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We provide bothmodal- and relational characterisations of may- and must-testing preorders for recursive CSP pro-
cesses with divergence, featuring probabilistic as well asnondeterministic choice. May testing is characterised in
terms of simulation, and must testing in terms of failure simulation. To this end we develop weak transitions between
probabilistic processes, elaborate their topological properties, and express divergence in terms of partial distributions.
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1 Introduction

It has long been a challenge for theoretical computer scientists to provide a firm mathematical foundation for process-
description languages that incorporate both nondeterministic and probabilistic behaviour in such a way that processes
are semantically distinguished just when they can be told apart by some notion of testing.

In our earlier work [4, 2] a semantic theory was developed forone particular language with these characteristics, a
finite process calculus calledpCSP: nondeterminism is present in the form of the standard choice operators inherited
from CSP [10], that isP ⊓ Q andP 2 Q, while probabilistic behaviour is added via a new choice operatorP p⊕ Q
in whichP is chosen with probabilityp andQ with probability1−p. The intensional behaviour of apCSP process
is given in terms of a probabilistic labelled transition system [24, 4], or pLTS, a generalisation of labelled transition
systems [20]. In a pLTS the result of performing an action in agiven state results in aprobability distributionover
states, rather than a single state; thus the relationss α−→ t in an LTS are replaced by relationss α−→ ∆, with ∆ a
distribution. ClosedpCSP expressionsP are interpreted as probability distributions[P ℄ in the associated pLTS. Our
semantic theory [4, 2] naturally generalises the two preorders of standard testing theory [6] topCSP:

• P ⊑pmay Q indicates thatQ is at least as good asP from the point of view ofpossiblypassing probabilistic
tests; and

• P ⊑pmustQ indicates instead thatQ is at least as good asP from the point of view ofguaranteeingthe passing
of probabilistic tests.

The most significant result of [2] was an alternative characterisation of these preorders as particular forms of co-
inductively definedsimulationrelations,⊑S and⊑FS , over the underlying pLTS. We also provided a characterisation
in terms of a modal logic.

The object of the current paper is to extend the above resultsto a version ofpCSP with recursive process de-
scriptions: we add a constructrecx. P for recursion, and extend the intensional semantics of [2] in a straightforward
manner. We restrict ourselves tofinitary pCSP processes, those having finitely many states and displayingfinite
branching.
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Figure 1: The pLTSs of processesQ1 andQ2

The simulation relations⊑S and⊑FS in [2] were defined in terms of weak transitionsτ̂=⇒ between distributions,
obtained as the transitive closure of a relationτ̂−→ between distributions that allows one part of a distribution to make
a τ -move with the other part remaining in place. This definitionis however inadequate for processes that can do
an unbounded number ofτ -steps. The problem is highlighted by the processQ1 = recx. (τ.x 1

2
⊕ a) illustrated

in Figure 1(a). ProcessQ1 is indistinguishable, using tests, from the simple processa: we haveQ1 ≃pmay a and
Q1 ≃pmust a. This is because the processQ1 will eventually perform the actiona with probability 1. However, the
action[a℄ a−→ [ 0 ℄ can not be simulated by a corresponding move[Q1℄ τ̂

=⇒ a−→. No matter which distribution∆
we obtain from executing a finite sequence of internal moves[Q1℄ τ̂

=⇒ ∆, still part of it is unable to subsequently
perform the actiona.

To address this problem we propose a new relation∆ =⇒ Θ, to indicate thatΘ can be derived from∆ by
performing an unbounded sequence of internal moves; we callΘ a weak derivativeof ∆. For example[a℄ will turn
out to be a weak derivative of[Q1℄, i.e. [Q1℄ =⇒ [a℄, via the infinite sequence of internal moves[Q1℄ τ̂−→ [Q1 1

2
⊕ a℄ τ̂−→ [Q1 1

22
⊕ a℄ τ̂−→ . . . τ̂−→ [Q1 1

2n
⊕ a℄ τ̂−→ . . . .

One of our contributions here is the significant use of “subdistributions” that sum tono more thanone [11, 19]. For
example, the empty subdistributionε elegantly represents the chaotic behaviour of processes that in CSP and in must-
testing semantics is tantamount to divergence, because we haveε α−→ ε for any actionα, and a process likerecx. x
that diverges via an infiniteτ path gives rise to the weak transitionrecx. x =⇒ ε. So the processQ2 = Q1 1

2
⊕ recx. x

illustrated in Figure 1(b) will enable the weak transition[Q2℄ =⇒ 1
2[a℄, where intuitively the latter is a proper

subdistribution mapping the statea to the probability1
2 . Our weak transition relation=⇒ can be regarded as an

extension of theweak hyper-transitionfrom [17] to partial distributions; the latter, although defined in a very different
way, can be represented in terms of ours by requiring weak derivatives to be total distributions.

We end this introduction with a brief glimpse at our proof strategy. In [2] the characterisations for finitepCSP
processes were obtained using a probabilistic extension ofthe Hennessy-Milner logic [20]. Moving to recursive
processes, we know that process behaviour can be captured bya finite modal logic only if the underlying LTS is
finitely branching, or at least image-finite [20]. Thus to take advantage of a finite probabilistic HML we need a
property of pLTSs corresponding to finite branching in LTSs:this is topological compactness, whose relevance we
now sketch.

Subdistributions over (derivatives of) finitarypCSP processes inherit the standard (complete) Euclidean metric.
One of our key results is that

Theorem 1.1 For every finitarypCSP processP , the set{∆ | [P ℄ =⇒ ∆ } is convex and compact.

Indeed, using techniques from Markov Decision Theory [22] we can show that the potentially uncountable set{∆ |[P ℄ =⇒ ∆ } is nevertheless the convex closure of afiniteset of subdistributions, from which Theorem 1.1 follows.
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This key result allows aninductivecharacterisation of the simulation preorders⊑S and⊑FS , here defined using
our novel weak derivation relation=⇒. We first construct a sequence of approximations⊑kS for k ≥ 0 and, using
Theorem 1.1, we prove

Theorem 1.2 For every finitarypCSP processP , and for everyk ≥ 0, the set{∆ | [P ℄ ⊑kS ∆ } is convex and
compact.

This in turn enables us to use theFinite Intersection Propertyof compact sets to prove

Theorem 1.3 For finitarypCSP processes we haveP ⊑S Q iff P ⊑kS Q for all k ≥ 0.

Our main characterisation results can then be obtained by extending the probabilistic modal logic used in [2], so that
for example

• it characterises⊑kS for everyk ≥ 0, and therefore it also characterises⊑S
• every probabilistic modal formula can be captured by a may-test.

Similar results accrue for must testing and the new failure simulation preorder⊑FS : details are given in Section 8.
In the next section we introduce a probabilistic CSP with recursion. In Section 3 we elaborate on our approach

to weak derivations and discuss some of their elementary properties. In Section 4 we present two methods of testing
and show that they coincide for finitary processes. In Section 5 we introduce yet another method of testing. It appears
simpler than the previous two methods because only extremaltesting outcomes are considered. However, it turns out
to coincide with them for finitary processes. In Section 6 we investigate the topological properties of weak derivations.
In Section 7 we define a notion of failure simulation preorder. It is shown to be a precongruence relation and is sound
for must testing. In Section 8 we show that failure simulation is also complete for must testing. Therefore, must
testing can be characterised as failure simulation. In Section 9 we characterise may testing as simulation. Finally,
related work is briefly discussed in Section 10.

2 The languagepCSP

Let Act be a set of visible actions which a process can perform, and let Var be an infinite set of variables. The
languagepCSP of probabilistic CSP processes is given by the following two-sorted syntax, in whichp∈[0, 1], a∈Act

andA ⊆ Act:
P ::= S | P p⊕ P
S ::= 0 | x ∈ Var | a.P | P ⊓ P | S 2 S | S |A S | recx. P .

This is essentially the finite language of [2, 4] plus the recursive constructrecx. P in which x is a variable andP a
term. Intuitively recx. P represents the solution of the fixed-point equationx = P . The notions of free- and bound
variables are standard; byQ[x 7→ P ] we indicate substitution of termP for variablex inQ, with renaming if necessary.
We writepCSP for the set of closedP -terms defined by this grammar, andsCSP for its state-basedsubset of closed
S-terms.

The processP p⊕ Q, for 0 ≤ p ≤ 1, represents aprobabilistic choicebetweenP andQ: with probabilityp it
will act like P and with probability1−p it will act like Q.1 Any process is a probabilistic combination of state-
based processes built by repeated application of the operatorp⊕. The state-based processes have a CSP-like syntax,
involving the stopped process0, action prefixinga. for a∈Act, internal-andexternal choices⊓ and2, and aparallel
composition|A for A ⊆ Act.

The processP ⊓ Q will first do a so-calledinternal actionτ 6∈Act, choosingnondeterministicallybetweenP
andQ. Therefore⊓, like a. , acts as aguard, in the sense that it converts any process arguments into a state-based
process. The same applies torecx. P as, following CSP [21], our recursion construct performs aninternal action when
unfolding. As our testing semantics will abstract from internal actions, theseτ -steps are harmless and merely simplify
the semantics.

1In our semantics we have[P 0⊕ Q℄ = [Q℄ and[P 1⊕ Q℄ = [P℄, so without limitation of generality we could have requiredthat0<p<1.
In papers involving axiomatisations this is customary, as the most natural formulation of the law of associativity involves dividing byp.
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The processs 2 t on the other hand does not perform actions itself but rather allows its arguments to proceed,
disabling one argument as soon as the other has done a visibleaction. In order for this process to start from a state
rather than a probability distribution of states, we require its arguments to be state-based as well; the same requirement
applies to|A.

Finally, the expressions |A t, whereA ⊆ Act, represents processess and t running in parallel. They may
synchronise by performing the same action fromA simultaneously; such a synchronisation results inτ . In additions
andt may independently do any action from(Act\A) ∪ {τ}.

Although formally the operators2 and |A can only be applied to state-based processes, informally weuse ex-
pressions of the formP 2 Q andP |A Q, whereP andQ arenot state-based, as syntactic sugar for expressions in
the above syntax obtained by distributing2 and|A overp⊕. Thus for examples 2 (t1 p⊕ t2) abbreviates the term
(s 2 t1)p⊕ (s 2 t2).

The full language of CSP [1, 10, 21] has many more operators; we have simply chosen a representative selection,
and have added probabilistic choice. Our parallel operatoris not a CSP primitive, but it can easily be expressed in
terms of them — in particularP |A Q = (P‖AQ)\A, where‖A and\A are the parallel composition and hiding
operators of [21]. It can also be expressed in terms of the parallel composition, renaming and restriction operators of
CCS. We have chosen this (non-associative) operator for convenience in defining the application of tests to processes.

As usual we may elide0; the prefixing operatora. binds stronger than any binary operator; and precedence
between binary operators is indicated via brackets or spacing. We will also sometimes use indexed binary operators,
such as

⊕

i∈I pi·Pi with
∑

i∈I pi = 1 and allpi > 0, and
e
i∈I Pi, for some finite index setI.

Our language is interpreted as aprobabilistic labelled transition system[4, 2]. Essentially the same model has
appeared in the literature under different names such asNP-systems[12], probabilistic processes[13], simple prob-
abilistic automata[23], probabilistic transition systems[14] etc. Furthermore, there are strong structural similarities
with Markov Decision Processes[22, 5].

We now fix some notation. A (discrete) probabilitysubdistributionover a setS is a function∆ : S → [0, 1] with
∑

s∈S ∆(s) ≤ 1; thesupportof such a∆ is ⌈∆⌉ := { s∈S | ∆(s) > 0 }, and itsmass|∆| is
∑

s∈⌈∆⌉ ∆(s). A
subdistribution is a (total, or full)distribution if |∆| = 1. The point distributions assigns probability1 to s and0 to
all other elements ofS, so that⌈s⌉ = {s}. With D(S) we denote the set of subdistributions overS, and withD1(S)
its subset of full distributions.For∆,Θ∈D(S) we write∆ ≤ Θ iff ∆(s) ≤ Θ(s) for all s∈S.

Let {∆k | k ∈ K} be a set of subdistributions, possibly infinite. Then
∑

k∈K ∆k is the real-valued function in
S → R defined by(

∑

k∈K ∆k)(s) :=
∑

k∈K ∆k(s). This is a partial operation on subdistributions because for some
states the sum of∆k(s) might exceed1. If the index set is finite, say{1..n}, we often write∆1 + . . . + ∆n. For
p a real number from[0, 1] we usep ·∆ to denote the subdistribution given by(p ·∆)(s) := p ·∆(s). Finally we use
ε to denote the everywhere-zero subdistribution that thus has empty support. These operations on subdistributions do
not readily adapt themselves to distributions; yet if

∑

k∈K pk = 1 for some collection ofpk ≥ 0, and the∆k are
distributions, then so is

∑

k∈K pk ·∆k. In general when0≤p≤1 we writexp⊕ y for p ·x+(1−p)·y where that makes
sense, so that for example∆1 p⊕ ∆2 is always defined, and is full if∆1 and∆2 are.

The expected value
∑

s∈S ∆(s)·f(s) over a(sub)distribution∆ of a bounded non-negative functionf to the reals
or tuples of them, or to D(S), is written Exp∆(f), and the image of a(sub)distribution∆ through a functionf is
written Imgf (∆) — the latter is the(sub)distribution over the range off given by Imgf (∆)(t) :=

∑

f(s)=t∆(s).

Definition 2.1 A probabilistic labelled transition system(pLTS) is a triple〈S,L,→〉, where

(i) S is a set of states,
(ii) L is a set of transition labels,

(iii) relation→ is a subset ofS × L× D1(S).

A (non-probabilistic) labelled transition system (LTS) may be viewed as a degenerate pLTS — one in which only
point distributions are used. As with LTSs, we writes α−→ ∆ for (s, α,∆)∈→, as well ass α−→ for ∃∆ : s α−→ ∆
ands→ for ∃α : s α−→. A pLTS isfinitely branchingif the set{〈α,∆〉 | s α−→ ∆, α∈L} is finite for all statess; if
moreoverS is finite, then the pLTS isfinitary. A pLTS isdeterministicif for each states and labelα, there is at most
one distribution∆ with s α−→ ∆.

The operational semantics ofpCSP is defined by a particular pLTS〈sCSP,Actτ ,→〉 in which sCSP is the set of
states andActτ := Act ∪ {τ} is the set of transition labels; we leta range overAct andα overActτ . We interpret
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(action)

a.P a−→ [P ℄ (recursion)

recx. P τ−→ [P [x 7→ recx. P ]℄
(int.l)

P ⊓ Q τ−→ [P ℄ (int.r)

P ⊓ Q τ−→ [Q℄
(ext.l)

s1
a−→ ∆

s1 2 s2
a−→ ∆

(ext.r)

s2
a−→ ∆

s1 2 s2
a−→ ∆

(ext.i.l)

s1
τ−→ ∆

s1 2 s2
τ−→ ∆ 2 s2

(ext.i.r)

s2
τ−→ ∆

s1 2 s2
τ−→ s1 2 ∆

(par.l)

s1
α−→ ∆

s1 |A s2
α−→ ∆ |A s2

α 6∈A

(par.r)

s2
α−→ ∆

s1 |A s2
α−→ s1 |A ∆

α 6∈A

(par.i)

s1
a−→ ∆1, s2

a−→ ∆2

s1 |A s2
τ−→ ∆1 |A ∆2

a∈A

∣

∣

∣

In the above inferencesA ranges over subsets ofAct,
and actionsa, α are elements ofAct,Actτ respectively.

Figure 2: Operational semantics ofpCSP

pCSP processesP as distributions[P ℄ ∈ D1(sCSP) via the function[ ℄ : pCSP → D1(sCSP) defined by[s℄ := s for s∈ sCSP, and [P p⊕ Q℄ := [P ℄p⊕ [Q℄ .
The transition relation→ is defined in Figure 2. This is a slight extension of the rules we used earlier [4, 2] for finite

processes: one new rule is required to interpret recursive processes. All rules are very similar to the standard ones used
to interpret CSP as a labelled transition system [21], but are modified so that the result of an action is a distribution.
The rules for external choice and parallel composition use an obvious notation for distributing an operator over a
distribution; for example∆ 2 s represents the distribution given by

(∆ 2 s)(t) =

{

∆(s′) if t = s′ 2 s

0 otherwise.

We sometimes writeτ.P for P ⊓ P , thus givingτ.P τ−→ [P ℄.
The set of statesreachablefrom a subdistribution∆ is the smallest set that contains⌈∆⌉ and is closed under

transitions, meaning that if some states is reachable ands α−→ Θ then every state in⌈Θ⌉ is reachable as well. We
graphically depict the operational semantics of apCSP expressionP by drawing the part of the pLTS reachable from[P ℄ as a directed graph with states represented by filled nodes• and distributions by open nodes◦. For any states
and distribution∆ with s α−→ ∆ we draw an edge froms to ∆ labelled withα; and for any distribution∆ and states
in ⌈∆⌉, the support of∆, we draw an edge from∆ to s labelled with∆(s). We often leave out point-distributions—
diverting an incoming edge to the unique state in its support. Sometimes we partially unfold this graph by drawing
the same nodes multiple times; in doing so, all outgoing edges of a given instance of a node are always drawn, but not
necessarily all incoming edges.

Note that for eachP ∈ pCSP the distribution[P ℄ has finite support. Moreover, our pLTS isfinitely branchingin
the sense that for each states ∈ sCSP there are only finitely many pairs(α,∆) ∈ Actτ × D1(sCSP)) with s α−→ ∆.
In spite of[P ℄’s finite support, and the finite branching of our pLTS, it is possible for there to be infinitely many states
reachable from[P ℄; when there are only finitely many, thenP is said to be finitary [5].

Definition 2.2 A subdistribution∆∈D(S) in a pLTS〈S,L,→〉 is finitary if only finitely many states are reachable
from∆; apCSP expressionP is finitary if [P ℄ is.
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3 A novel approach to weak derivations

In this section we develop a new definition of what it means fora recursive process to evolve by silent activity into
another process; it allows the simulation and failure-simulation preorders of [2] to be adapted to characterise the testing
preorders for at least finitary probabilistic processes.

Recall for example the processQ1 defined in the introduction. It turns out that in our testing framework this
process is indistinguishable froma: both processes can do nothing else than ana-action, possibly after some internal
moves, and in both cases the probability that the process will never do thea-action is 0. In [4, 2], where we did not
deal with recursive processes likeQ1, we defined a weak transition relationâ=⇒ in such a way thatP â

=⇒ iff there is
a finite number ofτ -moves after which the entire distribution[P ℄ will have done ana-action. Lifting this definition
verbatim to a setting with recursion would create a difference betweena andQ1, for only the former admits such a
weak transition â

=⇒. The purpose of this section is to propose a new definition of weak transitions, with which we can
capture the intuition that the processQ1 can perform the actiona with probability1, provided it is allowed to run for
an unbounded amount of time.

We construct our generalised definition of weak move by revising what it means for a probabilistic process to
execute an indefinite sequence of (internal)τ moves. The key technical innovation is to change the focus from distri-
butions tosubdistributionsthat enable us to express divergence very conveniently.2

First some relatively standard terminology. For any subsetX of D(S), with S a set, letlX , theconvex closureof
X , be the smallest convex set containingX . So it satisfies:

(i) X ⊆ lX

(ii) ∆ ∈ lX if and only if∆ =
∑

i∈I

pi ·∆i, where∆i ∈ X andpi ∈ [0, 1], for some index setI such that
∑

i∈I

pi = 1.

In caseS is a finite set, it makes no difference whether we restrictI to being finite or not; in fact, index sets of size 2
will suffice. In fact, requiringI to be finite is equivalent to defining convexity of a setY by∆,Θ ∈ Y ⇒ ∆p⊕ Θ ∈ Y
for anyp ∈ [0, 1]. However, in generalthere is a difference:

Example 3.1 LetS = {si | i ∈ N}. Thenl{si | i ∈ N} consists of all total distributions whose support is included in
S. However, with a definition of convex closure that requires only binary interpolations of distributions to be included,
l{si | i ∈ N} would merely consist of all such distributions with finite support. 2

Convex closure is a closure operator in the standard sense, in that it satisfies

• X ⊆ lX

• X ⊆ Y implieslX ⊆ lY

• llX = lX .

We say a setX is convexif lX = X . Furthermore, we say that a relationR ⊆ Y × D(S) is convex whenever the set
{∆ | y R ∆} is convex for everyy in Y , andlR denotes the smallest convex relation containingR.

