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1 Introduction

It has long been a challenge for theoretical computer ssisrib provide a firm mathematical foundation for process-
description languages that incorporate both nondetestigraind probabilistic behaviour in such a way that processe
are semantically distinguished just when they can be toddtdyy some notion of testing.

In our earlier work[[4, 2] a semantic theory was developedfoa particular language with these characteristics, a
finite process calculus calledCSP: nondeterminism is present in the form of the standard ehoperators inherited
from CSP[[10], thatis? M @ and P O @, while probabilistic behaviour is added via a new choicerafme P ,& @
in which P is chosen with probability and@ with probability1—p. The intensional behaviour of @ SP process
is given in terms of a probabilistic labelled transitionteys [24,[4], or pLTS, a generalisation of labelled transitio
systems[[20]. In a pLTS the result of performing an action ijiven state results in probability distributionover
states, rather than a single state; thus the relatiors; ¢ in an LTS are replaced by relations—=» A, with A a
distribution. ClosegCSP expressiong’ are interpreted as probability distribution8] in the associated pLTS. Our
semantic theory [4,12] naturally generalises the two preardf standard testing theofy [6] p&€SP:

o P Cpmay Q indicates that) is at least as good a8 from the point of view ofpossiblypassing probabilistic
tests; and

o P Cpmust @ indicates instead tha} is at least as good &3 from the point of view ofguaranteeinghe passing
of probabilistic tests.

The most significant result of [2] was an alternative chamasation of these preorders as particular forms of co-
inductively definedsimulationrelations,C g andC g, over the underlying pLTS. We also provided a characteodsat
in terms of a modal logic.

The object of the current paper is to extend the above resulisversion ofpCSP with recursive process de-
scriptions: we add a construeic . P for recursion, and extend the intensional semanticslofi{2] straightforward
manner. We restrict ourselves fimitary pCSP processes, those having finitely many states and displdiyiitg
branching.
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Figure 1: The pLTSs of process€s and(@-

The simulation relationg s andC zs in [2] were defined in terms of weak transitions between distributions,
obtained as the transitive closure of a relatién between distributions that allows one part of a distributio make
a T-move with the other part remaining in place. This definitisthowever inadequate for processes that can do
an unbounded number ofsteps. The problem is highlighted by the proc€ss= recz. (t.x 1D a) illustrated
in Figure[1(a). Proces®; is indistinguishable, using tests, from the simple proceswe haveQ1 ~pmay @ and
Q1 ~pmust a. This is because the proceQs will eventually perform the action with probability 1. However, the
actiona] %+ [0] can not be simulated by a corresponding m{n@e}] ==-%. No matter which distributiom\
we obtain from executing a finite sequence of internal mdégs == A, still part of it is unable to subsequently
perform the actiom.

To address this problem we propose a new relatlon—=- O, to indicate that® can be derived fromA by
performing an unbounded sequence of internal moves; wecaliveak derivativeof A. For exampl€a] will turn
out to be a weak derivative 9f)+ ], i.e. [Q1] = [a], via the infinite sequence of internal moves

[QlﬂL[Qlé@aﬂi*[[@151569a]—+>...—+>[[621?1w®a]—%>....

One of our contributions here is the significant use of “satritiutions” that sum tmo more tharone [11]19]. For
example, the empty subdistributierelegantly represents the chaotic behaviour of procesaemtESP and in must-
testing semantics is tantamount to divergence, becausavex h-= ¢ for any actionw, and a process likeec z. =
that diverges via an infinite path gives rise to the weak transitigst z. z = €. So the procesgs = Q1 ;P recz.
illustrated in FigurdIl(b) will enable the weak transitioQ.] = 3[a], where intuitively the latter is a proper
subdistribution mapping the stateto the probability%. Our weak transition relatioa=- can be regarded as an
extension of theveak hyper-transitiofrom [17] to partial distributions; the latter, althougHfied in a very different
way, can be represented in terms of ours by requiring weakalies to be total distributions.

We end this introduction with a brief glimpse at our proofistgy. In[[2] the characterisations for finig€SP
processes were obtained using a probabilistic extensiagheoHennessy-Milner logid [20]. Moving to recursive
processes, we know that process behaviour can be capturadibiye modal logic only if the underlying LTS is
finitely branching, or at least image-finite [20]. Thus todakdvantage of a finite probabilistic HML we need a
property of pLTSs corresponding to finite branching in LT88s is topological compactness, whose relevance we
now sketch.

Subdistributions over (derivatives of) finitapCSP processes inherit the standard (complete) Euclidean enetri
One of our key results is that

Theorem 1.1 For every finitarypCSP processP, the set{ A | [P] = A } is convex and compact.

Indeed, using techniques from Markov Decision Thebry [28]aan show that the potentially uncountable{sét |
[P] = A} is nevertheless the convex closure diféte set of subdistributions, from which Theoréml1.1 follows.



This key result allows amductivecharacterisation of the simulation preorders andC g, here defined using
our novel weak derivation relatioa=. We first construct a sequence of approximatiarisfor £ > 0 and, using
Theoreni 111, we prove

Theorem 1.2 For every finitarypCSP processP, and for everyk > 0, the set{ A | [P] C% A} is convex and
compact.

This in turn enables us to use tRmite Intersection Propertpf compact sets to prove
Theorem 1.3 For finitary pCSP processes we have Cg Q iff P g’g Q forall £ > 0.

Our main characterisation results can then be obtained teyéig the probabilistic modal logic used [ini [2], so that
for example

o it characteriseg’g for everyk > 0, and therefore it also characterises
e every probabilistic modal formula can be captured by a nemy-t

Similar results accrue for must testing and the new failimauikation preordefC g: details are given in Sectidn 8.

In the next section we introduce a probabilistic CSP withursion. In Sectiohl3 we elaborate on our approach
to weak derivations and discuss some of their elementanygpties. In Sectiohl4 we present two methods of testing
and show that they coincide for finitary processes. In Seiwe introduce yet another method of testing. It appears
simpler than the previous two methods because only extresiiihg outcomes are considered. However, it turns out
to coincide with them for finitary processes. In Secfibn 6 mestigate the topological properties of weak derivations
In Sectiorl ¥ we define a notion of failure simulation preordtds shown to be a precongruence relation and is sound
for must testing. In Sectio] 8 we show that failure simulati® also complete for must testing. Therefore, must
testing can be characterised as failure simulation. Ini@e& we characterise may testing as simulation. Finally,
related work is briefly discussed in Sectfod 10.

2 The languagepCSP

Let Act be a set of visible actions which a process can perform, andalebe an infinite set of variables. The
languagepCSP of probabilistic CSP processes is given by the following-seoted syntax, in which €[0, 1], a € Act
andA C Act:

P == S| P@®P

S u= 0 |xzeVar | aP | PP | SOS | S|aS | reczP.

This is essentially the finite language bf [2, 4] plus the rsiue constructec z. P in which z is a variable and® a
term. Intuitively rec x. P represents the solution of the fixed-point equatior P. The notions of free- and bound
variables are standard; B}{x= — P] we indicate substitution of teri for variablex in @, with renaming if necessary.
We write pCSP for the set of closed’-terms defined by this grammar, asi@dSP for its state-basedubset of closed
S-terms.

The process ,® @, for 0 < p < 1, represents @robabilistic choicebetweenP andQ: with probability p it
will act like P and with probabilityl —p it will act like QEl Any process is a probabilistic combination of state-
based processes built by repeated application of the apesat The state-based processes have a CSP-like syntax,
involving the stopped proce8saction prefixing:._ for a € Act, internal-andexternal choicesl and, and gparallel
compositior| 4 for A C Act.

The process” M @ will first do a so-callednternal actiont ¢ Act, choosingnondeterministicalljpbetweenP
and@. Thereforen, like a._, acts as @uard, in the sense that it converts any process arguments intiexlsased
process. The same applies¢o z. P as, following CSP[21], our recursion construct performgwernal action when
unfolding. As our testing semantics will abstract from mig actions, these-steps are harmless and merely simplify
the semantics.

1In our semantics we ha\,{%P o Qﬂ = [Q] and [[P1€9 Qﬂ = [Pﬂ so without limitation of generality we could have requitedtO<p<1.
In papers involving axiomatisations this is customaryhasmost natural formulation of the law of associativity iiwes dividing byp.



The process O ¢ on the other hand does not perform actions itself but rathews its arguments to proceed,
disabling one argument as soon as the other has done a \asii@. In order for this process to start from a state
rather than a probability distribution of states, we regits arguments to be state-based as well; the same requireme
applies tg 4.

Finally, the expressior |4 t, where A C Act, represents processesand¢ running in parallel. They may
synchronise by performing the same action frdnsimultaneously; such a synchronisation results.iitn additions
and¢ may independently do any action frofct\ A) U {7}.

Although formally the operatorsl and|4 can only be applied to state-based processes, informallysgeex-
pressions of the forn? O @ andP |4 @, whereP and(@ arenot state-based, as syntactic sugar for expressions in
the above syntax obtained by distributinigand|4 over,&. Thus for example O (¢, ,® t2) abbreviates the term
(s Ot1),® (s Ota).

The full language of CSP]L, 10,121] has many more operataehave simply chosen a representative selection,
and have added probabilistic choice. Our parallel opeiiatopt a CSP primitive, but it can easily be expressed in
terms of them — in particulaP |4 Q@ = (P||aQ)\A, where||4 and\ A are the parallel composition and hiding
operators of[[21]. It can also be expressed in terms of thallphcomposition, renaming and restriction operators of
CCS. We have chosen this (non-associative) operator faecoence in defining the application of tests to processes.

As usual we may elid®; the prefixing operatou._ binds stronger than any binary operator; and precedence
between binary operators is indicated via brackets or agaéie will also sometimes use indexed binary operators,
such agp, ; pi-P; with > ., p; = 1 and allp; > 0, and[],; P;, for some finite index set.

Our language is interpreted agpeobabilistic labelled transition systefd), [2]. Essentially the same model has
appeared in the literature under different names sudiRasystem§12], probabilistic processefl 3], simple prob-
abilistic automatd23], probabilistic transition system{d4] etc. Furthermore, there are strong structural sirtissr
with Markov Decision Processg&2,5].

We now fix some notation. A (discrete) probabilgybdistributionover a setS is a functionA : S — [0, 1] with
>sesA(s) < 1; thesupportof such aA is [A] := {s€S | A(s) > 0}, and itsmass|A| is Y-, cra) Als). A
subdistribution is a (total, or fullllistributionif |A| = 1. The point distributiors assigns probability to s and0 to
all other elements af, so that[s] = {s}. With 2(S) we denote the set of subdistributions ogrand withZ1 (S)
its subset of full distributiond=or A, © € Z(.S) we writeA < O iff A(s) < O(s)forall s€S.

Let {Ax | k € K} be a set of subdistributions, possibly infinite. Thei,. , Ay is the real-valued function in
S — R defined by(} ;. x Ax)(8) = D Ak(s). Thisis a partial operation on subdistributions becausedme
states the sum ofA,(s) might exceed. If the index set is finite, sayl..n}, we often writeA; + ... + A,,. For
p a real number fronf0, 1] we usep- A to denote the subdistribution given by- A)(s) := p-A(s). Finally we use
¢ to denote the everywhere-zero subdistribution that theshapty support. These operations on subdistributions do
not readily adapt themselves to distributions; ye} if. . , pr. = 1 for some collection op, > 0, and theA, are
distributions, then so i3, ;- px - Ax. In general whe<p<1we writez ,© y for p-x + (1—p) -y where that makes
sense, so that for example, ,@& A, is always defined, and is full i\, andA, are.

The expected valu®_ ¢ A(s)- f(s) over a(subyistributionA of a bounded non-negative functigrto the reals
or tuples of themor to 2(5), is written Exp, (f), and the image of éubyistribution A through a functionf is
written Img, (A) — the latter is thgsubX)listribution over the range gf given by Img.(A)(¢) := Zf(s):t A(s).

Definition 2.1 A probabilistic labelled transition syste(pLTS) is a triple(S, L, —), where

(i) Sis a set of states,
(i) L is a set of transition labels,
(iii) relation — is a subset of x L x 2:(95).

A (non-probabilistic) labelled transition system (LTS) yrlae viewed as a degenerate pLTS — one in which only
point distributions are used. As with LTSs, we write®> A for (s, a, A) € —, as well ass <= for JA : s % A
ands — for 3a: s —*5. A pLTS isfinitely branchingf the set{{(a, A) | s %> A, a € L} is finite for all states; if
moreovels is finite, then the pLTS ifinitary. A pLTS isdeterministidf for each states and label, there is at most
one distributiomA with s < A.

The operational semantics pESP is defined by a particular pLTSCSP, Act, —) in whichsCSP is the set of
states and\ct, := Act U {7} is the set of transition labels; we letrange oveAct and« overAct,. We interpret
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Figure 2: Operational semanticsgfSP

pCSP processe$ as distributiong P € 2, (sCSP) via the function]_] : pCSP — 2, (sCSP) defined by
[s] .= s forsesCSP, and [P,&Q] = [P],®][Q].

The transition relatior- is defined in FigurEl2. This is a slight extension of the rulesised earlief]4, 2] for finite
processes: one new rule is required to interpret recurso@egses. All rules are very similar to the standard ones use
to interpret CSP as a labelled transition system [21], beinaodified so that the result of an action is a distribution.
The rules for external choice and parallel composition uselavious notation for distributing an operator over a
distribution; for example\ O s represents the distribution given by

! H !
(ADS)(t)—{A(S) Ift—s. Os
0 otherwise.
We sometimes write. P for P 1 P, thus givingr.P —— [P].

The set of stategeachablefrom a subdistributiom\ is the smallest set that contaifA] and is closed under
transitions, meaning that if some statés reachable and <+ © then every state ifi©] is reachable as well. We
graphically depict the operational semantics eiGSP expressionP by drawing the part of the pLTS reachable from
[P] as a directed graph with states represented by filled nedesl distributions by open nodes For any states
and distributionA with s %+ A we draw an edge fromto A labelled witha; and for any distributiom\ and states
in [A], the support o\, we draw an edge from to s labelled withA(s). We often leave out point-distributions—
diverting an incoming edge to the unique state in its supg®ometimes we partially unfold this graph by drawing
the same nodes multiple times; in doing so, all outgoing sdda given instance of a node are always drawn, but not
necessarily all incoming edges.

Note that for each € pCSP the distribution] P] has finite support. Moreover, our pLTSfigitely branchingn
the sense that for each state sCSP there are only finitely many paifgy, A) € Act, x Z1(sCSP)) with s < A.

In spite of | P]'s finite support, and the finite branching of our pLTS, it isspible for there to be infinitely many states
reachable fronj P[; when there are only finitely many, théhis said to be finitary([5].

Definition 2.2 A subdistributionA € Z(S) in a pLTS (S, L, —) is finitary if only finitely many states are reachable
from A; apCSP expressiorP is finitary if [P] is.



3 A novel approach to weak derivations

In this section we develop a new definition of what it meansafoecursive process to evolve by silent activity into
another process; it allows the simulation and failure-$ation preorders of[2] to be adapted to characterise thimges
preorders for at least finitary probabilistic processes.

Recall for example the procesg$, defined in the introduction. It turns out that in our testimgniework this
process is indistinguishable from both processes can do nothing else than-action, possibly after some internal
moves, and in both cases the probability that the processi@ikr do thez-action is 0. In[[4[ 2], where we did not
deal with recursive processes likg, we defined a weak transition relatieft> in such a way thaf> == iff there is
a finite number of--moves after which the entire distributig#’] will have done ar-action. Lifting this definition
verbatim to a setting with recursion would create a diffeeshetween andQ), for only the former admits such a
weak transition==-. The purpose of this section is to propose a new definitionezkatransitions, with which we can
capture the intuition that the proce@s can perform the actioa with probability 1, provided it is allowed to run for
an unbounded amount of time.

We construct our generalised definition of weak move by megisvhat it means for a probabilistic process to
execute an indefinite sequence of (intermafhoves. The key technical innovation is to change the foars fistri-
butions tosubdistributionghat enable us to express divergence very conveni@ntly.

First some relatively standard terminology. For any suBsef %(.5), with S a set, letf X, theconvex closuref
X, be the smallest convex set containikig So it satisfies:

() X CIX
(i) AegXifandonlyifA =" p;-A;, whereA; € X andp; € [0, 1], for some index sef such thaf) ~ p; = 1.
el el
In cases is a finite set, it makes no difference whether we resfrit being finite or ngtinfactndexsets-ofsize 2
will-suffice. In fact, requiring! to be finite is equivalent to defining convexityof a¥eby A, 0 € Y = A, 0 €Y
for anyp € [0, 1]. However, in generahere is a difference

Example 3.1 LetS = {s; | i € N}. Then]{s; | ¢ € N} consists of all total distributions whose supportis inéldéh
S. However, with a definition of convex closure that requirelydoinary interpolations of distributions to be included,
1{5i | i € N} would merely consist of all such distributions with finitepport. O

Convex closure is a closure operator in the standard senggtiit satisfies

e X C iX

e X CYimplies]X ClY

o ITX =1X.
We say a seK is convexf JX = X. Furthermore, we say that arelatighC Y x 2(S) is convex whenever the set
{A |y % A} is convex for every in Y, and}.Z denotes the smallest convex relation containifig

3.1 Lifted relations

In a pLTS actions are only performed by states, in that astame given by relations from states to distributions. But
pCSP processes in general correspond to distributions oversstab in order to define what it means for a process
to perform an action, we need lift these relations so that they also apply to distributionsfatt we will find it
convenient to lift them to subdistributions.

Definition 3.2 (Lifting) Let (S, L, —) be a pLTS andZ C S x Z(S) be a relation from states to subdistributions.
Thenz C 2(5) x 2(5) is the smallest relation that satisfies:

(1) s # © impliess # ©, and

(2) (Linearity)A; Z ©; foric Iimplies(3",.;pi-Ai) Z (X ;c;pi-©;) foranyp; €[0,1] (i € I) with >, p; <1.

2Subdistributions’ nice properties with respect to divaigeare due to their being equivalent to the discrete préstibipowerdomain over a
flat domain[[11].



Remark 3.3 For%,, %, C S x 2(S), it %, C %, thenZ, C %5.

Remark 3.4 By constructionZ is convex. Moreover, becaus¢.%)© impliess % © we haveZ=]%, which
means that when considering a lifted relation we can withasg of generality assume the original relation to have
been convex. In fact whe# is indeed convex, we have thatZ © ands # © are equivalent.

An application of this notion is when the relation-&; for o € Act,; in that case we also writé*s for -%. Thus,
as source of a relatiof™~ we now also allow distributions, and even subdistributichsubtlety of this approach is
that for any actiony, we have

e e ()

simply by takingl =0 or )", _; p; = 0 in Definition[3.2. That will turn out to make especially useful for modelling
the “chaotic” aspects of divergence, in particular thahia inust-case a divergent process camic any other.
Definition[3.2 is very similar to our previous definition [f][2lthough there it applied only to (full) distributions:

Lemma 3.5 A Z O if and only if

() A =3,/ pi-5, wherelisanindexsetand,_,p; <1,

(iiy Foreachi € I there is a subdistributio®; such thats; Z ©;,
(i) © =3 c;pi-Os.
Proof: Straightforward. O

An important point here is that a single state can be split ggveral pieces: that is, the decompositiom\ointo
> ic1 Pi-5 is not unigue. One important property of this lifting opévatis the following:
Lemma 3.6 Suppose\ Z O, whereZ is any relation inS x 2(S). Then

@) 1Al = ]e].

(i) If ZisarelationinS x 2,(S) then|A| = |O)].

Proof: This follows immediately from the characterisation in Leaifh5. O

So for example it Z © then0 = |¢| > |©|, whenceO is alsoe.

Remark 3.7 From Lemmd& 35 it also follows that lifting enjoys the folling two properties:
(i) (Scaling) IfA Z ©,pcRand|p-A| < 1thenp-A Z p-O.
(i) (Additivity) If A; Z ©; forieIand|Y,.; Al <1then(},c; A) Z (X c;©i)-

In fact, we could have presented Definitlonl3.2 using scaimg additivity instead of linearity.
The lifting operation has yet another characterisatias,ttme in terms othoice functions

Definition 3.8 LetZ C S x 2(S) be a relation from states to subdistributions. Ttfen dom(#) — 2(S) is a
choice function foiZ if s % f(s) for everys € dom(%). We write Ch(%) for the set of all choice functions o?.

Proposition 3.9 SupposeZ C S x 2(S) is a convex relation. Then for an, © € 2(S), A # © if and only if
[A] € dom(R) and there is some choice functigne Ch(%) such thal® = Exp, (f).

Proof: First supposg A C dom(R) and© = Exp,(f) for some choice functiorf € Ch(%), thatis© =
> sera1 A(s)- f(s). Itnow follows from Lemma3l5 thah # O sinces Z f(s) for eachs € [A].
Conversely suppos& Z O. Applying Lemmd3.b we know that
() A=>,c;pi-5;, for some index sef, with ., p; <1
(i) © =3, pi-O; for someO; satisfyings; Z ©;.
First of all, this implies thafA] C dom(#). Now define the functiorf : dom(Z) — 2(S) as follows:



o if se[Althenf(s)= A’Ei).ei;
{i€l|s;=s} 5

e otherwise f(s) = ©' for any®’ with s # ©’';
Note thatA(s) = > ¢ ,crs,—s pi and therefore by convexity % f(s); so f is a choice function forz. Moreover,
a simple calculation shows that EXpf) = 3, ; pi-©;, which by (ii) above i$9. O
An important further property is the following:

Proposition 3.10 If (Z pi-A;) Z ©then®=Y"._; p;- O, for some subdistributior®; such that\; Z © for i € I.

_ el _

Proof: Let A # © whereA =", p;-A;. By Propositior 31, using tha#¥=%, there is a choice function
f € Ch(IZ) such thatd = Exp,(f). Take®; := Expy, (f) foricI. Using that[A;] € [A], Propositiori 3.0
yieldsA; #Z ©; fori € I. Finally,

DopiOi=Y pioy Ais)-fls)= D D pi-Ails)-fls)= Y As)-f(s) =Expa(f) =O. O

iel i€l se[A;] se[A] i€l sE[AT

The converse to the above is not true in general: fianZ (> i1 pi-©;) it does not follow thatA can corre-
spondingly be decomposed. For example, we haile, & ¢) —* %-5 + %E, yeta.(b& c) cannot be written as
1Ay 4+ 1-Ay suchthath; % bandA, -2 c.

A simplified form of Proposition 3.10 holds for unlifted retats, provided they are convex:

Corollary 3.11 If (3, pi-5i) 2 © andZ is convex, ther® = > ic1 Pi-©; for subdistribution®; with s; Z ©;
foriel.

Proof: TakeA, to bes; in Propositio 3.10, whende = 3, _; p; - ©; for some subdistribution®; such thak; # ©;
for i € I. BecauseZ is convex, we then havg % ©, from Remark3.4. O

Lifting satisfies the following monadic property with regp& composition.
Lemma 3.12 Let %, %> C S x 2(S). Then the forward relational compositioh; ;%> is equal to the lifted com-
positionZ, ;%> .
Proof: SupposeA Z,:%, ®. Then there is som® such thatA %, © %, ®. By Lemma[3.b we have the
decompositio\ = ., p;-5; andO = ., p;-O; with s; #, ©, for eachic I. By Propositiori 3.70 we obtain
® =, pi-® With ©; Z, ®,. It follows thats; %1;%> ®;, and thusA %,;%, ®. So we have shown that
F:Hy C A1 %,. The other direction can be proved similarly. O

3.2 Weakderivations
We now formally define a notion of weak derivatives.

Definition 3.13 (Weakr moves to derivatives) Suppose we have subdistributions Ay, A7, A, for k > 0,
with the following properties:

A = A=Ay + Af — Thex component stops “here” (even if it could have moved),
Ay © A =AT + A — but the— component moves on.

— T _ — X
Ay A = A+ A

Intotal: A" =377 A — Finally, all the stopped-somewhere components are summed

The = moves above with subdistribution sources are lifted in #ress of the previous section.
Thenwe call A’ := >°° ( A aweak derivativeof A, and writeA —> A’ to mean that\ can make aveakr
moveto its derivativeA’.



There is always at least one derivative of any distributithe (distribution itself) and there can be many. Using
Lemmd3.6 it is easily checked that Definition 3.13 is welfiaked in that derivatives do not sum to more than one.

Example 3.14 Let ——* denote the reflexive transitive closure of the relatién over subdistributions. By the judi-
cious use of the empty distributiarin the definition of=>, and property[{1) above, it is easy to see that

A 5" O implies A =0

because\ * © means the existence of a finite sequence of subdistribufiorsAg, Ay,...,Ar =0, k>0
for which we can write

A = Ag+e
Ag - Aj +e

Ak,1 s E—FAk
€ I e+e¢

Intotal: ©.

This implies that=>- is indeed a generalisation of the standard notion for nambgilistic transition systems of
performing an indefinite sequence of internahoves. O

In [4] 2] we wrotes -+ A if eithers < A or A = s. Hence the lifted relatior” satisfiesA -+ A’ iff there are
A=, A* andA; suchthathA = A_, + AX, A~ =5 A; andA’ = A; + A%, Clearly,A <5 A’ impliesA = A/.
With a little effort, one can also show that ——5* A’ implies A = A’. In fact, this follows directly from the
reflexivity and transitivity of=>; the latter will be established in Theorém 3.22.

Conversely, in[[4, 2] we dealt with recursion-fr@€SP processe®’, and these have the property that in a sequence
as in Definitior 3.1 withA = [ P] we necessarily have that, =  for somek > 0. On such processes we have that
the relations=+* and= coincide.

In Definition[3.I3 we can see that' = ¢ iff A" = ¢ forall k. ThusA = ¢ iff there is an infinite sequence of
subdistributiong\, such thatA = Ay andA, — A1, thatisA can give rise to a divergent computation.

Example 3.15 Consider the processc z. z, which recall is a state, and for which we hagez. » -~ [recz. x] and

T

thus[recx. 2] - [recz.z]. Then[recz.z] = ¢ . O

Example 3.16 Recall the proces9, = recz. (7.2 1 ® a) from the introduction. We havg):] = [a] because

[@] = @]+

(@] = émﬂ S la]
1 1
5'%@1] - 5[[@1}]—}—5
sl o @i+ lal

1 1
27[[@1] - ok+1 '[T'Qlﬂ + W[a}]

which means that by definition we have

[@] =<+ o la]

k>1

thus generating the weak derivatile| as claimed. O
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Example 3.17 Consider the (infinite) collection of stateg and probabilitiep,, for & > 2 such that
sk — [a] oD Sk+1

where we choosg;. so that starting from any; the probability of eventually taking a left-hand branchdao
reaching]a] ultimately, is just% in total. Thusp, must satisfy% =pr+ (l—pk)ﬁ_l, whence by arithmetic we have
thatpy, := % will do. Therefore in particulas, => [a], with the remaining; lost in divergence. O

Our final example demonstrates that derivatives of (intgtions of)pCSP processes may have infinite support, and
hence that we can hayé&] = A’ such that there is n&’ € pCSP with [P'] = A/,

Example 3.18 Let P denote the processcz.b & (z [y 0). Then we have the derivation:

[Pl = [P]+e
1 1
Pl Lpole
1 1 1
5'[[P|@01] — ﬁ-[{P|@02}]+ﬁ-[{b|@01}]
1 k T 1 k+1 1 k
g-[[PI@O}] — W'[{PMO }]+W-[[b|@0}]

where0” represents instances 00 running in parallel. This implies that

[P] =06
where
1 k
0=>" oRTT [0]p 07]
k>0
a distribution with infinite support. O

3.3 Properties of weak derivations

Here we develop some properties of the weak move relationwvhich will be important later on in the paper. We
wish to use weak derivation as much as possible in the sameawadlye lifted action relations™, and therefore
we start with showing that= enjoys two of the most crucial properties &:: linearity of Definition[3:2 and the
decomposition property of Propositibn 3.10. To this end fiet establish that weak derivations do not increase the
mass of distributions, and are preserved under scaling.

