
Verifying Anonymous Credential Systems in Applied Pi
Calculus

Xiangxi Li1, Yu Zhang2, and Yuxin Deng1⋆

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
Shanghai, China

2 Laboratory for Computer Science, Institute of Software, Chinese Academy of Sciences
Beijing, China

Abstract. Anonymous credentials are widely used to certify properties of a cre-
dential owner or to support the owner to demand valuable services, while hid-
ing the user’s identity at the same time. A credential system(a.k.a. pseudonym
system) usually consists of multiple interactive procedures between users and or-
ganizations, including generating pseudonyms, issuing credentials and verifying
credentials, which are required to meet various security properties. We propose
a general symbolic model (based on the applied pi calculus) for anonymous cre-
dential systems and give formal definitions of a few important security properties,
including pseudonym and credential unforgeability, credential safety, pseudonym
untraceability. We specialize the general formalization and apply it to the verifi-
cation of a concrete anonymous credential system proposed by Camenisch and
Lysyanskaya. The analysis is done automatically with the tool ProVerif and sev-
eral security properties have been verified.

1 Introduction

The use of anonymous credential systems (sometimes called pseudonym systems) [11]
is by far the best known idea to protect personal informationin communications. These
systems use pseudonyms generated by special random processes instead of users’ pri-
vate information to identify the user in order to guarantee the anonymity of users. A
credential can be issued to a pseudonym, and the corresponding user can show her pos-
session of the credential, without revealing any information beyond the bare fact that
she owns such a credential. For a credential system to be useful, some basic properties
must be satisfied. For example, a user should not be able to make transactions with
others by using a credential not issued by some valid organization (credential unforge-
ability), and transactions carried out by the same user cannot be linked (unlinkabilityor
untraceability). In some applications it might be desirable that a credential can only be
used once (one-show credential) or a user cannot lend her credentials to others (non-
transferability).

It is widely known that designing good security protocols isan error-prone task.
There were protocols which had been used in practical applications for many years but

⋆ The first and the third authors are supported by the National Natural Science Foundation of
China (Grant No. 60703033).

later on were found to be flawed. Examples include Needham-Schroeder [14], SSL [19]
and PKCS [20]. Formal methods were introduced as a promisingtechnique to analyze
security protocols and in many cases the analysis can be donewith automatic tools. As
a case study in this respect, we formalize the anonymous credential system proposed
by Camenisch and Lysyanskaya [10] (which we shall refer to asthe CL system in the
sequel) in the applied pi calculus [3] and we employ the tool ProVerif [8] to analyze
several security properties of the system.

To our knowledge, this is the first formal, automated verification (at the symbolic
level) of this type of security systems, although many credential systems, as a main
research concern of cryptography, have been verified using traditional, semi-formal ap-
proaches in cryptography. The main part of our work is devoted to the mechanized anal-
ysis of the CL system, which is probably the most complex pseudonym system targeting
many security requirements but remaining efficient. We have checked that the system
satisfies two very basic properties: unforgeability (of both pseudonyms and credentials)
and user privacy (pseudonym untraceability). A less arresting property, which we call
credential safetyand aims at preventing unauthorized use (or stealing) of credentials, is
not met by the system — the traditional replay attack breaks safety.

However, we regard our contribution as more than just a case study using ProVerif.
As credential systems become more and more widely used in large-scale security ap-
plications and many protocols have been proposed, we have been very careful in for-
malizing the system to make our model scalable. In particular, we provide a general
modeling framework in the applied pi calculus and we believethat the formalization
of most credential systems falls into it. In fact, we are currently studying other systems
with significantly different implementation from the CL system.

The rest of the paper is structured as follows: In Section 2 webriefly introduce the
applied pi calculus, as well as the formalization of zero-knowledge proofs by Backes
et al. Section 3 gives a general description of credential systems and an overall mod-
eling structure in applied pi. The next section formalizes four most important security
properties: pseudonym unforgeability, credential unforgeability, credential safety and
pseudonym untraceability, and summarizes the verificationresults in ProVerif of the
basic credential system of Camenisch and Lysyanskaya. Section 5 discusses related
work and Section 6 concludes the paper.

2 The applied pi calculus

2.1 Syntax and semantics

We briefly recall the syntax and operational semantics of theapplied pi calculus; more
details can be found in [3].

A signatureΣ is a finite set of function symbols. Given a signatureΣ, an infinite set
of termsis defined by the following grammar:

M,N := a, b, c, . . . , k, . . . names
| x, y, z variables
| f (M1, . . . ,Ml) function applications

wheref ranges over the functions inΣ andl matches the arity off . Terms are equipped
with anequational theory Ewhich consists of a set of equations over terms. We write
Σ ⊢ M = N when the equationM = N is in the theory associated withΣ, andΣ 0 M =
N for the opposite.

The grammar forplain processis similar to the one in the pi calculus [16], except
that here messages can contain terms rather than names.

P,Q,R := 0 null processes
| P|Q parallel composition
| !P replication
| νn .P name restriction
| if M = N then P else Q conditional
| u(x) .P message input
| u(N) .P message output

The null process 0 does nothing and is usually omitted from process specifications.
The processP|Q executesP and Q in parallel, and !P stands for an infinite copies
of P running in parallel. The processνn.P generates a fresh namen and behaves as
P. The processif M = N then P else Q behaves asP if Σ ⊢ M = N, and as
Q otherwise. The input processu(x).P can receive a messageN from channela and
behaves asP{N/x}. We often take the abbreviationν(̃u).P for νu1. · · · .νun.P andu(=
M).P for

u(x) . if x = M then P else 0.