3.1 Lifted relations

In a pLTS actions are only performed by states, in that actions are given by relations from states to distributions. But
pCSP processes in general correspond to distributions over states, so in order to define what it means for a process
to perform an action, we need tolift these relations so that they also apply to distributions. Infact we will find it
convenient to lift them to subdistributions.

Definition 3.2 (Lifting) Let 〈S,L,→〉 be a pLTS andR ⊆ S × D(S) be a relation from states to subdistributions.
ThenR ⊆ D(S)× D(S) is the smallest relation that satisfies:

(1) s R Θ impliess R Θ, and

(2) (Linearity)∆i R Θi for i∈ I implies(
∑

i∈I pi ·∆i) R (
∑

i∈I pi ·Θi) for anypi ∈[0, 1] (i∈ I) with
∑

i∈I pi≤1.

2Subdistributions’ nice properties with respect to divergence are due to their being equivalent to the discrete probabilistic powerdomain over a
flat domain [11].
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Remark 3.3 ForR1,R2 ⊆ S × D(S), if R1 ⊆ R2 thenR1 ⊆ R2.

Remark 3.4 By constructionR is convex. Moreover, becauses(lR)Θ implies s R Θ we haveR=lR, which
means that when considering a lifted relation we can withoutloss of generality assume the original relation to have
been convex. In fact whenR is indeed convex, we have thats R Θ ands R Θ are equivalent.

An application of this notion is when the relation isα−→ for α ∈ Actτ ; in that case we also writeα−→ for α−→. Thus,
as source of a relationα−→ we now also allow distributions, and even subdistributions. A subtlety of this approach is
that for any actionα, we have

ε α−→ ε (1)

simply by takingI = ∅ or
∑

i∈I pi = 0 in Definition 3.2. That will turn out to makeε especially useful for modelling
the “chaotic” aspects of divergence, in particular that in the must-case a divergent process canmimic any other.

Definition 3.2 is very similar to our previous definition in [2], although there it applied only to (full) distributions:

Lemma 3.5 ∆ R Θ if and only if

(i) ∆ =
∑

i∈I pi ·si, whereI is an index set and
∑

i∈I pi ≤ 1,

(ii) For eachi ∈ I there is a subdistributionΘi such thatsi R Θi ,

(iii) Θ =
∑

i∈I pi ·Θi.

Proof: Straightforward. 2

An important point here is that a single state can be split into several pieces: that is, the decomposition of∆ into
∑

i∈I pi ·si is not unique. One important property of this lifting operation is the following:

Lemma 3.6 Suppose∆ R Θ, whereR is any relation inS × D(S). Then

(i) |∆| ≥ |Θ|.

(ii) If R is a relation inS × D1(S) then|∆| = |Θ|.

Proof: This follows immediately from the characterisation in Lemma 3.5. 2

So for example ifε R Θ then0 = |ε| ≥ |Θ|, whenceΘ is alsoε.

Remark 3.7 From Lemma 3.5 it also follows that lifting enjoys the following two properties:

(i) (Scaling) If∆ R Θ, p∈R and|p ·∆| ≤ 1 thenp ·∆ R p ·Θ.

(ii) (Additivity) If ∆i R Θi for i∈ I and|
∑

i∈I ∆i| ≤ 1 then(
∑

i∈I ∆i) R (
∑

i∈I Θi).

In fact, we could have presented Definition 3.2 using scalingand additivity instead of linearity.

The lifting operation has yet another characterisation, this time in terms ofchoice functions.

Definition 3.8 Let R ⊆ S × D(S) be a relation from states to subdistributions. Thenf : dom(R) → D(S) is a
choice function forR if s R f(s) for everys∈ dom(R). We writeCh(R) for the set of all choice functions ofR.

Proposition 3.9 SupposeR ⊆ S × D(S) is a convex relation. Then for any∆,Θ∈D(S), ∆ R Θ if and only if
⌈∆⌉ ⊆ dom(R) and there is some choice functionf ∈ Ch(R) such thatΘ = Exp∆(f).

Proof: First suppose⌈∆⌉ ⊆ dom(R) andΘ = Exp∆(f) for some choice functionf ∈ Ch(R), that isΘ =
∑

s∈⌈∆⌉∆(s)·f(s). It now follows from Lemma 3.5 that∆ R Θ sinces R f(s) for eachs ∈ ⌈∆⌉.

Conversely suppose∆ R Θ. Applying Lemma 3.5 we know that

(i) ∆ =
∑

i∈I pi ·si, for some index setI, with
∑

i∈I pi ≤ 1

(ii) Θ =
∑

i∈I pi ·Θi for someΘi satisfyingsi R Θi.

First of all, this implies that⌈∆⌉ ⊆ dom(R). Now define the functionf : dom(R) → D(S) as follows:
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• if s ∈ ⌈∆⌉ thenf(s) =
∑

{ i∈I | si=s }

pi
∆(s)

·Θi;

• otherwise,f(s) = Θ′ for anyΘ′ with s R Θ′;

Note that∆(s) =
∑

{ i∈I | si=s }
pi and therefore by convexitys R f(s); sof is a choice function forR. Moreover,

a simple calculation shows that Exp∆(f) =
∑

i∈I pi ·Θi, which by (ii) above isΘ. 2

An important further property is the following:

Proposition 3.10 If (
∑

i∈I

pi ·∆i) R Θ thenΘ=
∑

i∈I pi ·Θi for some subdistributionsΘi such that∆iRΘi for i∈ I.

Proof: Let ∆ R Θ where∆ =
∑

i∈I pi ·∆i. By Proposition 3.9, using thatR=lR, there is a choice function
f ∈Ch(lR) such thatΘ = Exp∆(f). TakeΘi := Exp∆i

(f) for i∈ I. Using that⌈∆i⌉ ⊆ ⌈∆⌉, Proposition 3.9
yields∆i R Θi for i∈ I. Finally,

∑

i∈I

pi ·Θi =
∑

i∈I

pi ·
∑

s∈⌈∆i⌉

∆i(s)·f(s) =
∑

s∈⌈∆⌉

∑

i∈I

pi ·∆i(s)·f(s) =
∑

s∈⌈∆⌉

∆(s)·f(s) = Exp∆(f) = Θ. 2

The converse to the above is not true in general: from∆ R (
∑

i∈I pi ·Θi) it does not follow that∆ can corre-

spondingly be decomposed. For example, we havea.(b 1
2
⊕ c) a−→ 1

2 ·b +
1
2 ·c, yet a.(b 1

2
⊕ c) cannot be written as

1
2 ·∆1 +

1
2 ·∆2 such that∆1

a−→ b and∆2
a−→ c.

A simplified form of Proposition 3.10 holds for unlifted relations, provided they are convex:

Corollary 3.11 If (
∑

i∈I pi ·si) R Θ andR is convex, thenΘ =
∑

i∈I pi ·Θi for subdistributionsΘi with si R Θi
for i∈ I.

Proof: Take∆i to besi in Proposition 3.10, whenceΘ =
∑

i∈I pi ·Θi for some subdistributionsΘi such thatsi R Θi
for i∈ I. BecauseR is convex, we then havesi R Θi from Remark 3.4. 2

Lifting satisfies the following monadic property with respect to composition.

Lemma 3.12 Let R1,R2 ⊆ S × D(S). Then the forward relational compositionR1;R2 is equal to the lifted com-

positionR1;R2.

Proof: Suppose∆ R1;R2 Φ. Then there is someΘ such that∆ R1 Θ R2 Φ. By Lemma 3.5 we have the
decomposition∆ =

∑

i∈I pi ·si andΘ =
∑

i∈I pi ·Θi with si R1 Θi for eachi∈ I. By Proposition 3.10 we obtain

Φ =
∑

i∈I pi ·Φi with Θi R2 Φi. It follows that si R1;R2 Φi, and thus∆ R1;R2 Φ. So we have shown that

R1;R2 ⊆ R1;R2. The other direction can be proved similarly. 2

3.2 Weakderivations

We now formally define a notion of weak derivatives.

Definition 3.13 (Weakτ moves to derivatives)Suppose we have subdistributions∆, ∆k, ∆→
k ,∆

×
k , for k ≥ 0,

with the following properties:

∆ = ∆0 = ∆→
0 + ∆×

0 — The× component stops “here” (even if it could have moved),
∆→

0
τ−→ ∆1 = ∆→

1 + ∆×
1 — but the→ component moves on.

...
...

∆→
k

τ−→ ∆k+1 = ∆→
k+1 + ∆×

k+1
...

In total: ∆′ =
∑∞

k=0 ∆
×
k — Finally, all the stopped-somewhere components are summed.

The τ−→ moves above with subdistribution sources are lifted in the sense of the previous section.
Thenwe call∆′ :=

∑∞
k=0 ∆

×
k a weak derivativeof ∆, and write∆ =⇒ ∆′ to mean that∆ can make aweakτ

moveto its derivative∆′.
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There is always at least one derivative of any distribution (the distribution itself) and there can be many. Using
Lemma 3.6 it is easily checked that Definition 3.13 is well-defined in that derivatives do not sum to more than one.

Example 3.14 Let τ−→⋆ denote the reflexive transitive closure of the relationτ−→ over subdistributions. By the judi-
cious use of the empty distributionε in the definition of=⇒, and property (1) above, it is easy to see that

∆ τ−→⋆ Θ implies ∆ =⇒ Θ

because∆ τ−→⋆ Θ means the existence of a finite sequence of subdistributions∆ = ∆0, ∆1, . . . ,∆k = Θ, k ≥ 0
for which we can write

∆ = ∆0 + ε
∆0

τ−→ ∆1 + ε
...

...
∆k−1

τ−→ ε + ∆k

ε τ−→ ε + ε
...

In total: Θ .

This implies that=⇒ is indeed a generalisation of the standard notion for non-probabilistic transition systems of
performing an indefinite sequence of internalτ moves. 2

In [4, 2] we wrotes τ̂−→ ∆ if either s τ−→ ∆ or ∆ = s. Hence the lifted relationτ̂−→ satisfies∆ τ̂−→ ∆′ iff there are
∆→, ∆× and∆1 such that∆ = ∆→ +∆×, ∆→ τ−→ ∆1 and∆′ = ∆1 +∆×. Clearly,∆ τ̂−→ ∆′ implies∆ =⇒ ∆′.
With a little effort, one can also show that∆ τ̂−→⋆ ∆′ implies∆ =⇒ ∆′. In fact, this follows directly from the
reflexivity and transitivity of=⇒; the latter will be established in Theorem 3.22.

Conversely, in [4, 2] we dealt with recursion-freepCSP processesP , and these have the property that in a sequence
as in Definition 3.13 with∆ = [P ℄ we necessarily have that∆k = ε for somek ≥ 0. On such processes we have that
the relations τ̂−→⋆ and=⇒ coincide.

In Definition 3.13 we can see that∆′ = ε iff ∆×
k = ε for all k. Thus∆ =⇒ ε iff there is an infinite sequence of

subdistributions∆k such that∆ = ∆0 and∆k
τ−→ ∆k+1, that is∆ can give rise to a divergent computation.

Example 3.15 Consider the processrecx. x, which recall is a state, and for which we haverecx. x τ−→ [recx. x℄ and
thus[recx. x℄ τ−→ [recx. x℄. Then[recx. x℄ =⇒ ε . 2

Example 3.16 Recall the processQ1 = recx. (τ.x 1
2
⊕ a) from the introduction. We have[Q1℄ =⇒ [a℄ because[Q1℄ = [Q1℄+ ε[Q1℄ τ−→
1

2
·[τ.Q1℄+ 1

2
·[a℄

1

2
·[τ.Q1℄ τ−→

1

2
·[Q1℄+ ε

1

2
·[Q1℄ τ−→

1

22
·[τ.Q1℄+ 1

22
·[a℄

. . .
1

2k
·[Q1℄ τ−→

1

2k+1
·[τ.Q1℄+ 1

2k+1
·[a℄

. . .

which means that by definition we have [Q1℄ =⇒ ε+
∑

k≥1

1

2k
·[a℄

thus generating the weak derivative[a℄ as claimed. 2
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Example 3.17 Consider the (infinite) collection of statessk and probabilitiespk for k ≥ 2 such that

sk
τ−→ [a℄pk

⊕ sk+1 ,

where we choosepk so that starting from anysk the probability of eventually taking a left-hand branch, and so
reaching[a℄ ultimately, is just1

k
in total. Thuspk must satisfy1

k
= pk + (1−pk)

1
k+1 , whence by arithmetic we have

thatpk := 1
k2

will do. Therefore in particulars2 =⇒ 1
2[a℄, with the remaining12 lost in divergence. 2

Our final example demonstrates that derivatives of (interpretations of)pCSP processes may have infinite support, and
hence that we can have[P ℄ =⇒ ∆′ such that there is noP ′ ∈ pCSP with [P ′℄ = ∆′.

Example 3.18 Let P denote the processrecx. b 1
2
⊕ (x |∅ 0). Then we have the derivation:[P ℄ = [P ℄+ ε[P ℄ τ−→
1

2
·[P |∅ 01℄+ 1

2
·[b℄

1

2
·[P |∅ 01℄ τ−→

1

22
·[P |∅ 02℄+ 1

22
·[b |∅ 01℄

. . . . . .
1

2k
·[P |∅ 0k℄ τ−→

1

2k+1
·[P |∅ 0k+1℄+ 1

2k+1
·[b |∅ 0k℄

. . .

where0k representsk instances of0 running in parallel. This implies that[P ℄ =⇒ Θ

where

Θ =
∑

k≥0

1

2k+1
·[b |∅ 0k℄

a distribution with infinite support. 2

3.3 Properties of weak derivations

Here we develop some properties of the weak move relation=⇒ which will be important later on in the paper. We
wish to use weak derivation as much as possible in the same wayas the lifted action relationsα−→, and therefore
we start with showing that=⇒ enjoys two of the most crucial properties ofα−→: linearity of Definition 3.2 and the
decomposition property of Proposition 3.10. To this end, wefirst establish that weak derivations do not increase the
mass of distributions, and are preserved under scaling.

Lemma 3.19 For any subdistributions∆, Θ, Γ, Λ, Π we have

(i) If ∆ =⇒ Θ then|∆| ≥ |Θ|.

(ii) If ∆ =⇒ Θ andp ∈ R such that|p ·∆| ≤ 1, thenp ·∆ =⇒ p ·Θ.

(iii) If Γ + Λ =⇒ Π thenΠ = ΠΓ +ΠΛ with Γ =⇒ ΠΓ andΛ =⇒ ΠΛ.

Proof: By definition∆ =⇒ Θ means that some∆k,∆
×
k ,∆

→
k exist for allk ≥ 0 such that

∆ = ∆0, ∆k = ∆×
k +∆→

k , ∆→
k

τ−→ ∆k+1, Θ =

∞
∑

k=0

∆×
k .

A simple inductive proof shows that

|∆| = |∆→
i |+

∑

k≤i

|∆×
k | for anyi ≥ 0. (2)
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The sequence{
∑

k≤i |∆
×
k |}

∞
i=0 is nondecreasing and by (2) each element of the sequence is not greater than|∆|.

Therefore, the limit of this sequence is bounded by|∆|. That is,

|∆| ≥ lim
i→∞

∑

k≤i

|∆×
k | = |Θ|.

Now supposep ∈ R such that|p ·∆| ≤ 1. From Remark 3.7(i) it follows that

p ·∆ = p ·∆0, p ·∆k = p ·∆→
k + p ·∆×

k , p ·∆→
k

τ−→ p ·∆k+1, p ·Θ =
∑

k

p ·∆×
k .

Hence Definition 3.13 yieldsp ·∆ =⇒ p ·Θ.
Next supposeΓ + Λ =⇒ Π. By Definition 3.13 there are subdistributionsΠk,Π→

k ,Π
×
k for k ∈ N such that

Γ + Λ = Π0, Πk = Π→
k +Π×

k , Π→
k

τ−→ Πk+1, Π =
∑

k

Π×
k .

For anys ∈ S, define
Γ→
0 (s) := min(Γ(s),Π→

0 (s))
Γ×
0 (s) := Γ(s)− Γ→

0 (s)
Λ×
0 (s) := min(Λ(s),Π×

0 (s))
Λ→
0 (s) := Λ(s)− Λ×

0 (s) ,

(3)

and check thatΓ→
0 + Γ×

0 = Γ andΛ→
0 + Λ×

0 = Λ. To show thatΛ→
0 + Γ→

0 = Π→
0 andΛ×

0 + Γ×
0 = Π×

0 we fix a
states and distinguish two cases: either (a)Π→

0 (s) ≥ Γ(s) or (b)Π→
0 (s) < Γ(s). In Case (a) we haveΠ×

0 (s) ≤ Λ(s)
and the definitions (3) simplify toΓ→

0 (s) = Γ(s), Γ×
0 (s) = 0, Λ×

0 (s) = Π×
0 (s) andΛ→

0 (s) = Λ(s)−Π×
0 (s), whence

immediatelyΓ→
0 (s) + Λ→

0 (s) = Π→
0 (s) andΓ×

0 (s) + Λ×
0 (s) = Π×

0 (s). Case (b) is similar.
SinceΛ→

0 +Γ→
0

τ−→ Π1, by Proposition 3.10 we findΓ1,Λ1 with Γ→
0

τ−→ Γ1 andΛ→
0

τ−→ Λ1 andΠ1 = Γ1+Λ1.
Being now in the same position withΠ1 as we were withΠ0, we can continue this procedure to findΛk, Γk, Λ→

k , Γ→
k ,

Λ×
k andΓ×

k with
Γ = Γ0, Γk = Γ→

k + Γ×
k , Γ→

k
τ−→ Γk+1,

Λ = Λ0, Λk = Λ→
k + Λ×

k , Λ→
k

τ−→ Λk+1,

Γk + Λk = Πk, Γ→
k + Λ→

k = Π→
k , Γ×

k + Λ×
k = Π×

k .

LetΠΓ :=
∑

k Γ
×
k andΠΛ :=

∑

k Λ
×
k . ThenΠ = ΠΓ +ΠΛ and Definition 3.13 yieldsΓ =⇒ ΠΓ andΛ =⇒ ΠΛ. 2

Together, Lemma 3.19(ii) and (iii) imply the binary counterpart of the decomposition property of Proposition 3.10.
We now generalise this result to infinite (but still countable) decomposition, and also establish linearity.

Theorem 3.20 (Linearity and decomposition property) Let pi ∈[0, 1] for i∈ I with
∑

i∈I pi ≤ 1. Then

(i) If ∆i =⇒ Θi for all i∈ I then
∑

i∈I pi ·∆i =⇒
∑

i∈I pi ·Θi.

(ii) If
∑

i∈I pi ·∆i =⇒ Θ thenΘ =
∑

i∈I pi ·Θi for subdistributionsΘi such that∆i =⇒ Θi for all i∈ I.

Proof: (i) Suppose∆i =⇒ Θi for all i ∈ I. By Definition 3.13 there are subdistributions∆ik,∆
→
ik ,∆

×
ik such that

∆i = ∆i0, ∆ik = ∆→
ik +∆×

ik, ∆→
ik

τ−→ ∆i(k+1), Θi =
∑

k

∆×
ik.

Therefore, we have that
∑

i∈I pi ·∆i =
∑

i∈I pi ·∆i0,
∑

i∈I pi ·∆ik =
∑

i∈I pi ·∆
→
ik +

∑

i∈I pi ·∆
×
ik,

∑

i∈I pi ·∆
→
ik

τ−→
∑

i∈I pi ·∆i(k+1) by Clause (2) of Definition 3.2, and
∑

i∈I pi ·Θi =
∑

i∈I pi ·
∑

k∆
×
ik =

∑

k(
∑

i∈I pi ·∆
×
ik). By Definition 3.13 we obtain

∑

i∈I pi ·∆i =⇒
∑

i∈I pi ·Θi.

(ii) In the light of Lemma 3.19(ii) it suffices to show that

if
∑∞
i=0 ∆i =⇒ Θ thenΘ =

∑∞
i=0 Θi for subdistributionsΘi such that∆i =⇒ Θi for all i ≥ 0.
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Since
∑∞
i=0 ∆i = ∆0 +

∑

i≥1 ∆i and
∑∞
i=0 ∆i =⇒ Θ, by Lemma 3.19(iii) there areΘ0,Θ

≥
1 such that

∆0 =⇒ Θ0,
∑

i≥1

∆i =⇒ Θ≥
1 , Θ = Θ0 +Θ≥

1 .