Lemma 3.19 For any subdistributiona, ©, I', A, IT we have
() If A= ©then|A| > |0O].
(i) If A = © andp € R suchthaip-A| <1, thenp-A = p-O.
(iii) If T+ A = I thenIl = II" 4 II* with T’ = II" andA = T2,
Proof: By definition A = © means that som4,, A,j , A7 exist for allk > 0 such that

A=Ng, A=A +AY, A7 DA, O=) AL
k=0
A simple inductive proof shows that

Al = |A7[+ ) |A[ | foranyi > 0. 2

k<i

11



The sequencé ", ., |A[[}52, is nondecreasing and byl (2) each element of the sequence igeaier tharA|.
Therefore, the limit of this sequence is boundedAy. That is,

> i <l =
Al > dim Y jAY = el

k<i

Now suppose € R such thatp-A| < 1. From Remark=317(i) it follows that

pA=pAo,  pAe=pAY+pAS, pAY Dp Ay, pO=) pAf
k

Hence Definition 3.13 yields- A = p-O.
Next supposé& + A = II. By Definition[3.IB there are subdistributioHg, IT,”, IT;* for & € N such that

T+A=T, Th=T +T, 0 STy, T=) I
k

For anys € S, define

= m(in)ms), l}i(s))

I'(s) =Ty’ (s

: min(A(s)O, 15 (s)) 3)
= Als) — AZ(s),

and check thaby” + ') = ['andAy” + Ay = A. To show that\y” + I'y> = 15" andA; + Iy = I we fixa
states and distinguish two cases: either (&)’ (s) > I'(s) or (b) I’ (s) < I'(s). In Case (a) we havi (s) < A(s)
and the definitiond{3) simplify t65" (s) = I'(s), T (s) = 0, A (s) = II; (s) andAg’ (s) = A(s) — I1 (s), whence
immediatelyl'y” (s) + Ay’ (s) = Iy (s) andI'§ (s) + A (s) = II; (s). Case (b) is similar.

SinceAy’ +T'y? = I3, by Propositiof 3.0 we finB,, A, with T';> = T'; andAg” = Ay andIl; =Ty + A;.
Being now in the same position witl; as we were withly, we can continue this procedure to fingd, I'y,, A7, I'7,
A;f andI'} with

==
loxox
—~ X
\_/\cf/\_/\_/
I

T =T, T =Ty +T),  Tp 5 Tepa,
AZAO’ Ak:Ak_)""A]ja A?%Ak-‘rla
Fk—FAk:Hk, F?—FA_}:H:, F;—FAX:H;.
LetII" := )", I' andII® := }~, A;. Thenll = II" + I1* and Definitior 3.1B yield$' = 11" andA = IT*. O

Together, LemmB_3.19(ii) and (iii) imply the binary countart of the decomposition property of Proposition 8.10.
We now generalise this result to infinite (but still coun®gldecomposition, and also establish linearity.

Theorem 3.20 (inearity and decomposition property) Letp; €[0,1]forie I with ), p; < 1. Then
(I) If A, — 6, foralliel thenzielpi-Ai — Zie[ Di -0;.
(i) If >, crpi-Ai = Othen® =3, p;-O; for subdistribution®; such thatA; = ©; forall i € I.

Proof: (i) Suppose)\; = ©; for all i € I. By Definition[3.18 there are subdistributiofs;,, A;;, A}, such that
A; = Ay, Air = A, + A, A7 T Ajkgy, 0; = ZAZX;C
k
Therefore, we have that, ., pi- A; = 3,7 pi- Ao, Dier Pi-Dik = D icr Pis A7+ X pis A

e Pit A T e pi- Ajey1y by Clausel(R) of Definitio 312, anil, ., pi-©i = > ;o pi- 2o, A =
YO serpi-AL). By Definition[3.13 we obtaiy ", pi- Ay = >, pi- O

(i) Inthe light of Lemmd3.2B(ii) it suffices to show that

if >0 g Ay = O then® = >°7° | ©, for subdistribution®; such thathA;, = ©; for all i > 0.

12



Sinced ) A = Ag + Yis1 A and>;°  A; = O, by Lemmd 3.19(iii) there ar@,, 912 such that
Ag= 0, > A=07, ©=67+67.
i>1
Using Lemm&3.79(iii) once more, we ha@e, ©5 such that

A =01, > A=0; 67 =6,+63,

i>2

thus in combinatio® = ©¢ + ©; + @22. Continuing this process we have that

A; = 0y, Z Aj :>@i2+17 6226j+@i2+1
j>it+1 j=0

forall i > 0. Lemma[3.1B()) ensures thap~ ., A > |®i2+1| forall i > 0. Butsince) ;° A;is a
subdistribution, we know that the tail Squ>i+; A converges te whens: approacheso, and therefore that

lim;_, o ©F = £. Thus by taking that limit we conclude th@t= Z;’io O, . O

3

With Theoren{Z3:20, the relatioa= C %(S) x 2(S) can be obtained as the lifting of a relatiea>s from S to
2(S), which is defined by writing =5 © just whens — ©.

Proposition 3.21 (=-5) = (=).

Proof: ThatA =5 © impliesA = © is a simple application of Part (i) of Theorédm 3.20. For theeotdirection,
suppose\ = ©: given thatA = Zse(m A(s)-3, Part (ii) of the same theorem enables us to decomfposeo
> sern1 A(s)-O5 wheres = O, for eachs in [A]. But the latter actually means that—=>-5 ©;, and so by
definition this impliesA =5 ©. O

It is immediate that the relatioa= is convex because of its being a lifting.

We proceed with the important properties of reflexivity aramsitivity of weak derivations. First note that reflex-
ivity is straightforward; in Definitiof-3.13 it suffices toka A’ to be the empty distribution.

Theorem 3.22 (Transitivity of =) If A = © and® =— A thenA = A.

Proof: By definition A = © means that soma;, A", A;* exist for allk > 0 such that
A=2Dg, A =AS+AY, A T A, O=) AL (4)

k=0
Since® = Y7 J A and® = A, by Theoreniz3.20(ii) there ar,, for £ > 0 such thatA = 7 A, and
A} = Ay forall k > 0. For eachk > 0, we know thatA;* = A, gives us somé\;, A}, A;7 for I > 0 such that

A = Ay, A = A+ Ay, Ayl 5 At Ay = Z A %)
1>0

Therefore we can put all this together with

A= YA = YAy - z( > A) ©)
k=0

k,1>0 i>0 \k,l|k+i=i

where the last step is a straightforward diagonalisation.
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Now from the decompositions above we re-compose an alteen@mbjectory of A';’s to take A via = to A
directly. Define

Ny=N+N7,  N= > AN NT=(> AR +A7, @)
k| k+1=i k| k+1=i

so that from[(B) we have immediately that

A= D AT (8)

i>0
We now show that
(i) A=A
(i) A T Ay

from which, with [8), we will haveA = A as required. Fofl(i) we observe that

A

= Ao @

= Af + Ay @

= Ago + Ay’ ()

= Ay + A S+ Ay (1)

= (Zk,l\kJrl:O Akl) (ke gpi=0 Ail) + A index arithmetic
= ANy + Ay @

= A @

For (i) we observe that

N

= (Zk,l\k-{-l:i A+ A7 @

- (ZkJ‘kJrl:i Ak,l—i—l) + Ai-l—l @): E),Remaﬂm(ii)
= Cktpprimi B A1) + A% + AT, @. G

= Chtpi=i Argn) + A%+ g pri=i Deign) + A rearrange
= btttz Dkrr) + Bitr0 + (g pjppi=i Diisr) A (&)

= o ppprimi Aragn) T A% 10+ A0 + Cp iz A% l+1)+A_J;1 ()

= okt himit AL+ (X, Ahrimit Bg) + AT index arithmetic
= A’fﬂ + A’:rl @

= APTE @

which concludes the proof. O

Finally, we need a property that is the converse of transitivf one executes a given weak derivation partly, by
stopping more often and moving on less often, one makes anwatsak transition that can be regarded as an initial
segment of the given one. We need the property that afteruérgcsuch an initial segment, it is still possible to
complete the given derivation.

Definition 3.23 A weak derivationd —> I" is called aninitial segmenif a weak derivatiob — W if for &£ > 0
there ard’,, I',”, T, Wy, ¥, 7, U0 € 2(S) such thal'y = ¥y = ® and

[ =Ty +T° U =Up4+0 TIp<yp

T T Topt VO T W, I <,
I=3"72T% =300y (U =T7) = (W1 — Thga).
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Proposition 3.24 If & = I"is an initial segment ob = ¥, thenl' = V. O
Proof: For subdistributiod\, ® € 2(S) defineANO € 2(5) by ANBO(s) := min(A(s), O(s)) andA—0 € 2(95)
by A — ©(s) := min(A(s) — O(s),0). SOA —© = A — (AN O). Observe that in cage < A, and only then, we
have tha{A — ©) + 6 = A.

LetTy, I}, Tf, Wy, U7, U € 2(S) be as in Definitio 3.23. By induction dn > 0 we defineA;, A;; and
A, for0 < i < k, such that

Dro=TF W=l ,Au+Ty W=7 00N Au=AR+A% A5 Aginr) -

Induction baselLet Ay : =T =Ty —I'y> = ¥, —I';’. This way the first two equations are satisfied#o« 0. All
other statements will be dealt with fully by the inductioagst

Induction step:Supposeﬁ;CZ for 0 < i < k are already known, angt;, = Zf o Ari + I';7. With induction on; we
defineAy; :== Ay N () Zl ! Af ;) and establish thazzzo A,jj < U/, Namely, writing®y,; for Zl ! AX
surelyOpg = ¢ < ¥, and when assuming th@,; < ¥, for some) <i <k, and defining\; := AN (T @,ﬂ)
we obtaindy, ;1) = A% +Ok < (U —O4)+0y,; = ¥, Soin particulal ), A, < ¥, Using thatl“,j <0
we find

h-1 K1
Ape = (U —T}7) — ZAkz— F (T —TF)) = > Api = T = > Ay,
i=0 i=0

henceA, = Apy N (U =S AZ) =0 — S Ay and thust = S0 Ay
Now defineA;? := Ay; — AX Th|s yieldsAy; = A + AJ; and thereby
k

k
e = QAT = YA ZA .
=0

=0

Sincer:0 Ay = (0 -T37) = (Ugs1—Tktq), by Proposition 370 we havey, 1 — 'y = Zf:o A(k41)(i41)
for some subdistributiong\ ;. 1)(;+1) such thatA;7 - Agp1y641) for i = 0,...,k. Furthermore, define
Agey1yo =Ty = Trgn — T2, Itfollows that

k k+1 k+1
Uy = Z A1)ty + T = Z AGer1yi + (Agegryo + i) = Z Agy1yi + Tila-
1=0 =1 1=0

This ends the inductive definition and proof. Now @t := 7,7 A, ©;7 == 3777, At and® = Zk AL
It follows that©g = Y32 Awo = D s IS =T, ©;, = ©;7 + 6], and using Remar@ 7(||)’;)—> B ®z+1
Moreover,y > 0 = 3270 ST AX =S S JAX =30 U = U, Definition[3I8 yieldd — W, O

3.4 Derivations through policies

In Markov Decision Theory [22policiesare used to determine a run of a process. These are is egéhdéiasame as
theschedulersf [17]. Here we will show that this method agrees with our gederivations.

In Markov Decision Processes (MDPE) [22] transitions angallg unlabelled. To lift the definition of a policy
from MDPs to pLTSs, we need to map pLTSs to MDPs. Here we dobisonsidering an MDP to be a pLTS in
which all transitions are labelled and mapping a pLTS to an MDP by leaving out all notransitions. This method
yields the required match between policies and weak d@ivat An alternative map from pLTSs to MDPs would be
to simply forget the transition labels. In that case we waééd to use a notion of derivation obtained from the one
in Definition[3.13 by dropping the requirement that the titmss A;” — Ay are labelledr.

A policy specifies for each stateis a pLTS (S, Act,,—) a “way to proceed”. This “way” is a probabilistic
combination of the outgoing-transitions ofs, with as a special component in this probabilistic combarmathe
possibility not to proceed further at all. istory-dependerdolicy makes the way to proceed frondepending on the
way one arrives &, called ahistoryof s. Here, for the sake of generality, we postulate aféetf histories, equipped
with a functionlast: H — S telling from a given history: € H of which statdast(%) a history it is.
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Definition 3.25 A policy for a pLTS (S, Act,, —) is a function?? : H — %(S) such that if22(h) = p-A with
p€(0,1] andA € 24(S) then there is a transitidast(h) — A.

A policy 22, with Z2(h) = p.A, says that when we are in a state= last(k) and our history is:, with probability
p we proceed to the distributiod, and with probabilityl—p we remain permanently in. A policy is static if
instead of taking probabilistic combinations, it specifiest one (or none) of the outgoing transitionsspthat is, in
Definition[3.2% we require that eithe? (h) = ¢ or 22(h) = A € 2,(S) with last(h) = A.

We consider several types of policies, depended on the eldilf. A history-independergolicy [22] is one that
does not depend on histories of states; thke: S andlastthe identity function. For &istory-dependeryolicy [22]
take H = S*. In MDPs, there is amitial distributionA, and ahistoryh of a states is defined as a sequence of states
S0, 81, - - -, Sk Such thatsp €[A] and fori = 1,. ..,k there are9; € 2,(S) with s;,_; > ©; ands; €[0;]. Here
last(h) := s = s. We define?*(h) as the probability that in the run specified B we initially visit the sequence

of statesh € H: P*(s) 1= As) P*(hs) = P*(h)- P (h)(s) .

Furthermore, let théength|h| € N of & be given by|sg, s1,...,s;| = k. We now formalise theun induced by a
history-dependent policy” from an initial distributionA as the weak derivatioh = A’, where fork € N the Ay,
A andA;” of Definition[3.13 are given by

M) = S ) AR = Y Z2m)] AN = Y 2UW)-(-|l2m).

{hllast(h)=sA|h|=k} {hllast(h)=sA|h|=k} {hllast(h)=sA|h|=k}

Note thatA ;" := 3" c o > tpjiastny=safni=k} 2 (1) | P (R[5 = 314 =iy &7 (h) |2 (R)] -last(h).
Furthermore, by Definitioh 3.25, for alle H we havelasr(h) Tsp L f/"(h) with p = |Z2(h)|, and thus

|2 (h)|-last(h) = 2(h) = P(h)

Hence, LemmB3l5 yields s€9

Y 2N Y Ph)(s) 5= Y P(hs)F= s D, P(h)F=D Apy(s)F=Apyr.

{h||h|=k} seS {hs||h|=k} {hllast(h)=sA|h|=k+1} s€S

Since alsd\; = A andA;, = A 4+ A7, this yields a weak derivation indeed. We denote iﬂby% A,

So each history-dependent policy induces a weak derivatila will complete the promised correspondence
between policies and derivations by showing that, conlrsach weak derivation can be induced by a history-
dependent policy. In fact we obtain a stronger result: eaehkwnderivation is already induced by a special kind
of history-dependent policy, which we calltene-dependent policylf follows that the extra generality of history-
dependent over time-dependent policies is not neededdqrulpose of specifying runs of pLTSs.

A time-dependent policy is obtained by takify= S x N with last(s, k) = s. Here(s, k) merely says that one
has reached stateafter exactlyk transitionsl Obviously, each time-dependent poligy can be seen as special kind
of history-dependent policy?"4, defined by#"d(h) := Z(last(h), |h|).

Definition 3.26 Given a time-dependent policy?, we formalise theun it induces from an initial distribution\ as
the weak derivatiod\ = A’, where fork € N the A, A" andA;” of Definition[3.13 are given by

Ap:=A A (s) = Ag(s)-(1—-|2(s,k)]) AL (8) = Ap(s)| P (s, k)| JAVERRIRES Z Ag(s)-P(s, k).
s€[Alk

Since for allk € N we haveA, = AX + A7 andA;” — A4, this specifies weak derivation indeed. Again,
we denote it byA 2 A’. We now show that this mduced weak derivation agrees withotie defined for history-
dependent policies.

Proposition 3.27 If 7 is a time-dependent policy, the =2 A’ iff A 2 A’

3As our formalism doesn’'t model time explicitly, the numbétransitions performed so far could serve as a crude apmation of time.
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Proof: It suffices to derive the four defining equations of Definif®2@6 from the definition ofA Lhi A’. For the
first three this is immediate, using tha"d(r) = 2(last(h), |h|). Furthermore, for alk € N andt € S,

Doseral, Ar(s) Z(s,k)(t) = ses (Z{h\last(h):sMh\:k} L@hd*(h)) P (s, k)(1)
= D ses 2o {hllast(h)=sA|h|=k} (gzhd*(h) - (last(h), |h|)(t))

= D {hl|hl=k} («@hd:(h) -2 (h)(1))
= X niin=ry 2 (ht)

= D {hllast(h)=tA|h|=k-+1} 2" (h)
= Ak+1(t) . O

Theorem 3.28 For every weak derivatiodh =—> A’ there exists a time-dependent polig¥ such thatA =N

Proof: Let A = A’. By Definition[3.I3 there arA;, A andA;’ for all £ > 0 such that
A=A, M =AS+AY, AP DA, O=) A
k=0

By Proposition 3.T0A,* — A,—; implies that there are distributiors; , , € 7, (S) for s €[A;”], such that

575 Ay, foreachs € [A}] and A1 = Ygerant A () Afyy -
Now take (s, k) := %((j)) -A; 1. Then all four equations of Definitidn 3.26 are satisfiedpseZ A/ 0

4 Testing probabilistic processes

This section is divided into three. Applying a test to a pssceesults in a nondeterministic, but possibly probalilist
computation structure. The main conceptual issue is howgdo@ate outcomes with these nondeterministic structures
In the first subsection we outline a general approach in whitfitively the nondeterministic choices are resolved
implicitly in a dynamic manner. In the second section we dbscan alternative approach in which we explicitly
associate with a nondeterministic structure a set of detéstic computationseach of which determines a possible
outcome. In the final section we show that although theseoagpies are formally quite different they lead to exactly
the same testing preorders.

4.1 Applying a test to a process

We now retrace our earlier approach([4, 2] to the testing obpbilistic processes. festis simply a process in the
languagepCSP, except that it may in addition use specsaiccessctions for reporting outcomes: these are drawn
from a set of fresh actions not already ict,. We refer to the augmented language@SP*’. Formally a tesf’" is
some process from that language, and to applyfestprocess” we form the proces® |a. P in whichall visible
actions of P must synchronise witfi". The resulting composition is a process whose only possittiens are- and

the elements of). We will define the resultr/ (T, P) of applying the tesf to the proces$ to be a set of testing
outcomes, exactly one of which results from each resolufahe choices irl” |a« P. Eachtesting outcomés an
Q-tuple of real numbers in the interval [0,1], i.e. a function @ — [0, 1], and itsw-componenb(w), forw € €,
gives the probability that the resolution in question waldch anu-success staf®ne in which the success actioris
possible.

There are several ways to fill in details in this approachloohg [5], we first of all distinguish betweerector-
basedtesting, in which one allows countably many success actiandscalar testing, in which there is only one
success action and consequently outcomes are scalarsthathevectors. Scalar testing is employedin |6, 8,25, 4],
and vector-based testing in[24]. As id [2], our prime ingtiigere is in scalar testing, but we use vector-based testing
as an indispensable tool for establishing our results. Eoethd we employ a result frornl[5] saying that for finitary
probabilistic processes, scalar and vector-based tegitiegise to the very same testing preorders.
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Secondly, following[[5[ 2] we distinguish betwestate-basedndaction-basedesting. The former is what we
described above: success actions are merely used as a nettiefine success states; a method that bypasses the
need to formally introduce state predicates in the oparatisemantics of our language. In action-based testing, on
the other hand, it is the actual execution of a success aittairconstitutes success, as(d) gives the probability that
the resolution in question will perform the actien State-based testing is employed(in6, 8,25, 4], and adiased
testing in [24[5]. In[[2] it has been shown that for finite pabilistic processes (obtained by dropping the recursion
construct frompCSP) the state-based and action-based testing preordersa@iftis allowed us to use action-based
testing to obtain results about state-based testing. HewEZ} also provides an example showing that for the languag
considered in the present paper, the two approaches aeeetiff in particular that state-based must testing is more
discriminating than action-based must testing. The sarample also applies to the non-probabilistic world and, for
finitely branching processes, itis the state-based msttitgpreorder that coincides with the CSP refinement pegord
based on failures and divergences([1,[10, 21]. It is in partHis reason that we employ state-based testing in the
current paper.

Whereas state-based scalar testing as well as action-beakd- and vector-based testing have been used pre-
viously in the literature, our use of state-based vecteeddesting is new. Since we use this concept merely as a
method for proving results about state-based scalar tgstia are not concerned about the generality of our tests for
conceptual reasons; any notion of state-based vectodhaseng that works in our proofs would be acceptable, as
long as the special case of state-based scalar testingsagitbehe definitions found in the literature. Here we restri
attention to tests in which no state is simultaneouslwasuccess state for different valueswuaf In fact, we can go
further by ruling out all tests in which from one successestatte can reach another one, with a different success value.

Definition 4.1 An Q-testis a closedoCSP expressiorl’, but allowing the enriched alphabatt, U ) of actions
instead of justct,, such that it <% andu 2 for wy,ws € Q with ¢ reachable from” andu from ¢, thenw; = w,.

Note that for the special case of state-based scalar tesingbove restriction is void. Ih][5], working in an action-
based framework, followind [24], we did not put such a resiwn in our definition of testing, but showed, in Ap-
pendix A: “One Success Never Leads to Another” that impodgimipes not change the resulting testing preorders.
Also note that the compositidfi |a: P of an€)-testT and apCSP processP is again ar)-test (i.e. satisfying the
requirement of Definitiof 4]1).

Intuitively, the application of a test to a process” has an outcome < [0, 1] if we can imagine an army —
with a continuum of soldiers — marching through our pLTSrtitg from the distributionT" [ac: P], of which, for
w € Q, afractiono(w) € [0,1] eventually reaches an-success state. Each time a fragment of the army ends up
in a non-success state, it splits up in arbitrary propogtiamong the outgoing transitions of that state (which are all
labelledr). If such a transition ends up in a distributidnthen, fors € [A1], a fractionA(s) of the fragment that took
that transition ends up in state The army begins its march by being distributed over théirdistribution[7" |ac: P]
in the same vein. As soon as a fragment of the army reachessaiacess state, it stops marching, and the size of that
fragment is counted towards$w). Definition[4.1 ensures that in such a case there is no antpigliout which success
action the division contributes to. Definitibn #.1 also emestthat there is no point in marching any further. The total
success valug ., o(w) must be in the interval [0,1]; it represents the fractionied army eventually reaching a
success state of any kind. The unsuccessful part of the army_ _, o(w) represents the fraction that either got
stuck in adeadlockstate, one without outgoing transitions, or that will mafohever. In general we get different
outcomes € «7 (T, P) for each possible way a fragment in a non-success and natied&astate can partition itself
among the outgoing transitions of that state.

We will now formalise this intuition by a definition of7 (T, P). Our definition has three ingredients. First of all
we normalise our pLTS by removing alttransitions that leave a success state. This way-anccess state will only
have outgoing transitions labelled This prevents our army from scooting past a success state.

Definition 4.2 (w-respecting) Let (S, L, —) be a pLTS such that the set of labdlsincludes2. It is said to be
w-respectingvhenevers -, for anyw € Q, impliess 4.

Itis straightforward to modify an arbitrary pLTS so thalb&comesu-respecting. Here we outline how this is done for
our pLTS forpCSP.
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Definition 4.3 (Pruning) Let [-] be the unary operator di-test states given by the operational rules

s A " s (forallw e Q), s % A
A @Y BTSN

(o € Act,) .

Just agd and| 4, this operator extends as syntactic sugaritests by distributing:| over,®; likewise, it extends to
distributions by[A]([s]) = A(s). Clearly, this operator does nothing else than removinguttjoing transitions of a
success state other than the ones labelled awithQ2. Applying this operator, we can just as well envision ouryarm
to have started marching from the distributigi’ |ac: P]]; it will continue marching along-transitions for as long
ast-transitions are possible, and will halt in statéf s ——4, which is the case iff is either a success or a deadlock
state.

Next, using Definitio 3.113, we characterise the set of sthbutions© that can be reached by an army as
envisioned above at the end of its march fr{)[m |Act P]]. In general® need not be a total distribution: the mass
|O| represents the fraction of the army that eventually stopsiiag and thus reaché3. The remaining fraction
1— |©] of the army marches on forever. A march of an army as descebede can be modelled perfectly by a weak
transition[[T" |acc P]] = © as defined in Sectidn 3.2. The end subdistribuéioof this march has the property that
there is no nontrivial weak transitigh —-. System states with this property are traditionally cafiable

Definition 4.4 (Extreme derivatives) A states in a pLTS is calledstableif s =4, and a subdistributio® is called
stableif every state in its support is stable. We write—3 © wheneverA — O and® is stable, and calb an
extremederivative ofA.

Referring to Definitio 3.13, we see this means that in theeex¢ derivation 0B from A at every stage a state must
move on if it can, so that every stopping component can cowialy states whicimuststop: fors € [A.” + A ] we
haves € [A/ ] if and now als@nly if s —4. Moreover if the pLTS isu-respecting then whenevere [A,7], thatis
whenever it marches on, it is not successful,d4.€% for everyw € €.

Lemma 4.5 (Existenceand uniquenessof extreme derivatives)
(i) For every subdistributior\ there exists some (stablé) such thath = A’.
(i) In a deterministic pLTS we have th&t — A’ andA = A” impliesA’ = A”.

Proof: We construct a derivation as in Definitibn 3.13 of a stahleby defining the components;, A;* and A’

using induction ork. Let us assume that the subdistributitp has been defined; in the base case 0 this is simply
A. The decomposition of thid, into the componentd* and A’ is carried out by defining the former tmntain
precisely those states which must stop, i.e. thoe which s —4. Formally A is determined by:

0 otherwise.

AZ(S):{A;C(S) if 574

ThenA;” is given by theemainderof Ay, namely those states which can performaction:

Az (s) {Ak(s) it s
0 otherwise.
Note that these definitions divide the supportof into two disjoints sets, namely the support®f and the support
of A;”. Moreover by construction we know that> —— © for someO; we letA, be an arbitrary such.
This completes our definition of an extreme derivative aséfition[3.13 and so we have establisHeéd (i).
For (i) we observe that in a deterministic pLTS the aboveiohof A, is unique, so that the whole derivative
construction becomes unique. O
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It is worth pointing out that the use of subdistributionghea than distributions, is essential hereAlfdiverges, that
is if there is an infinite sequence of derivatiadhs™— A; —— ... A, —— ..., thenoneextreme derivative oA\ is the
empty subdistributioa. For example the only transition edc x. = is rec x. + — Tecz. z, and thugecz. = diverges;
¢ is itsunique extreme derivative.

