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Abstract

This paper investigates the model of probabilistic program with delays (PPD) that consists of
a few program blocks. Performing each block has an additional time-consumption—waiting
to be executed—besides the running time. We interpret the operational semantics of PPD by
Markov automata with a cost structure on transitions. Our goal is to measure those individual
execution paths of a PPD that terminates within a given time bound, and to compute the minimum
termination probability, i. e. the termination probability under a demonic scheduler that resolves
the nondeterminism inherited from probabilistic programs. When running time plus waiting time
is bounded, the demonic scheduler can be determined by comparison between a class of well-
formed real numbers. The method is extended to parametric PPDs. When only the running time
is bounded, the demonic scheduler can be determined by real root isolation over a class of well-
formed real functions under Schanuel’s conjecture. Finally we give the complexity upper bounds
of the proposed methods.

Keywords: Probabilistic program, program verification, termination analysis, quantitative
evaluation, computer algebra, symbolic computation
2000 MSC: 68Q10, 68Q60, 68W30

1. Introduction

Program verification is an important way to ensure program correctness, i. e., programs
should be designed to meet the predefined specification. The earliest verification work could
date back to von Neumann’s era [29]. A subsequent breakthrough [34] suggested “total correct-
ness of (deterministic) programs equals partial correctness plus termination”. Hence termination
analysis is an essential part of program verification.

There has been a lot of work to reason about termination for deterministic programs, partic-
ularly for the challenging loop programs. A powerful approach is synthesising ranking functions
that force program executions into a well-founded domain and thereby yield termination. By
inductive assertion, linear ranking functions could be effectively synthesised [19, 49, 12]. The
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complexity of synthesis for linear loop programs was shown to be in PTIME when program vari-
ables range over rational numbers (or over real numbers), and be coNP-complete when program
variables range over integers [10]. Verification tools like TERMINATOR [20] and AProVE [28]
have been released to automatically prove termination and other liveness properties. Recently,
ranking functions have been applied to recursion, resulting in measure functions, which turn out
to be a sound and complete approach to proving worst-case bounds of nondeterministic recursive
programs [16].

Randomised algorithms originated in 1970s, and have been widely applied to different fields
in the last decade [30], such as machine learning (Bayesian inference), information security
(randomised encryption), quantum computing. So the interest in probabilistic programs (PPs)
that conveniently describe randomised algorithms is rapidly growing. The formal semantics and
verification of PPs had been considered in [41] and [42, 51] respectively. As PPs have many new
features—probabilistic choice, nondeterministic choice, sampling assignment and observation,
the (sure) termination problem has many variants, partially listed as:

• almost-sure termination—Does an input PP terminate with probability one?

• positive almost-sure termination—Is the expected running time of an input PP finite?

• What is the termination probability of an input PP?

The former two are qualitative problems, and the last one is a quantitative problem. Unfor-
tunately it has been revealed in [38] that all these termination problems for PPs are generally
undecidable/incomputable, as well as the famous halting problem. That is, the three problems
are far beyond the complexity hierarchy Σ0

1 ∩ Π0
1. However, there still exist many methods to

attack some subclasses of them in this active field.
Arons et al. proved liveness properties with probability one (e. g. almost-sure termination)

over parametric programs using planners [4] that occasionally determine the outcome of a finite
sequence of random choices, while the other random choices are performed nondeterministically.
This idea was generalised in [26]. Another approach is computing a threshold for running time,
after which the termination probability decreases exponentially [46]. Fioriti and Hermanns pro-
posed a framework to prove almost-sure termination by ranking super-martingales [27], which
is analogous to ranking functions on deterministic programs. Chakarov and Sankaranarayanan
applied constraint-based techniques to generate linear ranking super-martingales [14]. Chatter-
jee et al. constructed polynomial ranking super-martingales through positivstellensatz’s [15].
A PTIME procedure was given to synthesise lexicographic ranking super-martingales for linear
PPs [3]. The method of ranking super-martingales is not only sound, but also semi-complete over
some meaningful classes of PPs. As an application, they developed an efficient sound approach to
derive expected-runtime bounds for the analysis of recurrence relations induced by randomised
algorithms [17], and analysed expected sensitivity of PPs [54]. The method of ranking function
also works for positive almost-sure termination of PPs [11].

On the other hand, McIver and Morgan generalised the weakest preconditions of Dijkstra
(an approach to prove total correctness [23]) to the weakest pre-expectations [44] for analysing
properties of probabilistic guarded command language [33], a dynamic logic of PPs and for
establishing almost-sure termination [45]. Recently, Kaminski et al. presented a calculus of
weakest pre-expectation style for obtaining bounds on the expected running time of PPs [39].

The running time of a program is an important measure of its performance. As we all know,
a process in an operating system must be in one of the statuses: running, idle (waiting to be

2



executed) or blocked. So the running time plus waiting time of program execution is also a worth-
studying issue in performance analysis. A practical example is that the Linux system provides
each process with three interval timers (see https://linux.die.net/man/2/setitimer):

• ITIMER REAL that decrements in real time (on running time, waiting time and blocked
time), and delivers the signal SIGALRM upon expiration;

• ITIMER VIRTUAL that decrements only when the process is executing (on running time),
and delivers the signal SIGVTALRM upon expiration;

• ITIMER PROF that decrements both when the process executes and when the system is
executing on behalf of the process (on running time and waiting time), and delivers the
signal SIGPROF upon expiration.

A question in point is “what is the termination probability of a PP without delivering SIGPROF”.
In this paper we will consider the performance measure of PPs in terms of running time plus
waiting time.

The waiting time can be reflected in the following manner. A program is split into finitely
many blocks according to its parsing structure, so that a block would be loaded into memory
only when it is necessary. For instance, consider the conditional branching statement

if(ξ) {C1} else {C2} .

If the guard ξ is evaluated to be true, only C1 is necessary to be loaded into memory; and other-
wise only C2 is necessary. So it is wise to make C1 and C2 as two individual blocks following
the judgement ξ. After splitting the program, every block has its own priority λ, which is usually
set by program’s annotations, operating systems or users. When a lot of blocks possibly from
different programs are delivered to the processor, they have to wait for the processor to select one
of them to execute. The waiting process is a continuous-time process of competitive selection
that should satisfy the fairness requirements:

• each block would be surely selected (preferably) sooner or later,

• a block with a high priority is likely to be selected sooner than a block with a low priority.

To meet them, we adopt round-robin scheduling and lottery scheduling, such that the waiting
process is supposed to follow an exponential distribution with rate λ (the priority). We call this
model probabilistic programs with delays (PPDs).

In a PPD, if the time is unbounded, those waiting processes along any execution path must
be completed with probability 1. It follows that the time-unbounded termination problem over
PPDs is the same as that over PPs, and thus is incomputable by [38]. This paper, however, aims
at the time-bounded termination, i. e. “what is the minimum termination probability for a PPD
within a given time bound?” Here the bound is specified on the time of individual execution
paths, rather than the average/expected time of all execution paths.

We first consider the case where running time plus waiting time is bounded. The PPD ad-
mits the nondeterminism that inherits from PP. The time-bounded termination problem can be
resolved by determining the demonic scheduler that minimises the termination probability. We
express the termination probabilities under schedulers as a class of well-formed real numbers,
elements of the field extension Q(e) : Q (that is the smallest extension of the rational number
field Q containing the Euler’s constant e), so that the demonic scheduler can be determined by
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comparing those numbers. Furthermore, the method is extended to parametric PPDs that involve
several parameters in probabilistic choices. By an extended usage of cylindrical algebraic de-
composition [18], we can solve the constraints under the first-order logic L(R;>,=; +, · ; 0, 1, e)
(that consists of polynomial equations and inequalities with coefficients taken from Q(e) : Q
and variables ranging over R). Based on that, the parameter space is eventually partitioned into
finitely many subregions, on each of which a scheduler would be demonic everywhere. Then we
consider the case where only the running time is bounded. After expressing the termination prob-
abilities under schedulers as well-formed real functions in the form of the ring Q[e, x, ex] (that is
obtained by substituting w = e and y = ex into the trivariate polynomial ring Q[w, x, y]), we can
determine the demonic scheduler by real root isolation over Q[e, x, ex]. We present a state-of-
the-art algorithm for isolating real roots of those functions under Schanuel’s conjecture. Based
on that, the positive real line (interpreted as time) is partitioned into finitely many segments, on
each of which a scheduler would be demonic everywhere. Finally we give the complexity up-
per bounds EXPχ of all the aforementioned proposed methods in the support of certain oracle
machines χ.

The contribution of this paper is three-fold:

1. We propose the model of probabilistic program with delays (PPD).

2. We solve the time-bounded termination over PPDs by exact methods.

3. The termination problem motivates us to develop the real root isolation for a class of real
functions under Schanuel’s conjecture.

Other related work. The operational semantics of PP was interpreted by Markov decision pro-
cesses (MDPs) with rewards/costs (interpreted as running time) in [39]. The PPD involves ad-
ditional waiting processes. To express it, we adopt Markov automata (MA) with costs (inter-
preted as running and waiting time). The model of MA is too powerful to establish the general
decidability/computability [25]. Fortunately, we will show that the time-bounded termination
problem is solvable over those MA that interpret PPDs. A key feature of those MA is that there
are only finitely many reachable states under a given time bound. Applying the technique of
bounded model checking to the termination problem for PPs was considered in [36]. It can offer
lower and upper bounds to the termination probability. The gap between the two bounds can
be refined along with the increase in the search depth. But the gap may not converge zero for
some instances, such as non-decisive probabilistic models [1]. In contrast, we consider the time-
bounded termination problem in this paper, rather than the termination problem under bounded
model checking.

The rest of the paper is structured as follows. Section 2 reviews some Markov models and
the PP. Based on them, we introduce the model of PPD in Section 3. Section 4 considers the
time-bounded termination problem, and solves it by comparing finitely many schedulers. We
extend the above method to parametric PPDs in Section 5. Section 6 considers the case where
only the running time is bounded. We analyse the complexity of our methods in Section 7 before
concluding with Section 8.

2. Preliminaries

Here we review some basic notions on Markov models and probabilistic programs. Based on
them, we will give a formal semantics of probabilistic programs with delays in the next section.
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2.1. Markov chains, decision processes and automata

Let S be a countable set. A (discrete) probability distribution over S is a function
µ : S 7→ Q ∩ [0, 1], satisfying

∑
s∈S µ(s) = 1. Let Dist(S ) denote the set of probability dis-

tributions over S .