The output processu〈N〉.P sends messageN on channela and behaves asP.
Extended processesare defined withactive substitutions:

A, B,C ::= P plain process
| A|B parallel composition
| νx.A variable restriction
| {M/x} active substitution
| event(x1, . . . , xn) events

where{M/x} is the substitution that replaces the variablex with the termM. The process
νx.({M/x}|P) restricts the scope of substitution inP and is often written aslet x =
M in P. As usual, names and variables have scopes, which are delimited by restrictions
and inputs. We writef v(A) andbv(A) (resp. f n(A) andbn(A)) for the sets of free and
bound variables (resp. names) ofA. An extended process isclosedwhen every variable
is either bound or defined by an active substitution. Events are supported by ProVerif
and are used to define traces of processes.

Every extended process can be mapped to aframeϕ(A) by replacing every plain
process embedded inA with 0. Thus, a frame is built up from 0 and active substitutions
by parallel composition and restriction. The frameϕ(A) can be viewed as the static
knowledge exposed by A to the environment, but not asA′s dynamic behavior. The
domaindom(ϕ) of a frameϕ is the set of variables thatϕ exports.

An evaluation contextis a context (a process with a hole) whose hole is not under a
replication, a conditional, an input, or an output. A context C[] closesA whenC[A] is
closed.

The semantics of the applied pi calculus are defined by structural equivalence and
internal reduction.Structural equivalence≡ is the smallest equivalence relation on ex-
tended processes that satisfies the following rules and thatis closed underα-renaming
of names and variables and under application of evaluation contexts.

A ≡ A|0 PAR-0
A|(B|C) ≡ (A|B)|C PAR-A
A|B ≡ B|A PAR-C
!P ≡ P|!P REPL
{M/x}|A ≡ A{M/x} SUBST

νn.0 ≡ 0 NEW-0
νm.νn.A ≡ νn.νm.A NEW-C
νx.{M/x} ≡ 0 ALIAS
{M/x} ≡ {N/x},

if Σ ⊢ M = N
REWRITE

Internal reduction→ is the smallest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

u〈x〉.P | u(x).Q → P | Q COMM
if M = M then P else Q → P THEN
if M = N then P else Q → Q

for all ground termsM,N s.t.Σ 0 M = N
ELSE

Observational equivalence is an important relation for theapplied pi calculus. In-
tuitively, two processes are observationally equivalent if no evaluation context can dis-
tinguish them; evaluation contexts are often used to model attackers. We writeA ⇓ a
whenA can send a message ona, i.e A→∗ C[ā〈M〉.P] for some evaluation contextC
that does not binda.

Definition 1. Observational equivalence (≈) is the largest symmetric relationR be-
tween closed extended processes with the same domain such that AR B implies:

1. if A ⇓ a, then B⇓ a;
2. if A→∗ A′, then B→∗ B′ and A′ R B′ for some B′.
3. C[A] R C[B] for all closing evaluation contexts C[].

Trace properties are also important in process calculi.Correspondencewas intro-
duced to capture these properties [8].

Definition 2 (Correspondence).The closed process P satisfies thecorrespondence:

P
 event(f (x1, . . . , xi)) event(f ′(y1, . . . , y j))

means that if the event f(x1, . . . , xi) is executed, then event f′(y1, . . . , y j) must have been
executed. The closed process P satisfies theinjective correspondence:

P
 event(f (x1, . . . , xi))! event(f ′(y1, . . . , y j))

means that for each event f(x1, . . . , xi) being executed, there is a unique event f′(y1, . . . , y j)
which has been previously executed.

We refer the reader to [8] for the technical definition of correspondences.

2.2 Representing zero-knowledge proofs in applied pi

Zero-knowledge proofs become a widely used technique in constructing modern cryp-
tographic protocols [18], including many credential systems. Loosely speaking, a zero-
knowledge proof consists of a message or a sequence of messages that constitute a proof
of a statement, which yields nothing but the validity of the statement. The applied pi
calculus does not natively support the verification of security protocols involving zero-
knowledge proofs, but Backeset al.have extended the tool ProVerif to enable modeling
and analyzing non-interactive zero-knowledge proofs [5].

Let Σbase be a base signature including logic and arithmetic operations as well as
basic cryptographic primitives such as encryption, decryption, digital signature, etc.,
andEbasebe an equational theory forΣbase. For representing zero-knowledge, we need
to extend the equational theory, based on an extended signature:

ΣZK = Σbase∪ {ZKi, j , Veri, j , Publici , Formula, true | i, j ∈ N}

A non-interactive zero-knowledge proof is formalized as a termZKi, j(M̃, Ñ, F), where
M̃ denotes the term sequenceM1, . . . ,Mi which represent theprivate componentsof the
statement that are not revealed to the verifier and the adversary, andÑ denotes the term
sequenceN1, . . . ,N j which represent thepublic componentsof the statement, andF
constitutes a formula over these terms. In particular, we fixa distinguished set of vari-
ablesZV = {α1, α2, . . . , β1, β2, . . .} which are only used to construct zero-knowledge
formulas. Intuitively,α variables can be substituted by private components andβ vari-
ables by public components. We call a termF an (i, j)-formula if it contains no names
and fv(F) ⊆ {α1, . . . , αi , β1, . . . , β j}. Publici , Formula are operations for retrieving,
respectively, thei-th public element and the formula from a proof, andVeri, j is the
function which verifies a proof against a formula. We shall often omit the arities ofZKi, j

andVeri, j when they are clear from the context.
The equational theoryEZK for representing zero-knowledge is the smallest the-

ory satisfying all equations inEbaseand the following equations defined over all terms
M̃, Ñ, F:

Publicl(ZKi, j(M̃, Ñ, F)) = Nl , 1 ≤ l ≤ j,
Formula(ZKi, j(M̃, Ñ, F)) = F,
Veri, j(F, ZKi, j(M̃, Ñ, F)) = true iff EZK ⊢ F{M̃/α̃}{Ñ/β̃} = true

andF is an (i, j)-formula.