Using Lemma 3.19(iii) once more, we haveΘ1,Θ
≥
2 such that

∆1 =⇒ Θ1,
∑

i≥2

∆i =⇒ Θ≥
2 , Θ≥

1 = Θ1 +Θ≥
2 ,

thus in combinationΘ = Θ0 +Θ1 +Θ≥
2 . Continuing this process we have that

∆i =⇒ Θi,
∑

j≥i+1

∆j =⇒ Θ≥
i+1, Θ =

i
∑

j=0

Θj + Θ≥
i+1

for all i ≥ 0. Lemma 3.19(i) ensures that|
∑

j≥i+1 ∆j | ≥ |Θ≥
i+1| for all i ≥ 0. But since

∑∞
i=0 ∆i is a

subdistribution, we know that the tail sum
∑

j≥i+1 ∆j converges toε wheni approaches∞, and therefore that

limi→∞ Θ≥
i = ε. Thus by taking that limit we conclude thatΘ =

∑∞
i=0 Θi . 2

With Theorem 3.20, the relation=⇒ ⊆ D(S) × D(S) can be obtained as the lifting of a relation=⇒S from S to
D(S), which is defined by writings =⇒S Θ just whens =⇒ Θ.

Proposition 3.21 (=⇒S) = (=⇒).

Proof: That∆ =⇒S Θ implies∆ =⇒ Θ is a simple application of Part (i) of Theorem 3.20. For the other direction,
suppose∆ =⇒ Θ: given that∆ =

∑

s∈⌈∆⌉∆(s)·s, Part (ii) of the same theorem enables us to decomposeΘ into
∑

s∈⌈∆⌉∆(s)·Θs wheres =⇒ Θs for eachs in ⌈∆⌉. But the latter actually means thats =⇒S Θs, and so by
definition this implies∆ =⇒S Θ. 2

It is immediate that the relation=⇒ is convex because of its being a lifting.

We proceed with the important properties of reflexivity and transitivity of weak derivations. First note that reflex-
ivity is straightforward; in Definition 3.13 it suffices to take∆→

0 to be the empty distributionε.

Theorem 3.22 (Transitivity of =⇒) If ∆ =⇒ Θ andΘ =⇒ Λ then∆ =⇒ Λ.

Proof: By definition∆ =⇒ Θ means that some∆k,∆
×
k ,∆

→
k exist for allk ≥ 0 such that

∆ = ∆0, ∆k = ∆×
k +∆→

k , ∆→
k

τ−→ ∆k+1, Θ =
∞
∑

k=0

∆×
k . (4)

SinceΘ =
∑∞
k=0 ∆

×
k andΘ =⇒ Λ, by Theorem 3.20(ii) there areΛk for k ≥ 0 such thatΛ =

∑∞
k=0 Λk and

∆×
k =⇒ Λk for all k ≥ 0. For eachk ≥ 0, we know that∆×

k =⇒ Λk gives us some∆kl, ∆
×
kl,∆

→
kl for l ≥ 0 such that

∆×
k = ∆k0, ∆kl = ∆×

kl +∆→
kl , ∆→

kl
τ−→ ∆k,l+1 Λk =

∑

l≥0

∆×
kl. (5)

Therefore we can put all this together with

Λ =

∞
∑

k=0

Λk =
∑

k,l≥0

∆×
kl =

∑

i≥0





∑

k,l|k+l=i

∆×
kl



 , (6)

where the last step is a straightforward diagonalisation.
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Now from the decompositions above we re-compose an alternative trajectory of∆′
i’s to take∆ via =⇒ to Λ

directly. Define

∆′
i = ∆′×

i +∆′→
i , ∆′×

i =
∑

k,l|k+l=i

∆×
kl, ∆′→

i = (
∑

k,l|k+l=i

∆→
kl ) + ∆→

i , (7)

so that from (6) we have immediately that
Λ =

∑

i≥0

∆′×
i . (8)

We now show that

(i) ∆ = ∆′
0

(ii) ∆′→
i

τ−→ ∆′
i+1

from which, with (8), we will have∆ =⇒ Λ as required. For (i) we observe that

∆
= ∆0 (4)
= ∆×

0 +∆→
0 (4)

= ∆00 +∆→
0 (5)

= ∆×
00 +∆→

00 +∆→
0 (5)

= (
∑

k,l|k+l=0 ∆
×
kl) + (

∑

k,l|k+l=0 ∆
→
kl ) + ∆→

0 index arithmetic

= ∆′×
0 +∆′→

0 (7)
= ∆′

0 . (7)

For (ii) we observe that

∆′→
i

= (
∑

k,l|k+l=i∆
→
kl ) + ∆→

i (7)
τ−→ (

∑

k,l|k+l=i∆k,l+1) + ∆i+1 (4), (5),Remark 3.7(ii)

= (
∑

k,l|k+l=i(∆
×
k,l+1 +∆→

k,l+1)) + ∆×
i+1 +∆→

i+1 (4), (5)

= (
∑

k,l|k+l=i∆
×
k,l+1) + ∆×

i+1 + (
∑

k,l|k+l=i∆
→
k,l+1) + ∆→

i+1 rearrange

= (
∑

k,l|k+l=i∆
×
k,l+1) + ∆i+1,0 + (

∑

k,l|k+l=i∆
→
k,l+1) + ∆→

i+1 (5)

= (
∑

k,l|k+l=i∆
×
k,l+1) + ∆×

i+1,0 +∆→
i+1,0 + (

∑

k,l|k+l=i∆
→
k,l+1) + ∆→

i+1 (5)

= (
∑

k,l|k+l=i+1 ∆
×
kl) + (

∑

k,l|k+l=i+1 ∆
→
kl ) + ∆→

i+1 index arithmetic

= ∆′×
i+1 +∆′→

i+1 (7)
= ∆′

i+1 , (7)

which concludes the proof. 2

Finally, we need a property that is the converse of transitivity: if one executes a given weak derivation partly, by
stopping more often and moving on less often, one makes another weak transition that can be regarded as an initial
segment of the given one. We need the property that after executing such an initial segment, it is still possible to
complete the given derivation.

Definition 3.23 A weak derivationΦ =⇒ Γ is called aninitial segmentof a weak derivationΦ =⇒ Ψ if for k ≥ 0
there areΓk,Γ→

k ,Γ
×
k ,Ψk,Ψ

→
k ,Ψ

×
k ∈ D(S) such thatΓ0 = Ψ0 = Φ and

Γk = Γ→
k + Γ×

k Ψk = Ψ→
k +Ψ×

k Γ→
k ≤ Ψ→

k

Γ→
k

τ−→ Γk+1 Ψ→
k

τ−→ Ψk+1 Γk ≤ Ψk
Γ =

∑∞
i=0 Γ

×
k Ψ =

∑∞
i=0 Ψ

×
k (Ψ→

k − Γ→
k ) τ−→ (Ψk+1 − Γk+1).
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Proposition 3.24 If Φ =⇒ Γ is an initial segment ofΦ =⇒ Ψ, thenΓ =⇒ Ψ. 2

Proof: For subdistribution∆,Θ ∈ D(S) define∆∩Θ ∈ D(S) by∆∩Θ(s) := min(∆(s),Θ(s)) and∆−Θ ∈ D(S)
by∆ −Θ(s) := min(∆(s) − Θ(s), 0). So∆− Θ = ∆− (∆ ∩Θ). Observe that in caseΘ ≤ ∆, and only then, we
have that(∆−Θ) + Θ = ∆.

Let Γk,Γ→
k ,Γ

×
k ,Ψk,Ψ

→
k ,Ψ

×
k ∈ D(S) be as in Definition 3.23. By induction onk ≥ 0 we define∆ki, ∆→

ki and
∆×
ki, for 0 ≤ i ≤ k, such that

∆k0 = Γ×
k Ψk =

∑k
i=0 ∆ki + Γ→

k Ψ×
k =

∑k
i=0 ∆

×
ki ∆ki = ∆→

ki +∆×
ki ∆→

ki
τ−→ ∆(k+1)(i+1) .

Induction base:Let∆00 := Γ×
0 = Γ0 −Γ→

0 = Ψ0 −Γ→
0 . This way the first two equations are satisfied fork = 0. All

other statements will be dealt with fully by the induction step.

Induction step:Suppose∆ki for 0 ≤ i ≤ k are already known, andΨk =
∑k

i=0 ∆ki + Γ→
k . With induction oni we

define∆×
ki := ∆ki ∩ (Ψ×

k −
∑i−1
j=0 ∆

×
kj) and establish that

∑i
j=0 ∆

×
kj ≤ Ψ×

k . Namely, writingΘki for
∑i−1

j=0 ∆
×
kj ,

surelyΘk0 = ε ≤ Ψ×
k , and when assuming thatΘki ≤ Ψ×

k , for some0≤i≤k, and defining∆×
ki := ∆ki∩(Ψ

×
k −Θki)

we obtainΘk(i+1) = ∆×
ki+Θki ≤ (Ψ×

k −Θki)+Θki = Ψ×
k . So in particular

∑k
i=0 ∆

×
ki ≤ Ψ×

k . Using thatΓ→
k ≤ Ψ→

k

we find

∆kk = (Ψk − Γ→
k )−

k−1
∑

i=0

∆ki = (Ψ×
k + (Ψ→

k − Γ→
k ))−

k−1
∑

i=0

∆ki ≥ Ψ×
k −

k−1
∑

i=0

∆ki,

hence∆×
kk = ∆kk ∩ (Ψ×

k −
∑k−1

i=0 ∆×
ki) = Ψ×

k −
∑k−1

i=0 ∆ki and thusΨ×
k =

∑k
i=0 ∆ki.

Now define∆→
ki := ∆ki −∆×

ki. This yields∆ki = ∆→
ki +∆×

ki and thereby

Ψ→
k = Ψk −Ψ×

k = (

k
∑

i=0

∆ki + Γ→
k )−

k
∑

i=0

∆×
ki =

k
∑

i=0

∆→
ki + Γ→

k .

Since
∑k
i=0 ∆

→
ki = (Ψ→

k −Γ→
k ) τ−→ (Ψk+1−Γk+1), by Proposition 3.10 we haveΨk+1−Γk+1 =

∑k
i=0 ∆(k+1)(i+1)

for some subdistributions∆(k+1)(i+1) such that∆→
ki

τ−→ ∆(k+1)(i+1) for i = 0, . . . , k. Furthermore, define
∆(k+1)0 := Γ×

k+1 = Γk+1 − Γ→
k+1. It follows that

Ψk+1 =

k
∑

i=0

∆(k+1)(i+1) + Γk+1 =

k+1
∑

i=1

∆(k+1)i + (∆(k+1)0 + Γ→
k+1) =

k+1
∑

i=0

∆(k+1)i + Γ→
k+1.

This ends the inductive definition and proof. Now letΘi :=
∑∞

k=i∆ki, Θ→
i :=

∑∞
k=i∆

→
ki andΘ×

i :=
∑∞

k=i∆
×
ki.

It follows thatΘ0 =
∑∞

k=0 ∆k0 =
∑∞
k=0 Γ

×
k = Γ, Θi = Θ→

i + Θ+
i , and, using Remark 3.7(ii),Θ→

i
τ−→ Θi+1.

Moreover,
∑∞

i=0 Θ
×
i =

∑∞
i=0

∑∞
k=i∆

×
ki =

∑∞
k=0

∑k
i=0 ∆

×
ki =

∑∞
k=0 Ψ

×
k = Ψ. Definition 3.13 yieldsΓ =⇒ Ψ. 2

3.4 Derivations through policies

In Markov Decision Theory [22]policiesare used to determine a run of a process. These are is essentially the same as
theschedulersof [17]. Here we will show that this method agrees with our (weak) derivations.

In Markov Decision Processes (MDPs) [22] transitions are usually unlabelled. To lift the definition of a policy
from MDPs to pLTSs, we need to map pLTSs to MDPs. Here we do thisby considering an MDP to be a pLTS in
which all transitions are labelledτ , and mapping a pLTS to an MDP by leaving out all non-τ transitions. This method
yields the required match between policies and weak derivations. An alternative map from pLTSs to MDPs would be
to simply forget the transition labels. In that case we wouldneed to use a notion of derivation obtained from the one
in Definition 3.13 by dropping the requirement that the transitions∆→

k −→ ∆k+1 are labelledτ .
A policy specifies for each states is a pLTS〈S,Actτ ,→〉 a “way to proceed”. This “way” is a probabilistic

combination of the outgoingτ -transitions ofs, with as a special component in this probabilistic combination the
possibility not to proceed further at all. Ahistory-dependentpolicy makes the way to proceed froms depending on the
way one arrives ats, called ahistoryof s. Here, for the sake of generality, we postulate a setH of histories, equipped
with a functionlast : H → S telling from a given historyh∈H of which statelast(h) a history it is.
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Definition 3.25 A policy for a pLTS〈S,Actτ ,→〉 is a functionP : H → D(S) such that ifP(h) = p ·∆ with
p∈(0, 1] and∆∈D1(S) then there is a transitionlast(h) τ−→ ∆.

A policy P, with P(h) = p.∆, says that when we are in a states = last(h) and our history ish, with probability
p we proceed to the distribution∆, and with probability1−p we remain permanently ins. A policy is static if
instead of taking probabilistic combinations, it specifiesjust one (or none) of the outgoing transitions ofs; that is, in
Definition 3.25 we require that eitherP(h) = ε or P(h) = ∆∈D1(S) with last(h) τ−→ ∆.

We consider several types of policies, depended on the choice ofH . A history-independentpolicy [22] is one that
does not depend on histories of states; takeH = S andlast the identity function. For ahistory-dependentpolicy [22]
takeH = S∗. In MDPs, there is aninitial distribution∆, and ahistoryh of a states is defined as a sequence of states
s0, s1, . . . , sk such thats0 ∈⌈∆⌉ and fori = 1, . . . , k there areΘi ∈D1(S) with si−1

τ−→ Θi andsi ∈⌈Θi⌉. Here
last(h) := sk = s. We defineP∗(h) as the probability that in the run specified byP we initially visit the sequence
of statesh∈H :

P
∗(s) := ∆(s) P

∗(hs) := P
∗(h)·P(h)(s) .

Furthermore, let thelength |h| ∈N of h be given by|s0, s1, . . . , sk| = k. We now formalise therun induced by a
history-dependent policyP from an initial distribution∆ as the weak derivation∆ =⇒ ∆′, where fork ∈N the∆k,
∆×
k and∆→

k of Definition 3.13 are given by

∆k(s) :=
∑

{h|last(h)=s∧|h|=k}

P
∗(h) ∆→

k (s) :=
∑

{h|last(h)=s∧|h|=k}

P
∗(h)· |P(h)| ∆×

k (s) :=
∑

{h|last(h)=s∧|h|=k}

P
∗(h)·(1−|P(h)|) .

Note that∆→
k :=

∑

s∈S

∑

{h|last(h)=s∧|h|=k} P∗(h))· |P(h)| ·s =
∑

{h||h|=k} P∗(h)·|P(h)| · last(h).

Furthermore, by Definition 3.25, for allh∈H we havelast(h) τ−→ p−1 ·P(h) with p = |P(h)|, and thus

|P(h)| · last(h) τ−→ P(h) =
∑

s∈S

P(h)(s)·s .

Hence, Lemma 3.5 yields

∆→
k

τ−→
∑

{h||h|=k}

P
∗(h)·

∑

s∈S

P(h)(s)·s =
∑

{hs||h|=k}

P
∗(hs)·s =

∑

s∈S

∑

{h|last(h)=s∧|h|=k+1}

P
∗(h)·s =

∑

s∈S

∆k+1(s)·s = ∆k+1 .

Since also∆0 = ∆ and∆k = ∆×
k +∆→

k , this yields a weak derivation indeed. We denote it by∆
P
=⇒ ∆′.

So each history-dependent policy induces a weak derivation. We will complete the promised correspondence
between policies and derivations by showing that, conversely, each weak derivation can be induced by a history-
dependent policy. In fact we obtain a stronger result: each weak derivation is already induced by a special kind
of history-dependent policy, which we call atime-dependent policy. If follows that the extra generality of history-
dependent over time-dependent policies is not needed for the purpose of specifying runs of pLTSs.

A time-dependent policy is obtained by takingH = S ×N with last(s, k) = s. Here(s, k) merely says that one
has reached states after exactlyk transitions.3 Obviously, each time-dependent policyP can be seen as special kind
of history-dependent policyPhd, defined byPhd(h) := P(last(h), |h|).

Definition 3.26 Given a time-dependent policyP, we formalise therun it induces from an initial distribution∆ as
the weak derivation∆ =⇒ ∆′, where fork ∈N the∆k, ∆×

k and∆→
k of Definition 3.13 are given by

∆0 := ∆ ∆×
k (s) := ∆k(s)·(1−|P(s, k)|) ∆→

k (s) := ∆k(s)· |P(s, k)| ∆k+1 :=
∑

s∈⌈∆⌉k

∆k(s)·P(s, k).

Since for allk ∈N we have∆k = ∆×
k + ∆→

k and∆→
k

τ−→ ∆k+1, this specifies weak derivation indeed. Again,
we denote it by∆ P

=⇒ ∆′. We now show that this induced weak derivation agrees with the one defined for history-
dependent policies.

Proposition 3.27 If P is a time-dependent policy, then∆ P
=⇒ ∆′ iff ∆ P

hd

==⇒ ∆′.

3As our formalism doesn’t model time explicitly, the number of transitions performed so far could serve as a crude approximation of time.
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Proof: It suffices to derive the four defining equations of Definition3.26 from the definition of∆ P
hd

==⇒ ∆′. For the
first three this is immediate, using thatPhd(h) = P(last(h), |h|). Furthermore, for allk∈N andt∈S,

∑

s∈⌈∆⌉k
∆k(s)·P(s, k)(t) =

∑

s∈S

(

∑

{h|last(h)=s∧|h|=k} Phd∗(h)
)

·P(s, k)(t)

=
∑

s∈S

∑

{h|last(h)=s∧|h|=k}

(

Phd∗(h)·P(last(h), |h|)(t)
)

=
∑

{h||h|=k}(P
hd∗(h)·Phd(h)(t))

=
∑

{h||h|=k} Phd∗(ht)

=
∑

{h|last(h)=t∧|h|=k+1} Phd∗(h)

= ∆k+1(t) . 2

Theorem 3.28 For every weak derivation∆ =⇒ ∆′ there exists a time-dependent policyP such that∆ P
=⇒ ∆′.

Proof: Let∆ =⇒ ∆′. By Definition 3.13 there are∆k, ∆×
k and∆→

k for all k ≥ 0 such that

∆ = ∆0, ∆k = ∆×
k +∆→

k , ∆→
k

τ−→ ∆k+1, Θ =

∞
∑

k=0

∆×
k .

By Proposition 3.10,∆→
k

τ−→ ∆k=1 implies that there are distributions∆s
k+1 ∈D1(S) for s∈⌈∆→

k ⌉, such that

s τ−→ ∆s
k+1 for eachs ∈ ⌈∆→

k ⌉ and ∆k+1 =
∑

s∈⌈∆→
k ⌉∆

→
k (s)·∆s

k+1 .

Now takeP(s, k) :=
∆→

k (s)
∆k(s)

·∆s
k+1. Then all four equations of Definition 3.26 are satisfied, so∆

P
=⇒ ∆′. 2

4 Testing probabilistic processes

This section is divided into three. Applying a test to a process results in a nondeterministic, but possibly probabilistic,
computation structure. The main conceptual issue is how to associate outcomes with these nondeterministic structures.
In the first subsection we outline a general approach in whichintuitively the nondeterministic choices are resolved
implicitly in a dynamic manner. In the second section we describe an alternative approach in which we explicitly
associate with a nondeterministic structure a set of deterministic computations, each of which determines a possible
outcome. In the final section we show that although these approaches are formally quite different they lead to exactly
the same testing preorders.

4.1 Applying a test to a process

We now retrace our earlier approach [4, 2] to the testing of probabilistic processes. Atest is simply a process in the
languagepCSP, except that it may in addition use specialsuccessactions for reporting outcomes: these are drawn
from a setΩ of fresh actions not already inActτ . We refer to the augmented language aspCSPΩ. Formally a testT is
some process from that language, and to apply testT to processP we form the processT |Act P in which all visible
actions ofP must synchronise withT . The resulting composition is a process whose only possibleactions areτ and
the elements ofΩ. We will define the resultA (T, P ) of applying the testT to the processP to be a set of testing
outcomes, exactly one of which results from each resolutionof the choices inT |Act P . Eachtesting outcomeis an
Ω-tuple of real numbers in the interval [0,1], i.e. a functiono : Ω → [0, 1], and itsω-componento(ω), for ω ∈ Ω,
gives the probability that the resolution in question will reach anω-success state, one in which the success actionω is
possible.