The final ingredient in the definition of the set of outcome&$T’, P) is the outcome of a particular extreme
derivative®. All statess € [O] either satisfys - for a uniquew € €2, or haves 4.

Definition 4.6 (Outcomes) The outcom&® < [0, 1] of a stable subdistributio@ is given by$0 (w) = Z O(s).

sefe], JRELUEN
Putting all three ingredients together, we arrive at a didimiof <7 (T, P):

Definition 4.7 Let P be apCSP process and’ anQ-test. Thene (T', P) = {$0 | [T |act P]] = O}.
The role of pruning in the above definition can be seen viadheing example.

Example 4.8 Let P = a.b andT = a.(b O w). The pLTS generated by applyifgto P can be described by the
process (7 O w). Now [T |act P] has a unique extrenterivative] 0 |, whereag[T" |a: P]] has a unique extreme
derivative[w]. The outcome ine/ (T, P) shows that procesB passes test’ with probability 1, which is what we
expect for state-based testing, which we use in this papé&hoWt pruning we would get an outcome saying tiat
passed with probability0, which would be what is expected for action-based testing. O

As this example is nonprobabilistic, it also illustratesvhpruning enables the standard notion of nonprobabilistic
testing to be captured in this way.

We compare two vectors of probabilities component-wisd, @ sets of vectors of probabilities via the Hoare-
and Smyth preorders:

01 <go O2 if for everyo; € O; there exists some, € O, such thab; < o
01 <gm O2 if for everyos € O there exists some; € O; such thab; < os .

This gives us our definition of the may- and must-testing piecs; they are decorated with for the repertoire of
testing actions they employ.

Definition 4.9 (Probabilistic testing preorders) Given twopCSP processe$ and(@,
1. P Cihay Q if for every Q-testT', o/ (T, P) <y, </ (T, Q);
2. P Cinust @ if for every Q-testT’, o7 (T, P) <sm #/ (T, Q).

These preorders are abbreviatedt@ pmay Q, andP T, Q, When|Q|= 1, and there kernels are denotedymay
and~pmustrespectively.

Here are two examples of these preorders.

Example 4.10 Consider the proce<g; = recz. (1.x 18 a), which was already discussed in the introduction, Fig-
ure[d(a). When we apply the te&t = a.w to it we get the pLTSragmentin Figure[3(c), which is deterministic
and unaffected by pruning; from pald (i) of Lemial4.5 it &lls thatT" |ax @1 has a unigue extreme derivatiée
MoreoverO can be calculated to be )

Z 2_k : 57

k>1

which simplifies to the distributioms. Therefore,o7 (T, Q1) = {$s3} = {<}, whered : Q — [0, 1] is theQ-tuple
with d(w) = 1 andd(w’) = 0 for all w’ # w. This is the same set of results gained by applyfiitg « on its own; and
in fact it is possible to show that this holds for all testsjing

1 “pmay @ Q1 pmust @ - 0
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Example 4.11 Consider the procesg, = recz. (7.(z 1® a) O 7.(0 1® a)) and the application of the same test
T = a.w to it, as outlined in Figurgl4. Since there is only one suceesisnw, the testing outcomesan be regarded
asscalars in0, 1] — that is, we writep for p - &, with p € [0, 1].

Consider any extreme derivativ€ fromsy = [[T" |act Q2]]; note that here again pruning has no effect. Using the
notation of Definitio 3.113, it is clear that, andA;” must be= andsg respectively. SimilarlyA; andA;” must be
¢ andsy respectively. Bug; is a nondeterministic state, having two possible transstio

(i) s1 = ©g where©, has supporfsy, s, } and assigns each of them the weight
(i) s1 —— ©7 where©; has the suppoftss, s4}, again diving the mass equally among them.
So there are many possibilities far, ; Lemmd3.b shows that in fact, can be of the form

p-Oo+ (1-p) - 61 )

for any choice op € [0, 1].

Let us consider one possibility, an extreme one wheisechosen to b@; only the transition (ii) above is used.
HereAy3 is the subdistributior%ﬁ, andA;” = ¢ wheneverk > 2. A simple calculation shows that in this case the
extreme derivative generatedd$ = 153 + 156 which implies thatl € &/ (T, Q3).

Another possibility forA, is ©g, corresponding to the choice p£=1 in (@) above. Continuing with this derivation
leads toA; being% -51 + % - 35, thusA = % - 55 andA3y” = % - 51. Now in the generation oh, from A3 once
more we have to resolve a transition from the nondeterniirs&ites; , by choosing some arbitragy € [0, 1] in (9).
Suppose we choge= 1 every time, completely ignoring transition (ii) above. Tithe extreme derivative generated

is
1
05 = Z o "85
E>1
which simplifies to the distributioss. This in turn means that € <7 (T, Q2).

We have seen two possible derivations of extreme derivafimn s;. But there are many others. In general
wheneverA;” is of the formg - 57 we have to resolve the nondeterminism by choosinga [0, 1] in (9) above;
moreover each such choice is independent. However, it @ity from later results, specifically Corollary 6110, that
every extreme derivativA’ of 57 is of the form

q-65+(1-q)- 65

for some choice of € [0, 1]; this is explained in Examp[e6.111. Consequently it folldhat.« (T', Q2) = [1, 1].
Since/ (T, a) = {1} it follows that

M(Ta a) SHO M(Tv QQ) "Q{(Ta QQ) SSm %(Tv (I) .

Again it is possible to show that these inequalities resalnfany tesf” and that therefore we have

a Epmay Q2 Q2 Cpmust @ - O

4.2 Using explicit resolutions

The derivation of extreme derivatives, via the schema inritadn[3.13, involves the systematic dynamic resolution
of nondeterministic states, in each transition fré&xf to A;;. In the literature various mechanisms have been
proposed for making these choices; for exangukciesare used in[22], adversaries [n[15], scheduler§in [23], ..
Here we concentrate not on any such mechanism but ratheesléis of their application. In general they reduce
a nondeterministic structure, typically a pLTS, to a set efedministic structures. To describe these deterministic
structures we adapt the notionrekolution defined infSeg96,-][5]for probabilistic automata, to pLTSs.

Definition 4.12 (Resolutions) A resolutionof a subdistributioml\ € Z(S) inapLTS(S, Q,,—) isatriple(R, ©,—r)
where(R, 2, —r) is a deterministic pLTS an® € Z(R), such that there existsrasolving functionf € R — S
satisfying
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(i) Img;(©) = A
(i) if r > © fora € Q. thenf(r) = Img,(©")
(i) if f(r) < fora € Q, thenr g .

The reader is referred to Section 2 [of [5] for a detailed dis@mn of this concept of resolution, and the manner in
which a resolution represents a rancomputatiorof a process; in particular, in a resolution state§ iare allowed to
be resolved into distributions, and computation steps egrdibabilistically interpolated

Add paragraph on fully probabilistic

Schedulers

We now explain how to associate an outcome with a partice@solution, which in turn will associate a set of
outcomes with a subdistribution in a pLTS. Given a deterstioipLTS (R, 2., —), consider the functionak? :
(R — [0,1]%) — (R — [0,1]%) defined by

1 if - s
Z(f)(r)(w) =0 if 7 <4 andr 74 (10)
Expa (f)(w) if 7 %% andr -5 A.

We view the unit interval0, 1] ordered in the standard manner as a complete lattice; tisés the structure of a

complete lattice on the produiex, 1]* and in turn on the set of functioris — [0, 1]2. The functionalZ is easily seen

to be monotonic and therefore has a least fixed point, whictiewete by . ) this is abbreviated t& when the

resolution in question is understoddenceforth we writé/ (A) for Exp, (V). Note thatV(d ", As) = > .., V(A).
Now let.7"(T, P) denote the set of vectors

{Vira. > (©) | (R,©,—)isaresolution of 7" [act P] } .

Note that here we use resolutions]@f [a.. P] rather than its prunin§T" |ac: P]]. This is because the functiond,
and therefore its least fixed poifit has pruning built-in; that isZ is defined so tha¥(s) = V([s]).

In Sectior 4.B we will show that/"(T', P) = </ (T, P) for any testI" and proces®. Hence the testing preorders
of Definition[4.9 can equivalently be defined in termsasf.

Example 4.13 (revisiting Exampld 4.10)The pLTSfragmentin Figure[3(c) is already deterministic, hence has es-
sentially only one resolution, itself. Moreover the OUtCE)EXﬂ[THQl}] (V) = V(T'||Q,) associated with it is the least

solution of the equation 1 1
V(T(@Q1) = B -V(T'(|Q1) + 507

In fact this equation has a unique solutior{in1]?, namelys. Thus</" (T, Q1) = {J}. O

Example 4.14 (revisiting Exampld 4.111)Here we reuse the notation of Examijple 4.11.

Consider the proces9, = recxz.(r.(z 1® a) O 7.(0 ;& a)) and the application of the te§t = a.w to
it, as outlined in Figur&€l4. For each > 1 the distribution][T" |ae: Q2] has a resolutiofRy, ©, —g,) such that
V(©) = (1—5¢); intuitively it goes around the loofk—1) times before at last taking the right hangction. Thus
«/"(T,Q2) contains(1 — ) for everyk > 1. But it also containd, because of the resolution which takes the left
handr-move every time. Thus?'(T', Q2) includes the set

1 1 1
{(1=3), (1=g5)es (l=gp),e 1)

From later results it will follow that"(T', Q») is actually the convex closure of this set, namigly1]. O
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4.3 Comparison

We have now seen two ways of associating sets of outcomeshvétapplication of a test to a process. The first, in
Section 4.1, uses extreme derivations in which nondetéstitrchoices are resolved dynamically as the derivation
proceeds, while the second, in Secfiod 4.2, associatesavtitht and a process a set of deterministic structures called
resolutions. In this section we show thweth approaches yield the same sets of outcomes.

We start by showing that resolution-based testing is iriea$o pruning. Lete/P(T', P) denote the set of vectors

{Viro, - (©) | (R,0,—)isaresolution of [T |act P]] } -
Proposition 4.15 For any tesfl” and proces® we have thaty'?(T, P) = «/'(T, P).

Proof: “2™ Let (R,0,—g) be a resolution of T’ |acc P]. Then, following Definitio 412(R, [0], —r) is a
resolution of[[7" |ac: P)] and, byTD)V (.. (10]) = Viro. ().

“C™ Let (R,0,—p) be a resolution of [T" |a: P]] with resolving functionf. We construct a resolution
(R',0,—%) of [T |ac P] as a random extension ¢f2,©, —g). Let (S,Q.,—) be the PLTS in which the dis-
tribution [T |ace P] exists. For every paifs, a) € S x Q. with s % pick a distribution¥ (=) € 2, (S) such that
s -2 U, Now defineR’ := R U (S x N) and obtain—'; from — by adding (A) a transitiofs, k) 7, ;"9 ) for
eachk € N and eachs € S with s =, and (B) a transitiom ', \I/(f(’” ™) for eachr € R with f(r) = as well as
f(r) == for somew € Q. Here\IJ;H) € 21(8 x{k+1}) is glven by\11k+1)(t k+1) = U (4) forallte S. The
resolving functionf is extended byf (s, k) := s. Using Definitior[ 4P it follows thatR’, ©, —;) is a resolution of

[T |ac P] and, again by[AOW (r 0, —1y(0) = Vir.a, - (©). O
It remains to show that/ (T, P) = &/"P(T, P) for any testl" and proces®, or, in other words, that
{80 | A =+ 0} ={Viga, ) (O) | (R,0,—)isaresolution oA }

for any distributionA is anw-respecting pLTSS, Q,, —).
First let us see how an extreme derivation can be viewed agteoohéor dynamically generating a resolution.

Proposition 4.16 (Resolutions from extreme derivativesf et A = A’ in a pLTS(S,{,, —). Then there is a
resolution(R2, ©, — ) of A, with resolving functionf, such tha® =-p ©' for some®’ for whichA’ = Img,(©").

Proof: Consider an extreme derivation &f = A’ as given in Definitiof 3,13 where all;; must be stable:
A=DNo, A =A8+AY, AP D Ap, A =Y2 AL
By Lemmd3.bA;"  A,—; implies that there are stateg. € S and distributions\, ;1) € Z1(S), such that

A,? = Zielk Dik " Sik, Sik — Ai(kJrl) for eachi € I, and Apy1 = Zielk pik'Ai(kJrl) .

0 if s 0 if s
We will now define the resolutlomR, ©, —pr) and the resolving functiorf. The set of state® is (SxN) U
Uren (I x {k}). The resolving functiorf : R — S maps(s, k) € SxN to s and (i, k) € Iy x{k} to s, € S. The
second componerit of a state counts how many transitions have fired alreadyh #raosition in—r goes from a
state(i, k) or (s, k) to a distribution ove(S U I} 1) x {k+1}.
Define the subdistributiorB;* € 2(Sx{k}) andO,” € Z(I;, x {k}) by ©; (s,k) = A (s) andO®}; (i, k) = pir.
Let©y := O, + ©;” andO® := @0 Furthermore, for alk > 0andi€ Ij_1, defme@zk € 9((8 U I)x{k}) by

Let A% (s) := {Aik(s) it Sﬁé . SinceA [ (s) = {Ak( s) if Sﬁf it follows that Ay, = > pin A, -

Ouk(s, k) = A% (s) and O (j, k) = pji- Ban(ss)

(Sjk)
for j € I,. We introduce the transitior($, k) ——r ©;(41) for £ > 0 andi € I,. Moreover, for each statec S and
label o € Act, such thats -+, pick a transitions <% ¥, and add the transitiofs, k) <+ V41 to — g, for all
ke N. HereW, ., is the distribution with¥;. (¢, k+1) = ¥(¢) for all t € S. Likewise, for eachk € N, i € I}, and

24



w € Q such thats;;, =%, pick a transitions;;, - ¥, and add the transitiot, k) - V1 to — . This ends the
definition of the resolutiofiR, ©, — ) and the resolving functiofi. By construction{R, 2., —r) is a deterministic
pLTS. We now check thaf satisfies the requirements for a resolving function of D&6n[4.12.

(i) Img,(Ok)(s) = Ok(s, k) + > Ok(i, k) + ) pik = AL () + AP (5) = Ax(s)
Sik=$ Sik=S
forall s € S, so Img;(©x) = Ay, and in particular Img(@) =A.

(i) Let r 55 I for a €. Incaser = (s, k) it must be thal” = Wy andf(r) = s = & = Img;(Vy41).
Likewise, in case: = (i, k) anda € Q it must be thal” = ¥, and f(r) = si = & = Imgf(\IJkH). The
remaining case i8 = (i, k), « = 7 andl’ = ©;(,41). Thenf(r) = six — Ajk41), SO it suffices to show that
Imgf(G)ik) = Ay forall k € N andi € I;.. For anys € S we have

MG, (0)(5) = Ou(s,K) + 3 Ouldik) = AZ(s) + 3 pye- 2 )) = AL(s) S TS
Sjk S Sjk =S '7 Sjk S
In cases 74 we haves;), = s fornoj € I, so Img; (0 ) (s) = AL (s) = Aix(s).
In cases — we haveA; (s) =0and) s Pik = A7 (s ) = Ak(s), so again Img(©;x)(s) = Aix(s).
(i) Let f(r) - for a € Q.. By construction there is @41 such thatr %5 Py 1.

Hence(R, ©, —R) is a resolution oA. We have:

szk 9; k+1) s,k+1) szk k+1 A1>c<+1( s) = ®l>c<+1(57k+1) = Opy1(s, k+1)
i€l i€l
Aiey1)(Sihr1)) o= (s _ '
> ik Qi) (k1) = D piroyhsn) 3 LR — 1y = O (. k1) = Oppa (G k+L).
icly = k+1(5j(k+1))

HenceOy+1 = ) ;c;, PikOiry1)- Since als®;” = >, pik- (i, k) and(i, k) <> g Oi(k+1), Lemmd3.b yields
0" TR Oppr. Let®’ =377 1O/ Then, by Definitiof 31130 = ©'.
By construction Img(©;7) = A/ forall k € N. Hence Img(©') = >7.2 Img,(©;) = > 2 A =A'. O

The converse is somewhat simpler.

Proposition 4.17 (Extreme derivatives from resolutions)Let (R, ©, — ) be a resolution of a subdistributiak in
a pLTS(S, Q, —) with resolving functionf. Then® = ©" impliesA =~ Img,(©").

Proof: The[definition of '“llmg implies that Img (32, pi - W) = >, pi - Img,(¥;). Furthermorell = ¥’ implies
Img;(¥) — Img,(¥'). Namely, by Lemm&3]5) — ¥’ implies

U =3 crpi5i, s; — W, foreachi € I and U =3 crpi-¥;

which, using Definitio 4.12, entails

Img,(0) =, pi-f(s:), f(si) —=> Img,(¥;) foreachi € I and Img (V') =3, ; pi-Img,(¥;).

Hence Img(¥) — Img,(¥').

Now consider any derivation & =g ©’ along the lines of Definitioh 3.13. By systematically applyithe
function f to the component subdistributions in this derivation weaeerivation Img(©) = Img,(©’), that is
A = Img,(©'). To show that Img(©’) is actually an extreme derivative it suffices to show that stable for
everys € [Img,(©")]. Butif s € [Img,(©")] then by definition there is somtec [©’] such thats = f(¢). Since
O =+pp0 the stat¢ must be stable. The stability eow follows from requirement (iii) of Definition 4.12. O

Our next step is to relate the outcomes extracted from extdarivatives to those extracted from the corresponding
resolutions. This requires some analysis of the evaludtioctionV(—).
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Definition 4.18 (Continuous functions) A chain in a complete lattic& is a sequence of elemenfs,, | n > 0}
satisfyingc; < c;11. Obviously chains have least upper bounds which we dendjtg, by, ¢,,. A function f : L — L
is said to becontinuousf it preserves the least upper bounds of chains: -

f(|_| Cn) = |_| flen) .

n>0 n>0
Lemma 4.19 The functionalZ : (R — [0,1]%) — (R — [0,1]%) defined in[[(ID) is continuous.

Proof: The proof is surprisingly difficult; see Lemria B.5 in Appexi@ which shows the result in the special case
that(2 is the singleton sefw}; the general case is similar. O

Continuityof Z implies thatits fixed pointV can be captured by a chain of approximants. The functihsn > 0
are defined by induction om:
VO(r)(w) =0

vl = (v .
Again we writeV" (A) for Exp, (V™). NowV =| | -, V™. Thisis used in the following result.
Lemma 4.20 Let A be a subdistribution in an-respecting deterministic pLTS. if —s A’ thenV(A) = V(A).

Proof: Since the pLTS isv-respecting we know that—— A impliess 24 for anyw. Therefore, from the definition
of the[funcfionalZZl we have that =+ A impliesV"*1(s) = V*(A), whence by lifting and linearity we get

If © = @ thenV"™(©) = V*(©’) for all n > 0.

Now supposé\ = A’. Then

A=A, A=A +AY, AT DA, A=) AL
k=0

Using in the base case tHéf (0)(w) = 0 for every®, a straightforward induction on yields

n

VHA) = Y VERAY). (11)

k=0

SinceA[ is stable, we hav®™(A) = V(A) for everyk, m > 0. We conclude by reasoning

V(A) =5 V() by continuity of%
= Lnso Sheo VP R(AY) from (11) above
= Unso koo VH(AY) sinceV"*(A)) = V(A[) = V*(A))
= Unso V" (hm0 &%) by linearity of V"
= V(ano > k=0 A%) by continuity of#
= V(ZEO:O A/j)
— V(). -

We are now ready to compare the two methods for calculatiagéh of outcomes associated with a subdistribution:
e using extreme derivatives and the reward funcidrom Definition[4.6
e using resolutions and the evaluation functiéfrom pagé 2B.

Theorem 4.21 In anw-respecting pLTSS, ., —), the following statements hold.
(@) If A = A’then there is a resolutioff?, ©, — g) of AsuchthatV g o, ., (0) = $A".
(b) For any resolutiofiR, ©, =) of A, there exists &\’ such thath = A’ andV z o ., (0) = SA".
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Proof: SupposeA =3 A’. By Propositio 4.16, there is a resolutiéR, ©, — ) of A with resolving functionf
and a subdistributio®’ such tha®® = ©" andA’ = Img,(©’). By Lemmd4.2D, we hav¥(0) = V(©’). Since
©’ is an extreme derivative, all the statem its support are stable, §6(s)(w) = 0 if s <4, for allw € Q2. Hence

V() (w) = Expe, (V)(w) = Y ©/(s)-V(s)w) = Y. ©'(s)=$0'(w).
se[e] se[O], s—>

Furthermore, for alt e[A"], A/(t) = Imgf(@’)(t) = Zf(s):t ©’(s), so, for allw € €,

$A'(w)= > A=) Imge)H) = zf(s > 0(s) =80 (w),

te[ar], == te[A’], t— te[ar], == se[eq,f(s)%

where in the last step we the use the property of resolutlmaty’{s) - iff s ==. It follows thatV(©) = $A’.

To prove part (b), suppose that, ©, — r) is a resolution oA with resolving functionf, so thatA = Img;(©).
We know from Lemm&4]5 that there exists a (unique) subbigion ©’ such tha®® — ©’. By Propositiod 4.1]7
we have that\ = Img,(©’). The same arguments as in the other direction showit@y = $(Img,(©')). O

Corollary 4.22 For any tes” and proces® we have thatr" (T, P) = </ (T, P). O

5 An alternative approach to scalar testing

In the previous section our approach to tesfimglved two steps

(1) For each test” and proces® calculate a set of outcomesg (T, P); for scalar testing this is a subset of [0,1].

(2) For each pair of processés () compare the corresponding sets of outcom&d’, P) and.</ (T, Q) for every
testT'.
But our methods for comparing sets of outcomes does not sa&dlgsequire us to calculate the entire set of outcomes.
For closed set®);, O, € 21 itis easy to check that
071 <po O2 if and only if sup(O7) < sup(0s)
01 <gm 02 if and only if inf(O;1) < inf(O3) .
Here we propose an alternative approach to testing basedloulating directly thesups andinfs of the possible

outcomes. We restrict our attention to scalar testingthecase where tests are allowed to usinglesuccess action
w only; thusQ) = {w}.

5.1 Extremal testing

The functional# used to associate an outcome with a resolution, is define0nabove, only for deterministic
pLTSs. Here we consider generalisations to an arbitrangglst 2., —).
Define the functionaiys : (S—10,1]) — (S—10,1]) by:
1 if s <
Zii(f)(s) =40 if s % ands Z4

inf{ Expp(f) | s — A} ifs=Aands —
In a similar fashion we can define the functiod@l,, : (S—[0, 1]) — (S—[0, 1]) which uses theup function in place
of inf. Both these functions are monotonic, and therefore hat fe@d points, which we abbreviate Y, Vsup

respectively.
Now for a testl” and a proces®, we have two ways of defining the outcome of the applicatiof td P:

(T, P) = Vine ([T |act P])
gyl T P) = Vsup([T [ac P]) -

Here % (T, P) returns a single probability, estimating the minimal probability of success; it is a jresstic esti-
mate. On the other handg, (7', P) is optimistic, in that it gives the maximal probability ofceess.
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Definition 5.1
1. P Comay Q if for every testl’, J5 (T, P) < g(T, Q);
2. P Comust @ if for every testl’, &5 (T, P) < <% (T, Q).
The kernels of these preorders are denotedfiyay and==gs, respectively.

Example 5.2 The pLTS-fragment in Figuilg 3(c), obtained by applying te&tT = a.w to the process):, is deter-
ministic and hence all three functiof¥g,,, Vinr, V coincide, givinge/g (T, P) = % (T, P) = 1. It follows that
Q@1 ~pmay a and@, 2Smusta- U

Example 5.3 (revisiting Exampld 4.1l again)Here we reuse the notation of Examjple 4.11.
Consider the pLTS-fragment from Figurk 4(c) resulting fritva application of the tesf = a.w to the process
Q2. Itis easy to see that the functidh,, satisfies

1
Vsup(so) = max{é, x} (12)
1 1

Itis not difficult to show that these equations have a unigigt®n, namelyWsy(so) = 1. SinceVsyy([T" |act a]) =1

one can conclude that .
Q2 “pmay @ -

If max is replaced bynin in (I2) above then the resulting equations also have a usigjuéon, givingVint(sg) = %
It follows that .
a zpmustQ2

becausé/int([T" [act a]) = 1. HoweverQa Cmysta- O

Lemma 5.4 Consider an arbitrary pLTES, Q,, —).
(a) Both functionalsZn; andZins are continuous.

(b) Both results function¥iys andVsypare continuous.

Proof: Again the proof of part (a) is non-trivial, see LemmalB.5 inp&mdiXB.2. However part (b) is an immediate
consequence. O

So in analogy with the evaluation functi@hfrom Sectiorf 4.P these results functions can be captureddinaim of
approximants:
Vint = I—lne]N Vint" and Vsup= |—|nelN Vsup" (13)

whereVin(s) = Vsyp (s) = 0 for every states € S, and
o Vit "™ = Rt (Vine®)

[ Vsup(kJrl) - %sup(Vsupk)
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Figure 5: An infinite-state pLTS

5.2 Comparison with resolution-based testing

In this section we compare the two approaches of testingdoted in the previous two subsections. Our first result
is that in the most general setting they lead to differeriirtggpreorders.

Example 5.5 Consider the infinite-state pLTS in Figiide 5, which is definedollows: in addition to the statesand
0 it has the infinite set, s», . . ., with each of these having two transitions:

[ Sk%SkJrl
T
. skﬁﬂoﬁ@a].

Now let us compare the state with the process. With the testz.w, using resolutions, we get:

szr(a.w,sl)zi{(),(l—%),...,(1—2%),...} (14)

A (a.w,a) = {1}

which means that Zhay s1.

However when we use extremal testing, the test can not distinguish these processes. It is straightforward
see thatVsyp(a.w |act a) = 1. To see thaVsyp(a.w |act s1) @lso evaluates to, we letzy, = Vsyp(a.w |ace si), for all
k > 1, and we have the following infinite equation system.

zy = max{3, s}
zo = max{l -1 a3}
xp = max{l— %,x;ﬁl}

We haver;, = 1 for all £ > 1 as the least solution of the above equation system.
With some more work one can go on to show that no test can gissh between these processes using optimistic
extremal testing, meaning that_gmay s1.
O

In the remainder of this section we show that provided soni@finconstraints are imposed on the pLTS extremal
testing and resolution-based testing coincide; recatl lleae we are assuming that tests only use a single success
action,|Q2|= 1. First we examinenusttesting, which is easier than theaycase; this in turn is treated in the following
section.
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5.2.1 Must testing

Here we show that provided we restrict our attention to fibit@nching processes there is no difference between
extremalmusttesting, and resolution-basetsttesting.

Let us consider a pLT&S, 2, —), obtained perhaps from applying a t&sto a proces$’ in (T |a«c P). We have
two ways of obtaining a result for a distribution of statesrS, by applying the functioins, or by using resolutions
of the pLTS to realis&/’. Our first result says that regardless of the actual resolutsed, the value obtained from the
latter will always dominate the former.
But first we need a technical lemma.

Lemma5.6 Letg: S — [0,1], h: R — [0,1] andf : R — S be three functions satisfying f ()) < h(r) for every
r € R. Then for every subdistributiod over R, Exps (9) < Expg (h) whereA denotes the subdistribution ).