Backeset al.also supply several techniques for dealing with infinite equational theories,
so as to enforce the termination of the verification in ProVerif. We refer the reader
to [18] for details.

3 A general description of credential systems in applied pi

In general, a credential system consists of two types of agents:userswho wish to anony-
mously prove part of their personal information or use valuable services through cre-
dentials, andorganizationswho issue credentials to users and verify the validity of

credentials shown by users. Inanonymouscredential systems, a user needs first to in-
teract with an organization to establish a pseudonym beforedemanding a credential.
The user is then known at the organization by the pseudonym, which is usually based
on some information known by the organization about the user(e.g. an account in a
bank). A real individual can have a pseudonym at each organization, or even multiple
pseudonyms at one organization. However, organizations should not be able to link two
different pseudonyms belonging to the same user. Credentials are issued by organiza-
tions to pseudonyms instead of real identities: when demanding a credential, the user
interacts with the organization in the name of the pseudonymthat he has established,
and obtains a credential which can be shown by the user to another organization in the
verifying procedure.

3.1 Modeling credential systems

We give a general framework of modeling credential systems in applied pi, by defining
the overall structure of processes without concrete definitions. In later sections we shall
see how a real credential system can be modeled following thestructure. The model of
a credential system in applied pi generally consists of two types of processes: the user
processes and the organization processes.

When a user enters the system, she must first demand a pseudonym at some orga-
nization, and then use this pseudonym to demand and show credentials, hence a user
process can be generally defined as

UP
def
= ν(̃u) . !ckey(j, pkj) .UN(j, pkj) . (!UC(j, pkj, nymj) | !UV(j, pkj , nymj))

ũ is a set of secret channels inside the user process which are basically used to transmit
secret data like keys, randoms, and so on. The processUN(j, pkj) models the user’s
behavior of establishing a pseudonym at the organizationO j and the user must receive
the correct public keypkj properly (e.g., from a secret channelckey shared between
users and organizations). The processUC(j, pkj , nymj) models the user’s behavior of
demanding a credential from the organizationO j , in name of the pseudonymnymj

that has been established inUN(j, pkj). In the end of the process, the generated cre-
dential must be recorded together with the ID of the issuing organization. The pro-
cessUV(j, pkj, nymj) models the user’s behavior of showing a credential using the
pseudonymnymj . There are in general two manners of showing a credential:

UV(j, pkj , nymj)
def
= !ui(= j, credj) .UV1(j, pkj , credj)

| !ui(l, credl) .UV2(j, pkj , nymj, l, pkl, credl),

whereUV1(j, pkj, credj) models the behavior of showing a single credentialcredj is-
sued by the organizationO j andUV2(j, pkj, nymj, l, pkl , credl) models the behavior of
showing a credentialcredl issued by the organizationOl , using the pseudonymnymj

(known atO j . Note that in the first procedure, the credential can be essentially shown
to any valid organization, while in the latter it can only be shown toO j , i.e., the or-
ganization who knows the pseudonymnymj. If the system guarantees unlinkability of
pseudonyms, this does not break the anonymity.

Correspondingly, an organization process consists of generating a pseudonym, is-
suing a credential and verifying a credential:

OP
def
= ν(̃o) . !ON . (!OC(nym) | !OV1(l, pkl, cred) | !OV2(l, pkl, nym, cred)),

where the processON models the organization’s behavior of establishing a pseudonym
nym, OC(nym) models the behavior of issuing a credential tonym, OV1(l, pkl, cred)
models the behavior of verifying the credentialcredandOV2(l, pkl, nym, cred) models
the behavior of verifying the credentialcred, plus the statement that its owner has the
pseudonymnym. Note thatnym in UV2 must be the pseudonym established by the
organization, butcred in UV1 andUV2 can be an arbitrary credential issued by a valid
organization (presumably the organizationOl). It is possible that some organizations
only do the verification and never issue credentials, and in modeling a concrete system,
one can safely remove the corresponding processes.

The whole credential system is then modeled as a set of user processes and organi-
zation processes running in parallel.

3.2 Events

As we shall see in Section 4, many security properties are defined using the notion of
correspondencebetween events, which must be added at right places when we define
processes. We summarize here a set of events which can be commonly defined in many
credential systems and are sufficient for defining and verifying their security properties.

– NymGeneratedNymGeneratedNymGenerated(U, n): The userU executes this event when she establishes a pseudonym
n with some organization.

– NymApprovedNymApprovedNymApproved(O, n): The organizationO executes this event when he approves that
the pseudonymn is correctly formed.

– CredIssuedCredIssuedCredIssued(O, c, n): The organizationO executes this event after she issues the
credentialc to the pseudonymn.

– UserShowUserShowUserShow(U, c): A user executes this event when he starts a session of showing a
credentialc with a verifying organization.

– CredVerifiedCredVerifiedCredVerified(O, c,O′): Verifier O executes this event after the credentialc has
been shown to her and she is convinced thatc has been issued by organizationO′.

– CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′): The verifying organizationO executes this event
after the credentialc has been shown to her with the pseudonymn and she is con-
vinced thatc has been issued byO′ to the user. Note thatn is not the pseudonym to
whichc has been issued to, but the one that is known by the verifierO. In principle,
the user must possess another pseudonymn′ (known byO′)and has usedn′ to get
the credentialc before she shows it, but this pseudonym is irrelvant in the verifying
procedure. in short,n hides the user’s identity at the verifying organization andn′

protects her at the issuing organization.