There are several ways to fill in details in this approach. Following [5], we first of all distinguish betweenvector-
basedtesting, in which one allows countably many success actions, andscalar testing, in which there is only one
success action and consequently outcomes are scalars rather than vectors. Scalar testing is employed in [6, 8, 25, 4],
and vector-based testing in [24]. As in [2], our prime interest here is in scalar testing, but we use vector-based testing
as an indispensable tool for establishing our results. To this end we employ a result from [5] saying that for finitary
probabilistic processes, scalar and vector-based testinggive rise to the very same testing preorders.

17



Secondly, following [5, 2] we distinguish betweenstate-basedandaction-basedtesting. The former is what we
described above: success actions are merely used as a methodto define success states; a method that bypasses the
need to formally introduce state predicates in the operational semantics of our language. In action-based testing, on
the other hand, it is the actual execution of a success actionthat constitutes success, ando(ω) gives the probability that
the resolution in question will perform the actionω. State-based testing is employed in [6, 8, 25, 4], and action-based
testing in [24, 5]. In [2] it has been shown that for finite probabilistic processes (obtained by dropping the recursion
construct frompCSP) the state-based and action-based testing preorders coincide. This allowed us to use action-based
testing to obtain results about state-based testing. However, [2] also provides an example showing that for the language
considered in the present paper, the two approaches are different, in particular that state-based must testing is more
discriminating than action-based must testing. The same example also applies to the non-probabilistic world and, for
finitely branching processes, it is the state-based must-testing preorder that coincides with the CSP refinement preorder
based on failures and divergences [1, 10, 21]. It is in part for this reason that we employ state-based testing in the
current paper.

Whereas state-based scalar testing as well as action-basedscalar- and vector-based testing have been used pre-
viously in the literature, our use of state-based vector-based testing is new. Since we use this concept merely as a
method for proving results about state-based scalar testing, we are not concerned about the generality of our tests for
conceptual reasons; any notion of state-based vector-based testing that works in our proofs would be acceptable, as
long as the special case of state-based scalar testing agrees with the definitions found in the literature. Here we restrict
attention to tests in which no state is simultaneously anω-success state for different values ofω. In fact, we can go
further by ruling out all tests in which from one success state one can reach another one, with a different success value.

Definition 4.1 An Ω-test is a closedpCSP expressionT , but allowing the enriched alphabetActτ ∪ Ω of actions
instead of justActτ , such that ift ω1−→ andu ω2−→ for ω1, ω2 ∈ Ω with t reachable fromT andu from t, thenω1 = ω2.

Note that for the special case of state-based scalar testingthe above restriction is void. In [5], working in an action-
based framework, following [24], we did not put such a restriction in our definition of testing, but showed, in Ap-
pendix A: “One Success Never Leads to Another” that imposingit does not change the resulting testing preorders.
Also note that the compositionT |Act P of anΩ-testT and apCSP processP is again anΩ-test (i.e. satisfying the
requirement of Definition 4.1).

Intuitively, the application of a testT to a processP has an outcomeo ∈ [0, 1]Ω if we can imagine an army —
with a continuum of soldiers — marching through our pLTS, starting from the distribution[T |Act P ℄, of which, for
ω ∈ Ω, a fractiono(ω) ∈ [0, 1] eventually reaches anω-success state. Each time a fragment of the army ends up
in a non-success state, it splits up in arbitrary proportions among the outgoing transitions of that state (which are all
labelledτ ). If such a transition ends up in a distribution∆ then, fors ∈ ⌈∆⌉, a fraction∆(s) of the fragment that took
that transition ends up in states. The army begins its march by being distributed over the initial distribution[T |Act P ℄
in the same vein. As soon as a fragment of the army reaches anω-success state, it stops marching, and the size of that
fragment is counted towardso(ω). Definition 4.1 ensures that in such a case there is no ambiguity about which success
action the division contributes to. Definition 4.1 also ensures that there is no point in marching any further. The total
success value

∑

ω∈Ω o(ω) must be in the interval [0,1]; it represents the fraction of the army eventually reaching a
success state of any kind. The unsuccessful part of the army1 −

∑

ω∈Ω o(ω) represents the fraction that either got
stuck in adeadlockstate, one without outgoing transitions, or that will marchforever. In general we get different
outcomeso ∈ A (T, P ) for each possible way a fragment in a non-success and non-deadlock state can partition itself
among the outgoing transitions of that state.

We will now formalise this intuition by a definition ofA (T, P ). Our definition has three ingredients. First of all
we normalise our pLTS by removing allτ -transitions that leave a success state. This way anω-success state will only
have outgoing transitions labelledω. This prevents our army from scooting past a success state.

Definition 4.2 (ω-respecting) Let 〈S,L,→〉 be a pLTS such that the set of labelsL includesΩ. It is said to be
ω-respectingwhenevers ω−→, for anyω ∈ Ω, impliess 6τ−→.

It is straightforward to modify an arbitrary pLTS so that itbecomesω-respecting. Here we outline how this is done for
our pLTS forpCSP.
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Definition 4.3 (Pruning) Let [·] be the unary operator onΩ-test states given by the operational rules

s ω−→ ∆

[s] ω−→ [∆]
(ω ∈ Ω)

s 6ω−→ (for all ω ∈ Ω), s α−→ ∆

[s] α−→ [∆]
(α ∈ Actτ ) .

Just as2 and|A, this operator extends as syntactic sugar toΩ-tests by distributing[·] overp⊕; likewise, it extends to
distributions by[∆]([s]) = ∆(s). Clearly, this operator does nothing else than removing alloutgoing transitions of a
success state other than the ones labelled withω ∈ Ω. Applying this operator, we can just as well envision our army
to have started marching from the distribution[[T |Act P ]℄; it will continue marching alongτ -transitions for as long
asτ -transitions are possible, and will halt in states iff s 6τ−→, which is the case iffs is either a success or a deadlock
state.

Next, using Definition 3.13, we characterise the set of subdistributionsΘ that can be reached by an army as
envisioned above at the end of its march from[[T |Act P ]℄. In generalΘ need not be a total distribution: the mass
|Θ| represents the fraction of the army that eventually stops marching and thus reachesΘ. The remaining fraction
1− |Θ| of the army marches on forever. A march of an army as describedabove can be modelled perfectly by a weak
transition[[T |Act P ]℄ =⇒ Θ as defined in Section 3.2. The end subdistributionΘ of this march has the property that
there is no nontrivial weak transitionΘ =⇒. System states with this property are traditionally calledstable.

Definition 4.4 (Extreme derivatives) A states in a pLTS is calledstableif s 6τ−→, and a subdistributionΘ is called
stableif every state in its support is stable. We write∆ =⇒≻ Θ whenever∆ =⇒ Θ andΘ is stable, and callΘ an
extremederivative of∆.

Referring to Definition 3.13, we see this means that in the extreme derivation ofΘ from∆ at every stage a state must
move on if it can, so that every stopping component can contain only states whichmuststop: fors ∈ ⌈∆→

k +∆×
k ⌉ we

haves ∈ ⌈∆×
k ⌉ if and now alsoonly if s 6τ−→. Moreover if the pLTS isω-respecting then whenevers ∈ ⌈∆→

k ⌉, that is
whenever it marches on, it is not successful, i.e.s 6ω−→ for everyω ∈ Ω.

Lemma 4.5 (Existenceand uniquenessof extreme derivatives)

(i) For every subdistribution∆ there exists some (stable)∆′ such that∆ =⇒≻ ∆′.

(ii) In a deterministic pLTS we have that∆ =⇒≻ ∆′ and∆ =⇒≻ ∆′′ implies∆′ = ∆′′.

Proof: We construct a derivation as in Definition 3.13 of a stable∆′ by defining the components∆k,∆
×
k and∆→

k

using induction onk. Let us assume that the subdistribution∆k has been defined; in the base casek = 0 this is simply
∆. The decomposition of this∆k into the components∆×

k and∆→
k is carried out by defining the former tocontain

precisely those states which must stop, i.e. thoses for whichs 6τ−→. Formally∆×
k is determined by:

∆×
k (s) =

{

∆k(s) if s 6τ−→

0 otherwise.

Then∆→
k is given by theremainderof ∆k, namely those states which can perform aτ action:

∆→
k (s) =

{

∆k(s) if s τ−→

0 otherwise.

Note that these definitions divide the support of∆k into two disjoints sets, namely the support of∆×
k and the support

of ∆→
k . Moreover by construction we know that∆→

k
τ−→ Θ for someΘ; we let∆k+1 be an arbitrary suchΘ.

This completes our definition of an extreme derivative as in Definition 3.13 and so we have established (i).
For (ii) we observe that in a deterministic pLTS the above choice of∆k+1 is unique, so that the whole derivative

construction becomes unique. 2
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It is worth pointing out that the use of subdistributions, rather than distributions, is essential here. If∆ diverges, that
is if there is an infinite sequence of derivations∆ τ−→ ∆1

τ−→ . . .∆k
τ−→ . . ., thenoneextreme derivative of∆ is the

empty subdistributionε. For example the only transition ofrecx. x is recx. x τ−→ recx. x, and thusrecx. x diverges;
ε is its unique extreme derivative.

The final ingredient in the definition of the set of outcomesA (T, P ) is the outcome of a particular extreme
derivativeΘ. All statess ∈ ⌈Θ⌉ either satisfys ω−→ for a uniqueω ∈ Ω, or haves 6→.

Definition 4.6 (Outcomes)The outcome$Θ ∈ [0, 1]Ω of a stable subdistributionΘ is given by$Θ(ω) =
∑

s∈⌈Θ⌉, s
ω−→
Θ(s).

Putting all three ingredients together, we arrive at a definition of A (T, P ):

Definition 4.7 LetP be apCSP process andT anΩ-test. ThenA (T, P ) = {$Θ | [[T |Act P ]℄ =⇒≻ Θ}.

The role of pruning in the above definition can be seen via the following example.

Example 4.8 Let P = a.b andT = a.(b 2 ω). The pLTS generated by applyingT to P can be described by the
processτ.(τ 2 ω). Now [T |Act P ℄ has a unique extremederivative[ 0 ℄, whereas[[T |Act P ]℄ has a unique extreme
derivative[ω℄. The outcome inA (T, P ) shows that processP passes testT with probability1, which is what we
expect for state-based testing, which we use in this paper. Without pruning we would get an outcome saying thatP
passesT with probability0, which would be what is expected for action-based testing. 2

As this example is nonprobabilistic, it also illustrates how pruning enables the standard notion of nonprobabilistic
testing to be captured in this way.

We compare two vectors of probabilities component-wise, and two sets of vectors of probabilities via the Hoare-
and Smyth preorders:

O1 ≤Ho O2 if for everyo1 ∈ O1 there exists someo2 ∈ O2 such thato1 ≤ o2

O1 ≤Sm O2 if for everyo2 ∈ O2 there exists someo1 ∈ O1 such thato1 ≤ o2 .

This gives us our definition of the may- and must-testing preorders; they are decorated with·Ω for the repertoireΩ of
testing actions they employ.

Definition 4.9 (Probabilistic testing preorders) Given twopCSP processesP andQ,

1. P ⊑Ω
pmayQ if for everyΩ-testT , A (T, P ) ≤Ho A (T,Q);

2. P ⊑Ω
pmustQ if for everyΩ-testT , A (T, P ) ≤Sm A (T,Q).

These preorders are abbreviated toP ⊑pmayQ, andP ⊑pmustQ, when|Ω|= 1, and there kernels are denoted by≃pmay

and≃pmustrespectively.

Here are two examples of these preorders.

Example 4.10 Consider the processQ1 = recx. (τ.x 1
2
⊕ a), which was already discussed in the introduction, Fig-

ure 1(a). When we apply the testT = a.ω to it we get the pLTS-fragmentin Figure 3(c), which is deterministic
and unaffected by pruning; from part (ii) of Lemma 4.5 it follows thatT |Act Q1 has a unique extreme derivativeΘ.
MoreoverΘ can be calculated to be

∑

k≥1

1

2k
· s3,

which simplifies to the distributions3. Therefore,A (T,Q1) = {$s3} = {~ω}, where~ω : Ω → [0, 1] is theΩ-tuple
with ~ω(ω) = 1 and~ω(ω′) = 0 for all ω′ 6= ω. This is the same set of results gained by applyingT to a on its own; and
in fact it is possible to show that this holds for all tests, giving

Q1 ≃pmay a Q1 ≃pmusta . 2
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Example 4.11 Consider the processQ2 = recx. (τ.(x 1
2
⊕ a) 2 τ.(0 1

2
⊕ a)) and the application of the same test

T = a.ω to it, as outlined in Figure 4. Since there is only one successactionω, the testing outcomescan be regarded
asscalars in[0, 1] — that is, we writep for p · ~ω, with p ∈ [0, 1].

Consider any extreme derivative∆′ from s0 = [[T |Act Q2]℄; note that here again pruning has no effect. Using the
notation of Definition 3.13, it is clear that∆×

0 and∆→
0 must beε ands0 respectively. Similarly,∆×

1 and∆→
1 must be

ε ands1 respectively. Buts1 is a nondeterministic state, having two possible transitions:

(i) s1
τ−→ Θ0 whereΘ0 has support{s0, s2} and assigns each of them the weight1

2

(ii) s1
τ−→ Θ1 whereΘ1 has the support{s3, s4}, again diving the mass equally among them.

So there are many possibilities for∆2; Lemma 3.5 shows that in fact∆2 can be of the form

p ·Θ0 + (1−p) ·Θ1 (9)

for any choice ofp ∈ [0, 1].
Let us consider one possibility, an extreme one wherep is chosen to be0; only the transition (ii) above is used.

Here∆→
2 is the subdistribution12s4, and∆→

k = ε wheneverk > 2. A simple calculation shows that in this case the
extreme derivative generated isΘe1 = 1

2s3 +
1
2s6 which implies that12 ∈ A (T,Q2).

Another possibility for∆2 isΘ0, corresponding to the choice ofp=1 in (9) above. Continuing with this derivation
leads to∆3 being 1

2 · s1 +
1
2 · s5; thus∆×

3 = 1
2 · s5 and∆→

3 = 1
2 · s1. Now in the generation of∆4 from ∆→

3 once
more we have to resolve a transition from the nondeterministic states1, by choosing some arbitraryp ∈ [0, 1] in (9).
Suppose we chosep= 1 every time, completely ignoring transition (ii) above. Then the extreme derivative generated
is

Θe0 =
∑

k≥1

1

2k
· s5

which simplifies to the distributions5. This in turn means that1 ∈ A (T,Q2).
We have seen two possible derivations of extreme derivatives from s0. But there are many others. In general

whenever∆→
k is of the formq · s1 we have to resolve the nondeterminism by choosing ap ∈ [0, 1] in (9) above;

moreover each such choice is independent. However, it will follow from later results, specifically Corollary 6.10, that
every extreme derivative∆′ of s0 is of the form

q ·Θe0 + (1−q) ·Θe1

for some choice ofq ∈ [0, 1]; this is explained in Example 6.11. Consequently it followsthatA (T,Q2) = [ 12 , 1].
SinceA (T, a) = {1} it follows that

A (T, a) ≤Ho A (T,Q2) A (T,Q2) ≤Sm A (T, a) .

Again it is possible to show that these inequalities result from any testT and that therefore we have

a ⊑pmayQ2 Q2 ⊑pmusta . 2

4.2 Using explicit resolutions

The derivation of extreme derivatives, via the schema in Definition 3.13, involves the systematic dynamic resolution
of nondeterministic states, in each transition from∆→

k to ∆k+1. In the literature various mechanisms have been
proposed for making these choices; for examplepoliciesare used in [22], adversaries in [15], schedulers in [23], . .. .
Here we concentrate not on any such mechanism but rather the results of their application. In general they reduce
a nondeterministic structure, typically a pLTS, to a set of deterministic structures. To describe these deterministic
structures we adapt the notion ofresolution, defined in[Seg96,..][5]for probabilistic automata, to pLTSs.

Definition 4.12 (Resolutions)A resolutionof a subdistribution∆∈D(S) in a pLTS〈S,Ωτ ,→〉 is a triple〈R,Θ,→R〉
where〈R,Ωτ ,→R〉 is a deterministic pLTS andΘ∈D(R), such that there exists aresolving functionf ∈ R → S
satisfying
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(i) Imgf (Θ) = ∆

(ii) if r α−→R Θ′ for α ∈ Ωτ thenf(r) α−→ Imgf (Θ
′)

(iii) if f(r) α−→ for α ∈ Ωτ thenr α−→R .

The reader is referred to Section 2 of [5] for a detailed discussion of this concept of resolution, and the manner in
which a resolution represents a runor computationof a process; in particular, in a resolution states inS are allowed to
be resolved into distributions, and computation steps can beprobabilistically interpolated.

Add paragraph on fully probabilistic
Schedulers
We now explain how to associate an outcome with a particular resolution, which in turn will associate a set of

outcomes with a subdistribution in a pLTS. Given a deterministic pLTS 〈R,Ωτ ,→〉, consider the functionalR :
(R → [0, 1]Ω) → (R → [0, 1]Ω) defined by

R(f)(r)(ω) :=











1 if r ω−→

0 if r 6ω−→ andr 6τ−→

Exp∆(f)(ω) if r 6ω−→ andr τ−→ ∆.

(10)

We view the unit interval[0, 1] ordered in the standard manner as a complete lattice; this induces the structure of a
complete lattice on the product[0, 1]Ω and in turn on the set of functionsR → [0, 1]Ω. The functionalR is easily seen
to be monotonic and therefore has a least fixed point, which wedenote byV〈R,Ωτ ,→〉; this is abbreviated toV when the
resolution in question is understood.Henceforth we writeV(∆) for Exp∆(V). Note thatV(

∑

i∈I ∆i) =
∑

i∈I V(∆i).
Now letA r(T, P ) denote the set of vectors

{V〈R,Ωτ ,→〉(Θ) | 〈R,Θ,→〉 is a resolution of[T |Act P ℄ } .
Note that here we use resolutions of[T |Act P ℄ rather than its pruning[[T |Act P ]℄. This is because the functionalR,
and therefore its least fixed pointV, has pruning built-in; that isR is defined so thatV(s) = V([s]).

In Section 4.3 we will show thatA r(T, P ) = A (T, P ) for any testT and processP . Hence the testing preorders
of Definition 4.9 can equivalently be defined in terms ofA r.

Example 4.13 (revisiting Example 4.10)The pLTS-fragmentin Figure 3(c) is already deterministic, hence has es-
sentially only one resolution, itself. Moreover the outcome Exp[T‖Q1℄(V) = V(T ‖Q1) associated with it is the least
solution of the equation

V(T ‖Q1) =
1

2
· V(T ‖Q1) +

1

2
~ω

In fact this equation has a unique solution in[0, 1]Ω, namely~ω. ThusA r(T,Q1) = {~ω}. 2

Example 4.14 (revisiting Example 4.11)Here we reuse the notation of Example 4.11.
Consider the processQ2 = recx. (τ.(x 1

2
⊕ a) 2 τ.(0 1

2
⊕ a)) and the application of the testT = a.ω to

it, as outlined in Figure 4. For eachk ≥ 1 the distribution[T |Act Q2℄ has a resolution〈Rk,Θ,→Rk
〉 such that

V(Θ) = (1− 1
2k
); intuitively it goes around the loop(k−1) times before at last taking the right handτ action. Thus

A r(T,Q2) contains(1 − 1
2k
) for everyk ≥ 1. But it also contains1, because of the resolution which takes the left

handτ -move every time. ThusA r(T,Q2) includes the set

{(1−
1

2
), (1−

1

22
), . . . , (1−

1

2k
), . . . 1}

From later results it will follow thatA r(T,Q2) is actually the convex closure of this set, namely[ 12 , 1]. 2
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4.3 Comparison

We have now seen two ways of associating sets of outcomes withthe application of a test to a process. The first, in
Section 4.1, uses extreme derivations in which nondeterministic choices are resolved dynamically as the derivation
proceeds, while the second, in Section 4.2, associates witha test and a process a set of deterministic structures called
resolutions. In this section we show thatboth approaches yield the same sets of outcomes.

We start by showing that resolution-based testing is insensitive to pruning. LetA rp(T, P ) denote the set of vectors

{V〈R,Ωτ ,→〉(Θ) | 〈R,Θ,→〉 is a resolution of[[T |Act P ]℄ } .
Proposition 4.15 For any testT and processP we have thatA rp(T, P ) = A r(T, P ).

Proof: “⊇”: Let 〈R,Θ,→R〉 be a resolution of[T |Act P ℄. Then, following Definition 4.12,〈R, [Θ],→R〉 is a
resolution of[[T |Act P ]℄ and, by (10),V〈R,Ωτ ,→R〉([Θ]) = V〈R,Ωτ ,→R〉(Θ).