Proof: A straightforward calculation. O
Proposition 5.7 If (R, ©, — ) is a resolution of a subdistributio then Exp, (Vint) < Expg (V).

Proof: Let f denote the resolving function. First we show by inductiomadhat for every state € R
Vint™ (f(r)) < V*(r) (15)

Forn = 0, this is trivial. We consider the inductive step; note thatfee previous lemma the inductive hypothesis
implies that
Expr (Vine™) < Expg (V") (16)
for any pair of subdistributions satisfying= Img,(©).
Firstif r 25 ©, thenf(r) -, and thusVie" ™ (f(r)) = 1 = V**1(r). A similar argument applies if —5,
that isr T4 ands -24. So the remaining possibility is that —>z © for some®, andr -4, where we know
f(r) == 1mg,(O).

VeV (f () = min{Exps (Vi) £ (r) > A}

< EXpr(Vint") wherel” denotes Img(@)
< V*(O) by induction and[(16) above
= VOt (p)
Now by continuity we have froni.(15) that
Vint (f(r)) < V(r) (17)

The result now follows by the previous lemma, sincéAf, ©, — ) is a resolution of a subdistributiof with
resolving functionf then by definitionA = Img,(©).
O

Our next result says that in any finite-branching compuntestoucture we can find a resolution which realises the
functionVi,s. Moreover this resolution will be of a particularly simpleri.

A resolution(R, Q2,, — ) is said to bestaticif its resolving functionfr is injective. Again we refer the reader
to [5] for a discussion of power of this restriction. Statéstrictions are particularly simple, in that they does not
allow states to be resolved into distributions, or compoitesteps to be interpolated. Moreover they are very easy to
describe.

Definition 5.8 A (static) extreme policyor a pLTS(S, 2, —) is a partial functiorepp : S — 21 () satisfying:
(a) s - impliess = epp(s)

(b) otherwise, ifs —— thens - epp(s)
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Intuitively an extreme policgpp determines a computation through the pLTS. But this set e$ibte computations,
unlike resolutions as defined in Definitibn 41.12, are veryrietive. Policyepp decides at each state, once and for all,
which of the available-choices to take; it does not interpolate, and since it isation of the state, it makes the same
choice on every visit. But there are two constraints:

(i) Condition (a) ensures an in-built preference for rejmgrsuccess; if the state is successful the policy must also
report success;

(i) Condition (b), together with (a), means thaip(s) is defined wheneves —. This ensures that the policy
cannot decide to stop at a statd there is a possibility of proceeding from the computation must proceed, if
it is possible to proceed.

We delay the formal definition of the computation determitgdan extreme policy; see pafie] 33. Here we are
concerned with resolutions. An extreme poligyp determines a deterministic pLT&, 0, —epp), Where—epp

is determined by —p, epp(s). Moreover for any subdistribution over .S it determines the obvious resolution
(S, A, —epp), With the identity as the associated resolving functiordeked it is possible to show that every static
resolution is determined in this manner by some extremeyoli

Proposition 5.9 Let A be any subdistribution in a finite-branching pLTS €2, —). Then there exists a static reso-
lution of A, (R, ©, —g) such that Exg (V) = EXpa (Vint).

Proof: We exhibit the required resolution by defining an extremecgabver S; in other words the resolution will
take the form(S, ©, —¢pp) for some extreme policypp(—).
We say the extreme poliapp(—) is min-seekingf its domainis{ s € S | s — } and it satisfies:

if s 24 buts —— thenVint(epp(s)) < Vinr(A) wheneves —— A
Note that by design a min-seeking policy satisfies:
if s <4 buts —— thenVin(s) = Vinr(epp(s)) (18)
In a finite-branching pLTS it is straightforward to define axrsieeking extreme policy:
(i) If s == then letepp(s) be anyA such thats - A.
(i) Otherwise, ifs > let {A4,...A,} be the finite non-empty s€tA | s = A}. Now letepp(s) be anyA,
satisfying the propert¥/ini (Ax) < Vinr(A;) for everyl < j < n; at least one such; must exist.

We now show that the static resolution determined by suchliaypds, ©, —pp), satisfies the requirements of the
proposition. For the sake of clarity let us writk,, (A) for the value realised fof in this resolution.

We already know, from Propositién.7, thgki (A) < Ve, (A) and so we concentrate on the convetag, (A) <
Vint(A). Recall that the functioW ., is the least fixed point of the function defined in[(ID) above, and interpreted
in the above resolution. So the result follows if we can shioat the functiorViy; is also a fixed point. Sincg|= 1
this amounts to proving

1 if s <%
Vinf(s) =<0 if s +—
Vint(epp(s)) otherwise
However this is a straightforward consequencé of (18) above O
Theorem 5.10 For finite-branching processeB,Cf . @ if and only if P Cyyst @

Proof: This is a consequence of the two previous propositionst §inspose” T Q- To showP Ty Q@ wWe
must show that for any valuein <7 (T, @), for any arbitrary test’, there exists som& € </ (T, P) such that' < v.
The valuev must be of the fornV(© ), for some resolutiot?, © g, — g) of [[T" |act P]]. From Propositiof 517 we
know thatVint([[T |ac Q]]) < v, and now from the hypothesiB Cgnst @ we have thatin ([T [ace P]]) < v.
Now employing Proposition 5.9 we can find some other (stagisplution(S, O, —s) of [[Q |ac P]] and such that
V(0s) = Vit ([[Q |act P]]). So we can take the requiretito beV ().

The conversel Cpnyst @ implies P T, Q is equally straightforward, and is left to the reader. O
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5.2.2 May testing

Here we can try to apply the same proof strategy as in the qus\section. The analogue to Proposifiod 5.7 goes
through:

Proposition 5.11 If (R, ©, — ) is a resolution ofA then Exp, (V) < EXpa (Vsup)-
Proof: Similar to the proof of Propositidn 3.7 O

However the proof strategy used in Proposifior 5.9 cannatdeel to show thaVs,, can be realised by some static
resolution, as the following example shows.

Example 5.12 In analogy with the definition used in the proof of Proposif®.9, we say that an extreme policy
epp(—) is max-seekingf its domain is preciselyf s € S | s — }, and

if s <4 buts /= thenVsyy(A) < Vsyp(epp(s)) wheneves — A

This ensures thaVsus(s) = Vsuglepp(s)), whenevers — ands -4, and again it is straightforward to define a
max-seeking extreme policy in a finite-branching pLTS. Hesvehe resulting resolution does not in general realise
the functionVs,p

To see this, let us consider the (finite-branching) pLTS usdtkampld 5.5. Here in addition to the two states
ando there is the infinite sefs, . .. sk, . . .} and the transitions

[ SkéSkJrl
o s, [01Dw].
2k

One can calculat® sy ) to bel for everyk, and a max-seeking extreme policy is determinedgp(s,) = Sry1;
indeed this is essentially the only such policy. Howeves tigisolution associated with this policy does not realise
Vsup, aSVepp (Sk) = O. O

Nevertheless we will show that if we restrict attention tatéiry pLTSs, then there will always exist some static
resolution which realise¥s,, The proof relies on techniques used in Markov process #{2@], and unlike that of
Propositiod 5.0 is non-constructive; we simply prove ttoahe such resolution exists, without actually showing how
to construct it.

Theorem 5.13 Let A be any subdistribution in a finitary pLTS. Then there existtagic resolution of\, (R, ©, — )
such that Exg (V) = EXpa (Vsup)-

Proof: The proof is non-trivial and lengthy as it involves the deyghent ofdiscountedpolicies for pLTSs, based on
discounted results-collecting functions Iiké anstup‘s for discount factop. Although such techniques are relatively
standard in the theory of Markov Decision Processes| sg¢déde&xample, they are virtually unknown in concurrency
theory. Consequently we relegate the proof to Appefidix B émables us to give a detailed exposition without
interfering with the overall flow of the paper. The expositmumulates in Theoren B.8. O

Theorem 5.14 For finitary processes; Cmay Q if and only if P Cppay Q.

Proof: Similar to that of Theorefn 5.10 but employing Theofem b.1g8late of Propositioh 519. O

6 Generating weak derivatives in a finitary pLTS

Now let us restrict our attention to finitary pLTSs, where $tegte space i§ = {s1, ..., s, }. Here by definition the
sets{ © | s % O } are finite, for every state and labekx. This of course is no longer true for the weak arrows; the
sets{ © | 5 = O } are in general not finite, because of the infinitary naturdefiteak derivative relatioa=-. The
purpose of this section is to show that nevertheless thepedimitely represented, at least for finitary pLTSs.
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This is explained in Sectidn 8.1, and the ramifications aea #ixplored in the following subsection. These include
a very useful topological property of these sets of dernrestithey arelosedin the sense (from analysis) of containing
all its limit points where, in turn, limit depends on a Eueah-style metric defining the distance between two distri-
butions in a straightforward way. Another consequenceaswre can find in any derivation that partially diverges (by
no matter how small an amount) a point at which the divergendistilled into a state which wholly diverges; we call
this distillation of divergence

6.1 Finite generability

A subdistribution over the finite state spagean now be viewed as a point IR", and therefore a set of subdistri-
butions, such as the set of weak derivatiyes | s = A} corresponds to a subset Bf*. We endowR™ with
the standard Euclidean metric and proceed to establishilusgblogical properties of such sets of subdistributions
Recall that a seX C R is (Cauchy)losedif for every Cauchy sequender,, | n > 0 } with limit z, if z,, € X for
everyn > 0 thenx is also inX.

Lemma 6.1 If X is a finite subset dR™ then]X is closed.
Proof: Straightforward. O

In Definition[5.8 we gave a definition of extreme policies foif §s of the form(S, Q.., —) and showed how they
determine resolutions. Here we generalise thes#etivative policiesand show that these generalised policies can
also be used to generate arbitrary weak derivatives of strialitions ovels.

Definition 6.2 A (static) derivative policyfor a pLTS (S, Act,, —), is a partial functiordpp : S — 2;(S) with the
property thatlpp(s) = A impliess - A. If dpp is undefined at, we writedpp(s) 1. Otherwise, we writelpp(s) .

A derivative policydpp, as its name suggests, can be used to guide the derivationveala derivative. Suppose
5 = A, using a derivation as given in Definitibn 3113. Then we wgite=4,, A whenever, for alk > 0,

Ag(s) if dpp(s)!
0 otherwise

(@) Ay (s) = {

(0) Ars1) = Dserar1 Bk (s) - dpp(s)
Intuitively these conditions mean that the derivation\ofrom s is guided at each stage by the poligp:

e Condition (a) implies that the division @k, into A;7, the subdistribution which will continue marching, and
A}, the subdistribution which will stop, is determined by thentain of the derivative policgpp.

e Condition (b) ensures that the derivation of the next stAge; from A;” is determined by the action of the
functiondpp on the support of\;”.

Lemma 6.3 Let dpp be derivative policy in a pLTS. Then
(@) If5 =qpp A @ands =-gpp © thenA = O.
(b) For every stats there exists soma such that =4, A.

Proof: To prove part (a) consider the derivatiorsof=- A ands = © as in Definitiod:3.13, via the subdistributions
Ay, Ay, A and©y, ©;7, O respectively. Because both derivations are guided by the sterivative policy
dpp it is easy to show by induction dnthat

Ay =0y S =0y Al =0f

from which A = © follows immediately.
To prove (b) we usepp to generate subdistributions,, A;’, A/ for eachk > 0 satisfying the constraints
of Definition[3.I3 and simultaneously those in Definitlon] Glfove. The result will then follow by lettings be

Zkzo Af. O
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The net effect of this lemma is that a derivative polipp determines aotal function from states to derivations.
LetDergpp, : S — 21(S5) be defined by lettinderq,,(s) be the unique\ such that =g, A.

It should be clear that the use of derivative policies lincibgsiderably the scope for deriving weak derivations.
Each particular policy can only derive one weak derivatwre moreover in finitary pLTS there are only a finite number
of derivative policies. Nevertheless we will show that tisitation is more apparent than real. In Secfion 53.2.1 we
saw how the more restrictive extreme policégp could in fact realise the maximum value attainable by angltgi®n
of a finitely branching pLTS. Here we generalise this resultdplacing resolutions with arbitrary weight functions.

Definition 6.4 [Weights and payoffs] Aveight functioris a functionw : S — [—1,1]. With S = {s1, ... ,s,} we
often consider a weight function as thedimensional vectoftw(s), ...,w(s,) ). In this way, we can use the notion
w . A to stand for the inner product of two vectors.
Given such a weight function, we define the payoff functi,, : S — R by
]P)W

max

(s) = sup{w.A | 5= A}

A priori these payoff functions for a given stateare determined by the set of weak derivatives.oHowever the
main result of this section is that they can in fact alwaysdadised by derivative policies.

Theorem 6.5 (Realising payoffs)In a finitary pLTS, for every weight functiow there exists some derivative policy
dpp such that?y) .. (s) = w.Dergyp(s)

Proof: As with Theoreni5.113 there is a temptation to give a constraiproof here, defining the effect of the required
derivative policydpp at states by considering the application of the weight functieio boths and all of its derivatives

- a finite set. However this is not possible, as the examplabekplains.

Instead the proof is non-constructive, requirgdigcountedolicies. The overall structure of the proof is similar to
that of Theoreri 5.13, but the use of (discounted) derivaidlieies rather than extreme policies makes the details con
siderably different. Consequently the proof is spellediosbme detail in AppendixJA, cumulating in Theorem A.15.
O

Example 6.6 Let us say that a derivative poliepp is max-seeking with respect to a weight functieif for all s € .S
the following requirements are met.
1. If dpp(s)1 thenw(s) > PV

max

(Aq) forall s = A;.
2. If dpp(s) = A then
(@) PY..(A) > w(s)and

max

(b) P, (A) >P", (A;)forall s = A;.

max

What a max-seeking policy does is to evalu&fe,, in advance, for a given weight functiam, and then label each
states with the payoff valué?¥ _ (s). The policy at any stateis then to compare/(s) with the expected label values
PY (A7) (i.e. Expy (PY ) for each outgoing transition — A’ and then to select the greatest among all those
values. Note that for the policy to be well defined, we reqthie the pLTS under consideration is finitely branching.

In case that seems obvious, we now consider the pLTS in Higared let us apply the above definition of max-
seeking policies to the weight function given tso) = 0, w(s;) = 1. For both states a payoff dfis attainable
eventually, thu®y . (so) = PY..(s1) = 1, because we havgy = 57 ands; = 57. Hence, both states will be
PV . -labelled with1. At states, the policy then makes a choice among three options: (1) joustenoved, yielding
immediate payoftv(sg) = 0; (2) to take the transitios, —— 3g; (3) to take the transitiosy, — Sg,,.® S1. Clearly
one of the latter two is chosen — but which? If it is the secdhdn indeed the maximum paydffcan be achieved.
If it is the first, then in fact the overall payoff will bé because of divergence, so the policy would fail to attain the
maximum payoffl.

However, for properly discounted max-seeking policies siwew in PropositioR /A2 that they always attain the

maximum payoffs. O
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Figure 6: Max-seeking policies

With Theoren{ 65 at hand, we are in the position to prove thimmesult of this section, which says that in a
finitary pLTS the set of weak derivatives from any stajg A | s = A}, is generable by the convex closure of a
finite set. But we first need a tool, tf&eparating Hyperplane Lemnfieom discrete geometry [18, Theorem 1.2.4
paraphrased].

Lemma 6.7 Let £ and F' be two convex- and Cauchy-closed subsets ofitftBmensional Euclidean space; assume
that they are disjoint and that at least one of them is bountieeh there is a hyperplane that strictly separates them.

Here ahyperplands a set of the forr{g € R™ | h. g = ¢} for certainh € R™ (thenormal of the hyperplane) and
¢ € R, and such a hyperplarstrictly separated’ andF'if forall e € F andf € Fwe haveh.e < c < h. for
h.oe>c>h.f.

Theorem 6.8 (Finite generability) Let P = {dpp;, ..., dpp,} be the finite set of derivative policies in a finitary
PLTS. Thers = A impliesA € J{ Dergy, (s) | 1 <i <k},

Proof: For convenience leX denote the se}{ Derqp, (s) | 1 <4 < k}. Suppose, for a contradiction, that= A
for someA not in X. Recall that we are assuming that the underlying state dpate- {x1,...2,} so thatX is a
subset ofR™. It is trivially bounded by[—1, 1], and by definition it is convex-closed; by Lemal6.1 it folkothat
X is (Cauchy) closed.

By the Separating Hyperplane Lemma, Lenimd @7can be separated froiki by a hyperplandi. What this
means is that there is some functwg : S — R and constant € IR such that either

@ wyg.0 < cforall® € X andwy . A > ¢
(b) or,wy . © > cforall® € X andwy . A < ¢

In fact from case (b) we can obtain case (a) by negating betledhstant and the components of the functiony;
S0 we can assume (a) to be true. Moreover by scaling with cespéhe largesivy (s;), 1 < i < n, we can assume
thatwy is actually a weight function.

In particular (a) means thaty . Derypp, (s) < ¢, and therefore thawy . Dergp,, (s) < Wy . A, for each of
derivative policeslpp,. But this contradicts Theoreln 6.5 which claims that therstrbe somd < i < n such that
Wy « Dergpp, (s) = PIHE (s) > Wy . A. O
Note that by definitiors = Derqp,(s) for every derivative policgpp. So it follows immediately from this theorem
that in a finitary pLTS the set of weak derivatives from therilisitions is exactly the convex closure of the finite set
{Dergpp, (5), ..., Dergyp, }.

Extreme policies, as given in Definition 5.8, are partickiads of derivative policies, designed for pLTSs of the
form (R, 2,, —r). The significant constraint on extreme policies is that for states if s — thenepp(s) must be
defined. As a consequence in the computation determinegdmif a state can contribute to the computation at any
stage it must contribute.
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Lemma 6.9 Letepp be any extreme policy. Theh=>¢p, A impliess = A.

Proof: Consider the derivation o as in Definitio3.18, and determined by the extreme padigy. SinceA =
> ko Af itis sufficient to show that each;’ is stable, thatis — impliess & [A[].

Sinceepp is an extreme policy, Definitidn 5.8 ensures thai(s) is defined. From the definition of a computation,
Definition[3.13, we knowA, = A;” + A} and since the computation is guided by the polipp we have that
Ay’ (s) = Ag(s). Animmediate consequence is th®f (s) = 0. O

As a consequence the finite generability result, The@rehspsialises to extreme derivatives.

Corollary 6.10 Let{eppy, ..., epp, } be the finite set of extreme policies of a finitaryrespecting pLTSS, Q-, — r).
Thens = Aifand only if A € ${ Derepp, (s) | 1 <i <k},

Proof: One direction follows immediately from the previous lemmanversely suppose—s- A. By Theoreni 6.8
A =3 i, pi - Dergyp, (s) for some finite collection of derivative policietpp,;, where we can assume that each
pi > 0. BecauseA is stable, that iss /-~ for everys € [A], we show that each derivative policpp,; can be
transformed into an extreme poliepp, such thaDer,. (s) = Dergpp (s), from which the result will follow.

First note it is sufficient to defingpp, on the set of statesaccessible from via the policydpp;; on the remaining
states inS epp, can be defined arbitrarily, so as to satisfy the requiren@2efinition[5.8. So consider the derivation
of Derqpp, (s) as in Definitior. 3.18, determined hipp, and suppose € A, for somek > 0. There are three cases:

() Suppose . SinceA is stable we know ¢ [A; ], and therefore by definitiodpp, (¢) is defined. So in this
case we letpp,(t) be the same adpp, (t).

(i) Supposet %, in which case, since the pLTS isrespecting, we know -/, and thereforelpp,(¢) is not
defined. Here we choogep;, (¢) arbitrarily so as to satisfyy = epp,(t).

(iii) Otherwise we leavepp(t) undefined.

By definitionepp, is an extreme policy since it satisfies conditions (a) andr(l)efinition[5.8, and by construction
Derepp, (s) = Dergpp, (s). U

This corollary gives a useful method for calculating thedfesixtreme derivatives of a given state, and therefore of the
result of applying a test to a process.

Example 6.11 Consider again Figuifd 4, discussed in Exarfiplel4.11, whereawe theo-respecting pLTS obtained
by applying the test.w to the process),. There are only two extreme policies for this pLTS, denotgdgp, and
epp;. They differ only for the state;, with epp,(s1) = ©¢ andepp,(s1) = ©;. The discussion in Example 4]11
explained how

—_

1
Dereppo (31) =W Del‘epp1 (81) = 5% + 5@

By Corollary[6.10 we know that every possible extreme déikieaof [T |ac: Q2]] takes the form

1 1
1T+ (1) (55 + 5)
for some0 < ¢ < 1. Since$(w) = 1 and$(353 + 1w) = 1 it follows thats/ (T, Q2) = [3, 1]. O

6.2 Consequences

In this section we outline two major consequences of The@dmwhich informally means that the set of weak
derivatives from a given state is the convex-closure of &gfiset. The first is straightforward, and is explained in the
following two results.

Lemma 6.12 (Closure of=-) For any state in a finitary pLTS the set of derivativgdsA | s = A } is closed and
CONVEX.
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Proof: Let dppq,...,dpp,, (n > 1) be all the derivative policies in the finitary pLTS. Congideo setsC =
I{ Dergpp,(s) | 1<i<n}andD = {A’"| A= A’}. By Theoreni 6.8 we hav® C C. On the other hand,
it is easy to see thdb is convex and thu§’ C D. Therefore,D coincides withC, the convex closure of a finite set.
By Lemmd®&.1, it is also Cauchy closed. O

The restriction here to finitary pLTSs is essential, as tileviong examples demonstrate.

Example 6.13 Consider the finite state but infinitely branching pLTS camitey three states;, s, s3 and the
countable set of transitions given by
s1 > (52 2,8 53) n>1

For convenience led,, denote the distributiofz 1 © s3). Then{ A, | n > 1} is a Cauchy sequence with limit
s3. Trivially the set{ A | 51 = A} contains eveny\,,, but it does not contain the limit of the sequence, thus it is
not closed. O

Example 6.14 By adapting Example6.13, we obtain the following pLTS whigfinitely branching but has infinitely
many states. Let; andt, be two distinct states. Moreover, for eaech> 1 there is a stata,, with two outgoing
transitions:s,, —— 5,11 ands,, = 1 5P t5. Let A,, denote the distributiofy @ t3. Then{A, |n>1}isa
Cauchy sequence with limft. The set{ A | 571 = A } is not closed because it contains each but not the limit
to. O

Corollary 6.15 [Closure of=%] For any states in a finitary pLTS the sefA | s == A} is closed and convex.

Proof: We first introduce a preliminary concept. We say a suliset 2(S) is finitely generablevhenever there is
some finite sef” C 2(5) such thatD = JF'. ArelationZC X x 2(S) is finitely generabléf for everyz in X the
setz- Z is finitely generable. We observe that

() If asetis finitely generable, then it is closed and convex
(i) If %#1,%2C 2(S) x 2(S) are finitely generable then so is their compositién %-.

The first property is a direct consequence of the definitiofinite generability. To prove the second property, we let
2, be afinite set of subdistributions such tdat%,= $4;, for i = 1,2. Then one can check that

ARy Ry = TU{ %S | © € Br)

which implies that finite generability is preserved undenpasition of relations.

Notice that the relatioa=> is a composition of three stagess; —%+; =>. In the proof of Lemm&6.12 we have
shown that= is finitely generable. In a finitary pLTS, the relatiof> is also finitely generable. It follows from
property (ii) that== is finitely generable. By property (i) we have th&t is closed and convex. O

Corollary 6.16 In a finitary pLTS, the relatios=> is the lifting of the closed and convex relaties> s —2+=—>, where
s =g A means — A.

Proof: The relation—=>gs-%+—> is =% restricted to point distributions. We have shown tHat is closed and convex
in Corollary[6.15. Therefore=s-%+=> is closed and convex. Its lifting coincides with:, which can be shown
by some arguments analogous to those in the proof of ProguSii2]. O

The second consequence of Theofenh 6.8 concerns the manmkicim divergent computations arise in pLTSs.
Consider again the infinite state pLTS given in Exaniple]3.Tfere is no state which wholly diverges, that is
satisfyings = ¢, yet there are many partially divergent computations. tt far everyk > 2 we haves, — %a.
This can not arise in a finitary pLTS; if there is any partiatidggtion in a finitary pLTS,A = A’ with |A|>|A],
then there is some state in the pLTS which wholly diverges.

We say a pLTS igonvergenif 5 —> ¢ for no states € S.

Lemma 6.17 Let A be a subdistribution in finite-state, convergerdgnd deterministicpLTS. If A = A’ then
|A] = [A].

37



Proof: Since the pLTS is convergent, then=- ¢ for no states € S. In other words, each sequence from a state
s is finite and ends with a distribution which cannot enabteteansition. In a deterministic pLTS, each state has at
most one outgoing transition. So from eacthere is a unique sequence with length, > 0.

s A DA D DA,
Letp, be A, (s") wheres’ is any state in the support &,, . We set

max{ns | s € S}
min{p, | s € S}

n
p

wheren andp are well defined a$ is a finite set since we are considering a finite-state pLTSv MbA — A’ be
any weak derivation constructed by a collectiongf , A such that

A = AY+A]
Ay > A+ A

— T — X
Ay = AL AL

with A" =377, A). From eachA;7 ,; with k,i € N, the block ofn steps ofr transition leads ta\ ;. ,,,,,; such
that|A G, 1)l < 1A%l (1 = p). It follows that
e8] n—1 oo
ijo |A7| = Zi:Ol Zk:o |Aa+i|

< i St A0 - p)*

= Zi:o A?l%

< Jag|e
Therefore, we have théitny_, ., A;” = 0, which in turn means that\’| = |A]. O

Corollary 6.18 [Zero-one law, deterministic case] If for some static datie policydpp over a finite-state pLTS
there is for some a derivatiors =4, A’ with |A’| < 1 then in fact for some (possibly different) statewe have
Se ==dpp €-

Proof: Suppose that for no statedo we haves =g, €. Then the pLTS induced bypp is convergent. Since
it is obviously finite-state and deterministic, we apply Lea{6.17 and obtaif\’| = [s| = 1, contradicting the
assumption thgtA’| < 1. Therefore, there must exist some statevhich wholly diverges. O

Although it is possible to have processes that diverge withesprobability strictly between zero and one, in a
finitary system it is possible to “distill” that divergence the sense that in many cases we can limit our analyses
to processes that either wholly diverge (can do so with grdibaone) or wholly converge (can diverge only with
probability zero). This property is based on the zero-onefta finite-state probabilistic systems, and in this sattio
we present the aspects of it that we need here.

Lemma 6.19 [Distillation of divergence, deterministic case]
If for some states and static derivative policgipp over a finite-state pLTS there is a derivat®r=-4,, A’ then
there is a probability and full distributionsA], AL such that = (A} ,® AL) andA’ = p-A} andA. = «.

Proof: (SchemaWe modifydpp so as to obtain a static policpp’ by settingdpp’(¢) = dpp(t) except whert =>4y,
e, in which case we setpp’(t) 1. The new policy determines a unique weak derivatdon—=4,,, A” for some
subdistributiorA”, and induces a sub-pLTS from the pLTS inducedipy. Note that the sub-pLTS is deterministic
and convergent. By Lemnfia6]17, we know that'| = |s| = 1. We splitA” up into A + A’ so that each state in
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0

There are two statesand0. To diverge froms with probabilityl — 1/, start at “petal’k and take successiveloops
anti-clockwise from there.