We remark that events are not necessary for modeling protocols, but rather for speci-
fying security properties based on traces, so only processes representing honest agents
will execute these events — adversaries never execute events. When defining security
properties using these events, we often omit some parameters (replaced by) when they
are irrelevant.

4 Security analysis of an anonymous credential system

In this section we apply the general modeling of the previoussection to the anonymous
credential system proposed by Camenisch and Lysyanskaya [10], and do a verification
using ProVerif. The basic system consists of four protocolsfor, respectively, pseudonym
generation, credential generation, showing a single credential and showing a credential
w.r.t. a pseudonym. Due to the page limit, we only present here an abstract definition of
the whole system. Detailed description of protocols and corresponding process specifi-
cations in applied pi can be found in Appendix A.

Definition 3 (Basic credential system).Thebasic credential systemof the CL system
is a process in applied pi:

BCS
def
= ν(ckey) . (UP1 | . . . | UPn | OP1 | . . . | OPm),

whereckey is a secret channel for transferring organizations’ publickeys between hon-

est agents, UPi
def
= ν(cui) . !(ckey(l, pkl) .UNi(l, pkl)), modeling each user agent, and

OPj
def
= ν(seedj) . let pkj = pkey(seedj), skj = skey(seedj) in

!ckey(j, pkj) |!c(j, pkj) |!ONj |!VPj

modeling each organization agent, wherec is a public channel allowing agents includ-
ing adversaries to communicate with each other.

Definitions of the processesUNi ,ONj ,VPj can be found in Appendix A.
The rest of the section is devoted to the formalization and verification of basic secu-

rity properties: unforgeability of credentials and pseudonyms, safety of credentials and
user privacy (pseudonym untraceability), which are supposed to be met by the CL basic
system.

Let CS be a model of a credential system defined in applied pi, such asBCS in
Definition 3. We writeU(CS) for the set{U1, . . . ,Un} where eachUi is a process rep-
resenting an honest user agent, andO(CS) for the set{O1, . . .Om} where eachO j is a
process representing an honest organization agent.

4.1 Unforgeability

Unforgeabilityof pseudonyms and credentials is the very basic security requirement
of anonymous credential systems, which in principle prevents adversaries from forging
fake credentials. Fake pseudonyms must be prevented too, since credentials are issued
to pseudonyms, never to real identities.

Definition 4 (Pseudonym unforgeability). A credential system CS respects
pseudonym unforgeabilityif whenever an organization O′ ∈ O(CS) issues a creden-
tial c to a pseudonym n′, she must have established this pseudonym with a user:

CS
 CredIssuedCredIssuedCredIssued(O′, c, n′) NymApprovedNymApprovedNymApproved(O′, n′), (1)

and whenever an organization O∈ O(CS) verifies a credential c that is shown to her
w.r.t. a pseudonym n and is claimed to be issued by O′, the verifier must have established
the pseudonym with the user:

CS
 CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′) NymApprovedNymApprovedNymApproved(O, n), (2)

Definition 5 (Credential unforgeability). A credential system CS respectscredential
unforgeabilityif every successful showing (either single or with a pseudonym n at orga-
nization O) of a credential c, being claimed to be issued by anorganization O′ ∈ O(CS),
implies that O′ has previously issued c to some pseudonym n′:

CS
 CredVerifiedCredVerifiedCredVerified(, c,O′) CredIssuedCredIssuedCredIssued(O′, c, n′). (3)

CS
 CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′) CredIssuedCredIssuedCredIssued(O′, c, n′). (4)

If a credential system respects both pseudonym unforgeability and credential unforge-
ability, we say that it is anunforgeable credential system.

The definition of credential unforgeability does not exclude the case where the ad-
versary can forge avalid credential that has indeed been generated by an honest orga-
nization, but not to the adversary. We shall consider it as the safety of credentials.

Theorem 1. The CL basic credential system (Definition 3) is an unforgeable credential
system, i.e., it respects the unforgeability of both pseudonyms and credentials.

Proof. We check the four correspondences (1), (2), (3) and (4) in ProVerif. ⊓⊔

4.2 Credential safety

Credentialsafetyaims at preventing adversaries fromstealingor using unauthorizedly
a valid credential. In other words, no one other than the honest user, to whom a valid
credential has been issued to, can successfully show the credential to a verifier. How-
ever, there is a subtle situation where safety can be confused with unforgeability: if an
adversary can forge a credential which has been generated byan honest organization
to an honest user, we shall consider it as an attack to safety instead of unforgeability.
In fact, when we talk about credential safety, we actually mean safety ofunforgeable
credentials, or safety inunforgeable credential systems.

Definition 6 (Credential safety).A credential c in an unforgeable credential system
CS issafeif there is an injective correspondence between the event indicating that c
(being issued by O∈ Org(CS)) is successfully verified, and the event indicating that
some user U∈ U(CS), who must be the owner of the credential, starts to show c, i.e,
for all pseudonym n′,

CS
 CredVerifiedCredVerifiedCredVerified(, c,O′) CredIssuedCredIssuedCredIssued(O′, c, n′)
⇒ CS
 CredVerifiedCredVerifiedCredVerified(, c,O′)! UserShowUserShowUserShow(U, c)

∧ NymApprovedNymApprovedNymApproved(O′, n′) NymGeneratedNymGeneratedNymGenerated(U, n′).
(5)

If c is shown with respect to a pseudonym n at O∈ O(CS), then the user must be the
owner of n, i.e., there exists another pseudonym n′,

CS
 CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′) CredIssuedCredIssuedCredIssued(O′, c, n′)
⇒ CS
 CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′)! UserShowUserShowUserShow(U, c)

∧ NymApprovedNymApprovedNymApproved(O′, n′) NymGeneratedNymGeneratedNymGenerated(U, n′)
∧ NymApprovedNymApprovedNymApproved(O, n) NymGeneratedNymGeneratedNymGenerated(U, n)

(6)

If an unforgeable credential system respects credential safety, we say it is asafe creden-
tial system.