“⊆”: Let 〈R,Θ,→R〉 be a resolution of[[T |Act P ]℄ with resolving functionf . We construct a resolution
〈R′,Θ,→′

R〉 of [T |Act P ℄ as a random extension of〈R,Θ,→R〉. Let 〈S,Ωτ ,→〉 be the PLTS in which the dis-
tribution [T |Act P ℄ exists. For every pair(s, α)∈S × Ωτ with s α−→ pick a distributionΨ(s,α) ∈D1(S) such that
s α−→ Ψ. Now defineR′ := R

.
∪ (S ×N) and obtain→′

R from→R by adding (A) a transition(s, k) α−→′
R Ψ

(s,α)
k+1 for

eachk ∈N and eachs∈S with s α−→, and (B) a transitionr τ−→′
R Ψ

(f(r),τ)
0 for eachr∈R with f(r) τ−→ as well as

f(r) ω−→ for someω ∈Ω. HereΨ(s,α)
k+1 ∈ D1(S×{k+1}) is given byΨ(s,α)

k+1 (t, k+1) = Ψ(s,α)(t) for all t∈S. The
resolving functionf is extended byf(s, k) := s. Using Definition 4.12 it follows that〈R′,Θ,→′

R〉 is a resolution of[T |Act P ℄ and, again by (10),V〈R′,Ωτ ,→′
R〉(Θ) = V〈R,Ωτ ,→R〉(Θ). 2

It remains to show thatA (T, P ) = A rp(T, P ) for any testT and processP , or, in other words, that

{$Θ | ∆ =⇒≻ Θ} = {V〈R,Ωτ ,→〉(Θ) | 〈R,Θ,→〉 is a resolution of∆ }

for any distribution∆ is anω-respecting pLTS〈S,Ωτ ,→〉.
First let us see how an extreme derivation can be viewed as a method for dynamically generating a resolution.

Proposition 4.16 (Resolutions from extreme derivatives)Let ∆ =⇒≻ ∆′ in a pLTS〈S,Ωτ ,→〉. Then there is a
resolution〈R,Θ,→R〉 of ∆, with resolving functionf , such thatΘ =⇒≻R Θ′ for someΘ′ for which∆′ = Imgf (Θ

′).

Proof: Consider an extreme derivation of∆ =⇒≻ ∆′ as given in Definition 3.13 where all∆×
k must be stable:

∆ = ∆0, ∆k = ∆×
k +∆→

k , ∆→
k

τ−→ ∆k+1, ∆′ =
∑∞

k=0 ∆
×
k .

By Lemma 3.5,∆→
k

τ−→ ∆k=1 implies that there are statessik ∈S and distributions∆i(k+1) ∈D1(S), such that

∆→
k =

∑

i∈Ik
pik ·sik, sik

τ−→ ∆i(k+1) for eachi ∈ Ik and ∆k+1 =
∑

i∈Ik
pik ·∆i(k+1) .

Let∆×
ik(s) :=

{

∆ik(s) if s 6τ−→
0 if s τ−→

. Since∆×
k (s) =

{

∆k(s) if s 6τ−→
0 if s τ−→

it follows that∆×
k+1 =

∑

i∈Ik
pik ·∆

×
i(k+1).

We will now define the resolution〈R,Θ,→R〉 and the resolving functionf . The set of statesR is (S×N) ∪
⋃

k∈N(Ik × {k}). The resolving functionf : R → S maps(s, k)∈S×N to s and(i, k)∈ Ik×{k} to sik ∈S. The
second componentk of a state counts how many transitions have fired already: each transition in→R goes from a
state(i, k) or (s, k) to a distribution over(S ∪ Ik+1)× {k+1}.

Define the subdistributionsΘ×
k ∈D(S×{k}) andΘ→

k ∈D(Ik × {k}) byΘ×
k (s, k) = ∆×

k (s) andΘ→
k (i, k) = pik.

LetΘk := Θ×
k +Θ→

k andΘ := Θ0. Furthermore, for allk > 0 andi∈ Ik−1, defineΘik ∈D((S ∪ Ik)×{k}) by

Θik(s, k) = ∆×
ik(s) and Θik(j, k) = pjk ·

∆ik(sjk)

∆k(sjk)

for j ∈ Ik. We introduce the transitions(i, k) τ−→R Θi(k+1) for k ≥ 0 andi∈ Ik. Moreover, for each states∈S and
labelα∈Actτ such thats α−→, pick a transitions α−→ Ψ, and add the transition(s, k) α−→R Ψk+1 to →R, for all
k ∈N. HereΨk+1 is the distribution withΨk+1(t, k+1) = Ψ(t) for all t∈S. Likewise, for eachk ∈ N, i∈ Ik and
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ω∈Ω such thatsik
ω−→, pick a transitionsik

ω−→ Ψ, and add the transition(i, k) ω−→R Ψk+1 to →R. This ends the
definition of the resolution〈R,Θ,→R〉 and the resolving functionf . By construction,〈R,Ωτ ,→R〉 is a deterministic
pLTS. We now check thatf satisfies the requirements for a resolving function of Definition 4.12.

(i) Imgf (Θk)(s) = Θk(s, k) +
∑

sik=s

Θk(i, k) = Θ×
k (s, k) +

∑

sik=s

pik = ∆×
k (s) + ∆→

k (s) = ∆k(s)

for all s∈S, so Imgf (Θk) = ∆k, and in particular Imgf (Θ) = ∆.

(ii) Let r α−→R Γ for α∈Ωτ . In caser = (s, k) it must be thatΓ = Ψk+1 andf(r) = s α−→ Φ = Imgf (Ψk+1).
Likewise, in caser = (i, k) andα∈Ω it must be thatΓ = Ψk+1 andf(r) = sik

α−→ Φ = Imgf (Ψk+1). The
remaining case isr = (i, k), α = τ andΓ = Θi(k+1). Thenf(r) = sik

τ−→ ∆i(k+1), so it suffices to show that
Imgf (Θik) = ∆ik for all k ∈N andi∈ Ik. For anys∈S we have

Imgf (Θik)(s) = Θik(s, k) +
∑

sjk=s

Θik(j, k) = ∆×
ik(s) +

∑

sjk=s

pjk ·
∆ik(sjk)

∆k(sjk)
= ∆×

ik(s) +
∆ik(s)

∆k(s)
·
∑

sjk=s

pjk .

In cases 6τ−→ we havesjk = s for noj ∈ Ik, so Imgf (Θik)(s) = ∆×
ik(s) = ∆ik(s).

In cases τ−→ we have∆×
ik(s) = 0 and

∑

sjk=s
pjk = ∆→

k (s) = ∆k(s), so again Imgf (Θik)(s) = ∆ik(s).

(iii) Let f(r) α−→ for α∈Ωτ . By construction there is aΦk+1 such thatr α−→R Φk+1.

Hence〈R,Θ,→R〉 is a resolution of∆. We have:

∑

i∈Ik

pik ·Θi(k+1)(s, k+1) =
∑

i∈Ik

pik ·∆
×
i(k+1)(s) = ∆×

k+1(s) = Θ×
k+1(s, k+1) = Θk+1(s, k+1)

∑

i∈Ik

pik ·Θi(k+1)(j, k+1) =
∑

i∈Ik

pik ·pj(k+1) ·
∆i(k+1)(sj(k+1))

∆k+1(sj(k+1))
= pj(k+1) = Θ→

k+1(j, k+1) = Θk+1(j, k+1).

HenceΘk+1 =
∑

i∈Ik
pik ·Θi(k+1). Since alsoΘ→

k =
∑

i∈Ik
pik ·(i, k) and(i, k) τ−→R Θi(k+1), Lemma 3.5 yields

Θ→
k

τ−→R Θk+1. LetΘ′ =
∑∞

k=0 Θ
×
k . Then, by Definition 3.13,Θ =⇒≻R Θ′.

By construction Imgf (Θ
×
k ) = ∆×

k for all k ∈N. Hence Imgf (Θ
′) =

∑∞
k=0 Imgf (Θ

×
k ) =

∑∞
k=0 ∆

×
k = ∆′. 2

The converse is somewhat simpler.

Proposition 4.17 (Extreme derivatives from resolutions)Let 〈R,Θ,→R〉 be a resolution of a subdistribution∆ in
a pLTS〈S,Ωτ ,→〉 with resolving functionf . ThenΘ =⇒≻R Θ′ implies∆ =⇒≻ Imgf (Θ

′).

Proof: The definition of Imgf implies that Imgf (
∑

i pi · Ψi) =
∑

i pi · Imgf (Ψi). FurthermoreΨ τ−→ Ψ′ implies
Imgf (Ψ) τ−→ Imgf (Ψ

′). Namely, by Lemma 3.5,Ψ τ−→ Ψ′ implies

Ψ =
∑

i∈I pi ·si, si
τ−→ Ψi for eachi ∈ I and Ψ′ =

∑

i∈I pi ·Ψi

which, using Definition 4.12, entails

Imgf (Ψ) =
∑

i∈I pi ·f(si), f(si)
τ−→ Imgf (Ψi) for eachi ∈ I and Imgf (Ψ

′) =
∑

i∈I pi · Imgf (Ψi).

Hence Imgf (Ψ) τ−→ Imgf (Ψ
′).

Now consider any derivation ofΘ =⇒≻R Θ′ along the lines of Definition 3.13. By systematically applying the
functionf to the component subdistributions in this derivation we geta derivation Imgf (Θ) =⇒ Imgf (Θ

′), that is
∆ =⇒ Imgf (Θ

′). To show that Imgf (Θ
′) is actually an extreme derivative it suffices to show thats is stable for

everys ∈ ⌈Imgf (Θ
′)⌉. But if s ∈ ⌈Imgf (Θ

′)⌉ then by definition there is somet ∈ ⌈Θ′⌉ such thats = f(t). Since
Θ =⇒≻R Θ′ the statet must be stable. The stability ofs now follows from requirement (iii) of Definition 4.12. 2

Our next step is to relate the outcomes extracted from extreme derivatives to those extracted from the corresponding
resolutions. This requires some analysis of the evaluationfunctionV(−).
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Definition 4.18 (Continuous functions) A chain in a complete latticeL is a sequence of elements{ cn | n ≥ 0 }
satisfyingci ≤ ci+1. Obviously chains have least upper bounds which we denote by

⊔

n≥0 cn. A functionf : L→ L
is said to becontinuousif it preserves the least upper bounds of chains:

f(
⊔

n≥0

cn) =
⊔

n≥0

f(cn) .

Lemma 4.19 The functionalR : (R → [0, 1]Ω) → (R → [0, 1]Ω) defined in (10) is continuous.

Proof: The proof is surprisingly difficult; see Lemma B.5 in Appendix B which shows the result in the special case
thatΩ is the singleton set{ω}; the general case is similar. 2

Continuityof R implies thatits fixed pointV can be captured by a chain of approximants. The functionsV
n, n ≥ 0

are defined by induction onn:
V

0(r)(ω) = 0

V
n+1 = R(Vn ) .

Again we writeVn(∆) for Exp∆(V
n). NowV =

⊔

n≥0 V
n. This is used in the following result.

Lemma 4.20 Let∆ be a subdistribution in anω-respecting deterministic pLTS. If∆ =⇒≻ ∆′ thenV(∆) = V(∆′).

Proof: Since the pLTS isω-respecting we know thats τ−→ ∆ impliess 6ω−→ for anyω. Therefore, from the definition
of the functionalR we have thats τ−→ ∆ impliesVn+1(s) = V

n(∆), whence by lifting and linearity we get

If Θ τ−→ Θ′ thenVn+1(Θ) = V
n(Θ′) for all n ≥ 0.

Now suppose∆ =⇒≻ ∆′. Then

∆ = ∆0, ∆k = ∆×
k +∆→

k , ∆→
k

τ−→ ∆k+1, ∆′ =

∞
∑

k=0

∆×
k .

Using in the base case thatV
0(Θ)(ω) = 0 for everyΘ, a straightforward induction onn yields

V
n(∆) =

n
∑

k=0

V
n−k(∆×

k ) . (11)

Since∆×
k is stable, we haveVm(∆×

k ) = V(∆×
k ) for everyk,m ≥ 0. We conclude by reasoning

V(∆) =
⊔

n≥0 V
n(∆) by continuity ofR

=
⊔

n≥0

∑n
k=0 V

n−k(∆×
k ) from (11) above

=
⊔

n≥0

∑n
k=0 V

n(∆×
k ) sinceVn−k(∆×

k ) = V(∆×
k ) = V

n(∆×
k )

=
⊔

n≥0 V
n(
∑n
k=0 ∆

×
k ) by linearity ofVn

= V(
⊔

n≥0

∑n
k=0 ∆

×
k ) by continuity ofR

= V(
∑∞

k=0 ∆
×
k )

= V(∆′) . 2

We are now ready to compare the two methods for calculating the set of outcomes associated with a subdistribution:

• using extreme derivatives and the reward function$ from Definition 4.6

• using resolutions and the evaluation functionV from page 23.

Theorem 4.21 In anω-respecting pLTS〈S,Ωτ ,→〉, the following statements hold.

(a) If ∆ =⇒≻ ∆′ then there is a resolution〈R,Θ,→R〉 of ∆ such thatV〈R,Ωτ ,→R〉(Θ) = $∆′.

(b) For any resolution〈R,Θ,→R〉 of ∆, there exists a∆′ such that∆ =⇒≻ ∆′ andV〈R,Ωτ ,→R〉(Θ) = $∆′.
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Proof: Suppose∆ =⇒≻ ∆′. By Proposition 4.16, there is a resolution〈R,Θ,→R〉 of ∆ with resolving functionf
and a subdistributionΘ′ such thatΘ =⇒≻ Θ′ and∆′ = Imgf (Θ

′). By Lemma 4.20, we haveV(Θ) = V(Θ′). Since
Θ′ is an extreme derivative, all the statess in its support are stable, soV(s)(ω) = 0 if s 6ω−→, for all ω ∈Ω. Hence

V(Θ′)(ω) = ExpΘ′(V)(ω) =
∑

s∈⌈Θ′⌉

Θ′(s) · V(s)(ω) =
∑

s∈⌈Θ′⌉, s
ω−→
Θ′(s) = $Θ′(ω) .

Furthermore, for allt∈⌈∆′⌉, ∆′(t) = Imgf (Θ
′)(t) =

∑

f(s)=tΘ
′(s), so, for allω ∈ Ω,

$∆′(ω) =
∑

t∈⌈∆′⌉, t
ω−→
∆′(t) =

∑

t∈⌈∆′⌉, t
ω−→
Imgf (Θ

′)(t) =
∑

t∈⌈∆′⌉, t
ω−→

∑

f(s)=tΘ
′(s) =

∑

s∈⌈Θ′⌉, f(s)
ω−→
Θ′(s) = $Θ′(ω) ,

where in the last step we the use the property of resolutions thatf(s) ω−→ iff s ω−→. It follows thatV(Θ) = $∆′.
To prove part (b), suppose that〈R,Θ,→R〉 is a resolution of∆ with resolving functionf , so that∆ = Imgf (Θ).

We know from Lemma 4.5 that there exists a (unique) subdistributionΘ′ such thatΘ =⇒≻ Θ′. By Proposition 4.17
we have that∆ =⇒≻ Imgf (Θ

′). The same arguments as in the other direction show thatV(Θ) = $(Imgf (Θ
′)). 2

Corollary 4.22 For any testT and processP we have thatA r(T, P ) = A (T, P ). 2

5 An alternative approach to scalar testing

In the previous section our approach to testinginvolved two steps:

(1) For each testT and processP calculate a set of outcomesA (T, P ); for scalar testing this is a subset of [0,1].
(2) For each pair of processesP, Q compare the corresponding sets of outcomesA (T, P ) andA (T,Q) for every

testT .
But our methods for comparing sets of outcomes does not necessarily require us to calculate the entire set of outcomes.
For closed setsO1, O2 ∈ 2[0,1] it is easy to check that

O1 ≤Ho O2 if and only if sup(O1) ≤ sup(O2)

O1 ≤Sm O2 if and only if inf(O1) ≤ inf(O2) .

Here we propose an alternative approach to testing based on calculating directly thesups andinf s of the possible
outcomes. We restrict our attention to scalar testing, i.e.the case where tests are allowed to use asinglesuccess action
ω only; thusΩ = {ω}.

5.1 Extremal testing

The functionalR used to associate an outcome with a resolution, is defined, in(10) above, only for deterministic
pLTSs. Here we consider generalisations to an arbitrary pLTS 〈S,Ωτ ,→〉.

Define the functionalRinf : (S→[0, 1]) → (S→[0, 1]) by:

Rinf(f)(s) =











1 if s ω−→

0 if s 6ω−→ ands 6τ−→

inf{Exp∆(f) | s τ−→ ∆ } if s 6ω−→ ands τ−→

In a similar fashion we can define the functionalRsup : (S→[0, 1]) → (S→[0, 1]) which uses thesup function in place
of inf. Both these functions are monotonic, and therefore have least fixed points, which we abbreviate toVinf, Vsup

respectively.
Now for a testT and a processP , we have two ways of defining the outcome of the application ofT to P :

A
e

inf(T, P ) = Vinf([T |Act P ℄)
A

e
sup(T, P ) = Vsup([T |Act P ℄) .

HereA e
inf(T, P ) returns a single probabilityp, estimating the minimal probability of success; it is a pessimistic esti-

mate. On the other handA e
sup(T, P ) is optimistic, in that it gives the maximal probability of success.
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Definition 5.1

1. P ⊑epmayQ if for every testT , A e
sup(T, P ) ≤ A e

sup(T,Q);

2. P ⊑epmustQ if for every testT , A e
inf(T, P ) ≤ A e

inf(T,Q).

The kernels of these preorders are denoted by≃epmay and≃epmust, respectively.

Example 5.2 The pLTS-fragment in Figure 3(c), obtained by applying the testT = a.ω to the processQ1, is deter-
ministic and hence all three functionsVsup, Vinf , V coincide, givingA e

sup(T, P ) = A e
inf(T, P ) = 1. It follows that

Q1 ≃epmay a andQ1 ≃epmusta. 2

Example 5.3 (revisiting Example 4.11 again)Here we reuse the notation of Example 4.11.
Consider the pLTS-fragment from Figure 4(c) resulting fromthe application of the testT = a.ω to the process

Q2. It is easy to see that the functionVsup satisfies

Vsup(s0) = max{
1

2
, x} (12)

x =
1

2
+

1

2
· Vsup(s0)

It is not difficult to show that these equations have a unique solution, namelyVsup(s0) = 1. SinceVsup([T |Act a℄) = 1
one can conclude that

Q2 ≃epmay a .

If max is replaced bymin in (12) above then the resulting equations also have a uniquesolution, givingVinf(s0) =
1
2 .

It follows that
a 6⊑epmustQ2

becauseVinf([T |Act a℄) = 1. However,Q2 ⊑epmusta. 2

Lemma 5.4 Consider an arbitrary pLTS〈S,Ωτ ,→〉.

(a) Both functionalsRinf andRinf are continuous.

(b) Both results functionsVinf andVsup are continuous.

Proof: Again the proof of part (a) is non-trivial; see Lemma B.5 in Appendix B.2. However part (b) is an immediate
consequence. 2

So in analogy with the evaluation functionV from Section 4.2 these results functions can be captured by achain of
approximants:

Vinf =
⊔

n∈N Vinf
n and Vsup=

⊔

n∈N Vsup
n (13)

whereVinf
0(s) = Vsup

0(s) = 0 for every states ∈ S, and

• Vinf
(k+1) = Rinf(Vinf

k)

• Vsup
(k+1) = Rsup(Vsup

k)
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Figure 5: An infinite-state pLTS

5.2 Comparison with resolution-based testing

In this section we compare the two approaches of testing introduced in the previous two subsections. Our first result
is that in the most general setting they lead to different testing preorders.

Example 5.5 Consider the infinite-state pLTS in Figure 5, which is definedas follows: in addition to the statesa and
0 it has the infinite sets1, s2, . . ., with each of these having two transitions:

• sk
τ−→ sk+1

• sk
τ−→ [ 0 1

2k
⊕ a℄.

Now let us compare the states1 with the processa. With the testa.ω, using resolutions, we get:

A
r(a.ω, s1) = l{0, (1−

1

2
), . . . , (1−

1

2k
), . . .}

A
r(a.ω, a) = {1}

(14)

which means thata 6⊑Ω
pmay s1.

