1 1 1 1 1
— AQL(a2 (_\a3(24 — h¥% g% — BY(2 yasa(o7 . — 2|y
6 = A™(2) () ()" A B =g A L= BU(E)™(Z)7 APy = &7B]")

The above proof has a fourth equation which proves that time saaster secret key that
is used in constructing the credentgl(issued byQ;), is also used i, the attached
validating tag of the pseudonyh; which is established witf;.

The two processes engaged in this protocol are:

UVZ(j, 1, cred Nij) £ w(ry,15).

let A= exp((cij, hy), (1,r7). B=exp((h},g)),(r7.r3)) in

let zps = ZK(&y, X, Si,mult(ry, &), ry, ro, mult(ry, &), Sj;
A B,a,b,d,g.h, Pij, a;, bj; Fs) in

UserShow(U;, cred) . coj(k, cred A, B, Nij, zps)

OV|(N,P) €' cv(l,cred A, B, = N, z5) . ckey(= |, pk).
if Ver(Fs, z5) = true then CredNymVerified(O;j, N, cred O))

where

Fs €' Bs = exp((B1. inv(Bs). inv(Bs). inv(B7)). (1. a2, a3, s))
A B2 = exp((B7.Bs), (s, a6)) A 1 = exp((B2, inv(B7), inv(Be)), (a1, @4, a7))
A Bg = exp((Bo, f10), (@2, @s))

The two processes are similar as those for Protocol 3, eXtafthe user needs to send
a pseudonym to the verifier and it involves in the zero-knadgéeproof.

Similar aXredVerified, the evenCredNymVerifiedis executed in this protocol
by the verifier after the verification, but it contains morimation tharCredVerified.