Yet, although divergence with arbitrarily high probalyilis present, complete probability-1 divergence is nowhere
possible. Either infinite states or infinite branching isessary for this anomaly.

Figure 7: Infinitely branching flower.

[A”] is wholly divergent under policgpp andA is supported by all other states. Frax{f the policydpp determines
the weak derivatiod! =4, . Combining the two weak derivations we have=-q4,, Al + A” =4, AY. As
we only divide the original weak SDP-derivation into twogsta, and do not change thdransition from each state,
the final subdistribution will not change, thds] = A’. Finally we determing, A} and AL by lettingp = |A|,
Al = SA andAL = 5 AL O

Theorem 6.20 [Distillation of divergence, general case] For any\’ in a finitary pLTS withs = A’ there is a
probabilityp and full distributionsA, AL such that = (A} ,® AL) andA’ = p-A} andA. = «.

Proof: Let{dpp, | i € I} (I is a finite index set) be all the static derivative policie#ha finitary pLTS. Each policy
determines a weak derivatiGn—=-4,,, Aj. From Theorerm 618 we know thatif—= A’ thenA’ = > e i for
somep; with Zlelpz =1. By Lemmdﬂp for eache I, there is a probability; and full dlstr|but|onsA; 1AL
such that = (A}, ,® Al,), A} = ¢ - Az 1, andAj . = ¢. Finally we determing, A} and AL by Iettmg

P=12ierPiqi- AL 1], Al = 1A’ andA. = Zlelpl( q:)A .. They satisfy our requirements just by noting
thats = >, pi(A] 1, @ A’, )= AL L,® A’ U

The requirement on the pLTS to be finitary is essential far distillation of divergence, as we explain in the following
examples.

Example 6.21 [Revisiting Exampl&3.17] The pLTS in Examjile 3.17 is an iidirstate system over states for all
k > 2, where the probability of convergenceligk from any states, thus a situation where distillation of divergence
fails because all the states partially diverge, yet themdisingle state which wholly diverges. O
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Example 6.22 Consider the finite state but infinitely branching pLTS dismat in Figuré7; this consists of two states
s and0 together with &-indexed set of transitions

s 5, ([0],,2®3) fork > 2, (19)

This pLTS is obtained from the infinite state pLTS describe&xampld 3.7 by identifying all of the statesand
replacing the state with 0.

As we have seen, by taking transitions™—; - ——xi1 - —>r12 -+ We haves — % -0 foranyk > 2; but
cruciallys #= ¢. Since trivially0 #= ¢ there is no full distributiom\ such thatA = «.

Now to contradict the distillation of divergence for thisT&h note that —- % -0, but this derivation cannot be
factored in the required mannerio=- (A} ,® Al), because no possible full distributidsl. can exist satisfying
Al = e O

Corollary[6.18 and Lemn{a6.119 are not affected by infinitanbhéng, because they are restricted to the determin-
istic case (i.e. the case of no branching at all). What faithé combination of a number of deterministic distillagon
to make a non-deterministic one, in Theofem 6.20: it dependéheoreni 618, which in turn requires finite branching.

Corollary 6.23 [Zero-one law, general case] If in a finitary pLTS we haveA’ with A = A" and|A[>|A’| then
there is some stat€ reachable with non-zero probability frotk such thats’ —> . That is, the pLTS based ah
must have a wholly diverging state somewhere.

Proof: Assume at first thatA|=1; then the result is immediate from TheorEm6.20 since4ayA’] will do. The
general result is obtained by dividing the given derivatignA|. O

7 The failure simulation preorder

This section is divided in four: the first subsection presehe definition of thdailure simulation preordeiin an
arbitrary pLTS, together with some explanatory examplegives two equivalent characterisations of this preorder:
a co-inductive one as a largest relation between subdisivitts satisfying certain transfer properties, and oneitha
obtained through lifting and an additional closure prop&mm a relation between states and subdistributions that
we callfailure similarity. It also investigates some elementary properties of tHeréasimulation preorder and of
failure similarity. In the second subsection we restritgation to finitary processes, and on this realm charaeténis
failure simulation preorder in terms efmple failure similarity All further results on the failure simulation preorder,

in particular precongruence for the operatorsp@SP and soundness and completeness with respect to the must
testing preorder, are in terms of this characterisatiod feemce pertain to finitary processes only. The third sulmsect
establishes monotonicity of the operator@SP with respect to the failure simulation preorder — in otherdg
shows that the failure simulation preorder is a precongreevith respect to these operators — and the last subsection
is devoted to showing soundness with respect to must testiompleteness is the subject of Secfibn 8.

7.1 Two equivalent definitions and their rationale

We start with defining the weak action relatiofs- for o € Act, and the refusal relationéé for A C Act that are
the key ingredients in the definition of the failure simwatpreorder[i7,12].
Definition 7.1 Let A and its variants be subdistributions in a pLT$ Act,, —).

e Fora € Act write A == A’ wheneverA = AP® %, APt — A’ Extend this toAct, by allowing as a
special case that= is simply=, i.e. including identity (rather than requiring at leaseef-).

e ForA C Act ands € S write s 4 if s %4 for everya € A U {r}; write A 44 if s 34 for everys e[A].
o More generally writeA =24 if A = AP™ for someAP'™ such thatAP™e 44,

For example, referring to Examfle 3116 we hagg | == [0], while in Examplé_3.17 we haves,| =% 1[0] as
well as[so] =>-L4 for any setB not containing:, becauses = 1[a].
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Definition 7.2 (Failure Simulation Preorder) Define Jpg to be the largest relation i&?(S) x 2(S) such that if
A g O then

1. wheneverA =% (Y. p;A}), for a € Act, and certainp; with (3°, p;) < 1, then there ar®’ € Z(S) with
0 = (3, p:©}) andA! Jpg O/ for eachi, and
2. whenever\ =24 then also® =44,

Naturally® Crg A just meansA Jrg ©. We have chosen the orientation of the preorder symbol tehthit of
must testing, which goes back to the work of De Nicola & Heisyd§]. This orientation also matches the one used in
CSP [10] and related work, were we havee® IFICATION C IMPLEMENTATION. At the same time, we like to stick to
the convention popular in the CCS community of writing thagiated process to the left of the preorder symbol and
the simulating process (that mimics moves of the simulateg) on the right. This helps when comparing with may
testing and the simulation preorder in Secfibn 9. We acltlegeoy writing IMPLEMENTATION O g SPECIFICATION.

In the first case of the above definition the summation is albwo be empty, which has the following useful
consequence.

Lemma 7.3 If A diverges and\ Jrg O, then alsd diverges.

Proof: Divergence ofA means thal\ —> ¢, whence withA Jps © we can take the empty summation in Defini-
tion[7.2 to conclude that alg® = ¢. O

Although the regularity of Definitioh 712 is appealing — foraenple it is trivial to see that s is reflexive and
transitive, as it should be — in practice, for specific preessit is easier to work with a characterisation of the failu
simulation preorder in terms of a relation between betwstatesand distributions.

Definition 7.4 (Failure Similarity) Define<, to be the largest relation ifi x 2(.S) such that ifs <., © then
1. wheneveg == A/, for a € Act, then there is ®' € 2(S) with © == ©’ andA’ I ©’, and
2. whenevef —-44 then® —-24.

Any relationZ C S x 2(S) that satisfies the two clauses above is callégilare simulation

Obviously, for any failure simulatio? we haveZ C <. The following two lemmas show that the lifted failure
similarity relation<; C 2(5) x 2(S) has simulating properties analogous to 1 and 2 above.

Lemma 7.5 Suppose\ < © andA == A’ for a € Act,. Then® = ©’ for some®’ such thatA’ S, ©'.

Proof: A < © implies by Lemm&3l5that A = Zpi - 54, 8i <es O, 0= Zpi - 9;.

el i€l
By Corollary[6.16 and Propositidn 3110 we know fralm == A’ thats; == A! for A, € 2(9) such that\’ =
>, pi - Aj. For eachi € I we infer froms; <. ©; ands; = A/ that there is ®] € 2(S) with ©; = ©] and
A, Q0. Let® =Y, pi-O). Then Definitioi3.2(2) and Theordm 3120(i) yieMd .. ©" and® = ©'. O

Lemma 7.6 Supposel <. © andA =24, Then® —-44.

Proof: Suppose\ < © andA = A’ 24, By LemmdZ.b there exists sorf such tha® —> ©’ andA’ I @',
From Lemm&3J5 we know that\’ = Zpi - 55, 8; <es O, o = Zpi - 0;, withs; € [A"] forallie .

i€l el
SinceA’ 44, we have that; 4 for all i € I. It follows from s; <, ©; that®; = ©/ 4. By Theoreni3.20(i) we
obtain thaty", ., p; - ©; = 3, ; i - © 4. By the transitivity of=> we have tha® =-%. O

The next result shows how the failure simulation preorderalgernatively be defined in terms of failure similarity.

Proposition 7.7 For A, © € 2(S) we haveA Jrg O justwhen there is @M "with © —- @MahandA I @™match
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Proof: Let </, C S x 2(S) be the relation given by </ © iff $ Jrg ©. Then<l is a failure simulation; hence
<fs € <. Now suppose\ Jpg O. LetA:=3". p;-5;. Then there ar®; with © =) p;-©, ands; Jpg O, for
eachi, whences; <i/; ©;, and thuss; <. ©;. Take@™3h:= S~ p,.0,. Definition[3:2 yieldsA I ©Mach

For the other direction it suffices to show thaf; = ! satisfies the two clauses of Definitibn17.2, yielding
T ="' € Jps. So suppose, for givear, © € 2(9), there is @M Nwith © — @MahandA T @match

SupposeA =2 3~ p;- Al for somea € Act,. By LemmaZ.b there is son@’ such thato™a" = ©’ and
(X ierpi-A}) s ©'. From Proposition 3.10 we know th&t' = 3., p;-©;] for subdistributions®] such that
A} G O)fori € I. Thus® == Y. p;- O} by the transitivity of—=> (Theoreni 3.22) and\}(<.;; = *)©), for each
i € I by the reflexivity of—=-.

Suppose\ =44, By Lemmd 7.6 we have™Maich— 44 |t follows that® =24 by the transitivity of=>. O

Note the appearance of the “anterior stép”=- ©Ma"in Propositio 7.7 immediately above; the following exaenpl
shows it necessary in the sense that defining simply to be< (i.e. without anterior step) would not have been
suitable.

Example 7.8 Compare the two processés:= a ;& b and(@ := 7.P. They are testing equivalent, and so for,
to be complete we would have to hajP] <. [Q]. But we do not, for by Propositidn 3110 that would require
[a] < [@], which must fail since the former's mové&- [ 0] cannot be matched by the latter.

We do however hav® Jrg @ because of the anterior st¢p—> P and of cours¢ P| < [P]. O

Remark 7.9 Fors e .S and® € 2(S) we haves <. © iff 5 Jpg ©; here no anterior step is needed. One direction
of this statement has been obtained in the beginning of theff Propositiof 717; for the other note thati ©
impliess < © by Definition[3:2(1) which implies 2 s © by Propositiof 717 and the reflexivity ef=.

Exampld_7.B shows that s cannot be obtained as the lifting of any relation: it lackes d@composition property of
Propositio 3.710. Neverthelesszs enjoys the property of linearity, as occurs in Definifiont 3.2

Lemma7.101f A; Jps ©; foric I'then) ., pi-A; Jrs D, pi-©; foranyp; €[0,1] (e I) with 3, p; < 1.
Proof: This follows immediately from the linearity &fi_, and=> (cf. Theoreni:3.20(i)), using Propositibnlr.7.0

Example 7.11 (Divergence)From Exampld—3.15 we know thatecz.z] = e. This, together with[{1) in Sec-
tion[3:3, and the fact that-34 for any set of actions!, ensures that <i. [rec z. 2] for anys, hence® T [rec z. z]
for any©, and thus tha® Jpg [recz.z]. Indeed similar reasoning applies to afywith A = Ay — A —»
- I ... because — as explained right before Exaniplel3.15 — this alsores that\ = «. In particular, we
haves —> ¢ and hencérec z. 2] ~pg €.
Yet [rec z. 2] Zrs 0, because the movigec z. 2] = ¢ cannot be matched by a corresponding move ffdnj
— see LemmATl3. O

Example 7111 shows again that the anterior move in Propo$Iii is necessary: althoughdzs [rec z.z] we do
not haves < [rec z. ], since by LemmB316 ang with e < © must have®| = 0.

Example 7.12 Referring to the proces®; of Example[3.16, with Propositidn 1.7 we easily see thallps Q
because we have <., [@:]. Note that the movéQ,] = [a] is crucial, since it enables us to match the move
[a] -2 [0] with [Q,] = [a] -2 [O]. It also enables us to match refusalsfdf 24 then B can not contain the
actiona, and therefore alsfQ, ]| =24.

The converse, that C rg 01, is also true because it is straightforward to verify thatithlation

{(Q17 [a])v (7.Q1, [aﬂ)’ (a, [a])’ (0, [[Oﬂ)}

is a failure simulation and thus is a subsekqf. We therefore hav@; ~rs a. O
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Example 7.13 Let P be the process , @ recz. x and consider the statg introduced in Example_3.17. First note

that [P] <G 3-la], sincerecz.z < . Then because, = 3-[a] we have[P] Jpg s;. The converse, that

s2 dps [P] holds, is true becausg < [P] follows from the fact that the relation

{(sk, [a] 1 p@ [recz.2]) [ k > 2} U{(a, [a]), (0,[O])}
is a failure simulation that contains the péis, [ P]). O

Our final examples pursue the consequences of the fact thatipty distribution is behaviourally indistinguishable
from divergent processes lieec z. z].

Example 7.14 (Subdistributions formally unnecessary)For any subdistributiod\, let A¢ denote the (full) distri-
bution defined by
A = A+ (1— |A])-[recx. 2] .

Intuitively it is obtained fromA by padding the missing support with the divergent sfadez. z].

ThenA ~rg A°. This follows becaus&® —- A, which is sufficient to establish J s A€; but alsoA® < A
becausdrec z. 2] < £, and that implies the converge® Jrs A. The equivalence shows that formally we have no
need for subdistributions, and that our technical develproould be carried out using (full) distributions only.O

But abandoning subdistributions comes at a cost: the defindf weak transition, Definition 3.13, would be much
more complex if expressed with full distributions, as wosythtactic manipulations such as those used in the proof of
Theoreni 3.22.

More significant, however, is that diverging processes legpecial character in failure simulation semantics.
Placing them at the bottom of therg preorder — as we do — requires that they failure-simulateyepeocesses,
thus allowing all visible actions and all refusals and soawitg in a sense “chaotically”; yet applying the operationa
semantics of Figurel 2 teec z. x literally would suggest exactly the opposite, simeez. = allows no visible actions
(allits derivatives enable only) and no refusals (all its derivatives hawvenabled). The case analyses that discrepancy
would require are entirely escaped by allowing subdistiiims, as the chaotic behaviour of the diverginfpllows
naturally from the definitions, as we saw in Exaniple 7.11.

We conclude with an example involving divergence and subbigions.

Example 7.15For0 < ¢ < 1 let P. be the proces8 .® recz.z. We show thaf P.] Crg [P.] just whene < ¢'.
(Refusals can be ignored, sinEerefuses every set of actions, for al)
Suppose first that < ¢/, and split the two processes as follows:

[P] =
[P] =

Becaus® < [rec z. z] (the middle terms), we have immediat¢ly.. | <., [P.], whence[P.] Cpg [Pw].

For the other direction, note thaP..| = ¢’-[0]. If [P.] Cps [P. ] then from Definitiod 7.2 we would have to
have[P.] = ¢/-©’ for some subdistributio®’, a derivative of weight no more thafi But the smallest weigh®.
can reach via=> is justc, so that we must have in fact< ¢’. O

[0]+(—c) [recx.z] + (1—C)-[recz. x]
[0]+(d—¢)-]0] +(1=c)-[recz. x]

C-
C-

We end this subsection with two properties of failure sinitjathat will be useful later on.
Proposition 7.16 The relation<, is convex.

Proof: Suppose <. ©; andp; € [0,1] foric I, with ), ; p; = 1. We need to show that<. >, ; pi-O;.

If 5 == A/, then there exis®) for i € I such that®; == ©) and A’ < ©!. By Corollary[6.16 and Defini-
tion[3.2(2), we obtain thaY ", ., p;-©; == >, pi-O) andA’ I 3, pi- O],

If 5 =% for someA C Act, then®; = O/ % for all i € I. By definition we have,_, p;-©; .
Theoreni 3.20(i) yield$ ., pi-©s = >,c; pi- O]

So we have checked that< > ., p;-©;. It follows that< is convex. O
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Proposition 7.17 The relation<, C Z(5) x 2(S) is reflexive and transitive.

Proof: Reflexivity is easy; it relies on the fact thaki, 5 for every states.
For transitivity, we first show thati_; <. is a failure simulation. Suppose<,., © < ®. If 5 == A’ then there

isa®’ suchtha == 0’ andA’ < ©'. By Lemmd7Z.b, there existsdd such thaﬁ) == @’ and®’ < ¢'. Hence,
A Q< @' By Lemmd 3R we know that

s Tes = Tesi s (20)

Therefore, we obtai\” <,; < P'.

Fs?

If s =44 for someA C Act then® —-24 and henc& —-24 by Lemmd 7.5.
So we established that.; < C <. It now follows from Remark3]3 anf(20) that; <. C <. O

7.2 A simpler characterisation of failure similarity for fin itary processes

Here we present a simpler characterisation of failure sirityl, valid when considering finitary processes only. It is
in terms of this characterisation that we will establishreiness and completeness of the failure simulation preorder
with respect to the must testing preorder; consequentlyave these results for finitary processes only.

Definition 7.18 (Simple Failure Similarity) Let <’ be the largest relation ifi x Z(S) such that ifs <%, © then
1. whenevek = ¢ then alsd® = ¢, otherwise
2. wheneves - A/, for a € Act, then there is ®' with © == ©’ andA’ <&, ©/, and
3. wheneves % then® —-44.

We first note that the relation, is not interesting for infinitary processes since its liftedn <2, is not a transitive
relation for those processes.

Example 7.19 Consider the process defined by the foIIowing two transtion -~ (0,,,® 7;) andt; = 7. We
compare statg, with states in Exampl P and have that <3, 5. The transitiorty —— (51/269 1) can be matched
up bys = 10 becaus€0,,.® #1) <7 10 by noticing that; <iZ

It also holds that <%, 0 because the relatiof(s,0), (0,0)} is a simple failure simulation. The transitien—
(0 1©3) foranyk > 2 is matched up bp = 0.

However, we do not havig <15 0. The only candidate to simulate the transitign— (61/269 t1)is0 = 0, but
(0@ 11) 7% 0 because the divergent statecannot be simulated by.

Therefore we havé, <&, 5 <5, 0 but?, 72, 0, thus transitivity of the relatiordg, fails. Here the state is not
finitely branching. As a matter of fact, transitivity ef; also fails for finitely branching but infinite state processe
Consider an infinite state pLTS consisting of a collectiostatess;, for £ > 2 such that

Sp —— 6;72@ Skt1- (22)

This pLTS is obtained from that in Examile 3.17 by replagingith 0. One can check thaf <3, 53 <& 0 but we

already know that, 72, 0. Again, we loose the transitivity ofiZ.. O
If we restrict our attention to finitary processes, thef provides a simpler characterisation of failure similarity

Theorem 7.20 (Equivalence of failure- and simple failure snilarity) For finitary distributionsA, © € 2(S) in a
PLTS (S, Act,, —) we haveA <, O iff A <, O.

Proof: Becauses -+ A’ impliess -2+ A’ ands 34 impliess =24 it is trivial that <, satisfies the conditions of
Definition[7.18, so thati.; C <.
For the other direction we need to show tket satisfies Clause 1 of Definitign 7.4 with= 7, that is

if s <% © ands = A’ then there is som@’ € Z7(S) with © = ©’ andA’ <5, ©'.
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Figure 8: lllustration of Theorefn 7.0

Once we have this, the relatienf, clearly satisfies both clauses of Definitlonl7.4, so that wek&, C <...

So suppose that <, © and thats = A’ where — for the moment — we assurh&’| = 1. Referring to
Definition[3.13, there must b&;, A;” andA; for k > 0 such thats = Ao, Ay = AL + A, Ay T App
andA’ = "7 AL SinceAJ + Ay’ =5 <5 O, using Proposition 3.10 we can defile=: ©; + ©;” so that
Al <505 andAy G Oy SinceAy” —— Ay andAy” <G5 ©” we have®;” = ©, with A, <, O;.

Repeating the above procedure gives us inductively a s8iie®;”, ©; of subdistributions, fok > 0, such that
B0 =0, Ap I O, O = O + 0, AL J5, 0, A 5, 0,7 andO;” == 0. We define®’ := Y, 0. By
Additivity (Remark3.Y) we have\’ <&, ©'. It remains to be shown th& = ©'.

For that final step, sinc@® =) is closed according to Lemria6]12, we can estaltish= O’ by exhibiting a
sequenc®; with © = O’ for eachi and with theO’’s being arbitrarily close t®’. Induction establishes for each
thatd = O} := (0;7+>_, ., ©;). SincelA’| = 1, we musthavéim; . | > po; A;7| = 0 andlim;_, |A;7| =0,
whence by LemmBg36, using thAt” <, ©;7, alsolim;_,« | > r—; ©;7| = 0 andlim;_,~ |©;”| = 0. Thus these
©/’s form the sequence we needed.

That concludes the case fak’| = 1. If on the other hand\’ = ¢, i.e. we havdA’| = 0, then® = ¢ follows
immediately froms <%, ©, ande < ¢ trivially.

In the general case, ¥ — A’ then by Theorei 6.20 we have— A} ,® A’ for some probabilityp and
full distributions A7, AL, with A’ = p-A} andA. = . From the mass-1 case above we h@ve=- 0] ,® O.
with A} <5, ©] andAL <3, ©L; from the mass-0 case we ha® — ¢ and henc®) ,& O, = p-O] by
Theoreni:3.20(i); thus transitivity yieldd —> p-0/, with A’ = p- A <%, p-©] as required, using Definitidn3.2(2).
O

The proof of Theorerh 7,20 refers to Theorem 6.20 where thenlyidg pLTS is assumed to be finitary. As we
would expect, Theorefn 7.R0 fails for infinitary pLTSs.

Example 7.21 We have seen in Examdle 7]19 that the stateom (Z139) is related t® via the relation<is,. We now
compares with 0 according to<,.. From states we have the weak transiticn—- 51/269 €, which cannot be matched
by any transition fron®, thuss .. 0. This means that Theordm 7120 fails for infinitely branchingcesses.

If we replace state by the states; from (21), similar phenomenon happens. Therefore, Theft& also fails
for finitely branching but infinite-state processes. O

7.3 Precongruence

The purpose of this section is to show that the semanticioelat »s is preserved by the constructs gESP. The
proofs follow closely the corresponding proofs in Sectiasf {2], but here there is a significant extra proof obligation
in order to relate two processes we have to demonstratef thatfirst diverges then so does the second.

Here, in order to avoid such complications, we introduceayeither version of failure simulation; it modifies
Definition[Z18 by checking divergence co-inductively el of using a predicate.
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Definition 7.22 Define<¢ to be the largest relation ifi x Z(5) such that ifs <¢, © then

1. whenevek = ¢, there are som@’, ©’ such that == A’ = ¢, 0 == 0’ andA’ ¢ ©’;
otherwise

2. wheneves % A/, for a € Act,, then there is ®' with © == ©’ andA’ <<, ©’, and

3. wheneves 24 then® —-44.

Lemma 7.23 The following statements about divergence are equivalent.

1) A==

(2) Thereis an infinite sequende " A} 5 Ay 5 ...

(3) Thereis an infinite sequencde—-"— A; == Ay —=-T—> .. ..

Proof: By the definition of weak transition, it is immediate tHa) < (2). Clearly we havg2) = (3). To show
that(3) = (2), we introduce another characterisation of divergence ALbe a subdistribution in a pLTS. A pLTS
induced byA is a pLTS whose states and transitions are subsets of thdsand all states are reachable frém

(4) Thereis a pLTS induced b¥ where all states have outgoingransitions.

It holds that(3) = (4) because we can construct a pLTS whose states and transitefsst those used in deriving
the infinite sequence if8). For this pLTS, each state has an outgoirtgansition, which give$4) = (2). O

The next lemma shows the usefulness of the relatifrby checking divergence in a co-inductive way.

Lemma 7.24 SupposeA <&, © and A = e. Then there exist\’, ©" such thatA —-5—= A’ = ¢,
0 == 0/, andA’ <, ©'.

Proof: SupposeA <&, © andA = ¢. In analogy with Proposition 7.16 we can show tket is convex. By
Corollary[3.11, we can decompo§eas > sera1 A(s) O, ands < O, for eachs € [A]. Now eachs must
also diverge. So there exi&t, @’ such that == A/, = ¢, O, == 0/, andA/ <¢, ©’, for each
s € [A]. LetA" =37 a1 As) AL and®’ = 37 (11 A(s)-©}. By Definition[3.2 and Theorem 3.20(i), we have
A< 0, A ="= A/, and® —=-= ©’. We also have tha\’ —> ¢ because for each stagen A’ it
holds thats € [A’] for someA’, andA’, = ¢, which meang = «. O

Lemma 7.25 <& coincides with<?,.

Proof: We only need to check that the first clause in Definifion7. Ejisivalent to the first clause in Definitibn 7122.
For one direction, we consider the relation

Z = {(5,0) | 5= cand® = ¢}

and showZ C <¢,. Suppose #Z O. By Lemmd7.2B there are two infinite sequeneess A; =5 Ay -5 ... and

O -5 ©; = .... Then we have bothh; — ¢ and®; = ¢. Note thatA; = ¢ if and only if f = ¢ for each

t € [Ay]. ThereforeA; # ©, as we haved; = Zte[Aﬂ Ay (t)-t, 0, = Ztemﬂ Aq(t)-O1, andt Z O,. Here
|A1| = 1 becausé\,, like s, is a distribution.

For the other direction, we show that <¢, © and A = ¢ imply © = . Then as a special case, we get

s <5 © ands = ¢ imply © = ¢. By repeated application of Lemrha7].24, we can obtain twaitefisequences
A== A =D5= ...and® == 0; == ... such thaty; <¢, ©; foralli > 1. By
LemmdZ.2B this implie® = «. O
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The advantage of this new relatietf, over < is that in order to check <¢, © whens diverges it is sufficient
to find a single matching mow@ —--">= ©’, rather than an infinite sequence of moves. However to aactgtris
matching move we cannot rely on clause 2 in Definifion17.22hasnove generated there might actually be empty,
which we have seen in Example 3.14. Instead we need a methgérierating weak moves which contain at least
one occurrence of a-action.

Definition 7.26 [Productive moves] Let us write |4 ¢ -, © whenever we can infes |4 t >, © from rule
(PAR.R) Or (PAR.I). In effect this means thatmust contribute to the action.
Theseproductiveactions are extended to subdistributions in the standarsheragivingA —,, ©.

The following lemma appeared as Lemma 6.127in [4]. It stilldsdn our current setting.
Lemma7.27 (1) If » = &' then® |4, A = P’ |, AandA |4, D = A |4 D.
(2 f® % " anda & Athen® |4 A 4 @' |4, AandA |4 & 2 Ay P,
(3) If® 2 &', A % A’ anda € AthenA |4 & 5 A’ |4 9.