However when we use extremal testing, the testa.ω can not distinguish these processes. It is straightforwardto
see thatVsup(a.ω |Act a) = 1. To see thatVsup(a.ω |Act s1) also evaluates to1, we letxk = Vsup(a.ω |Act sk), for all
k ≥ 1, and we have the following infinite equation system.

x1 = max{ 1
2 , x2}

x2 = max{1− 1
4 , x3}

...
xk = max{1− 1

2k , xk+1}
...

We havexk = 1 for all k ≥ 1 as the least solution of the above equation system.
With some more work one can go on to show that no test can distinguish between these processes using optimistic

extremal testing, meaning thata ⊑epmay s1.
2

In the remainder of this section we show that provided some finitary constraints are imposed on the pLTS extremal
testing and resolution-based testing coincide; recall that here we are assuming that tests only use a single success
action,|Ω|= 1. First we examinemusttesting, which is easier than themaycase; this in turn is treated in the following
section.
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5.2.1 Must testing

Here we show that provided we restrict our attention to finite-branching processes there is no difference between
extremalmusttesting, and resolution-basedmusttesting.

Let us consider a pLTS〈S,Ωτ ,→〉, obtained perhaps from applying a testT to a processP in (T |Act P ). We have
two ways of obtaining a result for a distribution of states fromS, by applying the functionVinf , or by using resolutions
of the pLTS to realiseV. Our first result says that regardless of the actual resolution used, the value obtained from the
latter will always dominate the former.
But first we need a technical lemma.

Lemma 5.6 Let g : S → [0, 1], h : R → [0, 1] andf : R → S be three functions satisfyingg(f(r)) ≤ h(r) for every
r ∈ R. Then for every subdistributionΘ overR, Exp∆(g) ≤ ExpΘ(h) where∆ denotes the subdistribution Imgf (Θ).

Proof: A straightforward calculation. 2

Proposition 5.7 If 〈R,Θ,→R〉 is a resolution of a subdistribution∆ then Exp∆(Vinf) ≤ ExpΘ(V).

Proof: Let f denote the resolving function. First we show by induction onn that for every stater ∈ R

Vinf
n(f(r)) ≤ V

n(r) (15)

For n = 0, this is trivial. We consider the inductive step; note that by the previous lemma the inductive hypothesis
implies that

ExpΓ(Vinf
n) ≤ ExpΘ(V

n) (16)

for any pair of subdistributions satisfyingΓ = Imgf (Θ).

First if r ω−→R Θ, thenf(r) ω−→, and thusVinf
n+1(f(r)) = 1 = V

n+1(r). A similar argument applies ifr 6−→,
that is r 6τ−→ ands 6ω−→. So the remaining possibility is thatr τ−→R Θ for someΘ, andr 6ω−→, where we know
f(r) τ−→ Imgf (Θ).

Vinf
(n+1)(f(r)) = min{Exp∆(Vinf

n)|f(r) τ−→ ∆}
≤ ExpΓ(Vinf

n) whereΓ denotes Imgf (Θ)
≤ V

n(Θ) by induction and (16) above
= V

(n+1)(r)

Now by continuity we have from (15) that
Vinf(f(r)) ≤ V(r) (17)

The result now follows by the previous lemma, since if〈R,Θ,→R〉 is a resolution of a subdistribution∆ with
resolving functionf then by definition∆ = Imgf (Θ).

2

Our next result says that in any finite-branching computation structure we can find a resolution which realises the
functionVinf . Moreover this resolution will be of a particularly simple form.

A resolution〈R,Ωτ ,→R〉 is said to bestatic if its resolving functionfR is injective. Again we refer the reader
to [5] for a discussion of power of this restriction. Static restrictions are particularly simple, in that they does not
allow states to be resolved into distributions, or computation steps to be interpolated. Moreover they are very easy to
describe.

Definition 5.8 A (static)extreme policyfor a pLTS〈S,Ωτ ,→〉 is a partial functionepp : S ⇀ D1(S) satisfying:

(a) s ω−→ impliess ω−→ epp(s)

(b) otherwise, ifs τ−→ thens τ−→ epp(s)
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Intuitively an extreme policyepp determines a computation through the pLTS. But this set of possible computations,
unlike resolutions as defined in Definition 4.12, are very restrictive. Policyepp decides at each state, once and for all,
which of the availableτ -choices to take; it does not interpolate, and since it is a function of the state, it makes the same
choice on every visit. But there are two constraints:

(i) Condition (a) ensures an in-built preference for reporting success; if the state is successful the policy must also
report success;

(ii) Condition (b), together with (a), means thatepp(s) is defined whenevers −→. This ensures that the policy
cannot decide to stop at a states if there is a possibility of proceeding froms; the computation must proceed, if
it is possible to proceed.

We delay the formal definition of the computation determinedby an extreme policy; see page 33. Here we are
concerned with resolutions. An extreme policyepp determines a deterministic pLTS〈S,Ωτ ,→epp〉, where→epp

is determined bys →epp epp(s). Moreover for any subdistribution∆ overS it determines the obvious resolution
〈S,∆,→epp〉, with the identity as the associated resolving function. Indeed it is possible to show that every static
resolution is determined in this manner by some extreme policy.

Proposition 5.9 Let∆ be any subdistribution in a finite-branching pLTS〈S,Ωτ ,→〉. Then there exists a static reso-
lution of∆, 〈R,Θ,→R〉 such that ExpΘ(V) = Exp∆(Vinf).

Proof: We exhibit the required resolution by defining an extreme policy overS; in other words the resolution will
take the form〈S,Θ,→epp〉 for some extreme policyepp(−).

We say the extreme policyepp(−) is min-seekingif its domain is{ s ∈ S | s −→} and it satisfies:

if s 6ω−→ buts τ−→ thenVinf(epp(s)) ≤ Vinf(∆) whenevers τ−→ ∆

Note that by design a min-seeking policy satisfies:

if s 6ω−→ buts τ−→ thenVinf(s) = Vinf(epp(s)) (18)

In a finite-branching pLTS it is straightforward to define a min-seeking extreme policy:

(i) If s ω−→ then letepp(s) be any∆ such thats ω−→ ∆.

(ii) Otherwise, ifs τ−→ let {∆1, . . .∆n} be the finite non-empty set{∆ | s τ−→ ∆ }. Now let epp(s) be any∆k

satisfying the propertyVinf(∆k) ≤ Vinf(∆j) for every1 ≤ j ≤ n; at least one such∆k must exist.

We now show that the static resolution determined by such a policy, 〈S,Θ,→epp〉, satisfies the requirements of the
proposition. For the sake of clarity let us writeVepp(∆) for the value realised for∆ in this resolution.

We already know, from Proposition 5.7, thatVinf(∆) ≤ Vepp(∆) and so we concentrate on the converse,Vepp(∆) ≤
Vinf(∆). Recall that the functionVepp is the least fixed point of the functionalR defined in (10) above, and interpreted
in the above resolution. So the result follows if we can show that the functionVinf is also a fixed point. Since|Ω|= 1
this amounts to proving

Vinf(s) =











1 if s ω−→

0 if s 6−→

Vinf(epp(s)) otherwise

However this is a straightforward consequence of (18) above. 2

Theorem 5.10 For finite-branching processes,P ⊑epmustQ if and only if P ⊑pmustQ

Proof: This is a consequence of the two previous propositions. First supposeP ⊑epmustQ. To showP ⊑pmustQ we
must show that for any valuev in A (T,Q), for any arbitrary testT , there exists somev′ ∈ A (T, P ) such thatv′ ≤ v.
The valuev must be of the formV(ΘR), for some resolution〈R,ΘR,→R〉 of [[T |Act P ℄]. From Proposition 5.7 we
know thatVinf([[T |Act Q℄]) ≤ v, and now from the hypothesisP ⊑epmust Q we have thatVinf([[T |Act P ℄]) ≤ v.
Now employing Proposition 5.9 we can find some other (static)resolution〈S,ΘS ,→S〉 of [[Q |Act P ℄] and such that
V(ΘS) = Vinf([[Q |Act P ℄]). So we can take the requiredv′ to beV(ΘS).

The converse,P ⊑pmustQ impliesP ⊑epmustQ is equally straightforward, and is left to the reader. 2
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5.2.2 May testing

Here we can try to apply the same proof strategy as in the previous section. The analogue to Proposition 5.7 goes
through:

Proposition 5.11 If 〈R,Θ,→R〉 is a resolution of∆ then ExpΘ(V) ≤ Exp∆(Vsup).

Proof: Similar to the proof of Proposition 5.7 2

However the proof strategy used in Proposition 5.9 cannot beused to show thatVsup can be realised by some static
resolution, as the following example shows.

Example 5.12 In analogy with the definition used in the proof of Proposition 5.9, we say that an extreme policy
epp(−) is max-seekingif its domain is precisely{ s ∈ S | s −→}, and

if s 6ω−→ buts τ−→ thenVsup(∆) ≤ Vsup(epp(s)) whenevers τ−→ ∆

This ensures thatVsup(s) = Vsup(epp(s)), whenevers τ−→ ands 6ω−→, and again it is straightforward to define a
max-seeking extreme policy in a finite-branching pLTS. However the resulting resolution does not in general realise
the functionVsup.

To see this, let us consider the (finite-branching) pLTS usedin Example 5.5. Here in addition to the two statesω
and0 there is the infinite set{s1, . . . sk, . . .} and the transitions

• sk
τ−→ sk+1

• sk
τ−→ [ 0 1

2k
⊕ ω℄.

One can calculateVsup(sk) to be1 for everyk, and a max-seeking extreme policy is determined byepp(sk) = sk+1;
indeed this is essentially the only such policy. However this resolution associated with this policy does not realise
Vsup, asVepp(sk) = 0. 2

Nevertheless we will show that if we restrict attention to finitary pLTSs, then there will always exist some static
resolution which realisesVsup. The proof relies on techniques used in Markov process theory [22], and unlike that of
Proposition 5.9 is non-constructive; we simply prove that some such resolution exists, without actually showing how
to construct it.

Theorem 5.13 Let∆ be any subdistribution in a finitary pLTS. Then there exists astatic resolution of∆, 〈R,Θ,→R〉
such that ExpΘ(V) = Exp∆(Vsup).

Proof: The proof is non-trivial and lengthy as it involves the development ofdiscountedpolicies for pLTSs, based on
discounted results-collecting functions likeVδ andVsup

δ for discount factorδ. Although such techniques are relatively
standard in the theory of Markov Decision Processes, see [22] for example, they are virtually unknown in concurrency
theory. Consequently we relegate the proof to Appendix B; this enables us to give a detailed exposition without
interfering with the overall flow of the paper. The exposition cumulates in Theorem B.8. 2

Theorem 5.14 For finitary processes,P ⊑epmayQ if and only ifP ⊑pmayQ.

Proof: Similar to that of Theorem 5.10 but employing Theorem 5.13 inplace of Proposition 5.9. 2

6 Generating weak derivatives in a finitary pLTS

Now let us restrict our attention to finitary pLTSs, where thestate space isS = {s1, . . . , sn}. Here by definition the
sets{Θ | s α−→ Θ } are finite, for every states and labelα. This of course is no longer true for the weak arrows; the
sets{Θ | s α

=⇒ Θ } are in general not finite, because of the infinitary nature of the weak derivative relation=⇒. The
purpose of this section is to show that nevertheless they canbe finitely represented, at least for finitary pLTSs.
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This is explained in Section 6.1, and the ramifications are then explored in the following subsection. These include
a very useful topological property of these sets of derivatives; they areclosedin the sense (from analysis) of containing
all its limit points where, in turn, limit depends on a Euclidean-style metric defining the distance between two distri-
butions in a straightforward way. Another consequence is that we can find in any derivation that partially diverges (by
no matter how small an amount) a point at which the divergenceis distilled into a state which wholly diverges; we call
thisdistillation of divergence.

6.1 Finite generability

A subdistribution over the finite state spaceS can now be viewed as a point inRn, and therefore a set of subdistri-
butions, such as the set of weak derivatives{∆ | s =⇒ ∆ } corresponds to a subset ofRn. We endowRn with
the standard Euclidean metric and proceed to establish useful topological properties of such sets of subdistributions.
Recall that a setX ⊆ Rn is (Cauchy)closedif for every Cauchy sequence{ xn | n ≥ 0 } with limit x, if xn ∈ X for
everyn ≥ 0 thenx is also inX .

Lemma 6.1 If X is a finite subset ofRn thenlX is closed.

Proof: Straightforward. 2

In Definition 5.8 we gave a definition of extreme policies for pLTSs of the form〈S,Ωτ ,→〉 and showed how they
determine resolutions. Here we generalise these toderivative policiesand show that these generalised policies can
also be used to generate arbitrary weak derivatives of subdistributions overS.

Definition 6.2 A (static)derivative policyfor a pLTS〈S,Actτ ,→〉, is a partial functiondpp : S ⇀ D1(S) with the
property thatdpp(s) = ∆ impliess τ−→ ∆. If dpp is undefined ats, we writedpp(s)↑. Otherwise, we writedpp(s)↓.

A derivative policydpp, as its name suggests, can be used to guide the derivation of aweak derivative. Suppose
s =⇒ ∆, using a derivation as given in Definition 3.13. Then we writes =⇒dpp ∆ whenever, for allk ≥ 0,

(a) ∆→
k (s) =

{

∆k(s) if dpp(s)↓

0 otherwise

(b) ∆(k+1) =
∑

s∈⌈∆→
k ⌉ ∆

→
k (s) · dpp(s)

Intuitively these conditions mean that the derivation of∆ from s is guided at each stage by the policydpp:

• Condition (a) implies that the division of∆k into ∆→
k , the subdistribution which will continue marching, and

∆×
k , the subdistribution which will stop, is determined by the domain of the derivative policydpp.

• Condition (b) ensures that the derivation of the next stage∆k+1 from ∆→
k is determined by the action of the

functiondpp on the support of∆→
k .

Lemma 6.3 Let dpp be derivative policy in a pLTS. Then

(a) If s =⇒dpp ∆ ands =⇒dpp Θ then∆ = Θ.

(b) For every states there exists some∆ such thats =⇒dpp ∆.

Proof: To prove part (a) consider the derivation ofs =⇒ ∆ ands =⇒ Θ as in Definition 3.13, via the subdistributions
∆k, ∆→

k , ∆×
k andΘk, Θ→

k , Θ×
k respectively. Because both derivations are guided by the same derivative policy

dpp it is easy to show by induction onk that

∆k = Θk ∆→
k = Θ→

k ∆×
k = Θ×

k

from which∆ = Θ follows immediately.
To prove (b) we usedpp to generate subdistributions∆k, ∆→

k , ∆×
k for eachk ≥ 0 satisfying the constraints

of Definition 3.13 and simultaneously those in Definition 6.2above. The result will then follow by letting∆ be
∑

k≥0 ∆
×
k . 2
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The net effect of this lemma is that a derivative policydpp determines atotal function from states to derivations.
LetDerdpp : S → D1(S) be defined by lettingDerdpp(s) be the unique∆ such thats =⇒dpp ∆.

It should be clear that the use of derivative policies limitsconsiderably the scope for deriving weak derivations.
Each particular policy can only derive one weak derivative,and moreover in finitary pLTS there are only a finite number
of derivative policies. Nevertheless we will show that thislimitation is more apparent than real. In Section 5.2.1 we
saw how the more restrictive extreme policiesepp could in fact realise the maximum value attainable by any resolution
of a finitely branching pLTS. Here we generalise this result by replacing resolutions with arbitrary weight functions.

Definition 6.4 [Weights and payoffs] Aweight functionis a functionw : S → [−1, 1]. With S = {s1, . . . , sn} we
often consider a weight function as then-dimensional vector〈w(s1), ...,w(sn) 〉. In this way, we can use the notion
w �∆ to stand for the inner product of two vectors.

Given such a weight function, we define the payoff functionP
w
max : S → R by

P
w
max(s) = sup{w �∆ | s =⇒ ∆ }

A priori these payoff functions for a given states are determined by the set of weak derivatives ofs. However the
main result of this section is that they can in fact always be realised by derivative policies.

Theorem 6.5 (Realising payoffs)In a finitary pLTS, for every weight functionw there exists some derivative policy
dpp such thatPw

max(s) = w �Derdpp(s)

Proof: As with Theorem 5.13 there is a temptation to give a constructive proof here, defining the effect of the required
derivative policydpp at states by considering the application of the weight functionw to boths and all of its derivatives
- a finite set. However this is not possible, as the example below explains.

Instead the proof is non-constructive, requiringdiscountedpolicies. The overall structure of the proof is similar to
that of Theorem 5.13, but the use of (discounted) derivativepolicies rather than extreme policies makes the details con-
siderably different. Consequently the proof is spelled outin some detail in Appendix A, cumulating in Theorem A.15.
2

Example 6.6 Let us say that a derivative policydpp is max-seeking with respect to a weight functionw if for all s ∈ S
the following requirements are met.

1. If dpp(s)↑ thenw(s) ≥ P
w
max(∆1) for all s τ−→ ∆1.

2. If dpp(s)↓= ∆ then

(a) P
w
max(∆) ≥ w(s) and

(b) P
w
max(∆) ≥ P

w
max(∆1) for all s τ−→ ∆1.

What a max-seeking policy does is to evaluateP
w
max in advance, for a given weight functionw, and then label each

states with the payoff valuePw
max(s). The policy at any states is then to comparew(s) with the expected label values

P
w
max(∆

′) (i.e. Exp∆′(Pw
max)) for each outgoing transitions τ−→ ∆′ and then to select the greatest among all those

values. Note that for the policy to be well defined, we requirethat the pLTS under consideration is finitely branching.
In case that seems obvious, we now consider the pLTS in Figure6 and let us apply the above definition of max-

seeking policies to the weight function given byw(s0) = 0, w(s1) = 1. For both states a payoff of1 is attainable
eventually, thusPw

max(s0) = P
w
max(s1) = 1, because we haves0 =⇒ s1 ands1 =⇒ s1. Hence, both states will be

P
w
max-labelled with1. At states0 the policy then makes a choice among three options: (1) to stay unmoved, yielding

immediate payoffw(s0) = 0; (2) to take the transitions0
τ−→ s0; (3) to take the transitions0

τ−→ s0 1/2⊕ s1. Clearly
one of the latter two is chosen — but which? If it is the second,then indeed the maximum payoff1 can be achieved.
If it is the first, then in fact the overall payoff will be0 because of divergence, so the policy would fail to attain the
maximum payoff1.

However, for properly discounted max-seeking policies, weshow in Proposition A.12 that they always attain the
maximum payoffs. 2
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Figure 6: Max-seeking policies

With Theorem 6.5 at hand, we are in the position to prove the main result of this section, which says that in a
finitary pLTS the set of weak derivatives from any states, {∆ | s =⇒ ∆}, is generable by the convex closure of a
finite set. But we first need a tool, theSeparating Hyperplane Lemmafrom discrete geometry [18, Theorem 1.2.4
paraphrased].

Lemma 6.7 LetE andF be two convex- and Cauchy-closed subsets of then-dimensional Euclidean space; assume
that they are disjoint and that at least one of them is bounded. Then there is a hyperplane that strictly separates them.

Here ahyperplaneis a set of the form{g ∈ Rn | h � g = c} for certainh ∈ Rn (thenormalof the hyperplane) and
c ∈ R, and such a hyperplanestrictly separatesE andF if for all e ∈ E andf ∈ F we haveh � e < c < h � f or
h � e > c > h � f .

Theorem 6.8 (Finite generability) Let P = {dpp1, . . . , dppk} be the finite set of derivative policies in a finitary
pLTS. Thens =⇒ ∆ implies∆ ∈ l{Derdppi(s) | 1 ≤ i ≤ k }.

Proof: For convenience letX denote the setl{Derdppi(s) | 1 ≤ i ≤ k }. Suppose, for a contradiction, thats =⇒ ∆
for some∆ not inX . Recall that we are assuming that the underlying state spaceis S = {x1, . . . xn} so thatX is a
subset ofRn. It is trivially bounded by[−1, 1]n, and by definition it is convex-closed; by Lemma 6.1 it follows that
X is (Cauchy) closed.

By the Separating Hyperplane Lemma, Lemma 6.7,∆ can be separated fromX by a hyperplaneH . What this
means is that there is some functionwH : S → R and constantc ∈ R such that either

(a) wH �Θ < c for all Θ ∈ X andwH �∆ > c

(b) or,wH �Θ > c for all Θ ∈ X andwH �∆ < c

In fact from case (b) we can obtain case (a) by negating both the constantc and the components of the functionwH ;
so we can assume (a) to be true. Moreover by scaling with respect to the largestwH(si), 1 ≤ i ≤ n, we can assume
thatwH is actually a weight function.