Definition 2.1 (Markov chains). A Markov chain (MC for short) is a triple (S ,P, s0), where

• S is a countable set of states,

• P : S 7→ Dist(S ) is a probabilistic transition function, and

• s0 ∈ S is an initial state.

The probabilistic transition function P prescribes the probability with which one state moves
to another (in one step). For simplicity, we write P(s, s′) instead of P(s)(s′) for the transition

probability from s to s′. The corresponding transition is written as s
P(s,s′)
−−−−→ s′. A path is an

infinite sequence of transitions such as s0
P(s0,s1)
−−−−−→ s1

P(s1,s2)
−−−−−→ · · · with P(sk, sk+1) > 0 for each

k ≥ 0. It is well-known that a finite prefix, called a fragment, of such a path induces a cylinder
set [8, Definition 10.9]; and all measurable sets of paths can be expressed as (countable) unions

and complements of cylinder sets. For instance, the fragment s0
P(s0,s1)
−−−−−→ s1

P(s1,s2)
−−−−−→ s2

P(s2,s3)
−−−−−→ s3

corresponds to a cylinder set that is measured to have probability P(s0, s1) · P(s1, s2) · P(s2, s3).

Definition 2.2 (Markov decision processes). A Markov decision process (MDP for short) is a
tuple (S , Act,P, s0), where

• S is a countable set of states,

• Act is a nonempty set of actions,

• P ⊆ S × Act × Dist(S ) is a probabilistic transition relation, and

• s0 ∈ S is an initial state.

In an MDP, the probabilistic transition relation P gives the probability with which one state
moves to another under an action: P(s, α, s′) represents the transition probability from s to s′ un-
der action α ∈ Act(s), where Act(s) is the set of actions enabled at s, i. e. {α ∈ Act | ∃ µ. (s, α, µ) ∈

P}. The corresponding transition is now denoted by s
α,P(s,α,s′)
−−−−−−−→ s′. A path in an MDP is an in-

finite sequence of transitions, such as s0
α1,P(s0,α1,s1)
−−−−−−−−−−→ s1

α2,P(s1,α2,s2)
−−−−−−−−−−→ · · · with αk+1 ∈ Act(sk) and

P(sk, αk+1, sk+1) > 0 for each k ≥ 0. The nondeterminism in P could be resolved by a scheduler
[8, Definition 10.91] that chooses one action each step a state faces a nondeterministic choice of
outgoing transitions. Therefore, the behaviour of an MDP under a scheduler would degenerate
as that of an MC.

Definition 2.3 (Markov automata). A Markov automaton (MA for short) is a tuple (S , Act,P,R,
s0), where

• S = S 1 ∪ S 2 with S 1 ∩ S 2 = ∅ is a countable set of states,

• Act is a nonempty set of actions,
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• P ⊆ S 1 × Act × Dist(S ) is a probabilistic transition relation,

• R ⊆ S 2 × Z+ × S is a timed stochastic transition relation, and

• s0 ∈ S is an initial state.

In an MA, each state has exactly one kind of outgoing transitions: probabilistic transitions or
timed stochastic ones [25, 22]. So the set S of states is partitioned into two subsets S 1 and S 2
with S 1 ∩ S 2 = ∅: for each s ∈ S 1, it has probabilistic transitions only; while for each s ∈ S 2,
it has timed stochastic ones only. The transition rule R(s, λ, s′) indicates that the move from s
to s′ follows the exponential distribution with rate λ, i. e. the probabilistic density function is
λe−λt, where t is a random variable interpreted as the sojourn time at s. The corresponding timed

stochastic transition is written as s
λ
99K s′. A path in an MA is an infinite sequence of transitions,

such as s0
α1,P(s0,α1,s1)
−−−−−−−−−−→ s1

λ2
99K s2 · · · with αk+1 ∈ Act(sk) and P(sk, αk+1, sk+1) > 0 for sk ∈ S 1

while (sk, λk+1, sk+1) ∈ R for sk ∈ S 2 and k ≥ 0. The fragment s0
α1,P(s0,α1,s1)
−−−−−−−−−−→ s1

λ2
99K s2 of those

paths whose sojourn time at s1 is bounded in I has probability P(s0, α1, s1) · [e−λ2 inf I − e−λ2 sup I].
Let Affine(t) denote the set of affine expressions a + b · t where a, b ∈ Z are constants and

t is an independent random variable for a timed stochastic transition. Generally speaking, the
coefficients a and b in the affine expression a + b · t are rational numbers. Here, we impose
the restriction that a and b are integers only for convenience, since the time variable t could be
scalable to a small one t′ = t/c where c is the least common multiple of denominators of a and
b, so that the resulting expression a + b · t = ac + bc · t′ has integer coefficients ac and bc. Then
we can enrich MA by adding costs to transitions.

Definition 2.4 (Markov automata with costs). A Markov automaton with costs is a tuple (S , Act,
P,R, s0,Cost), where

• (S , Act,P,R, s0) is an MA, and

• Cost : P ∪ R 7→ Affine(t) with Cost(P) ⊂ Z is the cost function defined on transitions.

Although the costs are defined for individual transitions, we can talk about the cumulative
costs of several consecutive transitions. For instance, suppose we have three transitions:

T1 : s0
α1,P(s0,α1,s1)
−−−−−−−−−−→ s1, T2 : s1

λ2
99K s2, T3 : s2

λ3
99K s3 .

The cumulative costs of going from s0 to s3 by executing T1,T2, and then T3 is

Cost(T1) + Cost(T2) + Cost(T3) .

2.2. Probabilistic programs

The probabilistic programs (PPs) that we will consider are defined by the syntax displayed
in Table 1, in which x is a program variable, µ is a distribution expression with finitely many
samples v, and ξ is a Boolean guard. A formal operational semantics of PPs will be given in
the next section. We denote by µ(v) the probability value of sampling µ with v. In the special
case x :≈ µ and µ(v) = 1, we simply write x := v. Each of skip, judgement (deciding the
truth of ξ) and assignment together with possible sampling (executing x :≈ µ) costs one unit
of time; other operations cost none. In the (probabilistic and nondeterministic) choices and
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Syntax (C) Description
empty Empty program
skip Effectless operation
halt Immediate termination

x :≈ µ
Probabilistic assignment that samples an expression from µ
and assigns it to variable x

C; C Sequential composition of statements

{C} [p] {C} Probabilistic choice that executes the left branch with probability p
and executes the right branch with probability 1 − p

{C} � {C} Nondeterministic choice between statements to be resolved
by a scheduler

if(ξ) {C} else {C} Conditional branching
while(ξ) {C} While loop

observe(ξ)
Observation that blocks all executions violating ξ
and rescales the probability of the remaining executions

Table 1: Syntax of probabilistic programs

the conditional branching, the left and the right branches are supposed to be nonempty. For
algorithmic purposes, the probability values µ(v) in sampling and p in probabilistic choices are
supposed to be rational numbers. Interested readers can refer to [39] for more details, while the
observe statement is separately addressed as one main feature of PP in [40].

3. Probabilistic Programs with Delays

Now we propose the model of probabilistic program with delays, and interpret its operational
semantics using Markov automata with costs. In this paper, we consider the performance of a
PP in terms of its running time plus the waiting time before being executed. The waiting time is
reflected in the manner. A program can be split into finitely many blocks; performing each block
requires the time-consumption—waiting to be executed.

3.1. Program splitting
There are many ways to split programs [43, Section 3.1]. A typical treatment is to cut the

program at every branching and accumulating points of choices, branchings and loops, so that
every cyclic execution would pass through at least one cut point. Blocks are nonempty segments
of the program between program entrance, program exit, and those cut points. For instance,
consider the following while loop

‖1 C0; while(ξ) ‖2 {C1}; ‖3 C2 ‖
4 ,

where we use the symbols ‖i to indicate cut points in the program. Specifically, the above pro-
gram has the beginning ‖1, a branching point ‖2, an accumulating point ‖3 and the end ‖4. By
cutting the program at those points, we may obtain the three blocks:

• B1 = C0; ξ (from the beginning ‖1 to the branching point ‖2),

• B2 = C1; ξ (from the branching point ‖2 to itself),
7



• B3 = C2 (from the branching point ‖2 directly to the end ‖4, skipping C1).

Every execution path through the loop can be read as a string in the form B1B∗2B3. We now
formalise the above intuition of splitting a program into several blocks.

Definition 3.1 (Block). A block is either a program C or a program appended with a judgement
of the form C; ξ. A block is primitive if it is free of choice, branching and loop.

Every program block B can be split into a setB of primitive blocks according to the following
function split.

split(B) =



∅ if B ≡ empty
split(C0) ∪ split(C1) ∪ split(C2) ∪ split(B′) if B ≡ C0; {C1} [p] {C2}; B′

or B ≡ C0; {C1} � {C2}; B′
split(C0; ξ) ∪ split(C1) ∪ split(C2) ∪ split(B′) if B ≡ C0; if(ξ) {C1} else {C2}; B′
split(C0; ξ) ∪ split(C1; ξ) ∪ split(B′) if B ≡ C0; while(ξ) {C1}; B′
split(C; ξ) ∪ split(B′) if B ≡ C; observe(ξ); B′
{B} otherwise .

(1)
By the inductive definition in (1), we see that a primitive block cannot be further split. Every
program execution can be expressed by a string over those primitive blocks (as the alphabet). In
the presence of probabilistic and nondeterministic choices, a program may have several possible
executions. We are interested in the primitive blocks that are first scheduled to be executed.
Formally, given a block B, we define the set of primitive blocks that can be first scheduled as
head(B).

head(B) =



∅ if B ≡ empty
head(C0) if B ≡ C0; {C1} [p] {C2}; B′ and C0 . empty

or B ≡ C0; {C1} � {C2}; B′ and C0 . empty
head(C1) ∪ head(C2) if B ≡ empty; {C1} [p] {C2}; B′

or B ≡ empty; {C1} � {C2}; B′
head(C0; ξ) if B ≡ C0; if(ξ) {C1} else {C2}; B′

or B ≡ C0; while(ξ) {C1}; B′
or B ≡ C0; observe(ξ); B′

{B} otherwise .