(4 Cjerpi®i) la Crer @ Br) =2 e7 2per (Piar) (5 [4 Ag).

(5) Given relationsz, %' C S x 2(S) satisfyinguZ¥ whenever, = s [4 t and¥ = © |4 t with s %' © and
teS. ThenA %' © and® € 2(S) implies(A |4 @) Z (O |4 D). O

Proposition 7.28 Suppose\ <, © andA |4 t 5, T. Then® |4 t =-"+= ¥ for some¥ such that® Z ¥,
whereZ is the relation given by (s |4 ¢,0 |4 t) | s <& O}.

Proof: We first show a simplified version of the result. Suppsse;; © ands |4 t —, I'; we prove this entails
O |4 t == ¥ such thal® # ¥. There are only two possibilities for inferring the aboveductive move from
S |A t:

() T'=s5s|a ®wheret — &

(i) orT' = A |4 ® where for some € A, s -+ A andt % .
In the first case we hav® |4 t =+ © |4 ® by LemmdZ.27(2) ands |4 ®) Z (O |4 ®) by LemmeZ.217(5),
whereas in the second cased?, © implies® —-%— ©’ for some®’ € 2(S5) with A <&, ©', and we have

O|at=-"= 0|4 ®by Lemmd7.2[7(1) and (3), arleh |4 ®) Z (©' |4 ) by Lemmd 727 (5).
The general case now follows using a standard decompasémmposition argument. Sinée |4 ¢ —, T,
Lemmd3.b yields

A=>"pis,  silatTT,  T=> p-Ty
i€l iel
for certains; € S, I'; € 2(5) and)_, ., p; < 1. In analogy with Proposition 7.16 we can show tkgt is convex.
Hence, sincé <, ©, Corollary(3.11 yields thad = 3", ; p;-O; for someO; € Z(5) such thats; <¢, ©; foric 1.
By the above argument we ha@ |4 ¢t =-"+= ¥, for someV, € 2(S) such thaf’; Z ¥,. The requiredV
can be taken to b®,_, p;-¥; as Definitior[3.R(2) yield§" % ¥ and TheorerfiL3.20(i) and Definitién_8.2(2) yield
Osat="= V. O

Our next result shows that we can always factor out prodectioves from an arbitrary action of a parallel process.
Lemma 7.29 Suppose\ |4 ¢t =5 T'. Then there exists subdistributiods”, A, A<' T'* (possibly empty) such
that

(i) A=A7+ A%

(i) A= Iy Anext

(i) A |at =, T~

(iv) T = Anext |, ¢ 4 I'*
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Proof: By Lemmd3.bA |4 ¢t = T implies that
A:Zpi's_iv silat T4y, F:Zpi-I‘i,
i€l el

for certains; € S, Ty € Z(S) and) ., ps < 1. LetJ = {iel | s; |at >, T; }. Note that for each € (I — J)

T'; has the fornT; | 4 ¢, wheres; - I",. Now let

A7 = Z Di*Si, AX:ZPi'S_i

ic(I-J) icJ
Arext — Z pi-T}, = Zpi'ri
ie(I—J) icJ
By construction (i) and (iv) are satisfied, and (ii) and (i@Jlows by property (2) of Definitiof 3]2. O

Lemma 7.30 If A |4 t = e thenthereis @\’ € Z(S) such thath = A’ andA’ |4 t == ¢.
Proof: Suppose\, |4 t => ¢. By LemmdZ.2B there is an infinite sequence
NAglat -V D50y T, (22)

By induction onk > 0, we find distributiond™ 1, A7, A), Apga, F,fﬂ such that
() Ak lat " Thga

(i) Thy1 < Wppy

(i) A=A +Af

(V) Ay 5 Agqr

(V) Af [at T2 F1?+1

(Vi) Thy1 =Apgr [at+T5, .

Induction BaseTakel'; := ¥, and apply LemmB&~7.29.

Induction Step:Assume we already hau@,, A, andI';’. SinceA, |4 t < Ty < ¥, and¥;, = ¥y, Proposi-
tion[3.10 gives us &1 such thathy |4 t = Tp11 andlTyy1 < Wiy 1. Now apply Lemma7.29.

LetA’:= 3", AJ. By (iii) and (iv) above we obtain a weakmoveA, = A’. SinceA’ |4t = > 7 ((A) [a t),
by (v) and Definitio 32 we hava’ |4 ¢ =5, >~ I'. Note that here it does not matter&' = . Since
Iy <Ty < ¥, and¥, = ¢ it follows by Theoren{3.20(ii) that’;’, = . Hence Theoreri 3.20(i) yields
Yoo I =e. O

We are now ready to prove the main result of this section, hathat C s is preserved by the parallel operator.
Proposition 7.31 In a finitary pLTS, ifA Jps © thenA |4 ® Jps O |4 .
Proof: We first construct the following relation

Z = {(s|at,0]at)]s <0}

and check thaZ? C <. As in the proof of Proposition 4.6 in]2], one can check thettestrong transition from
s |a t can be matched up by a transition fr@n| 4 ¢, and the matching of failures can also be established. So we
concentrate on the requirement involving divergence.

Suppose << © ands |4 t = . We need to find somE, ¥ such that

@ sjat=""=T=c¢,
(b) © |4t =-"3= Vandl' Z V.
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By Lemmd7.3D there arA’, T € 2(S) such that — A’ andA’ |4 ¢t =5, I' = ¢. Since for finitary processes
<&, coincides with<®, and <., by Lemmd7.2b and Theordm 7120, there must B¢ @ #(S) such tha® — ©’ and
A" Jg, ©'. By Propositiod 7.28 we haw@’ |4 t =>-"+= ¥ for some¥ such thal®" % ¥. Now s |4 t = A’ |4

t- 5T =candO |4t = O |4 t =T+= U with " #Z ¥, which had to be shown.

Therefore, we have shown that C <. Now let us focus our attention on the statement of the piiipaswhich
involvesJxg.

Suppose\ Jrs ©. By Propositiof 77 this means that there is sdf&" such thatd — @MNandA I
emath By Theoren7.20 and Lemnia_7125 we ha¥e<c, ©M3 N Then Lemmd 7.27(5) yield&A |4 ®) #
(@mach| , @). Therefore, we haveA |4 @) I (OMN |4 @), i.e. (A |4 @) Ty (OM3CN| 4 &) by Lemmd 726 and
Theoreni 7.20. By Lemnfa7P7(1) we also h&ge|, ) = (@™ |, &), which had to be established according
to Proposition 7J7. O

In the proof of Proposition 7.31 we use the characterisatfon,, as<%, which assumes the pLTS to be finitary.
In general, the relatiors? is not closed under parallel composition.

Example 7.32 We use a modification of the infinite state pLTSs in Exarmipl&l3vhich as before has states with
k > 2, but we add an extra-looping states,, to give all together the system

fork > 2 S (%_1569 Skt1) and Sq 255, .
k

There is a failure simulatios, <% (5. 1® 0) because the transition, — (3, Ene Sk+1) can be matched by a
transition to(s, 3 ® (Sa 1, @ 0)) which simplifies to jusi(z; 1® 0) again — i.e. a sufficient simulating transition
would be the identity instance ef=-.

Now s |14} s. wholly diverges even though itself does not, and (recall from above) we hayedy; (5, 1 & 0).
Yet (55 1@ 0) |{a) 54 does notdiverge, thus |14} sa #is (52 1D 0) [{a} Sa-

Note that this counter-example does not go through if we aiheré similarity <. instead of simple failure sim-
ilarity <ii;, sincess A (52 1@ 0) — the former has the transitios = s, 1@ ¢, which cannot be matched by
Sa %EB 0. O

Proposition 7.33 (Precongruence)n a finitary pLTS, if P Jrg Q thena.P Jgs a.Q for a € Act, and similarly if
Py Jps Q1 andP, Jpg Q2 thenPy © P, Jps Q1 © Q2 for ® being any of the operators O, .4 and| 4.

Proof: The most difficult case is the closure of failure simulatiorder parallel composition, which is proved in
Propositiod 7Z.31. The other cases are simpler, thus omitted O

Lemma 7.34 In a finitary pLTS, if P Cpg Q then for any test it holds that[P |act 7] Crs [Q |act T
Proof: We first construct the following relation

A = {(s]ac 1,0 |acc t) | s <5 O}
wheres |aq tis a state ifP |ace 7] andO |ac ¢ is a subdistribution inQ |ace 7], and show tha#Z C <.,

1. The matching of divergence betweein. ¢t and® |a. ¢ is almost the same as the proof of Proposifion17.31,
besides that we need to check the requiremess andl” -4 are always met there.

2. We now consider the matching of transitions.

e If s |act t == then this action is actually performed bySuppose < I'. Thens [act t == s |ace T'and
O |act t -2+ O |act I'. Obviously we havés [act T, © |ace T') €Z.

o If s |act t > then we must have | t 24, otherwise the- transition would be a “scooting” transition
and the pLTS is nab-respecting. It follows that-<4. There are three subcases.

— t 5 T. So the transition |act t —— s |act I' can simply be matched up 8y [act t —— © |act T

49



— s - A. Sinces <, ©, there exists som®’ such tha® = ©’ andA <&, ©’. Note thatin this case
t 24, It follows that® |ace t = O’ |ac ¢ Which can match up the transition|acc t — A |act t
becaus€A |act t, 0’ |act t) EZ.
- s % Aandt % T for some actiom € Act. Sinces < ©, there exists som®’ such that
6 == ©’ andA g, ©’. Note that in this case-24. It follows that® |ac: t = O’ |ac: I Which can
match up the transitiod [act t — A |ace I becauséA [ac I', O’ |ac I') €Z.
o SUPPOSE |act t 34 forany A C Act U {w}. There are two possibilities.

—If s |ace t 24, thent % and there are two subsets, A, of A such thats 2%, + 4% and
A = A1 U A,. Sinces <&, © there exists som@®’ such thal® — ©’ and©®’ él‘—» Therefore, we
haveO |act t = O |act t .

— If s |act t = thent =5 andw ¢ A. Therefore, we hav® |a t == and© |a. t A because there
is no “scooting” transition ir® | t. It follows that® |ac ¢ As

Therefore, we have shown thatC <<, from which our expected result can be establishing usimijai arguments
in the last part of the proof of Propositibn 7131. O

7.4 Soundness

In this section we prove that failure simulations are sowrghowing that processes are related via the failure-based
testing preorder. We assume initially that we are using only success actian, so thafQ| = 1.

Because we prune our pLTSs before extracting values from,tive will be concerned mainly with-respecting
structures.

Definition 7.35 Let A be a subdistribution in a pLT&S, {w, 7}, —). We write?’(A) for the set of testing outcomes
{SA" | A = A'}.

Lemma 7.36 Let A and© be subdistributions in an-respecting pLTSS, {7, w}, —). If subdistributionA is stable
andA I 6, then?(©) <gm 7 (A).

Proof: We first show that ifs is stable and <1, © then?'(0) <s,, ¥(s). Sinces is stable, we have only two cases:

(i) s— Here? (s) = {0} and sinces <., © we have® — ©’ with ©’ —4, whence in fac® = 0’ and
$©’ = 0. Thus0 € ¥ (©) which means/ (0) <g,, ¥ (s).

(i) s % A’ for someA’ Here 7 (s)={1} and® = ©’ = with $6'=|©’|. Because the pLTS is-
respecting, in fach = ©’ and so agair?' (0) <sm ¥ (s).

Now for the general case we suppdsé&d,, ©. Use Proposition 3.10 to decompd3énto Zse[m A(s)-©, such
thats <., ©, for eachs € [A], and recall each such statés stable. From above we have thato,) <s,, 7 (s) for
thoses, and so7'(0©) = > - (a1 A(S) ¥ (0s) sm ocra) Als) 7 (s) = V(A). O

Lemma 7.37 Let A be a subdistribution in an-respecting pLTSS, {r,w}, —=). If A = A’ then? (A’) C ¥ (A).

Proof: Note that if A’ = A” thenA = A’ =3 A”, so that every extreme derivative &f is also an extreme
derivative ofA. O

Lemma 7.38 Let A and®© be subdistributions in am-respecting pLTSS, {r,w}, —). If © Cpg A, then it holds
that 7' (0) <sm ¥ (A).

Proof: Let A and© be subdistributions in an-respecting pLTSS, {7, w}, —). We first claim that
If A<D, 0O, then?(0) <gm ¥ (A).

We assume\ < ©. For anyA = A’ we have the matching transitiéh = ©’ such thatA’ <, ©’. It follows
from Lemma$7.36 arld 7.B7 that(©) 2> ¥ (0’) <sm ¥ (A’). Consequently, we obtaif (©) <g,, ¥ (A).

Now supposed Crs A. By Propositiod 77, there exists sor@é such that® —- 0’ andA I, ©'. By the
above claim and Lemma7137 we obtaif{®) D 7 (0’) <gm ¥ (A), thus?(0) <gm ¥ (A). m
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Theorem 7.39 For any finitary processeB and@), if P Erg Q thenP Cpmyst Q.

Proof: We reason as follows.

PCrsQ
implies [P |act T] Crs [Q |act T Lemmd_ 734, for any test
implies 7 ([P |act T]) <sm Y ([Q |act T) [-] is w-respecting; Lemma7.B8
iff A (T, P) <gm (T,Q) Definition[7.3%
iff P Comust @ - Definition[4.9

O

In the proof of the soundness result above we use Lemma 7.8id¢hvinolds for finitary processes only. For
infinitary processes, a preorder induced<a is not sound for must testing.

Example 7.40 We have seen in Examgle 7119 that the stéftem (19) is related t® via the relation.. If we apply
testr.w to boths and0, we obtain(0, 1] as an outcome set for the former afig for the latter. Althoughs <%, 0, we
haved/ (7.w,0) Lsm & (T.w, ).

If we replace states by the states, from (21), similar phenomenon happens. Although <, 0, we have
A (Tw,0) = {1} Lom {3} = (1w, 52). O

8 Failure simulation is complete for must testing

This section establishes the completeness of the failunalation preorder w.r.t. the must testing preorder. It does
so in three steps. First we provide a characterisation optberder relatiorc zg by an inductively defined relation.
Secondly, using this, we develop a modal logic which can feel tis characterise the failure simulation preorder on
finitary pLTSs. Finally, we adapt the results bf [2] to showttthe modal formulae can in turn be characterised by
tests; again this result depends on the underlying pLTSgd@iitary. From this, completeness follows.

8.1 Inductive characterisation

The relation<g, of Definition[7.I8 is given co-inductively: it is the largdisted point of an equatios?= .% (#). An
alternative approach therefore is to use ti#dt-) to define<?, as a limit of approximants:

Definition 8.1 For everyk > 0 we define the relationsi®.C S x #(9) as follows:
i) <% = Sx2(5)
(i) <k = F(<k)

Finally let < := (2, <&

A simple inductive argument ensures that C <%, for everyk > 0, and therefore thatiy, C <. The converse is
however not true in general.

A (non-probabilistic) example is well-known in the liteva¢: it makes essential use of an infinite branching./2et
be the processc z. a.z ands a state in a pLTS which starts by making an infinitary choieanaly for eachk > 0 it
has the option to perform a sequence aictions with lengttk in succession and then deadlock. This can be described
by the infinitary CSP expressidn,-_, a*. Then[P] #Z s, because the movieP] -2+ [P] can not be matched by
However an easy inductive argument shows it <% o* for everyk, and therefore thatP] < s.

Once we restrict our non-probabilistic systems to be fipibenching, however, a simple counting argument will
show that<?, coincides with<%; see[[9, Theorem 2.1] for the argument applied to bisimaaéquivalence. In the
probabilistic case we restrict to both finite-stated finite-branching -systems, and the effect of that is capllmne
topologicalcompactnessFiniteness is lost unavoidably when we remember that dwg.ptocess M b can move
via => to a distribution[a] ,& [b] for any of the uncountably many probabilitigse [0,1]. Nevertheless, those
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uncountably many weak transitions can be generated byampinterpolation of two transitions: 1 5] —— [a] and
[a11b] = [b], and that is the key structural property that compactnesisioes.

Because compactness follows from closure and boundedmesgproach this topic via closure.

Note that the metric spade?(S),d;) with di(A,0) = mazses|A(s) — O(s)| and (S — 2(5),d2) with
da(f,9) = mazsesdi(f(s),g(s)) are complete. LeX be a subset of eithe?(S) or S — 2(S). Clearly, X is
bounded. SoifX is closed, it is also compact.

Definition 8.2 A relationZ C S x 2(S) is said to beclosedif for everys € Sthe sets- #={A | s Z A}is
closed.

Two examples of closed relations ate- and==- for anya, as shown by Lemnfa6.112 and Corollary 6.15.
Our next step is to show that each of the relatierisare closed. This requires some results to be first estatlishe

Lemma 8.3 LetZC S x 2(S) be closed. Theh(Z) is also closed.
Proof: Straightforward. O
Corollary 8.4 LetZC S x 2(S) be closed and convex. Théais also closed.

Proof: For anyA € 2(S), we know from Proposition 39 thak- Z= {Exp,(f) | f € Ch(%)}. The function
Exp, (—) is continuous. By Lemmia8.3 the set of choice functiongdit closed, and it is also bounded, thus being
compact. Its image is also compact, thus being closed. O

Lemma 8.5 LetZ C S x 2(S) be closed and convex, add C 2(S) be closed. Thenthe s\ | A- Z NC #
() } is also closed.

Proof: First defines : 2(S) x (S — 2(S)) — 2(S) by £(0, f) = Expg(f), which is obviously continuous.
Then we know from the previous lemma tl@h(%) is closed. Finally let

Z =m(E7HC) N (2(S) x Ch(ZR)))

where is the projection onto the first component of a pair. We obséinat the continuity o ensures that the
inverse image of the closed @tis closed. Furthermore;~1(C) N (2(S) x Ch(%)) is compact because it is both
closed and bounded. Its image under the continuous fungtida also compact. It follows thaf is closed. But
Z={A| A ZNC # 0} because

A€ Z iff (A, f) € &1(C) for somef € Ch(Z)
iff £(A, f) € C for somef € Ch(Z)
iff Exp A (f) € C for somef € Ch(Z)
iff A R A’ forsomeA’ € C

The last line is an application of Proposition]3.9, whichuiegs convexity of7. O
An immediate corollary of this last result is:
Corollary 8.6 In a finitary pLTS the following sets are closed:

i) {AlA=z¢e}

(i) {A]|A=54)

Proof: By Lemma[6.IP we see thats is closed and convex. Therefore, we can apply the previcumk with
C = {&} to obtain the first result. To obtain the second we apply ih@it= {© | © 44}, which is easily seen to
be closed. O
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The result is also used in the proof of:

Proposition 8.7 In a finitary pLTS, for every > 0 the relation<i, is closed and convex.

Proof: By induction onk. Fork = 0 it is obvious. So let us assume thaf; is closed and convex. We have to show
that

(k+1)

5+ <lps is closed and convex, for every state (23)

If s => ¢ then this follows from the corollary above, since in thiseas<* ™) coincides with{ A | A=-¢}. So
let us assume that this is not the case.

For everyA C Actlet Ry = {A | A =44}, which we know by the corollary above to be closed and is
obviously convex. Also for ever®), aletGe., = {A | (A- =2)N(0- <k) # 0 }. By Corollany[6.18, the relation
== is lifted from a closed convex relation. By Corolldry18.4ethssumption thatl”, is closed and convex implies
that <, is also closed. So we can appeal to Lenfima 8.5 and concludestblat's , is closed. By Definitiofi312(2) it

is also easy to see th&ls ,, is convex. But it follows thas- <1£§+1) is also closed and convex as it can be written as

N{Ra|s} N N{Gou|s--0}

Before the main result of this section we need one more teahresult.

Lemma 8.8 Let S be a finite set of states. Suppagé C S x 2(9) is a sequence of closed convex relations such
thatz 1) C %*. Then(nye, Z*%) C (N2, Z*).

Proof: Let%> denote(N;®, %*), and supposé Z* © for everyk > 0. We have to show thak 7> ©.

LetG ={f:85 — 2(S) | © =Expa(f) }, which is easily seen to be a closed set. For datdt we know
from Lemmd8.B that the s€h(#") is closed. Finally consider the collection of closed séts= Ch(%*) N G;
sinceA #* ©, Propositiod 3.9 assures us that all of these are non-emAtg. H 1) C H* and therefore by the
finite-intersection property [167°  H* is also non-empty.

Let f be an arbitrary element of this intersection. For any state dom (%), and for everyk > 0 since
dom(%#>) C dom(%*) we haves Z* f(s), thatiss Z> f(s). So f is a choice function fogZ>°, f € Ch(%>).
From convexity and Propositi¢gn 3.9 it follows thAt %> Exp, (f). But from the definition of the> we know that
© = EXpa(f), and the required result follows. O

Theorem 8.9 In a finitary pLTS,s <, © if and only if s <% ©.

Proof: Since<f, C <X it is sufficient to show the opposite inclusion, which by digiam holds if <% is a failure
simulation, viz. if<2¢ C .7 (<122). Supposes <I¢ ©, which means that <% © for everyk > 0. According to
Definition[7.I8, in order to show .7 (<) © we have to establish three properties, the first and last afhwdre
trivial (for they are independent on the argumenty.

So suppose -%» A’. We have to show tha& == ©’ for some®’ such that\’ < ©'.

For everyk > 0 there exists som@), such tha® =% ) andA’ <% ©). Now construct the sets

DF={0" | 0% © andA’ <k O©'}.
From Lemmd®6.12 and Propositibni.7 we know that these asedldThey are also non-empty abd ! C D*. So
by the finite-intersection property the §8f- , D* is non-empty. For an®’ in it we know® == ©’ andA’ <k, ©’
for everyk > 0. By Propositiofi 87, the relatiors’, are all closed and convex. Therefore, Lenimé 8.8 may be applie
to them, which enables us to conclufié << ©'. O

For Theoreni 819 to hold, it is crucial that the pLTS is assutodak finitary.
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Example 8.10 Consider an infinitely branching pLTS with four statgs, u, v, 0 and the transitions are
e s50,05
ot -%0,t-%1
o u-H7
e v Lyy,diforallpe (0,1).

This is a finite-state but not finitely branching system, duéhe infinite branch in. We have that <% @ for all
k > 0 but we do not have <, v.
We first observe that <?, © does not hold becausewill eventually deadlock with probability, whereas a
fraction ofv will go to v and never deadlock.
We now show that <%  for all k > 0. For anyk we start the simulation by choosing the mave™ (W @)
By induction onk we show that ’
s < (W1 ®7). (24)

The base cask = 0 is trivial. So suppose we already halzel(24). We now showdha&f“’ (u @ t). Neither
2

s nort norw can diverge or refuséa}, so the only relevant move is themove. We know that can do the move
s = 0, @ 5. This can be matched up iy _._ &) <= (01® (7 4, @ 1)). ]
2

ok

Analogously to what we did foriZ,, we also give an inductive characterisationfs: For everyk > 0letA 3% ©

Fs?

if there exists @ = ©M“"such thatA <k, @™ and letd%; denote;, Jhs.
Corollary 8.11 In afinitary pLTS,A Jpg © if and only if A J% ©.

Proof: Since<i, C <% for everyk > 0, it is straightforward to prove one directioh Jrg © impliesA 3% ©.
For the converse)d J%, © means that for every we have som®* satisfying® = ©* andA <%, ©F. By

Propositio ZJ7 we have to find sorge° such thal® — ©> andA <k, ©°. This can be done exactly as in the
proof of Theoreni 819. O

8.2 The modal logic
Let.Z be the set of modal formulae defined inductively as follows:
e div, T €.
o ref(A) € # whenA C Act,
e (a)p € F wheny € .# anda € Act,
e 1 Ay €. F whenpy, po € .7,
o ©1,B vy € .F wWhenyy,pe € % andp € [0, 1].
This generalises the modal language useflin [2] by the additi the new constantiv, representing the ability of a
process to diverge. In[2] there is the probabilistic chaiperatord,, p; - :, wherel is a non-empty finite index

set, and)_,_; p; = 1. This can be simulated in our language by nested use of tlagybgmobabilistic choice.
Relative to a given pLT$S, Act,, —) thesatisfaction relatior)= C 2(S) x .# is given by:

e A= TforanyA € 2(S),

e A Ediviff A = ¢,

o A |=ref(A)iff A =44,

o A = (a)piffthereis aA’ with A = A’ andA’ = ¢,
o AE 1 Ao iff A ¢ andA [ o,
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o A E ¢1,® o iffthere areA;, Ay € 2(S) with A |E ¢1 andAy = 9, such thath = p-A; + (1—p)-As.

We write A 37 © whenA |= ¢ implies© = ¢ for all ¢ € .# — note the opposing directions. This is because the
modal formulae express “bad” properties of our procesdémately divergence and refusal: th@&s=* A means
that any bad thing implementatiak does must have been allowed by the specifica@ion

For pCSP processes we use C7 Q to abbreviatd P] C7 Q] in the pLTS given in Sectidn 2.

The set of formulae used here is obtained from that in Se@tfj2] by adding one operatadiv, and relaxing the
constraint on the construction of probabilistic choicenfafae. But the interpretation is quite different, as it uibes
new silent move relatioa=-. As a result our satisfaction relation no longer enjoys arstand expected, property.
In the non-probabilistic setting if a recursive CCS procEssatisfies a modal formula from HML, then there is a
recursion-free finite unwinding aP which also satisfies it. Intuitively this reflects the facatlif a non-probabilistic
process does a bad thing, then at some (finite) point it masaky do it. But this is not true in our new, probabilistic
setting: for exampl&); given in Examplé 4,70 can do anand then refuse anything; but all finite unwindings of it
achieve that with probability strictly less than one. ThatwhereagQ] = (a)T, no finite unwinding ofQ; will
satisfy(a) T.

Our first task is to show that the interpretation of the logicansistent with the operational semantics of processes.

Theorem 8.121f A Jpg © thenA J7 ©.

Proof: We must show that i\ Jrg © then wheneveA | ¢ we have® | . The proof proceeds by induction on
®:
e The case whep = T is trivial.

e Supposep isdiv. ThenA = div means thal\ = ¢ and we have to sho® —> ¢, which is immediate from
LemmdZ.3.

e Supposep is (a)p,. In this case we havA == A’ for someA’ satisfyingA’ = ¢,. The existence of a
corresponding®’ is immediate from Definitioh 712 Case 1 and the induction higpsis.

e The case whep is ref(A) follows by Definition[Z.2 Clause 2, and the caseA 2 by induction.

e Wheng is ¢ ,® 2 We appeal again to Definitidn 7.2 Case 1, using= T to infer the existence of suitabt®]
andoy,. O

We proceed to show that the converse to this theorem alsg teiidhat the failure simulation preordef.g coincides
with the logical preorde~.

The idea is to mimic the development in Section 7.6f [2], byigieimg characteristic formulaavhich capture the
behaviour of states in a pLTS. But here the behaviour is nataztierised relative tai’;, but rather to the sequence of
approximating relationsi®,.

Definition 8.13 In a finitary pLTS(S, Act,, —), thek" characteristic formulae*, ©% of statess € S and subdistri-
butionsA € Z(S) are defined inductively as follows:

o YV =Tandp} =T,

o oi*! = div, provideds = ¢,

o oMl =ref(A) AN\, _a,(a)ph whereAd = {a € Act | s 24}, provideds 4,

o P = N\t a 0k A A,z 5 oK otherwise,

° and‘PZ+1 = (div) 1-1a1D (@se]’A] A\x)"Plsﬁ_l) .