In particular (a) means thatwH � Derdppi(s) < c, and therefore thatwH � Derdppi(s) < wH � ∆, for each of
derivative policesdppi. But this contradicts Theorem 6.5 which claims that there must be some1 ≤ i ≤ n such that
wH �Derdppi(s) = P

wH
max(s) ≥ wH �∆. 2

Note that by definitions =⇒ Derdpp(s) for every derivative policydpp. So it follows immediately from this theorem
that in a finitary pLTS the set of weak derivatives from the distributions is exactly the convex closure of the finite set
{Derdpp1(s), . . . , Derdppn}.

Extreme policies, as given in Definition 5.8, are particularkinds of derivative policies, designed for pLTSs of the
form 〈R,Ωτ ,→R〉. The significant constraint on extreme policies is that for any states if s τ−→ thenepp(s) must be
defined. As a consequence in the computation determined byepp if a state can contribute to the computation at any
stage it must contribute.
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Lemma 6.9 Let epp be any extreme policy. Thens =⇒epp ∆ impliess =⇒≻ ∆.

Proof: Consider the derivation of∆ as in Definition 3.13, and determined by the extreme policyepp. Since∆ =
∑

k≥0 ∆
×
k it is sufficient to show that each∆×

k is stable, that iss τ−→ impliess 6∈ ⌈∆×
k ⌉.

Sinceepp is an extreme policy, Definition 5.8 ensures thatepp(s) is defined. From the definition of a computation,
Definition 3.13, we know∆k = ∆→

k + ∆×
k and since the computation is guided by the policyepp we have that

∆→
k (s) = ∆k(s). An immediate consequence is that∆×

k (s) = 0. 2

As a consequence the finite generability result, Theorem 6.8, specialises to extreme derivatives.

Corollary 6.10 Let {epp1, ..., eppk} be the finite set of extreme policies of a finitaryω-respecting pLTS〈S,Ωτ ,→R〉.
Thens =⇒≻ ∆ if and only if ∆ ∈ l{Dereppi(s) | 1 ≤ i ≤ k }.

Proof: One direction follows immediately from the previous lemma.Conversely supposes =⇒≻ ∆. By Theorem 6.8
∆ =

∑

1≤i≤n pi · Derdppi(s) for some finite collection of derivative policiesdppi, where we can assume that each
pi ≥ 0. Because∆ is stable, that iss 6 τ−→ for everys ∈ ⌈∆⌉, we show that each derivative policydppi can be
transformed into an extreme policyeppi such thatDereppi(s) = Derdppi(s), from which the result will follow.

First note it is sufficient to defineeppi on the set of statest accessible froms via the policydppi; on the remaining
states inS eppi can be defined arbitrarily, so as to satisfy the requirementsof Definition 5.8. So consider the derivation
of Derdppi(s) as in Definition 3.13, determined bydppi and supposet ∈ ∆k for somek ≥ 0. There are three cases:

(i) Supposet τ−→. Since∆ is stable we knowt 6∈ ⌈∆×
k ⌉, and therefore by definitiondppi(t) is defined. So in this

case we leteppi(t) be the same asdppi(t).

(ii) Supposet ω−→, in which case, since the pLTS isω-respecting, we knowt 6 τ−→, and thereforedppi(t) is not
defined. Here we chooseeppi(t) arbitrarily so as to satisfyt ω−→ eppi(t).

(iii) Otherwise we leaveepp(t) undefined.

By definitioneppi is an extreme policy since it satisfies conditions (a) and (b)in Definition 5.8, and by construction
Dereppi(s) = Derdppi(s). 2

This corollary gives a useful method for calculating the setof extreme derivatives of a given state, and therefore of the
result of applying a test to a process.

Example 6.11 Consider again Figure 4, discussed in Example 4.11, where wehave theω-respecting pLTS obtained
by applying the testa.ω to the processQ2. There are only two extreme policies for this pLTS, denoted by epp0 and
epp1. They differ only for the states1, with epp0(s1) = Θ0 andepp1(s1) = Θ1. The discussion in Example 4.11
explained how

Derepp0(s1) = ω Derepp1(s1) =
1

2
s3 +

1

2
ω

By Corollary 6.10 we know that every possible extreme derivative of [[T |Act Q2℄] takes the form

q · ω + (1 − q) · (
1

2
s3 +

1

2
ω)

for some0 ≤ q ≤ 1. Since$(ω) = 1 and$(12s3 +
1
2ω) =

1
2 it follows thatA (T,Q2) = [ 12 , 1]. 2

6.2 Consequences

In this section we outline two major consequences of Theorem6.8, which informally means that the set of weak
derivatives from a given state is the convex-closure of a finite set. The first is straightforward, and is explained in the
following two results.

Lemma 6.12 (Closure of=⇒) For any states in a finitary pLTS the set of derivatives{∆ | s =⇒ ∆ } is closed and
convex.

36



Proof: Let dpp1, ..., dppn (n ≥ 1) be all the derivative policies in the finitary pLTS. Consider two setsC =
l{Derdppi(s) | 1 ≤ i ≤ n } andD = {∆′ | ∆ =⇒ ∆′}. By Theorem 6.8 we haveD ⊆ C. On the other hand,
it is easy to see thatD is convex and thusC ⊆ D. Therefore,D coincides withC, the convex closure of a finite set.
By Lemma 6.1, it is also Cauchy closed. 2

The restriction here to finitary pLTSs is essential, as the following examples demonstrate.

Example 6.13 Consider the finite state but infinitely branching pLTS containing three statess1, s2, s3 and the
countable set of transitions given by

s1
τ−→ (s2 1

2n
⊕ s3) n ≥ 1

For convenience let∆n denote the distribution(s2 1
2n

⊕ s3). Then{∆n | n ≥ 1 } is a Cauchy sequence with limit
s3. Trivially the set{∆ | s1 =⇒ ∆ } contains every∆n, but it does not contain the limit of the sequence, thus it is
not closed. 2

Example 6.14 By adapting Example 6.13, we obtain the following pLTS whichis finitely branching but has infinitely
many states. Lett1 andt2 be two distinct states. Moreover, for eachn ≥ 1 there is a statesn with two outgoing
transitions:sn

τ−→ sn+1 andsn
τ−→ t1 1

2n
⊕ t2. Let∆n denote the distributiont1 1

2n
⊕ t2. Then{∆n | n ≥ 1} is a

Cauchy sequence with limitt2. The set{∆ | s1 =⇒ ∆ } is not closed because it contains each∆n but not the limit
t2. 2

Corollary 6.15 [Closure of a
=⇒] For any states in a finitary pLTS the set{∆ | s a

=⇒ ∆} is closed and convex.

Proof: We first introduce a preliminary concept. We say a subsetD ⊆ D(S) is finitely generablewhenever there is
some finite setF ⊆ D(S) such thatD = lF . A relationR⊆ X × D(S) is finitely generableif for everyx in X the
setx· R is finitely generable. We observe that

(i) If a set is finitely generable, then it is closed and convex.

(ii) If R1,R2⊆ D(S)× D(S) are finitely generable then so is their compositionR1;R2.

The first property is a direct consequence of the definition offinite generability. To prove the second property, we let
Bi

Φ be a finite set of subdistributions such thatΦ· Ri= lBi
Φ for i = 1, 2. Then one can check that

∆· R1;R2 = l ∪{B
2
Θ | Θ ∈ B

1
∆ }

which implies that finite generability is preserved under composition of relations.
Notice that the relationa=⇒ is a composition of three stages:=⇒; a−→; =⇒. In the proof of Lemma 6.12 we have

shown that=⇒ is finitely generable. In a finitary pLTS, the relationa−→ is also finitely generable. It follows from
property (ii) that a=⇒ is finitely generable. By property (i) we have thata=⇒ is closed and convex. 2

Corollary 6.16 In a finitary pLTS, the relationa=⇒ is the lifting of the closed and convex relation=⇒S
a−→=⇒, where

s =⇒S ∆ meanss =⇒ ∆.

Proof: The relation=⇒S
a−→=⇒ is a

=⇒ restricted to point distributions. We have shown thata=⇒ is closed and convex
in Corollary 6.15. Therefore,=⇒S

µ−→=⇒ is closed and convex. Its lifting coincides withµ=⇒, which can be shown
by some arguments analogous to those in the proof of Proposition 3.21. 2

The second consequence of Theorem 6.8 concerns the manner inwhich divergent computations arise in pLTSs.
Consider again the infinite state pLTS given in Example 3.17.There is no states which wholly diverges, that is
satisfyings =⇒ ε, yet there are many partially divergent computations. In fact for everyk ≥ 2 we havesk =⇒ 1

k
a.

This can not arise in a finitary pLTS; if there is any partial derivation in a finitary pLTS,∆ =⇒ ∆′ with |∆|>|∆′|,
then there is some state in the pLTS which wholly diverges.

We say a pLTS isconvergentif s =⇒ ε for no states ∈ S.

Lemma 6.17 Let ∆ be a subdistribution in afinite-state, convergentand deterministicpLTS. If ∆ =⇒ ∆′ then
|∆| = |∆′|.
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Proof: Since the pLTS is convergent, thens =⇒ ε for no states ∈ S. In other words, eachτ sequence from a state
s is finite and ends with a distribution which cannot enable aτ transition. In a deterministic pLTS, each state has at
most one outgoing transition. So from eachs there is a uniqueτ sequence with lengthns ≥ 0.

s τ−→ ∆1
τ−→ ∆2

τ−→ · · · τ−→ ∆ns 6 τ−→

Let ps be∆ns(s
′) wheres′ is any state in the support of∆ns . We set

n = max{ns | s ∈ S}
p = min{ps | s ∈ S}

wheren andp are well defined asS is a finite set since we are considering a finite-state pLTS. Now let ∆ =⇒ ∆′ be
any weak derivation constructed by a collection of∆→

k ,∆
×
k such that

∆ = ∆→
0 +∆×

0

∆→
0

τ−→ ∆→
1 +∆×

1
...

∆→
k

τ−→ ∆→
k+1 +∆×

k+1
...

with ∆′ =
∑∞

k=0 ∆
×
k . From each∆→

kn+i with k, i ∈ N, the block ofn steps ofτ transition leads to∆→
(k+1)n+i such

that|∆→
(k+1)n+i| ≤ |∆→

kn+i|(1− p). It follows that

∑∞
j=0 |∆

→
j | =

∑n−1
i=0

∑∞
k=0 |∆

→
kn+i|

≤
∑n−1

i=0

∑∞
k=0 |∆

→
i |(1− p)k

=
∑n−1

i=0 |∆→
i | 1

p

≤ |∆→
0 |n

p

Therefore, we have thatlimk→∞ ∆→
k = 0, which in turn means that|∆′| = |∆|. 2

Corollary 6.18 [Zero-one law, deterministic case] If for some static derivative policydpp over a finite-state pLTS
there is for somes a derivations =⇒dpp ∆′ with |∆′| < 1 then in fact for some (possibly different) statesε we have
sε =⇒dpp ε.

Proof: Suppose that for no states do we haves =⇒dpp ε. Then the pLTS induced bydpp is convergent. Since
it is obviously finite-state and deterministic, we apply Lemma 6.17 and obtain|∆′| = |s| = 1, contradicting the
assumption that|∆′| < 1. Therefore, there must exist some statesε which wholly diverges. 2

Although it is possible to have processes that diverge with some probability strictly between zero and one, in a
finitary system it is possible to “distill” that divergence in the sense that in many cases we can limit our analyses
to processes that either wholly diverge (can do so with probability one) or wholly converge (can diverge only with
probability zero). This property is based on the zero-one law for finite-state probabilistic systems, and in this section
we present the aspects of it that we need here.

Lemma 6.19 [Distillation of divergence, deterministic case]
If for some states and static derivative policydpp over a finite-state pLTS there is a derivations =⇒dpp ∆′ then

there is a probabilityp and full distributions∆′
1,∆

′
ε such thats =⇒ (∆′

1 p⊕ ∆′
ε) and∆′ = p ·∆′

1 and∆′
ε =⇒ ε.

Proof: (Schema) We modifydpp so as to obtain a static policydpp′ by settingdpp′(t) = dpp(t) except whent =⇒dpp

ε, in which case we setdpp′(t) ↑. The new policy determines a unique weak derivation∆ =⇒dpp′ ∆′′ for some
subdistribution∆′′, and induces a sub-pLTS from the pLTS induced bydpp. Note that the sub-pLTS is deterministic
and convergent. By Lemma 6.17, we know that|∆′′| = |s| = 1. We split∆′′ up into∆′′

1 + ∆′′
ε so that each state in

38



τ

3/4

1/4

1/9

8/9

τ
1/16

15/16

1/25

24/25

τ

τ

k=2

k=4

k=5

k=3

s

0

0

0

0

There are two statess and0. To diverge froms with probability1− 1/k, start at “petal”k and take successiveτ -loops
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Yet, although divergence with arbitrarily high probability is present, complete probability-1 divergence is nowhere
possible. Either infinite states or infinite branching is necessary for this anomaly.

Figure 7: Infinitely branching flower.

⌈∆′′
ε ⌉ is wholly divergent under policydpp and∆′′

1 is supported by all other states. From∆′′
ε the policydpp determines

the weak derivation∆′′
ε =⇒dpp ε. Combining the two weak derivations we haves =⇒dpp′ ∆

′′
1 +∆′′

ε =⇒dpp ∆′′
1 . As

we only divide the original weak SDP-derivation into two stages, and do not change theτ transition from each state,
the final subdistribution will not change, thus∆′′

1 = ∆′. Finally we determinep, ∆′
1 and∆′

ε by lettingp = |∆′|,
∆′

1 = 1
p
∆′ and∆′

ε =
1

1−p∆
′′
ε . 2

Theorem 6.20 [Distillation of divergence, general case] For anys,∆′ in a finitary pLTS withs =⇒ ∆′ there is a
probabilityp and full distributions∆′

1,∆
′
ε such thats =⇒ (∆′

1 p⊕ ∆′
ε) and∆′ = p ·∆′

1 and∆′
ε =⇒ ε.

Proof: Let {dppi | i ∈ I} (I is a finite index set) be all the static derivative policies inthe finitary pLTS. Each policy
determines a weak derivations =⇒dppi

∆′
i. From Theorem 6.8 we know that ifs =⇒ ∆′ then∆′ =

∑

i∈I pi∆
′
i for

somepi with
∑

i∈I pi = 1. By Lemma 6.19, for eachi ∈ I, there is a probabilityqi and full distributions∆′
i,1, ∆′

i,ε

such thats =⇒ (∆′
i,1 qi

⊕ ∆′
i,ε), ∆′

i = qi · ∆′
i,1, and∆′

i,ε =⇒ ε. Finally we determinep, ∆′
1 and∆′

ε by letting
p = |

∑

i∈I piqi ·∆
′
i,1|, ∆

′
1 = 1

p
∆′, and∆′

ε =
1

1−p

∑

i∈I pi(1− qi)∆
′
i,ε. They satisfy our requirements just by noting

thats =⇒
∑

i∈I pi(∆
′
i,1 qi

⊕ ∆′
i,ε) = ∆′

1 p⊕ ∆′
ε 2

The requirement on the pLTS to be finitary is essential for this distillation of divergence, as we explain in the following
examples.

Example 6.21 [Revisiting Example 3.17] The pLTS in Example 3.17 is an infinite state system over statessk for all
k ≥ 2, where the probability of convergence is1/k from any statesk, thus a situation where distillation of divergence
fails because all the states partially diverge, yet there isno single state which wholly diverges. 2
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Example 6.22 Consider the finite state but infinitely branching pLTS described in Figure 7; this consists of two states
s and0 together with ak-indexed set of transitions

s τ−→k ([ 0 ℄ 1/k2⊕ s) for k ≥ 2, (19)

This pLTS is obtained from the infinite state pLTS described in Example 3.17 by identifying all of the statessi and
replacing the statea with 0.

As we have seen, by taking transitionss τ−→k · τ−→k+1 · τ−→k+2 · · · we haves =⇒ 1
k
· 0 for anyk ≥ 2; but

cruciallys 6=⇒ ε. Since trivially0 6=⇒ ε there is no full distribution∆ such that∆ =⇒ ε.
Now to contradict the distillation of divergence for this pLTS note thats =⇒ 1

2 · 0, but this derivation cannot be
factored in the required manner tos =⇒ (∆′

1 p⊕ ∆′
ε), because no possible full distribution∆′

ε can exist satisfying
∆′
ε =⇒ ε. 2

Corollary 6.18 and Lemma 6.19 are not affected by infinite branching, because they are restricted to the determin-
istic case (i.e. the case of no branching at all). What fails is the combination of a number of deterministic distillations
to make a non-deterministic one, in Theorem 6.20: it dependson Theorem 6.8, which in turn requires finite branching.

Corollary 6.23 [Zero-one law, general case] If in a finitary pLTS we have∆,∆′ with ∆ =⇒ ∆′ and|∆|>|∆′| then
there is some states′ reachable with non-zero probability from∆ such thats′ =⇒ ε. That is, the pLTS based on∆
must have a wholly diverging state somewhere.

Proof: Assume at first that|∆|=1; then the result is immediate from Theorem 6.20 since anys′∈⌈∆′
ε⌉ will do. The

general result is obtained by dividing the given derivationby |∆|. 2

7 The failure simulation preorder

This section is divided in four: the first subsection presents the definition of thefailure simulation preorderin an
arbitrary pLTS, together with some explanatory examples. It gives two equivalent characterisations of this preorder:
a co-inductive one as a largest relation between subdistributions satisfying certain transfer properties, and one that is
obtained through lifting and an additional closure property from a relation between states and subdistributions that
we call failure similarity. It also investigates some elementary properties of the failure simulation preorder and of
failure similarity. In the second subsection we restrict attention to finitary processes, and on this realm characterise the
failure simulation preorder in terms ofsimple failure similarity. All further results on the failure simulation preorder,
in particular precongruence for the operators ofpCSP and soundness and completeness with respect to the must
testing preorder, are in terms of this characterisation, and hence pertain to finitary processes only. The third subsection
establishes monotonicity of the operators ofpCSP with respect to the failure simulation preorder — in other words:
shows that the failure simulation preorder is a precongruence with respect to these operators — and the last subsection
is devoted to showing soundness with respect to must testing. Completeness is the subject of Section 8.

7.1 Two equivalent definitions and their rationale

We start with defining the weak action relationsα=⇒ for α ∈ Actτ and the refusal relations6A−→ for A ⊆ Act that are
the key ingredients in the definition of the failure simulation preorder [7, 2].

Definition 7.1 Let∆ and its variants be subdistributions in a pLTS〈S,Actτ ,→〉.

• For a ∈ Act write ∆
a

=⇒ ∆′ whenever∆ =⇒ ∆pre a−→ ∆post =⇒ ∆′. Extend this toActτ by allowing as a
special case thatτ=⇒ is simply=⇒, i.e. including identity (rather than requiring at least one τ−→).

• ForA ⊆ Act ands∈S write s 6A−→ if s 6α−→ for everyα∈A ∪ {τ}; write∆ 6A−→ if s 6A−→ for everys∈⌈∆⌉.

• More generally write∆ =⇒ 6A−→ if ∆ =⇒ ∆pre for some∆pre such that∆pre 6A−→.

For example, referring to Example 3.16 we have[Q1℄ a
=⇒ [ 0 ℄, while in Example 3.17 we have[s2℄ a

=⇒ 1
2[ 0 ℄ as

well as[s2℄ =⇒ 6B−→ for any setB not containinga, becauses2 =⇒ 1
2[a℄.
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Definition 7.2 (Failure Simulation Preorder) Define⊒FS to be the largest relation inD(S) × D(S) such that if
∆ ⊒FS Θ then

1. whenever∆ α
=⇒ (

∑

i pi∆
′
i), for α∈Actτ and certainpi with (

∑

i pi) ≤ 1, then there areΘ′
i ∈D(S) with

Θ
α
=⇒ (

∑

i piΘ
′
i) and∆′

i ⊒FS Θ′
i for eachi, and

2. whenever∆ =⇒ 6A−→ then alsoΘ =⇒ 6A−→.

NaturallyΘ ⊑FS ∆ just means∆ ⊒FS Θ. We have chosen the orientation of the preorder symbol to match that of
must testing, which goes back to the work of De Nicola & Hennessy [6]. This orientation also matches the one used in
CSP [10] and related work, were we have SPECIFICATION⊑ IMPLEMENTATION. At the same time, we like to stick to
the convention popular in the CCS community of writing the simulated process to the left of the preorder symbol and
the simulating process (that mimics moves of the simulated one) on the right. This helps when comparing with may
testing and the simulation preorder in Section 9. We achievethis by writing IMPLEMENTATION ⊒FS SPECIFICATION.