(2)

Let B be a set. We write #B for its cardinality. From the definition in (2), we see that #head(B) >
1 only when B starts with a probabilistic or nondeterministic choice. After the splitting, any
block B in a nondeterministic branching is loaded into the memory iff the scheduler selects this
B; any block B following a judgement ξ in a conditional branching is loaded into the memory
iff the evaluation of ξ under the values of program variables supports this B. Thus the splitting
can avoid loading unnecessary blocks and save memory space. However, for large programs, the
granularity of splitting would be adjusted.

3.2. Introducing waiting time
Every primitive block has its own priority λ, which is usually set by program annotations,

operating systems or users. When a lot of primitive blocks B possibly from different programs
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are delivered to a processor, they have to wait to be selected by the processor before execution.
The waiting process, denoted by ♦B, is typically a process of competitive selection that should
satisfy the following fairness requirements:

• each block would be surely selected (preferably) sooner or later,

• a block with a high priority is likely to be selected sooner than a block with a low priority.

To meet them, the processor could adopt round-robin scheduling and lottery scheduling [53,
Section 2.4], so that:

1. the processing time is split into many time segments of equally small length, called quanta,
in order to have the high responsibility to primitive blocks;

2. let Bi (1 ≤ i ≤ k) be all primitive blocks to be selected, each of which is allocated with a
number, saying λi (the priority), of lottery tickets;

3. let T be the total number of lottery tickets the processor have during each quantum, which
is greater than

∑k
i=1 λi;

4. for each quantum a random number r in (0,T ] is generated, and then

• if r ∈ (
∑i−1

j=1 λ j,
∑i

j=1 λ j] (1 ≤ i ≤ k), the processor selects Bi to execute,

• if r ∈ (
∑k

i=1 λi,T ], the processor does nothing as it is preserved only for emergency.

In other words, it has probability λi/T to select Bi during the quantum, and probability
1 −
∑k

i=1 λi/T to do nothing.

Since the length of quantum is usually very small under round-robin scheduling, λi/T reflects the
change rate of the probability of selecting Bi, while 1 −

∑k
i=1 λi/T reflects that of the probability

of doing nothing. For convenience, we assume that each quantum costs 1/T unit of time, i. e. T
quanta cost one unit of time. It entails that the change rate per unit of time is simply λi and thus
that the selecting process follows an exponential distribution with rate λi (the priority), i. e. the
probability density function is λie−λit.

In the area of stochastic scheduling [55, 50, 48], exponential distributions are much popular.
This design choice follows the model of continuous-time Markov chain (CTMC) [52, 7], which
has been widely used to evaluate system performance and reliability characteristics such as the
throughput of production lines, the mean time between failure in safety-critical systems, and
bottlenecks in communication networks. For instance, the inter-arrival times and the job sizes
were assumed in [31, 35] to be exponentially distributed. Moreover, a justification given in [13] is
that the exponential distribution is reasonable to model a processing time when the only available
information known on the processing time is its mean. In that setting, an exponential distribution
implies a uniform conditional distribution for the processing time over an interval [0, t] if the
job is completed once before time t. The exponential distribution not only provides a precise
mathematical characterization of the selecting process, but also would facilitate our analysis in
the next section.
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3.3. The model of probabilistic programs with delays

Under the aforementioned priority function, we call the model probabilistic programs with
delays (PPD), and interpret its operational semantics by MA with costs.

Definition 3.2 (Probabilistic programs with delays). A probabilistic program with delays (PPD
for short) is a pair (C,Rate), where

• C is a probabilistic program, and

• Rate : split(C) 7→ Z+ is the priority function defined on the primitive blocks of C.

During an execution, we sometimes need to determine to which primitive block an ap-
pointed statement belongs for a fixed program splitting. So the function of head is extended
as: head(B′) = head(B), where B is a primitive block and B′ is a nonempty suffix of B. Let
[[v]]val denote the value of expression v under the valuation val which is a map from program
variables to their domains.

Definition 3.3. For a PPD (C0,Rate), the MA with costs that interprets it is a tuple (S , Act,
−→, 99K, s0,Cost), in which:

• S = {(val,C), sink , } ∪ {(val,♦B; C)} is a set of states, where

– val is the current valuation of program variables;

– C is the PPD to be executed;

– ♦B with B ∈ split(C0) denotes a waiting process that appears only when accessing
certain primitive block in C0; and

– sink and  are two distinguished states.

• Act = {L,R,D} is a set of actions, where D is the default action.

• −→⊆ S × Act × Dist(S ) is a probabilistic transition relation, and 99K⊆ S × Z+ × S is a
timed stochastic transition relation. Costs are attached (from below) to those transitions.
The transitions and their costs are defined by the rules in Table 2.

• The initial state s0 is (val0,♦B0; C0) if head(C0) = {B0}, and (val0,C0) otherwise, where
all program variables are assigned as the default values, say 0, in val0.

Table 2: The operational semantics of PPD

sink
D,1
−−→

0
sink  

D,1
−−→

0
sink (val, empty)

D,1
−−→

0
sink (val, halt; C)

D,1
−−→

0
sink

head(skip; C) = head(C) or #head(C) > 1

(val, skip; C)
D,1
−−→

1
(val,C)

head(skip; C) , head(C) = {B}

(val, skip; C)
D,1
−−→

1
(val,♦B; C)

(val, x :≈ µ; C)
D,µ(v)
−−−−→

0
(val, x := v; C)
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head(x := v; C) = head(C) or #head(C) > 1

(val, x := v; C)
D,1
−−→

1
(val[[[v]]val/x],C)

head(x := v; C) , head(C) = {B}

(val, x := v; C)
D,1
−−→

1
(val[[[v]]val/x],♦B; C)

#head(C1) > 1

(val, {C1} [p] {C2}; C3)
D,p
−−→

0
(val,C1; C3)

head(C1) = {B1}

(val, {C1} [p] {C2}; C3)
D,p
−−→

0
(val,♦B1; C1; C3)

#head(C2) > 1

(val, {C1} [p] {C2}; C3)
D,1−p
−−−−→

0
(val,C2; C3)

head(C2) = {B2}

(val, {C1} [p] {C2}; C3)
D,1−p
−−−−→

0
(val,♦B2; C2; C3)

#head(C1) > 1

(val, {C1} � {C2}; C3)
L,1
−−→

0
(val,C1; C3)

head(C1) = {B1}

(val, {C1} � {C2}; C3)
L,1
−−→

0
(val,♦B1; C1; C3)

#head(C2) > 1

(val, {C1} � {C2}; C3)
R,1
−−→

0
(val,C2; C3)

head(C2) = {B2}

(val, {C1} � {C2}; C3)
R,1
−−→

0
(val,♦B2; C2; C3)

[[ξ]]val = true #head(C1) > 1

(val, if(ξ) {C1} else {C2}; C3)
D,1
−−→

1
(val,C1; C3)

[[ξ]]val = true head(C1) = {B1}

(val, if(ξ) {C1} else {C2}; C3)
D,1
−−→

1
(val,♦B1; C1; C3)

[[ξ]]val = false #head(C2) > 1

(val, if(ξ) {C1} else {C2}; C3)
D,1
−−→

1
(val,C2; C3)

[[ξ]]val = false head(C2) = {B2}

(val, if(ξ) {C1} else {C2}; C3)
D,1
−−→

1
(val,♦B2; C2; C3)

[[ξ]]val = true #head(C1) > 1

(val, while(ξ) {C1}; C2)
D,1
−−→

1
(val,C1; while(ξ) {C1}; C2)

[[ξ]]val = true head(C1) = {B1}

(val, while(ξ) {C1}; C2)
D,1
−−→

1
(val,♦B1; C1; while(ξ) {C1}; C2)

[[ξ]]val = false #head(C2) > 1

(val, while(ξ) {C1}; C2)
D,1
−−→

1
(val,C2)

[[ξ]]val = false head(C2) = {B2}

(val, while(ξ) {C1}; C2)
D,1
−−→

1
(val,♦B2; C2)

[[ξ]]val = true #head(C) > 1

(val, observe(ξ); C)
D,1
−−→

1
(val,C)

[[ξ]]val = true head(C) = {B}

(val, observe(ξ); C)
D,1
−−→

1
(val,♦B; C)

11



[[ξ]]val = false

(val, observe(ξ); C1)
D,1
−−→

1
(val, )

Rate(B) = λ

(val,♦B; C)
λ
99K

t
(val,C)

In the conclusion part of a rule, the superscript of the solid arrow gives the action and the prob-

ability of the probabilistic transition, whereas the subscript gives the cost. For instance,
D,1
−−→

0
gives action D, probability 1 and cost 0. In sum, empty, probabilistic sampling, probabilistic and
nondeterministic choices have cost 0; while skip, assignment and judgement have cost 1. The
superscript of the dashed arrow gives the rate of the timed stochastic transition, and the subscript

gives the cost. For instance,
λ
99K

t
gives rate λ and cost t.

In the above model, we can see that:

States (excluding  and sink ) give the following information: (i) the current values of program
variables prescribed by val, (ii) the statements C to be executed, and (iii) possibly the
waiting processes ♦B when accessing primitive blocks in PPD. The execution of a PPD
involves countably many states. Additionally,  is a distinguished state, reached after an
unsuccessful observe statement; and ♦ denotes the set of paths that eventually reach
the state  . Similarly, sink is also a distinguished state, reached after a complete program
execution, a halt statement, or  ; and ♦sink denotes the set of paths, called sinking paths,
that eventually reach the state sink .

Transitions take place when (i) skip, judgements and assignments are completed, (ii) empty,
halt and sampling are completed, (iii) probabilistic and nondeterministic choices are re-
solved, and (iv) the waiting processes are completed. Let us have a close look at the rules
for skip in Table 2. There are three disjoint cases:

1. When head(skip; C) = head(C), after executing skip, the remaining PPD C still
stays in the same primitive block. So we proceed to tackle C without introducing any
waiting process.

2. When #head(C) > 1, after executing skip, the remaining PPD C starts with a
probabilistic or nondeterministic choice. We will resolve it later by the rules for
{C1} [p] {C2} or {C1} � {C2}, and introduce the waiting process then.

3. When head(skip; C) , head(C) and head(C) = {B}, after executing skip, the PPD
C definitely accesses a new primitive block B. So the waiting process♦B is necessary
to be introduced now.

Other rules can be analysed similarly.

Transition probabilities are taken from the corresponding sampling and probabilistic choices,
actions are taken from nondeterministic choices, and the rates of timed stochastic transi-
tions are taken from the priority λ of primitive blocks.