Unfortunately, the CL basic system is not safe if we assume the channels between
users and organizations is insecure as in normal networkingenvironment. There is a
replay attack to safety, which works as follows: in the case of showing a single creden-
tial, the adversary can recordA, B in Protocol 3 and all messages in the zero-knowledge
proof, then sends them repeatedly to a verifier. The reused zero-knowledge proof simply
passes. ProVerif actually shows that the injective correspondence in (5) fails. The same
attack simply applies in the case of showing a credential w.r.t. a pseudonym, but the
adversary can only show the credential to the organization whom the user has shown it
to, since she cannot change the pseudonym that is used in the verification.

Note that an adversary can steal a pseudonym too and even use it to demand a new
credential, but she cannot show it as in that case she cannot forge a proof for showing
the credential. In fact, in credential systems, what we careabout is what people can do
with credentials, not what they can do with pseudonyms, so wedo not define a property
like pseudonym safety.

4.3 Pseudonym untraceability

Anonymous credential systems are designed essentially forproviding user privacy. Cre-
dentials are issued to pseudonyms, so user privacy in credential systems indeed depends
on what we can deduce based on pseudonyms. In particular, organizations should not be
able to collectively distinguish pseudonyms that belong todifferent users. We call this
propertypseudonym untraceability, and in the applied pi calculus, this is formalized by
the popular notion ofobservational equivalence.

Definition 7 (Pseudonym-untraceability). A credential system CS respects
pseudonym untraceabilityif for arbitrary users Ui ,U j ∈ U(CS) and a well formed
public key pk0,

UNi(, pk0) ≈ UN j(, pk0),

where UNi (resp. UNj), as defined in Definition 3, models the procedure of establishing
a pseudonym by the user Ui (resp. Uj) and all her behavior involving the pseudonym in
the system.

Theorem 2. The basic credential system respects pseudonym untraceability, i.e.
UNi(l, pkl) ≈ UN j(l, pkl).

Proof. ProVerif supports proving observational equivalence of two processes which
differ only in the choice of some terms. In our definition of pseudonym untraceability,
we are actually proving: for allUi ,U j ∈ U(BCS), UNi(0, pk0) ≈ UNi(0, pk0)[x j/xi].
ProVerif shows that the above observational equivalence holds. ⊓⊔

5 Related work

A security model for anonymous credential systems was proposed by Pashalidis and
Mitchell [17]. It follows the idea of Bellare and Rogaway [6]based on complexity
theoretic arguments, which potentially leads to information theoretic anonymity met-
rics. The model does not specify how the credential system achieves its goals but de-
fines what the goals are. Some basic properties such as credential unforgeability, non-
transferability, pseudonym unlinkability, and pseudonymowner protection are formally
defined and the relationships between them are explored. Compared with our defini-
tions, their definitions are based on a computational model while ours are based on the
applied pi calculus and allow an automatic verification.

Abadi and Fournet introduced the applied pi calculus [3] as alanguage for reasoning
about security protocols. The calculus inherits communication and concurrency for the
pure pi calculus [16], and introduces functions and equations to reason about complex
messages transmitted in security protocols. ProVerif [7] is an automatic cryptographic
protocol verifier for the analysis of trace-based security properties and observational
equivalence. It accepts applied pi processes as inputs and translates them into Horn
clauses. Using this tool, Blanchetet al. verified a protocol for certified emails [1], a
protocol for secure file sharing on untrusted storage [9], aswell as the JFK protocol [2].
Luo et al.[15] analyzed an electronic cash protocol, and Kremer and Ryan [12] verified
an electronic voting protocol. Backeset al. [5] introduced an implementation of zero-
knowledge in equational theories acceptable by ProVerif and applied it to the analysis
of a remote electronic voting protocol [4].

6 Conclusion

In this paper we have presented a general formalization of credential systems and some
important security properties. We apply them to the concrete credential system pro-
posed by Camenisch and Lysyanskaya and have verified that thebasic system satisfies
unforgeability for both pseudonyms and credentials, and pseudonym untraceability. We
also reveal an attack to the system which allow adversaries to steal and unauthorizedly
use a credential.

We argue that the model that we propose in the paper is faithful enough. However,
as the original protocol itself is not written in a formal language, there is no way to
formally prove that our model faithfully specify the original protocol. Nevertheless, if
we assume that the specification is correct, then the soundness of ProtoVerif already
guarantees the correctness of the verification output.

One novelty of the CL system, compared with other credentialsystems, is the im-
plementation of non-transferable credentials which prevent users from lending their
credentials. As part of the future work, we shall investigate how to formalize non-
transferability, as well as other interesting, advanced properties like non-reshowability.
We are also trying to transplant our model to other credential systems, in order to es-
tablish a scalable model of analyzing credential systems with the applied pi calculus.
Another interesting work would be to focus on improving the efficiency for verifying
complex systems using zero-knowledge proofs heavily. How to optimize equational
theories to speed up termination is still a challenging problem.

References

1. Martı́n Abadi and Bruno Blanchet. Computer-Assisted Verification of a Protocol for Certi-
fied Email. InProceedings of the 10th International Symposium on Static Analysis, volume
2694 ofLecture Notes on Computer Science, pages 316–335. Springer Verlag, 2003.