Lemma 8.14 For everyk > 0, s € S andA € 2(S) we haves |= ¢F andA = k.

Proof: By induction onk, with the case wheh = 0 being trivial. The inductive case of the first statement peuts
by an analysis of the possible moves frepfrom which that of the second statement follows immedyatel O

Lemma 8.15 Fork > 0,
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(i) © E ¢F impliess <X O,
(i) © = ¢k implies® — @Mahsych thath <k @mach
(i) © = ok impliesA Tk ©.
Proof: For everyk part (iii) follows trivially from (ii). We prove (i) and (ii)simultaneously, by induction ok, with
the casé: = 0 being trivial. The inductive case, fér+ 1, follows the argument in the proof of Lemma 7.3 of [2].
(i) First suppos& = . Thenyp®*+! = div and therefor® = div, which gives the require® = «.

Now suppose — A. Here there are two cases; if in additi®r=- ¢ we have already seen that=> ¢ and
this is the required matching move frofn sinceA <k . So let us assume that~> . Then by the definition
of ©**1 we must have tha® = X, and we obtain the required matching move frénfrom the inductive

hypothesis: induction on part (i) gives sor®é such that® —> ©’ andA <%, ©'.
The matching move fos % © is obtained in a similar manner.

Finally suppose -44. Since this implies 24, by the definition ofp#+1 we must have tha = ref(A), which
actually means thad —24.

(i) By definition ™ = (div) ,_ 0@ (Dsera %-@’;‘H) and thus® = (1 [A|)-Odiv + >, ra7 A(5)-Os
such thag;, = div and@, = ¢F+1. By definition,04;, = ¢, so by Theorerh 3.20(i) and the reflexivity

and transitivity of—- we obtain®@ —- Zse(m A(s)-©,. By part (i) we know thas <% ©, for everys in
[A], which in turn means thak <™ 3= 41 A(s)- O O

Theorem 8.16 In a finitary pLTS,A 37 © if and only if A Jpg ©.

Proof: One direction follows immediately from Theordm 8.12. Foe thpposite direction suppoge J7 ©. By
Lemmd8.I# we havA |= ¢, and henc® = X, for all k > 0. By part (iii) of the previous lemma we thus know
thatA 1% ©. ThatA Jpg © now follows from Corollary 8.7]1. O

8.3 Characteristic tests for formulae

The import of Theoreri 8.16 is that we can obtain completenésise failure simulation preorder with respect to
the must-testing preorder by designing for each formukatest which in some sense characterises the property of
a process of satisfying. This has been achieved for the pLTS generated by the reouirgie fragment opCSP in
Section 8 of[[2]. Here we generalise this technique to theJg&nerated by the set of finitag SP terms.

As in [2], the generation of these tests depends on cruc@beteristics of the testing functiow (—, —), which
are summarised in Lemm@as 8.17 &nd 8.20 below, correspotullremmas 6.7 and 6.8 ifl[2] respectively.

Lemma 8.17 Let A be apCSP process, and’, T; be tests.
1. o€ o (w,A)iff o =|A]-&.
2.0 e (1w, A)iff A = ¢.
3.0 € A ([,cqaw,A)iff A =24
4

. Suppose the actian does not occur in the te§t. Theno € & (r.wO0a.T, A) with o(w) = 0 iff there is a
A’ € 9(sCSP) with A == A’ ando € &/ (T, A’).

o

o€ d(T1,® T, A)iff o=p-01 + (1—p)-0q for certaino; € & (T}, A).

6. 0 € 7 (Th N1y, A)ifthere are g € [0,1] andAq, Ay € Z(sCSP) such thath = ¢-A; + (1—¢)-Az and
0=q-01 + (1—q) -0y for certaino; € o (T;, A;).

Here0, & € [0,1]%, with 0(w) = 0 for all w € , andw(w) = 1 butd(w’) = 0 whenever’ # w.

Proof:
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1. Sincew |ac A %, the states in the support pf |ac: A] have no other outgoing transitions thanTherefore
[w |act A] is the unique extreme derivative of itself, andsas [acc A] = |A|-& we have/ (w, A) = {|A|-&}.

2. (&) AssumeA = ¢. By Lemma7.2l7(1) we havew |acc A = T.w |ac €. All states involved in this
derivation (that is, all states in the support of the intermediate distributioAs” andA* of Definition[3.13)
have the formr.w |act s, and thus satisfy, -4 for all w € Q2. Therefore we haver.w |act A] = [T.w |act €]
Trivially, [7.w |act €] = € is stable, and hence an extreme derivativérab |a. A]. Moreover,$c = 0, so
0 € o (tw,A).

(=) Supposé) € o/ (r.w,A), i.e., there is some extreme derivatiVeof [r.w |acc A such tha$T' = 0.
Given the operational semantics €SP, all statesu € [I'] must have one of the forms = [T.w |act 7]
oru = [w |ac t]. As$l = 0, the latter possibility cannot occur. It follows that almsitions contributing
to the derivation7.w |ac A] =~ T are obtained by means of the rylesr.r), and in factl’ has the form

[T.w |act A’] for some distributiom\” with A = A’. AsT must be stable, yet none of the states in its support

are, it follows thafI'] = (), i.e. A’ = &.

3. LetT =[], 4 aw.

(<) AssumeA = A’ 44 for someA’. ThenT |a A => T |ac A’ by LemmaZ.27(1), and by the
same argument as in the previous cd®e|ac A] = [T |ac A’]. All states in the support df’ [acc A’ are
deadlocked. SEI" [act A] = [T |act A] and$(T |act A) = 0. Thus we havée € &7 (T, A).

(=) Supposd € <7 (T, A). By the very same reasoning as in Case 2 we findshats> A’ for someA’ such
thatT |ace A’ is stable. This implies\’ 44,

4. LetT be atest in which the success actiodoes not occur, and &t := 7.w O a.T.
(<) Assume there is &’ € 2(sCSP) with A == A’ ando € &/ (T,A’). Without loss of generality we

may assume thah = AP -4 APt — A/, Using Lemmd 7.27(1) and (3), and the same reasoning as

in the previous case§l/ |acc A] = [U |act AP™] = [T |ace AP = [T |ac A'] = T for a stable
subdistributiorT” with $T" = o. It follows thato € </ (U, A).

(=) Suppose € <7 (U, A) with o(w) = 0. Then there is a stable subdistributiBrsuch thafU [ac: A] =T
and$T" = o. Sinceo(w) = 0 there is no state in the supportBfof the formw |a. t. Hence there must be a
A" € 9(sCSP) such thath =-% A’ and[T" |act A'] = T'. It follows thato € o7 (T, A’).

5. (&) Assumeo; € &/ (T;,A) fori = 1,2. Then[T; |ac A] = T; for some stabld™; with $T; = o;. By
Theoreni3.20(i) we havigT’ ,® 1) |act Al = p-[Th |act Al + (1=p)-[T% |act A] = p-T1 + (1—p) -T2, and
p-T'1 + (1—p)-T's is stable. Moreovei(p-I'y + (1—p)-I's) = p-01 + (1—p)-02, S00 € o7 (T ,® To, A).
(=) Suppose € (T ,& T»,A). Then there is a stable with $T" = o such thaf(T} ,® Tb) |ac 4] =
p[T1 |ace A] + (1=p)-[To |ace A] = T'. By Theoreni-3.20(ii) there arg; for i = 1,2, such thafT; |ac
Al = T;andl' = p-T'1+(1—p)-T's. AsT; andl’; are stable, we hawd’; € &/ (T;, A) fori = 1, 2. Moreover,
0=38T =p-$T'1 + (1—p)-$T5.

6. Suppose € [0,1] andAq, Ay € Z(pCSP) with A = ¢-A; + (1—q)-As ando; € <7 (T;,A;). Then there
are stabld”; with [Tz |Act Al] = I'; and$I'; = o;. Now [(Tl [ Tg) |Act A] - q-[(Tl I Tg) |Act Al]
+ (1—q)-[(T1 M TQ) |Act AQ] I q~[T1 |Act Al] + (1—q)~[T2 |Act AQ] = q-I'y + (l—q)-FQ. The latter
subdistribution is stable and satisfigg - I'y + (1—¢q)-T'2) = g-01 + (1—¢)-02. Henceq-o; + (1—q)-02 €
o (Ty N Te, A). O

We also have the converse to péit (6) of this lemma, againcking Lemma 6.8 of [2]. For that purpose, we use two

technical lemmas whose proofs are similar to those for Lesifi2® an 7.30 respectively.

Lemma 8.18 SupposeA |4 (77 M T») - I'. Then there exist subdistributiods™, A, A, A"' (possibly
empty) such that

() A=A"+ A +AS
(i) A~ s Anext
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(III) T = Anrext |A (Tl rng) —I—Af |A T —i—A; |A Ts
Proof: By Lemmd3.5A |4 (T} N Ty) = T implies that
A:szs_h S; |A (T1|_|T2)L>Fi, F:ZPZF“
iel i€l

for certains; € S,I'; € 2(sCSP) and)_, ., ps < 1. LetJy ={iecl [Ty =s; [aTi}andJy = {icl | T =5 [a
T, }. Note that for eaclh € (I — J; — J) we havel'; in the formI"; |4 (T} 1 T%), wheres; —— T,. Now let

A7 = Z Di"Si, Ay = Z Di - Si APt — Z pi-Th.
i€(I—J1—J2) 1€ Jy i€(I—Jy—J2)
wherek = 1, 2. By construction (i) and (iii) are satisfied, and (ii) follevay property (2) of Definitioh3]12. O

Lemma 8.19 If A |4 (71 M Ty) = ¥ then there ar@,; and®, such that
i) A = &1+ Do
(ll) (1)1 |A Tl —|—(I)2 |A T2 E

Proof: Suppose\, |4 (T1 M Ty) = ¥. We know from Definitiof 3.3 that there is a collection of digtributions
Wy, U7, W), for k > 0, satisfying the properties

Ao la (T NTy) = Vg = \IJ(?—i-\IJg
vy s Uy = v+ \I/lX
v I WUpy = \If,jﬂ + \IJ,jH
U= ZZO:O ‘I’lj

andV is stable.
Takel'y := ¥y. By induction onk > 0, we find distributiond™ 11, A7, A, A, Agyq such that

(I) Ay, |A (Tl M TQ) N Fk+1

(i) Tpp1 < Wppy

(i) A=A +A +A7

(V) Ay 5 Agqr

(V) Thpr = Appr [a (TN T) + A% [aTi+ A% [4a To
Induction Step:Assume we already haJg, andA;. Note thatA;, (4 (T3 M T3) < Ty < ¥ = U7 + ¥ and
Ty N T, can make a move. Sincel is stable, we know that eithar,' = ¢ or U0 4. In both cases it holds that
Ay |a (Th N Ty) < W', Propositior 3.10 gives a subdistributibp; 1 < ¥y such thatd, [4 (70 N Tz) &
T'x21. Now apply Lemm&8.18.

Let®y = > 00, A and®, = Y77 (A, By (iii) and (iv) above we obtain a weak move A = &; + 5.
Fork > 0, letT}’ = Ag |a (Th N Tz), letT = ¢ and letT'; | := A |4 T1 + A}, |a T>. Moreover,
I':=®; |4 Ty + P2 |4 T>. Now all conditions of Definition 3.23 are fulfilled, s, |4 (7} M T2) = T is an initial
segment of\ |4 (T4 M Tz) = V. By Propositioh 3.24 we hav@; |4 T} + P2 |4 To = V. O

Lemma8.20If o € </ (17 M T, A) then there are a € [0,1] andA;, Ay € 2(sCSP) such thatAh = ¢-A; +
(1—¢q)-Ay ando = g-01 + (1—¢q) -0 for certaino; € o7 (T;, A;).

Proof: If o € &/ (T1 M Ts, A) then there is an extreme derivatibeof [(T7 M Tb) |ac 4] such thaB¥ = o. By
Lemmd8.1D there ar®, , such that

58



i) A = &1+ Do
(II) and [Tl |Act (1)1] + [TQ |Act ‘1)2] — U,
By Theoreni3.20(ii) there are some subdistributisnsand ¥, such thatv = ¥, + ¥, andT; |ac ©; = ¥, for
i=1,2. Leto, = $¥,. As ¥, is stable we obtain, € <7 (T}, ¥;). We also have = $¥ = $U; + $¥5 = o} + 0b.
We now distinguish two cases:
o If Uy = ¢, then we takeh; = ®;, 0; = o} fori = 1,2 andq = 0. Symmetrically, ifU; = &, then we take
A, =®;,0, =0, fori =1,2andq = 1.

o If Uy 75 5and\112 75 e, then we Ie'q = %, A = %(I)l, Ay = %qq)g, 01 = %Oll andoz = ﬁOIQ

Itis easy to check that- Ay + (1—q)- Ay = &1 + 3, q-01 + (1—q) 02 = 0} + 04 ando; € &7 (T;,A;) fori=1,2.0

Proposition 8.21 For every formulap € .# there exists a pai(T,,, v,,) with T}, an{2-test andv,, € [0, 1]* such that
A= pifandonlyif3o € o7 (T,, A) : 0 < v,,. (25)

T, is called acharacteristic tesof ¢ anduv,, its target value

Proof: The proof is adapted from that of Lemma 8.1[ih [2], from wheretake the following remarks: As in vector-
based testing is assumed to be countable (cf. pagk 17) QAsts are finite expressions, for evéhtest there is
anw € Q2 not occurring in it. Furthermore, if a paffl,, v,,) satisfies requiremerft(R5), then any pair obtained from
(T, v,) by bijectively renaming the elements@falso satisfies that requirement. Hence two given charatiteiésts
can be assumed to bedisjoint, meaning that na € 2 occurs in both of them.

Our modal logic# is identical to that used in[2], with the addition of one extonstandiv. So we need a new
characteristic test and target value for this latter foanahd reuse those froml [2] for the rest of the Iangt]ﬂage:

o Letyp = T. TakeT,, := w for somew € €2, andv,, := &.
o Lety = div. TakeT), := .w for somew € 2, andv,, := 0.
o Lety = ref(A) with A C Act. TakeT,, := ], , a.w for somew € , anduv,, := 0.

e Lety = (a)y. By induction,i) has a characteristic te#}, with target valuev,,. TakeT,, := 7.w Oa.T,, where
w € Q2 does not occur iy, andv, := vy,.

e Lety = ¢1 A ¢o. Choose af)-disjoint pair (7}, v;) of characteristic test$; with target values;, fori = 1, 2.
Furthermore, lep € (0, 1] be chosen arbitrarily, and také, := 17 ,& T> andv,, := p-v1 + (1—p) - vs.

e Letp = 1 ,® 2. Again choose af)-disjoint pair (T;,v;) of characteristic test$; with target values);,
1 = 1,2, this time ensuring that there are two distinct successmsti;, w- that do not occur in any of these

tests. Letl} :=T; 1P w; andv] := %vi + %u?z Note that fori = 1,2 we have thafl is also a characteristic test

of ¢; with target valuey]. TakeT,, := T| M T} andv, := p-v| + (1—p)-v5.

Note thatv, (w) = 0 whenevetw € Q2 does not occur iff,.
As in the proof of Lemma 8.1 of [2] we now check by inductionrthat [25) above holds; the proof relies on

Lemmag 8.7 and 8.20.
e Leto = T. ForallA € 2(sCSP) we haveA = ¢ as wellaslo € &7 (T, A) : 0 < v, using Lemm&8.17(1).
e Lety = div. Suppose\ = ¢. Then we have thah = ¢. By Lemmd8.17(2)) € o7 (T,,, A).
Now supposéo € o7 (T, A) : 0 < v,,. This implieso = 0, so by Lemm&8.17(2)\ = ¢. HenceA = .
e Lety = ref(A) with A C Act. Suppose\ = ¢. ThenA —-24. By Lemmd 8.V (3)) € o7 (T, A).
Now supposélo € o7 (T, A) : 0 < v,,. This implieso = 0, S0A =24 by Lemmd8.117(3). HencA = .

o Letp = (a)y with a € Act. Suppose\ = ¢. Then there is @\’ with A == A’ andA’ = +. By induction,
Joe o (Ty,A') : 0 < vy. By Lemmd8.lN(4)p € (T, A).

4However, because we employ state-based testing here, asazbi action-based testing ifl [2], we translate the attimed test O a.Ty,
for the action modality(a) into the state-based testv O a.T ;.
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Now supposélo € 7 (T, A) : 0 < v,,. Thisimplieso(w) = 0, so by Lemm&8.17(4) there is® with A == A’
ando € &/ (T, A'). By induction, A’ =1, SOA = .

e Letyp = p1Aps and supposA = . ThenA = ¢, fori=1, 2 and hence, by inductiodlp; € 7 (T;, A) : 0; < v;.
Thuso :=p-01 + (1-p)-02 € (T, A) by Lemmd8.17(5), and < v,,.

Now supposedo € o7 (T,,A) : o < wv,. Then, using LemmBaB17(5), = p-o1 + (1—p)-0. for certain
0; € o/ (T;, A). Recall thatl', T areQ-disjoint tests. One has < v; for bothi = 1, 2, for if 0;(w) > v;(w) for
somei = 1 or 2 andw € 2, thenw must occur inl; and hence cannot occur ;. This impliesvs_;(w) =0
and thuso(w) > v, (w), in contradiction with the assumption. By inductiah, = ¢; for i = 1,2, and hence
AE .

o Lety = 1 ,® ¢2. SUPPOSEA = . Then there aré\;, Ay € 2(sCSP) with Ay = ¢; andA, = ¢ such that
A = p-A; + (1-p)-As. By induction, fori = 1, 2 there aren; € &7 (T;, A;) with o; < v;. Hence, there are
o, € o (T!,A;) with o} < v}. Thuso := p-0} + (1—p)-0, € (T,, A) by Lemmd8.Il7(6), and < v,,.

Now supposélo € &/ (T,,, A) : 0 < v,. Then, by Lemm&38.20, there age= [0, 1] andA;, A, € Z(sCSP) such
thatA = ¢-Ay+(1—q)- Ay ando = g-0} +(1—q) -0} for certaino} € &/ (T}, A;). NowVi: o}(w;) =v}(w;) =1,
so, using thafly, T, areQ-disjoint tests,3q = ¢-0f(w1) = o(w1) < vyp(wi) = p-vi(wi) = 5p and likewise
1(1—q) = (1—q)-0h(w2) = o(ws) < vp(w2) = (1—p)-vh(wz) = +(1—p). Together, these inequalities say that
q = p. Exactly as in the previous case one obtains< v for bothi = 1,2. Given thatT = T; 16 wi, using
Lemmd8.IF7(5), it must be thaf = o, + 1 for someo; € o7 (T;, A;) with o; < v;. By induction,A; = ¢;
fori = 1,2, and hence\ | ¢. O

Theorem 8.221f A J%,,,4:© thenA 27 ©.

Proof: SupposeA gf}must@ andA [= ¢ for somep € .Z. LetT, be a characteristic test gf with target valuey,,.
Then PropositioR 8.21 yield% € « (T, A) : 0 < v, and hence, given that 1%, ©, by the Smyth preorder we
havedo’ € &7 (T,,0) : o' <w,. Thus® [ ¢. O

Corollary 8.23 For any finitary processd3 and@, if P Cyust @ thenP Crg Q.

Proof: From TheoremE8.22 afid 8]16 we know thaPif={k,,s; @ thenP Cpg Q. TheoreniBM} from Sectidn B.1
tells us thaf)-testing is reducible to scalar testing. So the requiredlrésllows. O

9 Simulations and may testing

In this section we follow the same strategy as for failurewdations and testing (Secti@h 7) except that we restrict our
treatment to full distributions: this is possible becauadipl distributions are not necessary for this case; aiml it
desirable because the approach becomes simpler as a result.

Definition 9.1 [Simulation Preorder] Define g to be the largest relation iv; (S) x Z:(S) such that ifA Cg ©
then

wheneverA = (3. p;A}), for finitely manyp; with >~ p; = 1, there ared) with © = (3>°. p;0!)
andA/ Cg ©/ for eachi.

Note that, unlike for Definition 9]1, this summation cannetampty.
Again it is trivial to see that_g is reflexive and transitive; and again it is sometimes edsiavork with an
equivalent formulation based on a state-level “simuldtaefined as follows.

Definition 9.2 [Simulation] Define< to be the largest relation if x Z,(S) such that ifs < © then whenever
s -% A’ there is @@’ with © = 0’ andA’ I, ©'.
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Definition[9.2 differs from the analogous Definition 7.18kmee ways: it is missing the clause for divergence, and
for refusal; and it is (implicitly) limited to==>-transitions that simulate by producing full distributinonl)ﬁ. Without
that latter limitation, any simulation relation could bakd down uniformly without losing its simulation propesi
for example allowing counter-intuitively to be simulated by , & e.

Lemma 9.3 The above preorder and simulation are equivalent in theviatlg sense: for distribution&, © we have
A Cs O just when there is ® ™" with © —> @Mhand A J_ @mach

Proof: The proof is as for the failure case, except that in Thedrél@ We can assume total distributions, and so do
not need the second part of its proof where divergence itetlea O

9.1 Soundness

In this section we prove that simulations are sound for shgihat processes are related via the may-testing preorder.
We assume initially that we are using only one success actieo that )| = 1.

Because we prune our pLTSs before extracting values from,tive will be concerned mainly with-respecting
structures, and for those we have the following.

Lemma 9.4 Let A and© be two distributions. IA is stable and\ <, ©, then? (A) <y, ¥ (0O).
Proof: We first show that ifs is stable and <1 © then?/(s) <y, ¥'(0). Sinces is stable, we have only two cases:
@i s—~ Here”? (s)={0} and since¥'(©) is not empty we have’(s) <y, ¥ (O).

(i) s % A’ for someA’ Here? (s)={1} and® = ©’' - with ¥ (©’)={1}. By LemmdZ.3F specialised
to full distributions, we havé € 7 (©). Therefore¥ (s) <uo ¥ (0).

Now for the general case we supp@séd, ©. Use Proposition 3.10 to decompd3eénto Zse[m A(s)-O, such
thats < ©; for eachs € [A], and recall each such statés stable. From above we have théfs) <p, ¥ (0;) for
thoses, and so¥'(A) = 317 A(s) ¥ (8) SHo D osera1 Als)-7(0s) = V(O). O

Lemma 9.5 Let A and® be distributions in an-respecting finitary pLTSS, {7, w}, —). If A J_ O, then we have
YV (A) <o ¥ (O).

Proof: SinceA I ©, we consider subdistributions” with A = A”’; by distillation of divergence (Theordm6]20)
we have full distributiong\’, A} andA), and probabilityp such thatt = A’ = (A} ,® A}) andA” = p-A’ and
A, = ¢. There is thus a matching transitiéh — ©’ such thatA’ < ©’. By Propositior3.70, we can find
distributions©’, ©) such tha®®’ = © ,® 05, A| J; 07 andA), I, ©5,.

Since[A] = [A”] we have that\] is stable. It follows from Lemma 9.4 that (A]) <u, ¥ (0)). Thus we
finish off with

fy/(A//)
= Y (p-AY) A" =p-A}
= p- ¥V (A) linearity of 7
<Ho p-¥(0)) above argument based on distillation
= ¥ (p-©)) linearity of 7
<Ho 4CY! ©' = 61,0 0;
<Ho vV (0). Lemma 7.3V specialised to full distributions
SinceA” was arbitrary, we have our result. O

Lemma 9.6 Let A and® be distributions in an-respecting finitary pLTSS, {T,w}, —). If A Cg O, then it holds
that 7' (A) <uo 7(O).

5Even though for simplicity of presentation in Definition 8@ relation—=> was defined by using subdistributions, it can be equivajefefined
by using full distributions.
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Proof: Supposed Cs ©. By Lemmd9.B, there exists som"@°" such thato — @MahandA I, @mach By
Lemmad9.b and 7.87 we obtain(A) <y, ¥ (0') C 7(O). m

Theorem 9.7 For any finitary processe3 and@, if P Cg Q thenP Cppay Q.

Proof: We reason as follows.

PCs@Q
implies [P |act T] Es [@Q |act T the counterpart of Lemnia 7134 for simulation, for any tEst
implies 7 ([P |act T]) <o ¥ ([Q |act T) [-] is w-respecting; Lemmia9.6
iff A (T,P) <po (T,Q) Definition[7.3%
iff P Comay @ - Definition[4.9

d

9.2 Completeness

Let.Z be the subclass of by skipping thediv andref (A) clauses. We writd® C< @ just when[ P] |= » implies
Q] = ¢. We have the counterparts of TheordmsB.16and 8.22, witifesiproofs.

Theorem 9.8 In a finitary pLTSA =< © if and only if A Cg ©.
Theorem 9.9 For anypCSP processe® andQ, if P Cinay Q thenP CZ Q.
Corollary 9.10 Suppose” and( are finitarypCSP processes. IP Cpmay @ thenP Cg Q.

Proof: From Theoremg918 aid 9.9 we know thaPif_{ihay Q thenP Cg Q. TheoreniBM from Sectidn B.1 says
thatQ2-testing is reducible to scalar testing. So the requireditrésllows. O

As one would expect, the completeness result in Cordllatdl @ould fail for infinitary processes.

Example 9.11 Consider the state, which we saw in Example-3.1L7. It turns out that
7.(0 1@ a) Cpmay 52

However, we do not have

T(O%@ a) < S2

because the transition
T.(O%EB a) s (O%EB a)

cannot be matched by a transition fremas there is ndull distribution A such thats, = A and(0 ;1 & a) Ig A.
O

10 Conclusion and related work

In this paper we continued our previous wark[[4[5, 2] in ouesfufor a testing theory for processes which exhibit
both nondeterministic and probabilistic behaviour. Weehgeneralised our results inl [2] of characterising the may
preorder as a simulation relation and the must preorderaikiad-simulation relation, from finite processes to finita
processes. Although the general proof schema is inherited {2], the details here are much more complicated.
One important reason is the inapplicability of structunaltiction, an important proof principle used in proving some
fundamental properties for finite processes, when we shifinitary processes. So we have to make use of more

advanced mathematical tools such as fixed points on conlplétes, compact sets in topological spaces, especially
in complete metric spaces, etc. Technically, we develogkvireansitions between probabilistic processes, elaborate
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their topological properties, and capture divergencerimseof partial distributions. In order to obtain the chaeaict
sation results of testing preorders as simulation relatiore found it necessary to investigate fundamental straictu
properties of derivation sets (finite generability) andikinties (infinite approximations), which are of indepemnd
interest. The use of Markov Decision Processes and Zerdasewas essential in obtaining our results.

There is a great amount of work about probabilistic testemantics and simulation semantics. Here we mention
the closely related work [24], where Segala defined two plexsr called trace distribution precongruencerf)
and failure distribution precongruende £p). He proved that the former coincides with an action-basadion of
Chinay and that for “probabilistically convergent” systems thiedacoincides with an action-based versiorigf, s
The condition of probabilistic convergence amounts in samework to the requirement that fé&x € 2, (S) and
A = A’ we have|A’| = 1. In [17] it has been shown thatp coincides with a notion of simulation akin .
Other probabilistic extensions of simulation and testipgraaches occurring in the literature are reviewedlinl[4, 2]
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A Further properties of weak derivation

In this section we expose some less obvious properties dfatiens, relating to their behaviour at infinity. One imfzort property
is that if we associate each state with a weight, which is meval [—1, 1], then the maximum payoff realisable by following all
possible weak derivations can in fact be achieved by sontie skerivative policy. The property depends on our workinighim
finitary pLTSs — that is, ones in which the state space is finite anduthigted) transition relation is finite-branching.