The cost of a probabilistic transition reflects the running time, and the cost of a timed stochastic
transition reflects the waiting time.

So paths and schedulers of a PPD are those of the MA. All paths can be grouped into three
disjoint classes [40]: terminating, violating and nonterminating ones. Denote them by ♦sink ∩
¬♦ , ♦sink ∩ ♦ , and ¬♦sink , respectively. Note that the equality Pr(♦ ) = Pr(♦sink ∩ ♦ )

holds since the transition  
D,1
−−→

0
sink is of probability 1.
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Example 3.4 (Race between Tortoise and Hare). The program is given in Figure 1(a). Program
variables h and t represent the positions of Hare and Tortoise respectively, r is a flag that is true
iff Hare is just refreshed (then Hare can potentially jump farther).

1: h := 0; t := 4; r := false
2: while h < t do
3: if r then
4: h :≈ h + Unif[3..6]; r := false
5: else
6: {h :≈ h + Unif[0..3]} � {r := true}
7: t := t + 1

(a)

B1start
3

B2

2

B3 1 B4

1

B5

2

B6

3
END

Y

Y
N N

Y

N

N

(b)

Figure 1: An example of probabilistic program

The program can be split inductively as:

split(C0) = split(B1) ∪ split(C1; h < t)
= {B1} ∪ split(B2) ∪ split(B3) ∪ split(C2) ∪ split(B6)
= {B1} ∪ {B2} ∪ {B3} ∪ split(B4) ∪ split(B5) ∪ {B6}

= {B1} ∪ {B2} ∪ {B3} ∪ {B4} ∪ {B5} ∪ {B6}

= {B1,B2,B3,B4,B5,B6} ,

where

• C0 denotes the whole program,

• C1 is the loop body (Lines 3–7),

• C2 is the nondeterministic choice (Line 6),

• B1 ≡ h := 0; t := 4; r := false; h < t,

• B2 ≡ r,

• B3 ≡ h :≈ h + Unif[3..6]; r := false,

• B4 ≡ h :≈ h + Unif[0..3],

• B5 ≡ r := true, and

• B6 ≡ t := t + 1; h < t.

Equipped with the priority function Rate(B1) = Rate(B6) = 3, Rate(B2) = Rate(B5) = 2 and
Rate(B3) = Rate(B4) = 1, the pair (C0,Rate) forms a PPD. All these primitive blocks with the
assumed priorities are displayed in the control flow graph (see Figure 1(b)), in which primitive
blocks ending in judgements are denoted by diamond-shaped states.
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Consider the program execution that takes the left branch of Line 6 with sample 3 for
the first iteration and is interrupted after that assignment. It adopts the scheduler fragment
“DDDDDLDD”, or shortly “L” (the letter ‘L’ is short for the left branch, ‘R’ for the right
branch, and the default latter ‘D’ is omitted for conciseness), and accesses “B1,B2,B4” in turn.
The path fragment in PPD is shown in Figure 2.

The path fragment has running time 6 as the sum of costs attached to those probabilistic
transitions prior to the state 〈h = 3, t = 4, r = false〉, Lines 7 & 2–7 . In additional, it has three
timed stochastic transitions. They represent the waiting processes for executing B1,B2,B4. For
instance, at the entrance of the program, we have to wait the processor to select the primi-
tive block B1 for execution. We denote by ♦B1 this waiting process; and the current state is
〈h = 0, t = 0, r = false〉,♦B1; Lines 1–7 . When it finishes, we would move to the next state

〈h = 0, t = 0, r = false〉, Lines 1–7 . The transition is timed stochastic with rate 3 (the priority
of B1). So the waiting time is the sum of three independent random variables t1, t2, t3 following
the exponential distributions with rates 3, 2, 1 respectively. In total, the running time plus waiting
time of the fragment is 6 + t1 + t2 + t3.

We remark that the model of PPD is a class of MAs equipped with the special cost structure;
and that the time-bounded termination analysis for PPDs in the coming sections corresponds to
the cost-bounded reachability analysis for those special MAs, which is different from the step-
bounded reachability analysis, and is not for the general MAs.

From Figure 1(b) we also see one advantage of reasoning about PPDs rather than MAs. If we
are only concerned about the high-level behaviour of the probabilistic program in Figure 1(a),
the finite control flow graph with blocks as nodes suffices. But if we interpret that program as
an MA without the special cost structure, we would need an infinite-state automaton because the
uniform distribution Unif[0..3] in Line 6 might be executed infinitely many times and always
yield very small values such that h never exceeds t, though this would happen with probability 0.

4. Time-Bounded Termination Analysis

In this section we study the following problem:

Problem 4.1 (Time-bounded termination). What is the minimum termination probability for a
PPD when the total time (running time plus waiting time) is bounded?

The nondeterminism in the PPD can be resolved by a demonic scheduler that minimises the
termination problem for conservatism. So Problem 4.1 amounts to determining the demonic
scheduler. We will do it by finitely many times of comparison between elements of the field
extension Q(e) : Q (that is the smallest extension of the rational number field Q containing the
Euler’s constant e).

The PPDs would degenerate as PPs if the waiting processes are removed. That is, every
PPD induces a PP. Correspondingly, a path in a PPD can be read as a series of probabilistic and
timed stochastic transitions. If we remove those timed stochastic transitions, the resulting series
of probabilistic transitions would be a path in the induced PP. Given a path of the induced PP,
we can record the blocks with multiplicities that this path accesses in the control flow graph. To
execute these blocks B, one has to wait the timed stochastic transitions with their rates λ, like in
a CTMC. Based on that, all paths in a PPD can be classified upon their projections in the induced
PP; two paths of the same type in a PPD differ in their waiting time.

14



〈h = 0, t = 0, r = false〉, ♦B1; Lines 1–7

〈h = 0, t = 0, r = false〉, Lines 1–7

〈h = 0, t = 0, r = false〉, t := 4; r := false; Lines 2–7

〈h = 0, t = 4, r = false〉, r := false; Lines 2–7

〈h = 0, t = 4, r = false〉, Lines 2–7

〈h = 0, t = 4, r = false〉, ♦B2; Lines 3–7 & 2–7

〈h = 0, t = 4, r = false〉, Lines 3–7 & 2–7

〈h = 0, t = 4, r = false〉, Lines 6, 7 & 2–7

〈h = 0, t = 4, r = false〉, ♦B4; h :≈ h + Unif[0..3]; Lines 7 & 2–7

〈h = 0, t = 4, r = false〉, h :≈ h + Unif[0..3]; Lines 7 & 2–7

〈h = 0, t = 4, r = false〉, h := h + 3; Lines 7 & 2–7

〈h = 3, t = 4, r = false〉, Lines 7 & 2–7

· · ·

3 t1

D, 1 1

D, 1 1

D, 1 1

D, 1 1

2 t2

D, 1 1

L, 1 0

1 t3

D, 1
4 0

D, 1 1

Figure 2: A path fragment in PPD
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Let τ1 be the running time, and τ2 the waiting time. Time-bounded sinking (terminating
or violating) paths in the PPD are of the total time τ = τ1 + τ2 ≤ ∆ for a given time bound
∆. For conciseness, we will write the fragments of paths and schedulers shortly as paths and
schedulers, and write primitive blocks as blocks afterwards. Particularly, we are interested in the
fully acted schedulers that exactly resolve nondeterminism up to the time bound τ1 ≤ ∆. Let σ be
a path of the PPD, and ς its projection in the induced PP. The outline to solve the time-bounded
termination problem is given below.

1. As τ1 ≤ ∆ and the loop judgements are time-consuming, all loops in the induced PP can be
executed only finitely many times. We unroll those loops and get a finite MA that covers
all time-bounded paths with τ1 ≤ ∆ in the induced PP, among which all time-bounded
sinking paths ς are finitely enumerable. It implies that the MA has only finitely many
distinct fully acted schedulers.

2. For each aforementioned path ς in the induced PP, its probability P1 can be obtained by
the standard analysis over MCs. The path ς can be augmented as time-bounded sinking
paths σ in the PPD, provided that the waiting time τ2 for executing all involved blocks are
not greater than ∆ − τ1. The latter event can be specified by a multi-phase until formula
under continuous stochastic logic (CSL) [6], saying

B1 U(0,∆−τ1] B2 · · · U(0,∆−τ1] Bk U(0,∆−τ1] END . (3)

Thus its probability P2 can be computed by the existing methods [58, 57]. The product
P1 × P2 is the measure of all time-bounded sinking paths σ of the type ς in the PPD.

3. The set of all sinking paths ς with τ1 ≤ ∆ in the induced PP is finite. A scheduler only cov-
ers a subset of them. For the PPD without conditioning feature, demonic schedulers are the
ones that minimise the measures of all terminating paths. For the PPD with conditioning
feature, demonic schedulers minimise

Pr(♦sink | ¬♦ ) =
Pr(♦sink ∩ ¬♦ )

1 − Pr(♦ )
. (4)

(We abuse the notations ♦sink ∩ ¬♦ and ♦ here to denote time-bounded termination
and violation, respectively.) Hence the minimum time-bounded termination probability
over PPDs can be obtained by comparing finitely many schedulers.

Note that the time-bounded termination probability and violation probability are monotonously
increasing functions in the time bound ∆. When ∆ increases, more and more paths are ter-
minating (resp. violating), which results in a larger termination probability in absolute amount
(resp. relative amount via the fraction (4)). In case of an observe(ξ) statement, the subsequent
executions not satisfying ξ are blocked and the termination probability would be rescaled and
thus increase, which is consistent with the monotonicity mentioned above.

Demonic schedulers of a PPD may differ from those of its induced PP, since the probabilities
P1 of sinking paths ς are weighted by P2 then. We illustrate it via an example.