2. Martı́n Abadi, Bruno Blanchet, and Cédric Fournet. Justfast keying in the pi calculus. In
Proceedings of the 13th European Symposium on Programming, volume 2986 ofLecture
Notes in Computer Science, pages 340–354. Springer, 2004.

3. Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, volume 36, pages 104–115. ACM, 2001.

4. Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of remote elec-
tronic voting protocols in the applied pi-calculus. InProceedings of the 21st IEEE Computer
Security Foundations Symposium, pages 195–209. IEEE Computer Society, 2008.

5. Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the applied
pi-calculus and automated verification of the direct anonymous attestation protocol. InPro-
ceedings of the IEEE Symposium on Security and Privacy, pages 202–215. IEEE Computer
Society, 2008.

6. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. InProceed-
ings of the 13th Annual International Cryptology Conference, volume 773 ofLecture Notes
in Computer Science, pages 232–249. Springer, 1993.

7. Bruno Blanchet. Proverif: Cryptographic protocol verifier in the formal model. Available at
http://www.proverif.ens.fr/.

8. Bruno Blanchet. Automatic verification of correspondences for security protocols.Journal
of Computer Security, 2008. To appear, Available at http://arxiv.org/abs/0802.3444.

9. Bruno Blanchet and Avik Chaudhuri. Automated formal analysis of a protocol for secure
file sharing on untrusted storage. InProceedings of the IEEE Symposium on Security and
Privacy, pages 417–431. IEEE Computer Society, 2008.

10. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. InProceedings of the International Confer-
ence on the Theory and Application of Cryptographic Techniques, volume 2045 ofLecture
Notes in Computer Science, pages 93–118. Springer, 2001.

11. David Chaum. Security without identification: Transaction systems to make big brother
obsolete.Communications of the ACM, 28(10):1030–1044, 1985.

12. Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the applied pi
calculus. InProceedings of the 14th European Symposium on Programming, volume 3444
of Lecture Notes in Computer Science, pages 186–200, 2005.

13. Xiangxi Li, Yu Zhang, and Yuxin Deng. ProVerif scripts for veri-
fying a non-transferable anonymous credential system. Available at
http://basics.sjtu.edu.cn/˜xiangxi/credentialsys.rar.

14. Gavin Lowe. An attack on the needham-schroeder public-key authentication protocol.In-
formation Processing Letters, 56:131–133, 1995.

15. Zhengqin Luo, Xiaojuan Cai, Jun Pang, and Yuxin Deng. Analyzing an electronic cash
protocol using applied pi calculus. InProceedings of the 5th International Conference on
Applied Cryptography and Network Security, volume 4521 ofLecture Notes in Computer
Science, pages 87–103. Springer, 2007.

16. Robin Milner.Communicating and Mobile Systems: theπ-Calculus. Cambridge University
Press, 1999.

17. Andreas Pashalidis and Chris J. Mitchell. A security model for anonymous credential sys-
tems. InProceedings of the 19th International Workshop on Information Security, pages
183–198. Kluwer, 2004.

18. Shafi Goldwasser Silvio Micali Charles Rackoff. The knowledge complexity of interactive
proof-systems.SIAM Journal on Computing, 18(1):186–207, 1989.

19. Kurt Seifried. The end of ssl and ssh? Available at
http://seifried.org/security/cryptography

/20011108-end-of-ssl-ssh.html.
20. Jean sbastien Coron, Marc Joye, David Naccache, Pascal Paillier, École Normale Supérieure,

Gemplus Card International, and Gemplus Card International. New attacks on pkcs #1 v1.5
encryption. InIn Advances in Cryptology – Eurocrypt 2000, pages 369–379. Springer Verlag,
2000.

A Description and modeling of the CL basic system

A.1 Setup of the CL system

The CL system uses the asymmetric cryptography (typically RSA) to implement anony-
mous pseudonyms and credentials. Each organizationO j will have a public keyPK j

consisted of anRS Amodulusn j, and five elements ofQRnj : (a j, b j , d j, g j, h j), the cor-
responding secret key that contains the factorization ofn j . Each userUi has a master
secret keyxi .

A pseudonymNi j — a name forUi being known atO j — consists of a user-
generated partN1 and organization-generated partN2. Every pseudonymNi j will be
tagged with avalidating tag Pi j . A credential issued byO j to a pseudonymNi j is pair
(e, c), wheree is a sufficiently long prime chosen byO j , andc = Pi j d j

1/e (mod n j). Un-
der the strongRS Aassumption, such tuples cannot be existentially forged forcorrectly
formed tags even by an adaptive attack, since no one can generatec from e without
knowing the factorization ofn j.

Zero knowledge is applied in the system to protect users’ privacy. A proof of pos-
session of a credential is realized by a proof of knowledge ofa correctly formed tag
Pi j and a credential on it. This is done by publishing statistically secure commitments
to both the validating tag and the credential, and proving relationships between these
commitments. It can also include a proof that the underlyingsecret key is the same in
both the committed validating tag (corresponding to the pseudonym formed with the
issuing organization) and the validating tag with the verifying organization.

The base signature for analyzing the CL system consists basically of two sorts of
functions: basic crytpographic primitives (e.g.,enc, dec for encryption and decryption
andpkey, skey for generating asymmetric key pairs) and cyclic group arithmetic oper-
ations (e.g.,add, mult, exp andinv for group addition, multiplication, exponentiation
and inverse operation). The equational theory for this signature contains standard equa-
tions for cryptography and RSA arithmetic. Detailed definition can be found in [13].

A.2 Basic credential system and its model in applied pi

The CL basic system consists of four protocols for, respectively, pseudonym genera-
tion, credential generation, showing a single credential and showing a credential w.r.t.
a pseudonym. We briefly describe these protocols and give theuser and organization
processes corresponding their behavior in each protocol.