It turns out that to prove this property we need a notiobainded continuitgf real functions, which we introduce below.

A.1 Bounded continuity

Proposition A.1 (Bounded continuity - nonnegative functim) Given a functionf : N x IN — R satisfying the conditions
C1. fis monotonic in the second parameter, je< j2 implies f(i, j1) < f(i, j2) forall i, j1, j2 € IN;
C2. foranyi € N, the limitlim; o f(, ) exists;
C3. the partial sumsS,, = >-"  lim; . f(4, j) are bounded, i.e. there exists some R, such thatS,, < cforalln > 0;
then it holds that

;jlggof(m) = jlggo;f(m)-

Proof: First we show that, for any givem € IN:

;j@& fG5) = lim ;f(m). (26)
Let € be any positive real number. Then, for ahy= 0,...,n, by C1 andC2 the sequenc¢f(i, j)}52, is nondecreasing and

converges tdim; ., f(i,7), S0 there must be g such that for allj > k:

€
n+1l "

0< lim f(i,5) = f(i.5) <

Letk. := max{k! | 0 < i < n}. Then, for allj > k.

n

0< (Zjligo f(m’)) - (Z f(m)) =y (jlgg £ 5) — f(m)) <Y =
=0

=0 =0 =0

Since{}";_, f(i,j)}320 is a nondecreasing sequence, this yidld$ (26).

By C3 the sequencés,, }»2, is bounded. Since it is also nondecreasing, it convergés+o "> lim; . f(i,j). Hence
the left-hand side of the desired equality exists. Forany N we havef (i, j) < limj_oo f(4,5), SOY iy f(i,5) < Sn < L.
Since also the sequené®_"_ (i, 7)o is nondecreasingy .-, f(¢,j) = limn—oo >;, f (4, ) exists and is bounded Wy
By C1lwe have thaj, < j» implies " f(7,j1) <302 f(4, j2). Soalsor:=lim; .oy f(i, ) exists and is bounded y
It remains to show that < r. For anyj,n € N we haved_"_ | f(4,7) < > ooy f(i,5) < r. Hencelim; oo D1 f(4,7) exists
and is bounded by. By (28) this givesS,, < r for anyn € N. Thus/ = lim,, 00 Sn, < 7. m|

Proposition A.2 [Bounded continuity - general function] Given a functipn N x N — IR which satisfies the following conditions
Cl. Foralli, j1, jo € N, we haveji < jo implies|f(i, j1)| < |f(4, j2)|.
C2. Foranyi € N, the limitlim;_, . | f(7, j)| exists.

C3. Foranyn € N, the partial sunf,, = > lim; . | (¢, j)| is bounded, i.e. there exists some R, such thatS,, < ¢
foralln > 0.

C4. Foralli, j1,j> € N, we havej; < jo implies £(i, j1) + | £ (i, 51)| < f(i, j2) + | £ (i, 52)|.
then it holds that

;jlggo fG5) = lim ;f(m).

Proof: Foranyi, j € N, we havef (s, j) + | f(4,7)] < 2|f(4, )| < 2 lim;o | f(4, )| by ClandC2. Therefore, for any € N,
the sequencéf (i, j) + | f(i,7)|}j20 has a limit. That is, we have the condition
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C5. Foranyi € N, the limitlim; o (f(4, j) + | f(¢, 7)]) exists.
Moreover, it holds thalim; oo (f (%, 7) + | f(4,7)]) < 2 limj—eo | f (4, 7)]. It follows that

C6. Foranyn € N, the partial sund " lim; oo (f(¢,7) + (4, 7)]) < 2 D20 limjsee |f(4,5)] < 2¢.
By Propositiof ALl and conditior1, C2 andC3, we infer that

Jim 1G9 = 3 Jim 7G5 @)
By Propositio AL and conditior4, C5 andC6, we infer that
JILHJOZ (i, 5) + |G, 7)) th (i,4) + | (G, D)) (28)

Sinced =%, f(6) = 32720(f(65) + [£(E, )] = 2220 [£ (4, 5)], we then have

imjoe 3700 f(5,) = limysee (30720(F(0,5) + | £(30)]) — 2220 1£ (0, 5)1)

[existence of the two limits by (27) and (28)]

= limjoeo 32720 (f(3,7) + £ 5)]) — limyoeo 22570 [ £(2, 9)]
[by 27) and[(28)]

= Do limysec (f(4,5) + £, 9)]) — D072 limj—oo [ (4, )]

= Yolimynee(f(2,5) + (3, 5)]) — limj—oo [ £ (4, 5)])

= Yo limysec(f(4,9) + £ 9)] = [£(, 5)])

= ZTZO hmjﬁoo f(l,])

A.2 Realising payoffs

We aim to establish that in a finitary pLTS the maximum payeéfisable by following all possible weak derivations caratiained
by using some static derivative policy. In order to do that,need to formalise some concepts such as discounted weektider,
discounted payoff etc.

Definition A.3 [Discounted weak derivation] Theiscounted weak derivatioAh =5 A’ for discount factod (0 < § < 1) is
obtained from a weak derivation by discounting eadhansition byd. That is, there is a collection @;” and A} satisfying

A = AF+AS
A7 T A7 +AS

— — X
AY T AR+ AL,

such that\’ = "2 6"A [

It is trivial that the relation=-1 coincides with—=> given in Definitio3.1B.

Below we fix a finite state space = {s1, ..., s, } with n > 1 and deal with vectors. For example, a subdistributior 2(S)
can be viewed as the-dimensional vectof A(s1), ..., A(sn)). Similarly, a weight functiorw can be considered as the
dimensional vectotw(s1), ..., W(s») ).

Definition A.4 [Discounted payoff] Given a discoudtand weight functiorw, the discounted payoff functioh%?, : S — R is
defined by

Pri(s) = sup{w. A’ |5 =5 A’}
and we will generalise it to be of typ@(S) — R by letting Py, (A) = 3. a7 Als) - PRt (s).

Definition A.5 [Max-seeking policy] Given a pLTS, discoutitand weighted functiomv, we say a static derivative polielpp is
max-seekingvith respect ta) andw if for all s the following requirements are met.
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1. If dpp(s) 1, thenw(s) > & - Po% (Aq) forall s 5 Aj.
2. If dpp(s) = A then
(@) & Piu(A) > w(s)and
(b) PSY (A) > PLY (Ay) forall s 5 A.
Lemma A.6 Given a finitely branching pLTS, discouditand weighted functiomw, there always exists a max-seeking policy.

Proof: Given a pLTS, discount and weighted functiow, the discounted payol;", (s) can be calculated for each stateThen
we can define a derivative poligipp in the following way. For any state, if w(s) > ¢ - P%Y (A;) forall s =+ A, then we set
dpp undefined ak. Otherwise, we choose a transitisn— A among the finite number of outgoing transitions frerauch that
P2 (A) > P (A4) for all other transitions =+ A;, and we setipp(s) = A. O

Given a pLTS, discount, weight functiorw, and derivative policylpp, we define the functiod®®" : (S — R) — (S —
R) by
S,dpp,w W(S) if dpp(S)T
F = )\f.As.{ 5. f(A) i dpp(s) = A (29)
wheref(A) =37 a1 A(s) - f(s).

Lemma A.7 Given a pLTS, discount < 1, weight functiorw, and derivative policylpp, the functionF">%" has a unique fixed
point.

Proof: We first show that the functiof®¢" is a contraction mapping. Lt g be any two functions of typ§ — R.
[P (f) — PO (g)
sup{| F>PPY(f)(s) — F>™"(g)(s)| | s € S}

sup{|[F*PY(f)(s) — F**"(g)(s) | | s € S and dpp(s) |}
0 - sup{|f(A) — g(A)| | s € Sanddpp(s) = A for someA}

< 6-supf{|f(s) — g(s")| | s’ €S}
= 6-[f—dl
< |f—=dl
By Banach unique fixed point theorem, the functi&h®®™" has a unique fixed point. m|

Lemma A.8 Given a pLTS, discound, weight functionw, and max-seeking policgpp, the functionP%;", is a fixed point of
Fé,dpp,w.

Proof: We need to show that®PP"(P%Y )(s) = P3Y, (s) holds for any state. We distinguish two cases.

1. If dpp(s) T, thenFodPPW (P2 ) (s) = w(s) = PV, (s) as expected.

2. If dpp(s) = A, then the arguments are more involved. First note that+=; A", then by Definitior_/A.B there exist
someAy”, Ay, A1, A” suchthat = Ay” + AJ, Ay” = Ay, Ay =5 A” andA" = AJ +§ - A”. So we can do the
following calculation.

Piax(s)
sup{w. A’ |5 =5 A’}
sup{w. (AX +6-A") | 5= Ay + AL, Ay = Ay, andA;, =5 A
for someAy”, Af, Ay, A}
= Sup{W.AX 45 W. A |5=A7 + AL, Ay D> Ay, andA; =5 A"
for someAy”, Af, Ay, A}
= sup{W.AJ +d-sup{W. A" | A} =5 A"} | 5= A5 + Af andAy T Ay
for someAy”, AJ, Aq}
= sup{W.AS +5 -PLY (A1) |5=A +AF andAy T Ay
for someAy”, AL, Ay}
= sup{(1 —p)-w(s) +pd-P3Y (A1) | p € [0,1] ands = Ay
for someA; } [s can be splitint@s + (1 — p)s only]
= sup{(1 —p) -w(s) +pd PN (A1) | p€[0,1] ands > A,
for someA; }
= sup{(1 —p) - W(s) + pé - sup{Pu, (A1) | s > A} | p € [0,1]}
= max(W(s), & sup{PRi(A1)|s > A1})
= §-PY.(A)  [asdppis max-seeking]
= PR (s)
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Definition A.9 [Discounted weak SDP-derivation] LéX be a subdistribution andpp a static derivative policy. We define a
collection of subdistributions\;, as follows.

Ay = A
A1 = > {Ak(s)-dpp(s) | s € [Ax] anddpp(s) ]} forall £ > 0.

ThenA; is obtained fromA\, by letting
cion [0 if dpp(s)
Arls) = { Ag(s) otherwise
for all & > 0. Then thediscounted weak SDP-derivatiah =5 4,, A’ determines a unique subdistributidxl with A" =
oo OFA.
k=0 k

In other words, ifA =5 45, A’ thenA comes from the discounted weak derivatidin—>s A’ which is constructed by following
the derivative policydpp when choosing transitions from each state. In the special case when tleewtis factord = 1, we see
that=1 4pp beECOMes=>4,, as defined in padeB3.

Definition A.10 [Policy-following payoff] Given a discouni, weight functionw, and derivative policylpp, thepolicy-following
payoff functiorP®¢" . S — IR is defined by
PO (s) = w. A

whereA is determined by the discounted weak SDP-derivaiiess s app A’
Lemma A.11 For any discound, weight functionw, and derivative policylpp, the functionP®**" is a fixed point of %P>,

Proof: We need to show that® W (IPo:depW) () = P2:4PPW(5) holds for any state. There are two cases.
1. If dpp(s)*, thens =5 4pp A’ implies A’ = 5. Thus, PP (s) = w(s) = FPPW(Po9PPW) (5 as required.

2. Supposelpp(s) = A1. If 5 =54 A’ thens > Ay, A1 =545 A” andA’ = §A” for some subdistribution\”.
Therefore,

P&,dpp,W(s)

w. A’

= w.d5A"

§-w.A”

§ - POIPPY(AL)

F&,dpp,W(Pd,dpp,W)(S)

]

Proposition A.12 Letd € [0,1) be a discount and/ a weight function. Ifdpp is a max-seeking policy with respect dandw,
thenP%Y = podepw,

Proof: By LemmdZA.l, the functiod®“*"¥ has a unique fixed point. By Lemnfas A.8 &and A.11, Bff{, andP®PP" are fixed
points of the same functioA®%"" which means thaf?;", andP>"" coincide with each other. ]

Lemma A.13 Suppos& = A’ with A’ = 3~ ' A for some properly related . Let {§,}32, be a nondecreasing sequence
of discount factors converging tio Then for any weight functiow it holds that

w.A = j&ﬂZ&j(w.Af).
1=0

Proof: Let f: N x N — R be the function defined by(i, j) = &%(w. A). We check thayf satisfies the four conditions in
Propositio A.D.

1. f satisfies conditiol©1. For all4, j1, j» € N, if j1 < j» thens?, < &%, It follows that
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2. f satisfies conditiol€2. For anyi € N, we have

i i,7)| = lim |6} <) = x
lim [f(i,5)] = lim |5w. A7) = [w. A, (30)
3. [ satisfies conditiol©3. For anyn € N, the partial sunf,, = >_7"  lim; s |f(4,7)| is bounded because

S dim Gl = WA < Yo wLAr] < YA = A
i=0 i=0

1=0 1=0
where the first equality is justified bl (30).
4. f satisfies conditioi©4. For anyi, ji1,j2 € N, if j1 < j» then
f(@, 1) + (3, 1)
85, (W AT + 165, (W AF)
8L (WaAS +|w.AX))
B, (W A+ WL AX))
f(i,g2) + [f (3, 52)|-

1IN

Therefore, we can use Propositflon A.2 to do the followingiafce.

lmy o0 Y000, 05 (W AY)
= Yitolimjee (W.AS)
= ZOW . Az'x
= w.) %, Af

= w.A’
O

Corollary A.14 Let {;}52, be a nondecreasing sequence of discount factors convemying-or any derivative policgpp and
weight functionw, it holds thatP%*P"¥ = lim;_, ., P%PP-W,

Proof: We need to show that" " (s) = lim;_,., P%%P%(s), for any states. Note that for any discount;, each state
enables a unique discounted weak SDP-derivaies> s, dapp AJ such thath? = 3% 52 A for some properly related . Let
A" =372 AS. We haves =1 g5 A'. Then we can infer that

lim; oo P23 9P (5)
= lim]qoo W. Aj
lim]qoo W. Z?io 5;AZX
lim, o0 355, 0} (W2 AY)
w. A by LemmdATB

— ]P)l,dpp,W(S)

Theorem A.15 In a finitary pLTS, for any weight functiow there exists a derivative poligipp such thaPL¥, = phdeew,

Proof: Letw be a weight function. By Propositidn Al12, for every discofattord < 1 there exists a max-seeking derivative
policy dpp with respect t@) andw such that

LAV S (31)
Since the pLTS is finitary, there are finitely many differetattic derivative policies. There must exist a derivativéiggodpp such
that [31) holds for infinitely many discount factors. In atheords, for every nondecreasing sequefiég}s>, converging tol,
there exists a subsequen@®,; }72, and a derivative policgpp™ such that

(Snj W

Py = PP %Y forall j > 0. (32)
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For any state, we infer as follows.

PLY (5)

sup{w. A’ |5 = A"}

= sup{lim; o 3277065, (W AS) [5 = A'with A" =3 A} by Lemmd ATB
lim; o0 SUP{3 27 0n, (W AS) | 5= A" with A" = 377 AF}

limj o0 sup{w. -2 6, A [ 5= A'with A" =377 A}

= limjoeosup{W. A" | 5=, A"}

J
. Op W
hmjﬁoo Pmajx (3)

hmj*)oo Pénj ,dPP*vW(S) by m)
= PLV(5) by CorollanfAI2

B Comparison of extremal testing with resolution-based teting

In this section we compare extremal testing with resolubiesed testing for finitary pLTSs. We first show that for reoh-based
testing it is sufficient to use a singleton set of success@sti.e.|2|= 1. Then we show that the maximum and minimum testing
outcomes in a finitary pLTS can be attained by static resmistithis property plays a key role in establishing thatesral testing
coincides with resolution-based testing. Since the mus# waas already treated in Section §.2.1, here we concenofmates may
case.

B.1 Scalar versus Vector testing

In [B] it was shown that for finitary pLTSs, and resolutiorsbd testing, it is sufficient to use scalar testing. We wishpioly this
result in our setting, to obtain Theordm B.4 below; howeeedd so we need to demonstrate that the manner in which the valu
obtained from a resolution used in that paper coincides aithuse of least fixed points.

Definition B.1 Let A be a subdistribution in a deterministic pLTS, -, —). The probability thatA starts with a sequence of
actionsk € X7, is given byPrgr (A, X), wherePrg : S x 3* — [0, 1] is defined inductively:
Prr(A,R) if s = A

Prr(s,e) := 1 andPrg(s, aR) := { 0 otherwise

andPrgr (A, R) = Exp, (Prr (-, X)). The notatiore denotes the empty sequence of actions andhe sequence starting with
a € ¥ and continuing witik € ¥*. The valuePrg (s, X) is the probability that starts with a sequendé

Let X*“ be the set of finite sequencesdii that containsy just once, namely at the end. Then the probability thatver
reaches an actiom is given by o v.a Prr(A,R).

Definition B.2 Let A be a subdistribution in a deterministic pLTS, -, —). We define its success tupl(A) € [0, 1]" be
such tha{W(A)); is the probability that\ reaches the actian;.

Then if A is a subdistribution in a (not necessarily deterministic)$ (S, 2, —) we define the set of its success tuples to be
those resulting as above from all its resolutions:

W(A) = {W(©) | (R,©,—r) is aresolution ofA}.
Proposition B.3 Let A be a subdistribution in a deterministic pLTS, 2, —). It holds thatW(A) = V(A).
Proof: We need to show thati : (W(A)); = (V(A))i, i.6. > yexrws PTR(A,R) = (V(A));, for which it suffices to show that
> Pra(s,R) = (V(s)); forallses. (33)
ReXx*wi

SinceV = ||, . V", we have tha(V(s)); = |],n(V"):. Letting® € ¥* be a sequence of actions, we wrjtd for its
length. The sequence of reaﬂENezwmgn Prr (s, R)}n2, is nondecreasing and bounded hyso it converges and we have
Donesei PIR(8,N) = L, cx 2ones=wi jnj<n PTR(S, ). We now prove by induction on that

> Pra(s,R)=(V'(s));  foralln€N. (34)
RET*Wi |R|<n

which will yield (33) immediately.
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e The base case is= 0. ThenVi : 3° s, yj<, Prr(s,R) = 0 andV?(s)(wi) = 0.
e Now supposing(34) holds for some we consider the case far+ 1. If s —4, then we have

> Prr(s,N) = 0 = (V" (s))..

RET*Wi |R|<n+1
If s <% A’ for some actiony and distributionA’, then there are two possibilities:

— a = w;. We then havéV""!(s)); = 1. Note that ifX is a finite non-empty sequence without any occurrenae; pf
thenPrg (s, Rw;) = 0. In other words) ", si+w; |xj<ni1 PTR(S, R) = Prr(s, (wi)) = 1.

— a # w;. Then(V™(s)); = (V*(A));. On the other han®rr (s, a’R) = 0 if a # o'. Therefore,

ZNEE*Wi,\N\§n+1PrR(37N) = ZQNEE*W,\QN\SnHPTR(SvaN)
ZaREE*“’i,\aN\Sn+1 Prr(A',R)
erz*qu,\mgnPrR(AlvN)
(V*(A"))s by induction

= (V"))

O

As a corollary of Proposition Bl3, we have' (T, P) = W([[T |Act P}]) for any process” and testl’. Therefore, the testing
preorders&;?maw gf}mustdefined in Sectioh 412 coincides with those in Definition 65)f Now Theorem 4 of[5] (to be accurate, the
variant of that theorem for state-based testing) tells aswinen testing finitary processes it suffices to use a singleess action
rather than using multiple success actions. That is,

Theorem B.4 For finitary processes:
o P CihayQifand onlyif P Cppay Q
o P E;gzmustQ ifand only if P Tyt @ u

In view of the above theorem we can assume that only a singleess actiow is used in tests, and in this setting we compare
extremal testing and resolution-based testing.

B.2 Extremal versus resolution-based testing

Consider the set of all functions from a finite $eto [0, 1], denoted by0, 1%, and the distance functiahover[0, 1]% defined by
d(f,g) = max |f(r) — g(r)|-er. We can check thaf0, 1], d) constitutes a complete metric space. &et (0, 1] be a discount
factor. Given a deterministic pLT8R, {w, 7}, —), the discounted version of the functiond in Sectio 4.2 %° : [0,1]" —
[0, 1]" is defined by

1 if r

Z(f)r)=4{ 0 if r 24 andr 24 (35)
§- f(A) if r <4 andr - A

where f(A) = Exp, (f). Below we show that?’ is a continuous function over the complete lattjeel]”. So the least fixed

point of %°, denoted byv’, has the characterisatioif = | |, _, V>, whereV®" is then-th iteration of%° over L. Note that

if there is no discount, i.e5 = 1, we see tha#®, V° coincides with#, V respectively. Similarly, we can defirig,;’. (There is
no need of treatindi* because the counterpart of Theofem B.8¥gr can be established without using discount.)

Lemma B.5 1. Foranys € (0,1], the functionalsz® and. %, are continuous;
2. 1t 61,082 € (0,1] andd; < 82, then we havez®t < %°2 and %ok, < Zo2s;

3. Let{6,}n>1 be a nondecreasing sequence of discount factors convegingThen| |, %2’ = % and| |, Zoix =
Rmax.
Proof: We only considerZ, the case foZmax is similar.
1. Letfo < fi < ... be anondecreasing chain[in 1]%. We need to show that
2] ) = ] 2°(f2) (36)

n>0 n>0

For anyr € R, we are in one of the following three cases:
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(@) r =. We have

1 by (33)
lJn>01

= Unzo A (fn)(r)

(Unso 2° (£2))(r)

2 (U F)(r)

(b) r 24 andr 4. Similar to last case. We have

A (L] f)r) = 0= (] 2°(f))(r).

n>0 n>0

(c) Otherwisey = A for some distributio’A € 2, (R). Then we infer that

R Upso f)r) = 6 U fa)(A) by (35)
: Zre[A] A(r) - (l_lnzo fn)(r)

reral A) - (5o fn(r))

: ZTG[A] Unzo A(r) - fulr)

Zre[m limp o0 A(T) + fn(r)
Aimpso0 Yoo A(F) - fn(r) by Propositiofi AL
: |_|n20 Zre[A] A(r) -+ fa(r)

Unso fa(D)

Llnso0 - fn(A)

U0 Z°(fa)(r)

(U0 2° (fa)(r)

In the above reasoning, PropositlonA.1 can be applied lsecae can define the functigh: R x N — Rx, by letting
f(r,n) = A(r) - fo(r) and check thaf satisfies the three conditions in ProposifionlA. 1RIfs finite, we can extend it to
a countable sek’ O R and requiref(r’,n) = 0 forall »’ € R"\R andn € N.

| R [ 1
S o >

(a) f satisfies conditiol©1. For anyr € R’ andni,n2 € N, if n1 < na thenf,, < fn,. It follows that
frina) = A(r) - fai(r) < A(r) - fay(r) = f(r,n2).

(b) f satisfies conditioi€2. For anyr € R’, the sequenc€A(r) - fn(7)}nio is nondecreasing and boundedAyr). It
follows that the limitlim, o f(r,n) exists.
(c) f satisfies conditiol©3. For anyR” C R’, the partial sun}_, . .. lim, o f(r,7) is bounded because
o dim f(rn) = >0 lm AG)-fulr) £ D0 AF) < Y AR) = L.
reR’ reRr’ reRr’ TER
2. Straightforward by the definition of.
3. Foranyf € [0,1)% andr € R we show that

_ dn
A()r) =] 2. (37
We focus on the non-trivial case that™ A for some distributio\ € 21(R).

UnenZ)(N)(1) = Upen? (f)(r)
Lnewdn - f(A)
F(A) - (Unendn)
fa)-1
= Z(N)(r)

Lemma B.6 Let{d,}.>1 be a nondecreasing sequence of discount factors converging
o V= UnENV‘S"
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5
® Vsup=,enVsup™

Proof: We only considefV; the case folVsypis similar. We use the notatidlfp(f) for the least fixed point of the functiofi over
a complete lattice. Recall th&tandV°~ are the least fixed points 6 and%°~ respectively, so we need to prove that

p(#) = | _ Wo"") (398)

We now show two inequations.
For anyn € N, we haved, < 1, so LemmdBb (2) yieldsz’~ < Z. It follows that ifp(%°") < Ifp(%), thus

U, entfp(2°") < lfp(%).
For the other directionifp(#) < [_|7LElep(%‘5"), it suffices to show thaMnelep((%“") is a pre-fixed point of%, i.e.

%(unelep(%‘s")) < Unelep((%“"), which we derive as follows. Lefd,},.>1 be a nondecreasing sequence of discount

factors converging ta.
A (U enlfp(2°))

(leE]N(%ém)(l—lne]Nlfp((%(sn)) by Lemmm (3)

= Umew(%ém(unewlfp(gén))

Unexllen?" (Ufp(%°")) by LemmdBb (1)

leewl_lnzm%‘s’” (fp(2°™))

l—lmelNl_lgLZm‘@(sné( lfp (‘@(Sn )) by Lemmm (2)

LlnenZ°" (fp(2°))

Unglep(%é")

This completes the proof df (B8). O

A

We say a resolution of a pLTS #aticif its associated resolving function is injective.

Lemma B.7 Suppose& < 1 andA is a subdistribution in a finitely branching pLTS, {7, w}, —). There exists a static resolution
(R, ©,—) of A with resolving functionf such thatV? (r) = Ve, (f(r)) forall r € R.

Proof: Let (R, ©,—) be aresolution with an injective resolving functigrsuch that
if 1 5 ©' thenVsye (£(0")) = max{ Vs’ (A') | f(r) <> A’}

The pLTS under consideration is finitely branching, whicbuges the existence of the such resolving funcfion

Letg : R — [0, 1] be the function defined by(r) = Vs’ (f(r)) for all r € 7. Below we show thay is a fixed point 0f%°.
If r <% thenf(r) . Therefore Z°(g)(r) = 1 = Veus (f(r)) = g(r). Now suppose: 24 andr > ©’. By the definition of
f, we havef (r) 24, f(r) = £(©") with Veu (£(©")) = maz{Vsy’ (A') | f(r) =+ A’}. Therefore,

#(9)(r) =

I
<
1%}

c
o
—~
By
—~

3
-
Nt

Sinced < 1, the functionalZ® is a contraction mapping. It follows from the Banach fixednpaheorem thatz® has a unique
fixed point. So we derive thatcoincides withV?, i.e. V2 (r) = g(r) = Vsuo’ (f(r)) forall r € R. o

Theorem B.8 Let A be a subdistribution in a finitary pLT&S, {7, w}, —). There exists a static resolutigfe, ©, —) of A such
that Exp, (V) = EXpa (Vsup)-

Proof: By LemmdB.7, for every discount factdre (0, 1) there exists a static resolution which achieves the maximpabability

of success. Since the pLTS is finitary, there are finitely mdiffgrent static resolutions. There must exist a statiolkgsn that
achieves the maximum probability of success for infiniterydiscount factors. In other words, for every nondecrepséquence
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{én }n>1 converging tol, there exists a subsequengk,, }»>1 and a static resolutiofi?, ©, —) with resolving functionf such
thatVors (1) = Veue'mx (f(r)) forallr € Randk = 1,2, .... By LemmdB.6, we have that, for everyc R,

V(r) = leeINVénk ()
= UpenVsur ™ (f(r))
= Vsup(f(r))

It follows that Exp, (V) = EXpa (Vsup).
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