Example 4.2. Consider the path ς in the PP of Figure 1(a) that executes the left branch of Line 6
with sample 3 for the first two iterations and terminates (h = 6 and t = 6 then). It adopts the
scheduler fragment “LL”, and passes through blocks “B1,B2,B4,B6,B2,B4,B6” in turn and
eventually END. If the given time bound ∆ for τ is 20 units of time, its augmented terminating
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paths σ in the PPD have waiting time at most ∆− τ1 = 8 units, since the running time is τ1 = 12
units. The weight P2 for this type in the PPD is specified by the probability of the CSL formula
[6]:

B1 U(0,8] B2 U(0,8] B4 U(0,8] B6 U(0,8] B2 U(0,8] B4 U(0,8] B6 U(0,8] END ,

which can be computed by the multiple integral [57, Lemma 4.7]∫ 8

0
d t1

∫ 8−T1

0
d t2

∫ 8−T2

0
d t3

∫ 8−T3

0
d t4

∫ 8−T4

0
d t5

∫ 8−T5

0
d t6

∫ 8−T6

0

3e−3t1 · 2e−2t2 · e−t3 · 3e−3t4 · 2e−2t5 · e−t6 · 3e−3t7 d t7

= 1 − 297
4 e−8 − 405e−16 − 2359

4 e−24 ,

where Ti = t1 + · · · + ti for i = 1, . . . , 6. Totally the measure of those σ would be

P1 × P2 = 1
16 · [1 −

297
4 e−8 − 405e−16 − 2359

4 e−24] ≈ 0.0609404 ,

where P1 = 1
16 is computed as the probability of twice of independent sampling with 3 under the

uniform distribution Unif[0..3]. The measure of those σ would tend to 1
16 for sufficiently large

∆ − τ1, and tend to zero for sufficiently small ∆ − τ1.
Different execution paths access different sequences of blocks, and their waiting time have

different bounds ∆−τ1. The scheduler fragment “LLLL” is a fully acted scheduler, as it resolves
nondeterminism up to the time bound ∆ and any proper prefix of it does not suffice. All schedulers
that are fully acted up to ∆ are “LLLL, LLLR, LLR, LRL, LRR, RLL, RLR, RR”. The demonic
scheduler can be determined by comparing them. After a finite number of comparisons, we can
see that

• the demonic scheduler for the induced PP is “LLR”, under which the measure of all
terminating paths with τ1 ≤ 20 achieves the minimum 1

16 ;

• the demonic schedulers for the PPD are “LRL” and “LRR”, under which the measures of
all terminating paths with τ1 +τ2 ≤ 20 achieve the minimum 3

8 + 243
4 e−3− 8991

8 e−6− 18969
4 e−9

(≈ 0.0285167).

The results on all fully acted schedulers can be found in Table 3. Although “LLLL” covers 30
types of terminating paths more than “LLLR”, those paths are of measure zero in PPD due to
their waiting time τ2 ≤ ∆ − τ1 = 0. So the time-bounded termination probabilities under the two
schedulers are the same in PPD.

Proposition 4.3. Let ς be a sinking path in the induced PP that accesses blocks B1, . . . ,Bk in
turn. Then the weight P2 for this type and for the waiting time τ2 in the PPD can be expressed
as the multiple integral∫ τ2

0
λ1e−λ1t1 d t1

∫ τ2−T1

0
λ2e−λ2t2 d t2 · · ·

∫ τ2−Tk−1

0
λke−λk tk d tk , (5)

where λi ∈ Z+ are priorities of Bi for i = 1, . . . , k and Ti = t1 + · · · + ti for i = 1, . . . , k − 1. It can
be further expressed as an element of the ring Q[τ2, e−τ2 ].

Proof. The construction of the integral (5) follows from [57, Lemma 4.7]. We then show the
integrability by induction on the number k of blocks.
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schedulers #{ς}
∑
ς P1

∑
ς P1 · P2

LLLL 38 37
128

11
64 −

2835
256 e−4 + 2727

8 e−8 − 100597
256 e−12 − 405

16 e−16 − 2359
64 e−24

LLLR 8 11
64

11
64 −

2835
256 e−4 + 2727

8 e−8 − 100597
256 e−12 − 405

16 e−16 − 2359
64 e−24

LLR 1 1
16

1
16 −

297
64 e−8 − 405

16 e−16 − 2359
64 e−24

LRL 6 3
8

3
8 + 243

4 e−3 − 8991
8 e−6 − 18969

4 e−9

LRR 6 3
8

3
8 + 243

4 e−3 − 8991
8 e−6 − 18969

4 e−9

RLL 4 7
16

7
16 + 243

8 e−3 − 8991
16 e−6 − 27

4 e−7 − 18969
8 e−9 + 1863

4 e−14 − 2173
4 e−21

RLR 4 7
16

7
16 + 243

8 e−3 − 8991
16 e−6 − 27

4 e−7 − 18969
8 e−9 + 1863

4 e−14 − 2173
4 e−21

RR 1 1
4

1
4 −

27
4 e−7 + 1863

4 e−14 − 2173
4 e−21

Table 3: Schedulers in PP and PPD

• Basically, when k = 1, the integral (5) is plainly integrable. After integration, it would be
1 − e−λ1τ2 , an element of Q[τ2, e−τ2 ].

• Inductively, we assume it holds for k = K − 1, and proceed to show it holds for k = K.
After the inner K − 1 times of integration, the integral (5) becomes∫ τ2

0
λ1e−λ1t1 · Φ(τ2 − t1) d t1 ,

where Φ(x) is an element of Q[x, e−x] by inductive assumption. Then, after integration-
by-parts, it could further be expressed as an element of Q[τ2, e−τ2 ].

Theorem 4.4. The time-bounded termination problem is solvable over PPDs.

Proof. It suffices to determine the demonic scheduler. Fixing a scheduler θ, we first notice that
every sinking path ς in the induced PP takes a rational number as its probability. By substituting
τ2 = ∆ − τ1 (a known nonnegative integer) into Proposition 4.3, we can see that the measure of
all sinking paths of this type can be expressed in the explicit form

α0 + α1eβ1 + · · · + αmeβm , (6)

where α0, . . . , αm are rational numbers and β1, . . . , βm are distinct negative integers, and that the
time-bounded termination probability P(θ) is the fraction (4), whose numerator and denominator
are in the above form. That is, P(θ) is a fraction with numerator and denominator taken from the
ring Q[e], equivalently an element of the field extension Q(e) : Q. By the fact [9, Theorem 1.2]
that e is transcendental, we can infer that an element of Q(e) : Q equals zero iff its numerator is
the zero element of Q[e].1 Thus we can compute the valueP(θ) up to any precision by sufficiently
approaching e, and compare P(θ1) and P(θ2) for any pair of schedulers θ1 and θ2 after ruling
out the case of P(θ1) = P(θ2). Hence the demonic scheduler can be eventually determined by
comparing all fully acted schedulers.

Finally we give an example of PPD with condition feature.

Example 4.5. Here we insert the observe statement at Line 7 of the PPD in Figure 3(a). The
control flow graph has an extra block B7 ≡ h mod 3 , 1 with priority Rate(B7) = 3 to denote
this statement.

1A number α is algebraic, denoted by α ∈ A, if there is a nonzero univariate Q-polynomial f (x) such that f (α) = 0;
and is transcendental otherwise. Note that (

√
2)2 − 2 is a nonzero element of Q[

√
2], but it equals zero. We do not suffer

this trouble, because a nonzero element of Q[e] must not equal zero (otherwise it contradicts the fact that e is algebraic).
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1: h := 0; t := 4; r := false
2: while h < t do
3: if r then
4: h :≈ h + Unif[3..6]; r := false
5: else
6: {h :≈ h + Unif[0..3]} � {r := true}
7: observe(h mod 3 , 1)
8: t := t + 1

(a)

B1start
3

B2

2

B3 1 B4

1

B5

2

B6

3
END B7

3
BLK

Y

Y
N N

Y

N

N

YN

(b)

Figure 3: An example of probabilistic program with condition feature

Consider the path ς in the induced PP that executes the left branch of Line 6 with sample 2
for the first two iterations and is violating (h = 4 then). It accesses blocks “B1,B2,B4,B7,B6,
B2,B4,B7” in turn. If the time bound ∆ for τ is 22 units of time, its augmented violating paths
σ in the PPD have waiting time at most ∆ − τ1 = 10 units since the running time is τ1 = 12
units. So the measure of all violating paths of this type in the PPD can be similarly computed as
in Example 4.2.

After comparing all fully acted schedulers “LLLL, LLLR, LLR, LRL, LRR, RLL, RLR,
RR”, we get the demonic schedulers “LRL” and “LRR” for the PPD with condition feature,
under which the time-bounded termination probabilities achieve the minimum

3
16 + 59049

256 e−2 + 828873
16 e−4 − 506183721

1280 e−6

1 − ( 7
16 + 2187

32 e−4 − 13851
16 e−8 − 29260047

160 e−12 − 9
8 e−15 + 9

4 e−30 − 101
8 e−45)

≈ 0.000161430 .

The results on all fully acted schedulers can be found in Table 4.
Besides, if we switch the statements in Line 7 and in Line 8, the resulting PPD is functionally

identical with the original one, but would have lower time-bounded termination probability un-
der any scheduler, since all violating paths have less one unit of time as to the waiting processes.

5. Parametric Extension

We now study the time-bounded termination problem for parametric PPDs. The parameters
y = (y1, . . . , yn) are introduced to the program in the following manner: Consider the probabilistic
choice

{C1} [p] {C2} (7a)

that executes C1 with probability p and executes C2 with probability 1− p, where p ∈ Q∩ (0, 1)
is a constant. We extend it to the parametric form

{C1} [y] {C2} (7b)

that executes C1 with probability y and executes C2 with probability 1 − y, where y ∈ (0, 1) is a
real parameter.2 So the time-bounded termination problem amounts to:

2It is not suggestable to assign the extreme values 0 and 1 to the parameter y, as the parametrisation should keep the
structure of the original program and thus preserve the same qualitative properties. However, dropping this restriction
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schedulers
#♦sink ∩ ¬♦ Pr(♦sink ∩ ¬♦ )

#♦ Pr(♦ )