Protocol 1 (Pseudonym generation)UserUi follows the protocol below to establish
a pseudonym at organizationO j :

1. Ui chooses valuesN1, r1, r2, r3, setsC1 = gr1
j hr2

j ,C2 = gxi
j hr3

j and sendsN1,C1,C2

to O j. Ui proves thatC1 andC2 are formed correctly in

PK{(α1, α2, α3, α4) : C1 = gα1
j hα2

j ∧C2 = gα3
j hα4

j }.

2. O j generates two randomsr,N2 and sends them toUi .
3. Ui computessi j = r1 + r, sets the pseudonymNi j = (N1,N2) and the validating tag

Pi j = axi
j b

si j

j , then sendsPi j to O j . Ui proves thatPi j is formed correctly in

PK{(α, β, γ, δ, ε) : C1 = gαj h
β

j ∧C2 = gγj h
δ
j ∧ Pi j = aγj b

ε
j }

In this protocol, every generated pseudonymNi j corresponds to a validating tagPi j ,
and they are stored in pair by bothUi andO j . HerePi j is used to distinguish different
pseudonyms, and the representation ofPi j with respect tog j andh j is an essential part
when showing a credential.

The user process and the organization process for the protocol are defined as:

UNi(j, pkj)
def
= ν(N1, r1, r2, r3) .

let C1 = exp((g j, h j), (r1, r2)), C2 = exp((g j, h j), (xi, r3)) in

let zp1 = ZK(r1, r2, xi , r3; C1,C2, g j, h j; F1) in

co j((N1,C1,C2), zp1) . cu(r,N2) .

let Ni j = (N1,N2), si j = r1 + r, Pi j = exp((a j, b j), (xi , si j)) in

let zp2 = ZK(r1, r2, xi , r3, si j ; C1,C2, g j, h j, a j, b j,Pi j ; F2) in

NymGeneratedNymGeneratedNymGenerated(Ui ,Ni j) . co j(Pi j , zp2) .

(!UCi(j,Ni j ,Pi j) | !(cui(l, cred) .UV2
i (j, l, cred,Ni j))),

ONj
def
= co j(N1,C1,C2, z1) .

if Ver(F1, z1) = true then

ν(r,N2) . cu(〈r,N2〉) . co j(P, z2) .

if Ver(F2, z2) = true then

let N = (N1,N2) in

NymApprovedNymApprovedNymApproved(O j ,N) . (!OCj(N,P) | !OVj(N,P))

where

F1
def
= (β1 = exp((β3, β4), (α1, α2)) ∧ β2 = exp((β3, β4), (α3, α4))),

F2
def
= (β1 = exp((β3, β4), (α1, α2)) ∧ β2 = exp((β3, β4), (α3, α4))

∧ β7 = exp((β5, β6), (α3, α5))),

andco j andcu are public channels,cui is a secret channel inside the process ofUi .
UCi(j,Ni j ,Pi j) is the user process of demanding a credential fromO j , using the pseudonym

Ni j (together with the validating tagPi j). UV2
i (j, l, cred,Ni j) is the user process of

showing, to organizationO j , the credentialcred issued by organizationOl , using the
pseudonymNi j . OCj(N,P) andOVj(N,P) represent, respectively, the organization pro-
cesses of issuing a credential to the pseudonymN and of verifying a credential sent by a
user using the pseudonymN. Note that the credential issue and verification can be done
separately at the organization side (by different processes in parallel), but they must be
done sequentially in the user process.

The eventsNymGeneratedNymGeneratedNymGenerated and NymApprovedNymApprovedNymApproved are executed in this protocol:
NymGeneratedNymGeneratedNymGenerated is executed by the user right after he receives the organization part
of the pseudonym, andNymApprovedNymApprovedNymApproved is executed by the organization at the end of the
protocol, when he receives the validating tag and verifies the validity of its form.

Note that the user is assumed to communicate with the organization via ananony-
mouschannel, which is modeled using a global public channelc, and we rely on the
scheduler to determine the right destination of messages transmitted on the channel.
In particular, there is no successful trace where the response of an organization is sent
to a wrong user, as in that case the organization will fail in checking the the second
zero-knowledge proof.

Protocol 2 (Credential generation) UserUi follows the protocol below to demand a
credential from organizationO j :

1. Ui sends (Ni j ,Pi j) to O j and proves the ownership in

PK{(α, β) : Pi j = aαj b
β

j }.

2. O j checks that (Ni j ,Pi j) is in its database, chooses a random primee, computes
c = (Pi j d j)1/e mod n j , sendsc ande to Ui and stores (c, e) in its record forNi j .

3. Ui checks ifce = Pi j d j mod n j; if so, she stores (c, e) in its record with organiza-
tion O j . The tuple (c, e) is called acredential record.

The cryptographic assumption ensures that an adversary whodoes not know the factor-
ization ofn j should not be able to generatec from e.

The user process and the organization process of credentialgeneration are:

UCi(j,Ni j ,Pi j)
def
= let zp3 = ZK(xi , si j ; Pi j , a j, b j; F3) in

co j(Ni j ,Pi j , zp3) . cu(ci j , ei j) .

if exp(ci j , ei j) = mult(Pi, j, d j) then

let credi j = (ci j , ei j) in

!cui(j, credi j) | !UV1
i (j, credi j)

OCj(N,P)
def
= co j(N′,P′, z3) .

if Ver(F3, z3) = true then

ν(e) . let c = exp(mult(P, d j), inv(e)), cred= (c, e) in

CredIssuedCredIssuedCredIssued(Oi , cred,N) . cu(c, e),

where
F3

def
= β1 = exp((β2, β3), (α1, α2)).