LLLL
3 3

32 −
6561
256 e−3 + 45927

32 e−6 − 2187
256 e−8 − 5996287

320 e−9 − 2673
16 e−16 − 1012549

256 e−24

34 9
16 −

8019
256 e−5 + 179091

64 e−10 − 8990099
256 e−15 − 4131

16 e−20 − 133743
64 e−30 − 101

8 e−45

LLLR
3 3

32 −
6561
256 e−3 + 45927

32 e−6 − 2187
256 e−8 − 5996287

320 e−9 − 2673
16 e−16 − 1012549

256 e−24

12 9
16 −

8019
256 e−5 + 179091

64 e−10 − 8990099
256 e−15 − 4131

16 e−20 − 133743
64 e−30 − 101

8 e−45

LLR
1 1

16 −
2187
256 e−8 − 2673

16 e−16 − 1012549
256 e−24

4 7
16 −

1701
64 e−10 − 9

8 e−15 − 4131
16 e−20 − 133743

64 e−30 − 101
8 e−45

LRL
3 3

16 + 59049
256 e−2 + 828873

16 e−4 − 506183721
1280 e−6

4 7
16 + 2187

32 e−4 − 13851
16 e−8 − 29260047

160 e−12 − 9
8 e−15 + 9

4 e−30 − 101
8 e−45

LRR
3 3

16 + 59049
256 e−2 + 828873

16 e−4 − 506183721
1280 e−6

4 7
16 + 2187

32 e−4 − 13851
16 e−8 − 29260047

160 e−12 − 9
8 e−15 + 9

4 e−30 − 101
8 e−45

RLL
2 5

16 + 19683
256 e−2 + 276291

16 e−4 − 168727907
1280 e−6 − 243

16 e−7 + 8991
4 e−14 − 889207

16 e−21

3 3
8 + 729

16 e−4 − 4617
8 e−8 − 81

8 e−9 − 9753349
80 e−12 + 7695

4 e−18 − 80975
8 e−27

RLR
2 5

16 + 19683
256 e−2 + 276291

16 e−4 − 168727907
1280 e−6 − 243

16 e−7 + 8991
4 e−14 − 889207

16 e−21

3 3
8 + 729

16 e−4 − 4617
8 e−8 − 81

8 e−9 − 9753349
80 e−12 + 7695

4 e−18 − 80975
8 e−27

RR
1 1

4 −
243
16 e−7 + 8991

4 e−14 − 889207
16 e−21

1 1
4 −

81
8 e−9 + 7695

4 e−18 − 80975
8 e−27

Table 4: Schedulers in PPD with condition feature

Problem 5.1. What is the demonic scheduler for a parametric PPD when the total time (running
time plus waiting time) is bounded?

We formulate it as a quantifier-free constraint under the first-order logic L(R;>,=; +, · ; 0, 1,
e) (that consists of polynomial equations and inequalities with coefficients taken from Q[e] and
variables ranging over R), and solve them by an extended usage of cylindrical algebraic decom-
position [18].

Proposition 5.2. Let ς be a sinking path in the induced PP. Then its probability P1 in the PP
can be expressed as an element of the ring Q[y].

Proof. It follows immediately by noting that ς is exactly a finite path of the parametric MA;
and that its probability P1 is a finite product of the transition probabilities along with ς, each
probability is an element of Q[y].

Lemma 5.3. Problem 5.1 can be formulated as quantifier-free constraints under the first-order
logic L(R;>,=; +, · ; 0, 1, e).

Proof. The proof is similar to that of Theorem 4.4. The only difference lies in that every sinking
path ς in the induced PP takes an element of Q[y] as its probability by Proposition 5.2. Then,
for a fixed scheduler θ, the time-bounded termination probability P(θ) is the fraction (4), whose
numerator and denominator are in the form

α0(y) + α1(y)eβ1 + · · · + αm(y)eβm , (8)

would not cause any technical hardness to our method. In fact, we can tackle those parameters appearing in arbitrary
Q-polynomial form.
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where α0(y), . . . , αm(y) are Q-polynomials in parameters y and β1, . . . , βm are distinct negative
integers. So comparing P(θ1) and P(θ2) for any pair of schedulers θ1 and θ2 are quantifier-free
constraints under the first-order logic L(R;>,=; +, · ; 0, 1, e), extending real closed fields L(R;
>,=; +, · ; 0, 1) [18] with the Euler’s constant e. Once we know how to solve those constraints
under L(R;>,=; +, · ; 0, 1, e) (particularly for y confined in its domain), we can eventually offer
subregions w. r. t. y, on each of which a scheduler would be demonic everywhere.

Example 5.4. Let us consider the parametric version of the PPD in Figure 1(a). The sampling
assignments in Lines 4 & 6 are replaced with probabilistic choices, whose probabilities are
attached with two parameters y1 and y2, as shown in Figure 4. (Here we abuse the notation of
probabilistic choices, which can be easily rewritten as usual ones.)

1: h := 0; t := 4; r := false
2: while h < t do
3: if r then

4: h :≈


h + 3 [ 1

4 − y1]
h + 4 [ 1

4 + y1]
h + 5 [ 1

4 − y2]
h + 6 [ 1

4 + y2]

; r := false

5: else

6:

h :≈


h + 0 [ 1

4 − y1]
h + 1 [ 1

4 + y1]
h + 2 [ 1

4 − y2]
h + 3 [ 1

4 + y2]

 � {r := true}

7: t := t + 1

Figure 4: An example of parametric probabilistic program

The domain for y = (y1, y2) is the default region (− 1
4 ,

1
4 )× (− 1

4 ,
1
4 ). Our goal is to partition the

parameter domain into subregions, on each of which a scheduler would be demonic everywhere.
Let the time bound ∆ for τ be 20 units of time. Then the results on all fully acted schedulers

can be found in Table 5, in which distinct weights γ1, . . . , γ5 are given below.

γ1 = 1 − 297
4 e−8 − 405e−16 − 2359

4 e−24 ,

γ2 = 1 − 405
4 e−4 + 3159e−8 − 14371

4 e−12 ,

γ3 = 1 + 162e−3 − 2997e−6 − 12646e−9 ,

γ4 = 1 − 27e−7 + 1863e−14 − 2173e−21 ,

γ5 = 1 + 162e−3 − 2997e−6 − 12646e−9 .

From Table 5 and the set inclusion, we can see that

• P(LLLL) = P(LLLR) > P(LLR), as all terminating paths under LLR are those under LL
and thus the set of terminating paths under LLLL is a superset of that under LLR;

• P(LRL) = P(LRR); and

• P(RLL) = P(RLR) > P(RR), as the set of terminating paths under RLL is a superset of
that under RR.
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schedulers
∑
ς P1 · P2

LLLL (y2
2 + 1

2 y2 + 1
16 ) · γ1 + (2y1y2

2 + y3
2 + y1y2 −

3
4 y2

2 + 1
8 y1 + 3

16 y2 + 7
64 ) · γ2

LLLR (y2
2 + 1

2 y2 + 1
16 ) · γ1 + (2y1y2

2 + y3
2 + y1y2 −

3
4 y2

2 + 1
8 y1 + 3

16 y2 + 7
64 ) · γ2

LLR (y2
2 + 1

2 y2 + 1
16 ) · γ1

LRL (2y1y2 + 1
2 y1 + 1

2 y2 + 3
8 ) · γ3

LRR (2y1y2 + 1
2 y1 + 1

2 y2 + 3
8 ) · γ3

RLL (y2 + 1
4 ) · γ4 + (y1y2 + 1

4 y1 −
1
4 y2 + 3

16 ) · γ5

RLR (y2 + 1
4 ) · γ4 + (y1y2 + 1

4 y1 −
1
4 y2 + 3

16 ) · γ5

RR (y2 + 1
4 ) · γ4

Table 5: Schedulers in parametric PPD

So it suffices to compare P(LLR), P(LRL) and P(RR). Since the critical line of P(LLR) =

P(RR) lies in y2 =
γ4
γ1
− 1

4 ≈ 0.751928, the scheduler “RR” cannot be demonic anywhere of the
domain (− 1

4 ,
1
4 ) × (− 1

4 ,
1
4 ). On the other hand, the critical line of P(LLR) = P(LRL) is depicted

by

y1 =
4y2 + 1

8
·
γ1

γ3
−

1
4
−

1
8y2 + 2

.

Therefore the domain is partitioned into two subregions (see Figure 5):

• the schedulers “LRL” and “LRR” are demonic on the top subregion,

• the scheduler “LLR” is demonic on the bottom subregion, and

• both are demonic on the critical line.

At the original point (y1, y2) = (0, 0), the result has been shown in Example 4.2.

y
1

y
2

LRL   LRR

LLR

(         )

Figure 5: Demonic schedulers in the parameter domain
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Note that the constraints formulated in Lemma 5.3 would involve polynomials of arbitrary
degree along with the increase in ∆. So it needs a general method to solve them. We resort to
cylindrical algebraic decomposition [18] (see Algorithm 1). It decomposes solutions of polyno-
mial constraints into finitely many cells (to be specified below), which are cylindrically indexed.

Definition 5.5 (Cells). A connected region in Rn is a cell w. r. t. y = (y1, . . . , yn) if it is defined
by:

• Basically, the first variable y1 lies in a proper interval (l1, u1) with l1, u1 ∈ R ∩ A, or (as
boundary case) in a point interval {c1} with c1 ∈ R ∩ A.

• Inductively, when (y1, . . . , yk−1) lies in a cell Ck−1 ⊆ Rk−1, the variable yk is in a proper
interval (lk, uk) or in a point interval {ck} (where the interval boundaries are Q-polynomials
on Ck−1, e. g., lk : Ck−1 → R ∪ {−∞}).

Recall that those boundaries l1, u1, c1 are real algebraic numbers, elements of R ∩A, defined as
real roots of univariate Q-polynomials in y1.

For instance, let us consider the domain of (y1, y2) shown in Figure 5. Assume m : (− 1
4 ,

1
4 )→

R is the boundary such that y2 = c(y1) is defined by the critical line. Then there are three cells in
the domain, which can be cylindrically indexed as:

• the top subregion (− 1
4 ,

1
4 ) × (c, 1

4 ),

• the critical line (− 1
4 ,

1
4 ) × {c}, and

• the bottom subregion (− 1
4 ,

1
4 ) × (− 1

4 , c).

Algorithm 1 Cylindrical Algebraic Decomposition for L(R;>,=; +, · ; 0, 1)

G⇐ decompose(F)

Input: F is a first-order formula consisting of Q-polynomial equations and inequalities in y, z,
where y are free variables and z are quantified ones.

Output: G is a disjunctive normal form of Q-polynomial equations and inequalities only in y,
such that the quantifier-free G is equivalent to F. Specifically, each disjunct of G defines a
disjoint solution cell and all solution cells are cylindrically indexed.

Extended usage. In our current setting, we regard the input constraint formulated in Lemma 5.3
as a first-order formula F(y0, y), where y0 is the first variable newly-introduced to symbolise
e. Although F(y0, y) has no quantified variable, we cannot clearly know its solutions, even the
existence of solutions. We invoke decompose(F(y0, y)) to make it clear. The output G(y0, y)
would cylindrically define all solution cells. As y0 symbolises e, we focus only on those solution
cells whose first components (l0, u0) or {c0} w. r. t. y0 contain e, and drop others. Specifically,
if the component for y0 is a proper interval (l0, u0), the check e ∈ (l0, u0) can be completed
by sufficiently approaching e, since l0 and u0 are real algebraic while e is transcendental; if
the component for y0 is a point interval {c0}, we can immediately drop it due to c0 , e. After
substituting y0 = e, we can simplifyG(e, y) by deleting invalid disjuncts. So the resulting formula
cylindrically defines all solutions of the input constraint, which is a clear representation.
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In fact, cylindrical algebraic decomposition has been well implemented in many computer
algebra tools, such as REDLOG [24]. Besides, one can also use the efficient SMT tool Z3 [21],
that supports transcendental extensions, to find one solution for the input constraint, and thereby
decides whether a scheduler would be demonic somewhere.

Finally, by Lemma 5.3 and the extended usage of Algorithm 1, we conclude with:

Theorem 5.6. The time-bounded termination problem is solvable over parametric PPDs.

6. Bounded Running Time

In the previous sections, we have studied the case where running time plus waiting time τ
is bounded. Now we turn to the case where only the running time τ1 is bounded while the total
time τ (as well as the waiting time τ2) varies. Under this setting one can see that the induced PP
still corresponds to a finite MA. When τ2 is sufficiently large, those weights P2 of sinking paths
tend to 1. So the demonic scheduler in long-term could be easily determined. However, how
to determine the demonic scheduler for not sufficiently large τ2 is a more interesting problem.
Namely, in this section, we study:

Problem 6.1. What is the demonic scheduler for a PPD when the running time is bounded and
the waiting time varies?

To solve it, we first reduce it to the real root isolation problem over exponential polynomials,
elements of the ring Q[e, x, ex] (that is obtained by substituting w = e and y = ex into the trivariate
polynomial ring Q[w, x, y]). Then we present an isolation algorithm for those functions, which
develops the existing ones for Q[x, ex] [2, 56].

Lemma 6.2. Problem 6.1 can be reduced to the real root isolation over the ring Q[e, x, ex].

Proof. The proof is similar to that of Theorem 4.4. The only difference lies in that τ is a real
parameter and τ1 is a known integer. For each sinking path ς in the induced PP, by substituting
τ2 = τ − τ1 into Proposition 4.3, the measure of all sinking paths of this type is an element of
Q[e, τ, e−τ]. Let x be −τ. Then, for a fixed scheduler θ, the termination probability P(θ) with
τ1 ≤ ∆ is the fraction (4), whose numerator and denominator are in the form

α0(x) + α1(x)eβ1 + · · · + αm(x)eβm , (9)

where α0(x), . . . , αm(x) are elements of Q[x, ex] and β1, . . . , βm are distinct positive integers. So
comparing P(θ1) and P(θ2) for any pair of schedulers θ1 and θ2 amounts to finding real roots
of an element of Q[e, x, ex]. Once we know how to find real roots for Q[e, x, ex] (particularly
for x ∈ (−∞,−∆)), we can eventually offer finitely many intervals w. r. t. x, on each of which a
scheduler would be demonic everywhere.

Example 6.3. Here we reconsider the PPD in Figure 1(a). Let the running time τ1 be bounded
by 20 units of time, and the total time τ a real parameter. Then the results on all fully acted
schedulers can be found in Table 6, in which γ1, . . . , γ6 are given below. All of them are elements
of Q[e, τ, e−τ].

γ1 = 15
128 + [ 82944405

2048 − 4785885
1024 τ + 185895

1024 τ2 − 1215
512 τ

3]e20−τ

+ [ 44642745
128 − 3131055

64 τ + 149445
64 τ2 − 1215

32 τ3]e40−2τ

+ [− 32579565
2048 + 557505

128 τ − 233145
512 τ2 + 5535

256 τ
3 − 405

1024τ
4]e60−3τ ,
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γ2 = 7
64 + [− 229635

256 + 2835
32 τ − 567

256τ
2]e16−τ + [ 316953

64 − 18711
32 τ + 567

32 τ
2]e32−2τ

+ [ 190883
256 −

24297
128 τ + 4221

256 τ
2 − 63

128τ
3]e48−3τ ,

γ3 = 1
16 + [ 783

64 −
27
32τ]e12−τ + [ 675

16 −
27
8 τ]e24−2τ + [− 1399

64 + 39
8 τ −

9
32τ

2]e36−3τ ,

γ4 = 3
8 + [ 2673

4 −
243
8 τ]e17−τ + [ 2165049

8 − 169371
4 τ + 8991

4 τ2 − 81
2 τ

3]e34−2τ

+ [ 47001
4 − 22797

8 τ + 945
4 τ2 − 27

4 τ
3]e51−3τ ,

γ5 = 3
16 + [ 2673

8 −
243
16 τ]e17−τ + [ 2165049

16 − 169371
8 τ + 8991

8 τ2 − 81
4 τ

3]e34−2τ

+ [ 47001
8 − 22797

16 τ + 945
8 τ2 − 27

8 τ
3]e51−3τ ,

γ6 = 1
4 −

27
4 e13−τ + [ 11583

4 − 783
2 τ + 27

2 τ
2]e26−2τ + [− 1573

4 + 165
2 τ − 9

2τ
2]e39−3τ .

schedulers
∑
ς P1 · P2 schedulers

∑
ς P1 · P2

LLLL γ1 + γ2 + γ3 LRR γ4

LLLR γ2 + γ3 RLL γ5 + γ6

LLR γ3 RLR γ5 + γ6

LRL γ4 RR γ6

Table 6: Schedulers in PPD with bounded running time

From Table 6 and the set inclusion, we can see that

• P(LLLL) > P(LLLR) > P(LLR), as the set of terminating paths under LLLL is a superset
of that under LLLR and the set of terminating paths under LLLR is a superset of that under
LLR;

• P(LRL) = P(LRR); and

• P(RLL) = P(RLR) > P(RR), as the set of terminating paths under RLL is a superset of
that under RR.

Hence, to determine the demonic scheduler, it suffices to compare P(LLR), P(LRL) and P(RR),
which will be finished later.

There exist some real root isolation algorithms for exponential polynomials Q[x, ex], e. g. [2,
56]. But they are not suitable for Q[e, x, ex] due to the Euler’s constant e appearing in coefficients.
The hardness lies in ruling out multiple real roots, without which the algorithm may not halt. We
will overcome it by a profound number-theoretic conjecture on transcendence degree that is the
maximum number of algebraically independent elements in a given number field.

Conjecture 6.4 (Schanuel (1960s), see [5]). Let β1, . . . , βm be Q-linearly independent complex
numbers. Then the field extension

Q(β1, eβ1 , . . . , βm, eβm ) : Q

has transcendence degree at least m.
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Proposition 6.5. Let ϕ1 and ϕ2 be two co-prime elements of Q[e, x] \Q[e]. Then ϕ1 and ϕ2 have
no common real root.

Proof. Suppose that ϕ1 and ϕ2 have a common real root x0. Then ϕ1(x0) = ϕ2(x0) = 0 hold.
Let φ be the Sylvester’s resultant [18, Page 141] of ϕ1 and ϕ2 that eliminates the component x in
Q[e, x]. Since ϕ1 and ϕ2 are co-prime, φ is a nonzero Q-polynomial in e, which does not equal
zero by the fact that e is transcendental. However, ϕ1(x0) = ϕ2(x0) = 0 imply φ(x0) = 0, which
yields a contradiction. Hence ϕ1 and ϕ2 have no common real root.

Proposition 6.6. Let ϕ1 and ϕ2 be two co-prime elements of Q[e, x, ex] \Q[e]. Then all common
real roots of ϕ1 and ϕ2 are rational.

Proof. Suppose that ϕ1 and ϕ2 have a common irrational root x0. Then ϕ1(x0) = ϕ2(x0) = 0
hold. Assume w. l. o. g. that at least one of ϕ1 and ϕ2, saying ϕ1, has positive degree in ex.
(Otherwise ϕ1 and ϕ2 have no common real root by Proposition 6.5, and thereby this proposition
holds trivially.) Let φ be the Sylvester’s resultant of ϕ1 and ϕ2 that eliminates the component
ex in Q[e, x, ex]. Since ϕ1 and ϕ2 are co-prime, φ is a nonzero Q-polynomial in e, x, satisfying
φ(x0) = 0. By φ(x0) = 0 we have x0 algebraically dependents on e, and by ϕ1(x0) = 0 we have
ex0 algebraically dependents on e, x0. In other words, the field extension

Q(1, e, x0, ex0 ) : Q = Q(e, x0, ex0 ) : Q = Q(e, x0) : Q = Q(e) : Q

has transcendence degree 1. However, since x0 is irrational, by Conjecture 6.4, we have that
Q(1, e, x0, ex0 ) : Q has transcendence degree at least 2, which yields a contradiction. Hence ϕ1
and ϕ2 have no common irrational root.

Proposition 6.7. Let ϕ be a square-free element of Q[e, x, ex]\Q[e]. Then all multiple real roots
of ϕ are rational.

Proof. It suffices to show that an irreducible element ϕ of Q[e, x, ex] \ Q[e, x] has no multiple
irrational root. We discuss it in two cases.

• If ϕ has the divisor ex, it must be a constant multiple of ex by irreducibility. Then ϕ has no
real root, and this corollary holds trivially.

• Otherwise, the tail polynomial of ϕ that consists of those terms with degree 0 in ex is
nonzero. Specifically, it either has positive degree in x or is a nonzero constant. Let
ψ = ϕ′ be the derivative of ϕ. Then ψ has the same positive degree in ex as ϕ, and the tail
polynomial of ψ either has less degree in x than that of ϕ or is the zero constant. So ϕ and
ψ are co-prime. By Proposition 6.6 we have that ϕ and ψ have no common irrational root,
which entails that ϕ has no multiple irrational root.

Now we are ready to find all multiple real roots of a square-free element ϕ of Q[e, x, ex]. Let
φ be the Sylvester’s resultant of ϕ and ϕ′ that eliminates the component ex in Q[e, x, ex]. Multiple
real roots of ϕ must be rational roots of φ. The latter comes from Q-linear divisors of φ (elements
of Q[x]), which can be easily obtained by factorisation over Q[e, x].