UV1
i (j, credi j) is the user processes of showing the credentialcredi j to an arbitrary

organization (verifier).
WhenUi receives a credential, she broadcasts it via the internal secret channelcui to

all other sub-processes; whenUi wants to show a credential with respect to a pseudonym
Ni j , she invokes the procedureUV2

i by sending the credential to the procedure viacui .
The eventCredIssuedCredIssuedCredIssued is executed by the organization in this protocol after the

credential is generated.

Protocol 3 (Showing a single credential)UserUi follows the protocol below to show
a credential, issued byO j , to a verifierV (without revealing the combined pseudonym):

1. Ui choosesr ′1, r
′
2, computesA = ci j h

r ′1
j , B = h

r ′1
j g

r ′2
j , and sendsA, B with the creden-

tial to V.
2. U proves the validity of the credential in

PK{(α1, α2, α3, α4, α5, α6, α7) :

d j = Aα1(
1
a j

)α2(
1
b j

)α3(
1
h j

)α4 ∧ B = hα5
j gα6

j ∧ 1 = Bα1(
1
h j

)α4(
1
g j

)α7}

Those who can successfully show a single credential are assumed to know the represen-
tation ofPi j with respect tog j, h j as well as the credential pair (ci j , ei j), so the protocol
should offer sufficiently security even when the transmission of a credentialis unsafe.

The two processes engaged in this protocol are:

UV1
i (j, credi j)

def
= ν(r ′1, r

′
2) .

let A = exp((ci j , h j), (1, r ′1)), B = exp((h j, g j), (r ′1, r
′
2)) in

let zp4 = ZK(ei j , xi , si j , mult(r
′
1, ei j), r

′
1, r
′
2, mult(r

′
2, ei j);

A, B, a j, b j , d j, g j, h j; F4) in

UserShowUserShowUserShow(Ui , credi j) . cv(j, ci j , ei j ,A, B, zp4),

VPj
def
= cv(= j, ci j , ei j ,A, B, z4) .

if Ver(F4, z4) = true then CredVerifiedCredVerifiedCredVerified(, cred,O j),

where

F4
def
= β5 = exp((β1, inv(β3), inv(β4), inv(β7)), (α1, α2, α3, α4))

∧ β2 = exp((β7, β6), (α5, α6)) ∧ 1 = exp((β2, inv(β7), inv(β6)), (α1, α4, α7))

The eventsUserShowUserShowUserShow andCredVerifiedCredVerifiedCredVerified are executed in this protocol:UserShowUserShowUserShow

is executed by the user right before he starts to show a credential andCredVerifiedCredVerifiedCredVerified is
executed by the verifier after verifying the validity of the credential (the first parameter
is omitted since in this protocol the identity of the verifieris irrelevant). In the process
model, we explicitly let the user transmit the credential tothe verifier, which is not
included in the original protocol. This is only for the verifier process to be able to
execute the eventCredVerifiedCredVerifiedCredVerified. It is no harm of sending the credential over a public
channel since any valid credential has been sent over a public channel when it is first
generated.

Protocol 4 (Showing a credential w.r.t. a pseudonym)UserUi follows the protocol
below to show a credential issued by organizationOl , to another organizationO j , using
a pseudonymNi j that she has established withO j :

1. Ui choosesr ′1, r
′
2, computesA = cil h

r ′1
l andB = h

r ′1
l g

r ′2
l , and sendsNi j ,A, B to O j .

2. U proves the validity of the credential and the ownership ofNi j in

PK{(α1, α2, α3, α4, α5, α6, α7, α8) :

dl = Aα1(
1
al

)α2(
1
bl

)α3(
1
hl

)α4 ∧ B = hα5

l gα6

l ∧ 1 = Bα1(
1
hl

)α4(
1
gl

)α7 ∧ Pi j = aα2
j bα8

j }

The above proof has a fourth equation which proves that the same master secret key that
is used in constructing the credentialcil (issued byOl), is also used inPi j , the attached
validating tag of the pseudonymNi j which is established withO j .

The two processes engaged in this protocol are:

UV2
i (j, l, cred,Ni j)

def
= ν(r ′1, r

′
2) .

let A = exp((ci j , h j), (1, r
′
1)), B = exp((h j, g j), (r

′
1, r
′
2)) in

let zp5 = ZK(eil , xi , sil , mult(r ′1, eil), r ′1, r
′
2, mult(r

′
2, eil), si j ;

A, B, al, bl, dl, gl , hl,Pi j , a j, b j; F5) in

UserShowUserShowUserShow(Ui , cred) . co j(k, cred,A, B,Ni j , zp5)

OVj(N,P)
def
= cv(l, cred,A, B,= N, z5) . ckey(= l, pkl) .

if Ver(F5, z5) = true then CredNymVerifiedCredNymVerifiedCredNymVerified(O j ,N, cred,Ol)

where

F4
def
= β5 = exp((β1, inv(β3), inv(β4), inv(β7)), (α1, α2, α3, α4))

∧ β2 = exp((β7, β6), (α5, α6)) ∧ 1 = exp((β2, inv(β7), inv(β6)), (α1, α4, α7))

∧ β8 = exp((β9, β10), (α2, α8))

The two processes are similar as those for Protocol 3, exceptthat the user needs to send
a pseudonym to the verifier and it involves in the zero-knowledge proof.

Similar asCredVerifiedCredVerifiedCredVerified, the eventCredNymVerifiedCredNymVerifiedCredNymVerified is executed in this protocol
by the verifier after the verification, but it contains more information thanCredVerifiedCredVerifiedCredVerified.