In what follows, we present the real root isolation algorithm for Q[e, x, ex] (see Algorithm 2),
which develops the ones in [2, 56]. Its rationale is that we isolate real roots of the original
function after those of the simpler derivative have been isolated. All technical essentials and the
correctness analysis will be provided below the statement of Algorithm 2.
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Algorithm 2 Real Root Isolation for Q[e, x, ex]

{I1, . . . ,In} ⇐ Isolate(ϕ,I)

Input: ϕ is a square-free element of Q[e, x, ex], satisfying that ex is not a divisor of ϕ, defined
on the rational interval I = (a, b).

Output: I1, . . . ,In are finitely many disjoint rational intervals (in ascending order), such that
each contains exactly one real root of ϕ in I, and together contain all.

1: if ϕ ∈ Q[e, ex] ∪Q[e, x] then
2: isolate all real roots of ϕ in I;
3: return the above isolation intervals in ascending order;
4: if ϕ(a) · ϕ(b) = 0 then
5: adjust slightly the endpoints of I, such that ϕ(a) · ϕ(b) , 0;
6: let ψ be the greatest square-free divisor of ϕ′ over Q[e, x, ex];
7: if ex is a divisor of ψ then
8: reset ψ← ψ/ex;
9: let a1, . . . , ak be all common real roots of ϕ and ψ in I;

10: set a0 ← a and ak+1 ← b;
11: for i = 0, . . . , k do
12: {J1, . . . ,Jmi } ⇐ Isolate(ψ, (ai, ai+1));
13: for j = 1, . . . ,mi do
14: repeat
15: refine isolation interval J j for ψ;
16: until 0 < Range(ϕ, closure(J j))
17: let Li ← ∅, J0 ← [ai, ai] and Jmi+1 ← [ai+1, ai+1];
18: for j = 0, . . . ,mi do
19: if ϕ(supJ j) · ϕ(infJ j+1) < 0 then
20: update Li ← Li t {(supJ j, infJ j+1)}; . ‘t’ denotes the union on ordered sets
21: return L0 t {[a1, a1]} t L1 t · · · t {[ak, ak]} t Lk.

Usage. We first compute the greatest square-free divisor ϕ of the input exponential polynomial
by factorisation over Q[e, x, ex], and drop the divisor ex if it has. The upper (resp. lower) bound
for all real roots of ϕ can be found as the threshold, after (resp. before) which there is a domi-
nating term in ϕ whose sign is the sign of the whole ϕ. After obtaining a lower bound a and an
upper bound b for all real roots of ϕ, we turn to invoke Isolate(ϕ, (a, b)).

More specifically, we note that:

The sign-determination in Lines 4 & 19 can be finished using the fact that e is transcendental.
For instance, if ϕ(a) is the zero constant, the sign is clear; otherwise the sign would be
clear when e is sufficiently approached.

The shifting perturbation ε in Line 5, saying for a ← a + ε, can be chosen as any positive
number less than

min

 ϕ(K)(a)
sup

x∈[a,a+ε]
|ϕ(K+1)(x)|

, ε

 for certain ε > 0 ,
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where K is the minimum integer, satisfying the Kth derivative ϕ(K)(a) , 0.

Frankly, we cannot obtain the exact range estimate in Line 16. However, by interval arithmetic
[56, Formula (9)], the function range confined in I would be over-approximated within
any error bound along with the refinement in interval estimates for e and ex, which can be
offered by classic continued fractions [56, Corollary 2.6].

Correctness. We first notice that the depth of recursion in Line 12 is finite, since either ψ has
lower degree in ex than that of ϕ, or the tail polynomial of ψ has lower degree in x than that of ϕ
while ψ keeps the same degree in ex as ϕ from the construction in Lines 6–8. We then prove the
correctness by induction.

• Basically, when ϕ is a polynomial only in x or only in ex, its real roots can be easily isolated
by the existing methods, e. g. the one in [18, Page 148].

• Inductively, we can find all common real roots a1, . . . , ak of ϕ and ψ by Proposition 6.7.
In each (ai, ai+1), once isolation intervals J1, . . . ,Jmi are known for real roots of ψ, we
refine them by the loop in Lines 14–16 until their closures contain no real root of ϕ.
Then we check all intervals (supJ0, infJ1), . . . , (supJmi , infJmi+1), complementing to
closure(J1), . . . , closure(Jmi ) in (ai, ai+1), in each of which ϕ is monotonous, and thus
easily isolate all real roots of ϕ in (ai, ai+1) as an individual list Li.

• Finally all real roots of ϕ in I would be collected in ascending order as the union in
Line 21.

Example 6.8. Let us compare P(LLR), P(LRL) and P(RR) that was left in Example 6.3.
The critical points of P(LLR) = P(LRL) are the real roots of ϕ = e3τ · [γ3 − γ4], an element

of Q[e, τ, eτ]. We first choose 40 as an upper bound for all real roots of ϕ. Then we turn to isolate
all real roots of ϕ′ in (20, 40), which amount to those of the greatest square-free divisor ψ of ϕ′

without the divisor ex. As ϕ and ψ have no common real root, no splitting in (20, 40) is necessary.
After a finite depth of recursion, we eventually get the unique real root of ψ in (20, 40), which
can be refined to ( 5314365

262144 ,
10628735
524288 ), so that ϕ has no real root in the closure [ 5314365

262144 ,
10628735
524288 ].

Finally we can get the desired unique real root of ϕ in (20, 40). In fact, we have implemented
Algorithm 2 to automatically provide the aforementioned isolation interval ( 10628735

524288 , 40) of ϕ,
which can be refined to any precision.

Additionally, P(LLR) = P(RR) has no critical point in (20,+∞). The interval (20,+∞) is
finally partitioned into two subintervals:

• the schedulers “LRL” and “LRR” are demonic on the left subinterval,

• the scheduler “LLR” is demonic on the right subinterval, and

• both are demonic on that critical point (≈ 20.5734).

Remark 6.9. The critical point in the above example is “obvious”, so that it can be efficiently
approached using traditional numerical computation. But numerical computation usually fails
to identify a tangent real root of P(θ1)−P(θ2) (saying, distinguish a tangent real root with a pair
of very close distinct real roots) in advance, at which it suffers the trouble of missing real roots.
In other words, comparing P(θ1) and P(θ2) are not effective then. Our method overcomes this
trouble by Proposition 6.7.
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Finally, by Lemma 6.2 and the usage of Algorithm 2, we conclude with:

Theorem 6.10. The termination problem 6.1 is solvable under Schanuel’s conjecture.

7. Complexity Analysis

Now we are to analyse the complexity of the proposed methods along with the time bound ∆

for an input PPD. The size of the PPD is constant, and only ∆ is the size parameter of the input.
Our methods widely carry on the sign-determination, i. e. determining the sign of an element ϕ of
Q[e, x, ex] when x is confined in a rational interval I that contains a real root of another element
of Q[e, x, ex]. Namely, we regard Range(ϕ,I) as a trivariate function, varying with the interval
estimates for e,I, ex. After the case of ϕ = 0 is ruled out by pretreatment, the sign-determination
can be finished by sufficiently precise interval estimates for e,I, ex. Otherwise we would either
refine the isolation interval I or refine the interval estimates for e, ex. Although these procedures
are effective, how precise interval estimates are enough is unknown. In other words, we do not
know the required times of refinements in advance. To complete the complexity analysis, we
define two computable oracle machines as follows.

• The oracle machine χ1 completes the refinement in e, such that the sign of ϕ(a) is clear for
a given constant a.

• The oracle machine χ2 completes the refinement in I, e, ex, such that the sign of ϕ(I) is
clear. (Obviously χ2 subsumes χ1.)

For PPDs, we first notice that the number of sinking paths ς in the induced PP is exponential
w. r. t. ∆, as well as the number of fully acted schedulers. For every type ς, the probability of sink-
ing paths σ in PPD can be computed in polynomial time by integration-by-parts. So, for a fixed
scheduler, we can obtain the time-bounded termination probability as an element fraction, whose
numerator and denominator (elements of Q[e]) involve at most exponentially many ς. Then we
compare probabilities under different schedulers, which uses χ1 on an exponentially-sized ele-
ment of Q[e]. The demonic scheduler can be eventually determined after at most exponentially
many times of such comparison. Hence Theorem 4.4 is in EXPχ1 .

For parametric PPDs, each time of comparison performs cylindrical algebraic decomposi-
tion [18] on exponentially-sized elements ϕ of Q[y0, y], which is double-exponential time in the
number of parameters and polynomial time in ‖ϕ‖. Since the size of the input PPD is constant,
as well as the number of parameters, the decomposition is in EXP. After decomposition, it
produces at most exponentially many solution cells that are defined by exponentially-sized ele-
ments of Q[y0, y]. To recognise those solution cells with first components w. r. t. y0 containing e,
we carry on at most exponentially many times of sign-determination for boundaries of the first
components at y0 = e, each of which uses χ1 on exponentially-sized elements of Q[e]. Hence
Theorem 5.6 is still in EXPχ1 .

For PPDs with bounded running time, each time of comparison performs real root isolation
on an exponentially-sized element ϕ of Q[e, x, ex]. Then the depth of recursion is bounded by
‖ϕ‖. Specifically, for an exponential polynomial ϕ =

∑
i pi(x)eki x with pi ∈ Q[e, x]\{0}, the depth

is bounded by
∑

i(degx(pi) + 1). During the whole isolation, the number of all occurring isolation
intervals (i. e. the number of real roots of all derivatives ψ occurring in the recursion procedure)
is bounded by [

∑
i(degx(pi) + 1)] · [

∑
i(degx(pi) + 1) + 1]/2 ≤ ‖ϕ‖2/2. So the isolation uses at

most exponentially many times of χ1 and χ2, and other operations (including factorisation over
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Q[e, x, ex] [37]) are totally polynomial time in ‖ϕ‖. Hence Theorem 6.10 is in EXPχ1 + EXPχ2 =

EXPχ2 .

8. Conclusion

We have studied several time-bounded termination problems over PPDs. All these prob-
lems can be solved by number-theoretical and algebraic methods, which are of exact quantitative
reasoning. We have also implemented a prototype of our methods. Finally we have given the
complexity upper bounds for the proposed methods. Furthermore, we believe that the angelic
scheduler that maximises the termination probability could be determined in a symmetric way.

For further work, we are interested in extending the proposed methods to recursive PPDs
[47, 16] and the general parameter-synthesis and model-repair problems [32], and applying them
to some case studies. The prototype could be incorporated with algorithmic learning to reuse the
middle results, thus improve the practical efficiency.
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