In the first case of the above definition the summation is allowed to be empty, which has the following useful
consequence.

Lemma 7.3 If ∆ diverges and∆ ⊒FS Θ, then alsoΘ diverges.

Proof: Divergence of∆ means that∆ =⇒ ε, whence with∆ ⊒FS Θ we can take the empty summation in Defini-
tion 7.2 to conclude that alsoΘ =⇒ ε. 2

Although the regularity of Definition 7.2 is appealing — for example it is trivial to see that⊑FS is reflexive and
transitive, as it should be — in practice, for specific processes, it is easier to work with a characterisation of the failure
simulation preorder in terms of a relation between betweenstatesand distributions.

Definition 7.4 (Failure Similarity) Define�FS to be the largest relation inS × D(S) such that ifs �FS Θ then

1. whenevers α
=⇒ ∆′, for α∈Actτ , then there is aΘ′ ∈D(S) with Θ

α
=⇒ Θ′ and∆′

�FS Θ
′, and

2. whenevers =⇒ 6A−→ thenΘ =⇒ 6A−→.

Any relationR ⊆ S × D(S) that satisfies the two clauses above is called afailure simulation.

Obviously, for any failure simulationR we haveR ⊆ �FS. The following two lemmas show that the lifted failure
similarity relation�FS ⊆ D(S)× D(S) has simulating properties analogous to 1 and 2 above.

Lemma 7.5 Suppose∆ �FS Θ and∆ α
=⇒ ∆′ for α ∈ Actτ . ThenΘ α

=⇒ Θ′ for someΘ′ such that∆′
�FS Θ

′.

Proof: ∆ �FS Θ implies by Lemma 3.5 that ∆ =
∑

i∈I

pi · si, si �FS Θi, Θ =
∑

i∈I

pi ·Θi.

By Corollary 6.16 and Proposition 3.10 we know from∆ α
=⇒ ∆′ that si

α
=⇒ ∆′

i for ∆′
i ∈ D(S) such that∆′ =

∑

i∈I pi ·∆
′
i. For eachi ∈ I we infer fromsi �FS Θi andsi

α
=⇒ ∆′

i that there is aΘ′
i ∈D(S) with Θi

α
=⇒ Θ′

i and
∆′
i �FS Θ

′. LetΘ′ :=
∑

i∈I pi ·Θ
′
i. Then Definition 3.2(2) and Theorem 3.20(i) yield∆′

�FS Θ
′ andΘ α

=⇒ Θ′. 2

Lemma 7.6 Suppose∆ �FS Θ and∆ =⇒ 6A−→. ThenΘ =⇒ 6A−→.

Proof: Suppose∆ �FS Θ and∆ =⇒ ∆′ 6A−→. By Lemma 7.5 there exists someΘ′ such thatΘ =⇒ Θ′ and∆′
�FS Θ

′.

From Lemma 3.5 we know that∆′ =
∑

i∈I

pi · si, si �FS Θi, Θ′ =
∑

i∈I

pi ·Θi, with si ∈ ⌈∆′⌉ for all i∈ I.

Since∆′ 6A−→, we have thatsi 6A−→ for all i ∈ I. It follows from si �FS Θi thatΘi =⇒ Θ′
i 6A−→. By Theorem 3.20(i) we

obtain that
∑

i∈I pi ·Θi =⇒
∑

i∈I pi ·Θ
′
i 6A−→. By the transitivity of=⇒ we have thatΘ =⇒ 6A−→. 2

The next result shows how the failure simulation preorder can alternatively be defined in terms of failure similarity.

Proposition 7.7 For∆,Θ∈D(S)we have∆ ⊒FS Θ just when there is aΘmatchwith Θ =⇒ Θmatchand∆ �FS Θ
match.
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Proof: Let �′
FS ⊆ S × D(S) be the relation given bys �

′
FS Θ iff s ⊒FS Θ. Then�′

FS is a failure simulation; hence
�

′
FS ⊆ �FS. Now suppose∆ ⊒FS Θ. Let∆ :=

∑

i pi ·si. Then there areΘi with Θ =⇒
∑

i pi ·Θi andsi ⊒FS Θi for
eachi, whencesi �′

FS Θi, and thussi �FS Θi. TakeΘmatch :=
∑

i pi ·Θi. Definition 3.2 yields∆ �FS Θ
match.

For the other direction it suffices to show that�FS; =⇒
−1 satisfies the two clauses of Definition 7.2, yielding

�FS; =⇒
−1 ⊆ ⊒FS . So suppose, for given∆,Θ∈D(S), there is aΘmatchwith Θ =⇒ Θmatchand∆ �FS Θ

match.
Suppose∆ α

=⇒
∑

i∈I pi ·∆
′
i for someα∈Actτ . By Lemma 7.5 there is someΘ′ such thatΘmatch α

=⇒ Θ′ and
(
∑

i∈I pi ·∆
′
i) �FS Θ′. From Proposition 3.10 we know thatΘ′ =

∑

i∈I pi ·Θ
′
i for subdistributionsΘ′

i such that
∆′
i �FS Θ

′
i for i ∈ I. ThusΘ α

=⇒
∑

i pi ·Θ
′
i by the transitivity of=⇒ (Theorem 3.22) and∆′

i(�FS; =⇒
−1)Θ′

i for each
i∈ I by the reflexivity of=⇒.

Suppose∆ =⇒ 6A−→. By Lemma 7.6 we haveΘmatch=⇒ 6A−→. It follows thatΘ =⇒ 6A−→ by the transitivity of=⇒. 2

Note the appearance of the “anterior step”Θ =⇒ Θmatch in Proposition 7.7 immediately above; the following example
shows it necessary in the sense that defining⊒FS simply to be�FS (i.e. without anterior step) would not have been
suitable.

Example 7.8 Compare the two processesP := a 1
2
⊕ b andQ := τ.P . They are testing equivalent, and so for�FS

to be complete we would have to have[P ℄ �FS [Q℄. But we do not, for by Proposition 3.10 that would require[a℄ �FS [Q℄, which must fail since the former’s movea−→ [ 0 ℄ cannot be matched by the latter.
We do however haveP ⊒FS Q because of the anterior stepQ =⇒ P and of course[P ℄ �FS [P ℄. 2

Remark 7.9 For s∈S andΘ∈D(S) we haves �FS Θ iff s ⊒FS Θ; here no anterior step is needed. One direction
of this statement has been obtained in the beginning of the proof of Proposition 7.7; for the other note thats �FS Θ
impliess �FS Θ by Definition 3.2(1) which impliess ⊒FS Θ by Proposition 7.7 and the reflexivity of=⇒.

Example 7.8 shows that⊒FS cannot be obtained as the lifting of any relation: it lacks the decomposition property of
Proposition 3.10. Nevertheless,⊒FS enjoys the property of linearity, as occurs in Definition 3.2:

Lemma 7.10 If ∆i ⊒FS Θi for i∈ I then
∑

i∈I pi ·∆i ⊒FS

∑

i∈I pi ·Θi for anypi ∈[0, 1] (i∈ I) with
∑

i∈I pi ≤ 1.

Proof: This follows immediately from the linearity of�FS and=⇒ (cf. Theorem 3.20(i)), using Proposition 7.7.2

Example 7.11 (Divergence)From Example 3.15 we know that[recx. x℄ =⇒ ε. This, together with (1) in Sec-
tion 3.1, and the fact thatε 6A−→ for any set of actionsA, ensures thats �FS [recx. x℄ for anys, henceΘ �FS [recx. x℄
for anyΘ, and thus thatΘ ⊒FS [recx. x℄. Indeed similar reasoning applies to any∆ with ∆ = ∆0

τ−→ ∆1
τ−→

· · · τ−→ · · · because — as explained right before Example 3.15 — this also ensures that∆ =⇒ ε. In particular, we
haveε =⇒ ε and hence[recx. x℄ ≃FS ε.

Yet [recx. x℄ 6⊒FS 0, because the move[recx. x℄ =⇒ ε cannot be matched by a corresponding move from[0 ℄
— see Lemma 7.3. 2

Example 7.11 shows again that the anterior move in Proposition 7.7 is necessary: althoughε ⊒FS [recx. x℄ we do
not haveε �FS [recx. x℄, since by Lemma 3.6 anyΘ with ε �FS Θ must have|Θ| = 0.

Example 7.12 Referring to the processQ1 of Example 3.16, with Proposition 7.7 we easily see thata ⊒FS Q1

because we havea �FS [Q1℄. Note that the move[Q1℄ =⇒ [a℄ is crucial, since it enables us to match the move[a℄ a−→ [0 ℄ with [Q1℄ =⇒ [a℄ a−→ [ 0 ℄. It also enables us to match refusals: if[a℄ 6B−→ thenB can not contain the
actiona, and therefore also[Q1℄ =⇒ 6B−→.

The converse, thata ⊑FS Q1, is also true because it is straightforward to verify that the relation

{(Q1, [a℄), (τ.Q1, [a℄), (a, [a℄), (0, [ 0 ℄)}
is a failure simulation and thus is a subset of�FS. We therefore haveQ1 ≃FS a. 2
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Example 7.13 Let P be the processa 1
2
⊕ recx. x and consider the states2 introduced in Example 3.17. First note

that [P ℄ �FS
1
2 ·[a℄, sincerecx. x �FS ε. Then becauses2 =⇒ 1

2 ·[a℄ we have[P ℄ ⊒FS s2. The converse, that
s2 ⊒FS [P ℄ holds, is true becauses2 �FS [P ℄ follows from the fact that the relation

{(sk, [a℄ 1/k⊕ [recx. x℄) | k ≥ 2} ∪ {(a, [a℄), (0, [0 ℄)}
is a failure simulation that contains the pair(s2, [P ℄). 2

Our final examples pursue the consequences of the fact that the empty distributionε is behaviourally indistinguishable
from divergent processes like[recx. x℄.
Example 7.14 (Subdistributions formally unnecessary)For any subdistribution∆, let ∆e denote the (full) distri-
bution defined by

∆e := ∆ + (1− |∆|)·[recx. x℄ .
Intuitively it is obtained from∆ by padding the missing support with the divergent state[recx. x℄.

Then∆ ≃FS ∆e. This follows because∆e =⇒ ∆, which is sufficient to establish∆ ⊒FS ∆e; but also∆e
�FS ∆

because[recx. x℄ �FS ε, and that implies the converse∆e ⊒FS ∆. The equivalence shows that formally we have no
need for subdistributions, and that our technical development could be carried out using (full) distributions only.2

But abandoning subdistributions comes at a cost: the definition of weak transition, Definition 3.13, would be much
more complex if expressed with full distributions, as wouldsyntactic manipulations such as those used in the proof of
Theorem 3.22.

More significant, however, is that diverging processes havea special character in failure simulation semantics.
Placing them at the bottom of the⊑FS preorder — as we do – requires that they failure-simulate every processes,
thus allowing all visible actions and all refusals and so behaving in a sense “chaotically”; yet applying the operational
semantics of Figure 2 torecx. x literally would suggest exactly the opposite, sincerecx. x allows no visible actions
(all its derivatives enable onlyτ ) and no refusals (all its derivatives haveτ enabled). The case analyses that discrepancy
would require are entirely escaped by allowing subdistributions, as the chaotic behaviour of the divergingε follows
naturally from the definitions, as we saw in Example 7.11.

We conclude with an example involving divergence and subdistributions.

Example 7.15 For 0 ≤ c ≤ 1 let Pc be the process0 c⊕ recx. x. We show that[Pc℄ ⊑FS [Pc′℄ just whenc ≤ c′.
(Refusals can be ignored, sincePc refuses every set of actions, for allc.)

Suppose first thatc ≤ c′, and split the two processes as follows:[Pc℄ = c ·[ 0 ℄+(c′−c)·[recx. x℄+(1−c′)·[recx. x℄[Pc′℄ = c ·[ 0 ℄+(c′−c)·[0 ℄ +(1−c′)·[recx. x℄ .

Because0 �FS [recx. x℄ (the middle terms), we have immediately[Pc′℄ �FS [Pc℄, whence[Pc℄ ⊑FS [Pc′℄.
For the other direction, note that[Pc′℄ =⇒ c′ ·[0 ℄. If [Pc℄ ⊑FS [Pc′℄ then from Definition 7.2 we would have to

have[Pc℄ =⇒ c′ ·Θ′ for some subdistributionΘ′, a derivative of weight no more thanc′. But the smallest weightPc
can reach via=⇒ is justc, so that we must have in factc ≤ c′. 2

We end this subsection with two properties of failure similarity that will be useful later on.

Proposition 7.16 The relation�FS is convex.

Proof: Supposes �FS Θi andpi ∈ [0, 1] for i∈ I, with
∑

i∈I pi = 1. We need to show thats �FS

∑

i∈I pi ·Θi.
If s α

=⇒ ∆′, then there existΘ′
i for i∈ I such thatΘi

α
=⇒ Θ′

i and∆′
�FS Θ′

i. By Corollary 6.16 and Defini-
tion 3.2(2), we obtain that

∑

i∈I pi ·Θi
α
=⇒

∑

i∈I pi ·Θ
′
i and∆′

�FS

∑

i∈I pi ·Θ
′
i.

If s =⇒ 6A−→ for someA ⊆ Act, thenΘi =⇒ Θ′
i 6A−→ for all i∈ I. By definition we have

∑

i∈I pi ·Θ
′
i 6A−→.

Theorem 3.20(i) yields
∑

i∈I pi ·Θi =⇒
∑

i∈I pi ·Θ
′
i.

So we have checked thats �FS

∑

i∈I pi ·Θi. It follows that�FS is convex. 2
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Proposition 7.17 The relation�FS ⊆ D(S)× D(S) is reflexive and transitive.

Proof: Reflexivity is easy; it relies on the fact thats �FS s for every states.
For transitivity, we first show that�FS;�FS is a failure simulation. Supposes �FS Θ �FS Φ. If s α

=⇒ ∆′ then there
is aΘ′ such thatΘ α

=⇒ Θ′ and∆′
�FS Θ

′. By Lemma 7.5, there exists aΦ′ such thatΦ α
=⇒ Φ′ andΘ′

�FS Φ
′. Hence,

∆′
�FS;�FS Φ

′. By Lemma 3.12 we know that

�FS;�FS = �FS;�FS (20)

Therefore, we obtain∆′
�FS;�FS Φ

′.
If s =⇒ 6A−→ for someA ⊆ Act, thenΘ =⇒ 6A−→ and henceΦ =⇒ 6A−→ by Lemma 7.6.
So we established that�FS;�FS ⊆ �FS. It now follows from Remark 3.3 and (20) that�FS;�FS ⊆ �FS. 2

7.2 A simpler characterisation of failure similarity for fin itary processes

Here we present a simpler characterisation of failure similarity, valid when considering finitary processes only. It is
in terms of this characterisation that we will establish soundness and completeness of the failure simulation preorder
with respect to the must testing preorder; consequently we have these results for finitary processes only.

Definition 7.18 (Simple Failure Similarity) Let �sFS be the largest relation inS × D(S) such that ifs �sFS Θ then

1. whenevers =⇒ ε then alsoΘ =⇒ ε, otherwise

2. whenevers α−→ ∆′, for α∈Actτ , then there is aΘ′ with Θ
α
=⇒ Θ′ and∆′

�sFS Θ
′, and

3. whenevers 6A−→ thenΘ =⇒ 6A−→.

We first note that the relation�sFS is not interesting for infinitary processes since its liftedform�sFS is not a transitive
relation for those processes.

Example 7.19 Consider the process defined by the following two transitions: t0
τ−→ (0 1/2⊕ t1) andt1

τ−→ t1. We
compare statet0 with states in Example 6.22 and have thatt0 �

s
FS s. The transitiont0

τ−→ (0 1/2⊕ t1) can be matched
up bys =⇒ 1

20 because(0 1/2⊕ t1) �sFS
1
20 by noticing thatt1 �

s
FS ε.

It also holds thats �sFS 0 because the relation{(s, 0), (0, 0)} is a simple failure simulation. The transitions τ−→k

(0 1
2
⊕ s) for anyk ≥ 2 is matched up by0 =⇒ 0.

However, we do not havet0 �
s
FS 0. The only candidate to simulate the transitiont0

τ−→ (0 1/2⊕ t1) is 0 =⇒ 0, but
(0 1

2
⊕ t1) 6�sFS 0 because the divergent statet1 cannot be simulated by0.

Therefore, we havet0 �sFS s �sFS 0 but t0 6�sFS 0, thus transitivity of the relation�sFS fails. Here the states is not
finitely branching. As a matter of fact, transitivity of�sFS also fails for finitely branching but infinite state processes.

Consider an infinite state pLTS consisting of a collection ofstatessk for k ≥ 2 such that

sk
τ−→ 0 1

k2
⊕ sk+1. (21)

This pLTS is obtained from that in Example 3.17 by replacinga with 0. One can check thatt0 �sFS s2 �sFS 0 but we
already know thatt0 6�sFS 0. Again, we loose the transitivity of�sFS. 2

If we restrict our attention to finitary processes, then�
s
FS provides a simpler characterisation of failure similarity.

Theorem 7.20 (Equivalence of failure- and simple failure similarity) For finitary distributions∆,Θ∈D(S) in a
pLTS 〈S,Actτ ,→〉 we have∆ �

s
FS Θ iff ∆ �FS Θ.

Proof: Becauses α−→ ∆′ impliess α−→ ∆′ ands 6A−→ impliess =⇒ 6A−→ it is trivial that�FS satisfies the conditions of
Definition 7.18, so that�FS ⊆ �

s
FS.

For the other direction we need to show that�
s
FS satisfies Clause 1 of Definition 7.4 withα = τ , that is

if s �sFS Θ ands =⇒ ∆′ then there is someΘ′ ∈D(S) with Θ =⇒ Θ′ and∆′
�sFS Θ

′.
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Figure 8: Illustration of Theorem 7.20

Once we have this, the relation�sFS clearly satisfies both clauses of Definition 7.4, so that we have�sFS ⊆ �FS.
So suppose thats �

s
FS Θ and thats =⇒ ∆′ where — for the moment — we assume|∆′| = 1. Referring to

Definition 3.13, there must be∆k, ∆→
k and∆×

k for k ≥ 0 such thats = ∆0, ∆k = ∆→
k + ∆×

k , ∆→
k

τ−→ ∆k+1

and∆′ =
∑∞

k=1 ∆
×
k . Since∆×

0 + ∆→
0 = s �sFS Θ, using Proposition 3.10 we can defineΘ =: Θ×

0 + Θ→
0 so that

∆×
0 �sFS Θ

×
0 and∆→

0 �sFS Θ
→
0 . Since∆→

0
τ−→ ∆1 and∆→

0 �sFS Θ
→
0 we haveΘ→

0 =⇒ Θ1 with ∆1 �sFS Θ1.
Repeating the above procedure gives us inductively a seriesΘk,Θ

→
k ,Θ

×
k of subdistributions, fork ≥ 0, such that

Θ0 = Θ, ∆k �sFS Θk, Θk = Θ→
k + Θ×

k , ∆×
k �sFS Θ

×
k , ∆→

k �sFS Θ
→
k andΘ→

k
τ

=⇒ Θk. We defineΘ′ :=
∑

iΘ
×
i . By

Additivity (Remark 3.7) we have∆′
�sFS Θ

′. It remains to be shown thatΘ =⇒ Θ′.
For that final step, since(Θ =⇒) is closed according to Lemma 6.12, we can establishΘ =⇒ Θ′ by exhibiting a

sequenceΘ′
i with Θ =⇒ Θ′

i for eachi and with theΘ′
i’s being arbitrarily close toΘ′. Induction establishes for eachi

thatΘ =⇒ Θ′
i := (Θ→

i +
∑

k≤iΘ
×
k ). Since|∆′| = 1, we must havelimi→∞ |

∑∞
k=i∆

→
i | = 0 andlimi→∞ |∆→

i | = 0,
whence by Lemma 3.6, using that∆→

i �sFS Θ
→
i , alsolimi→∞ |

∑∞
k=iΘ

→
i | = 0 andlimi→∞ |Θ→

i | = 0. Thus these
Θ′
i’s form the sequence we needed.

That concludes the case for|∆′| = 1. If on the other hand∆′ = ε, i.e. we have|∆′| = 0, thenΘ =⇒ ε follows
immediately froms �sFS Θ, andε �sFS ε trivially.

In the general case, ifs =⇒ ∆′ then by Theorem 6.20 we haves =⇒ ∆′
1 p⊕ ∆′

ε for some probabilityp and
full distributions∆′

1,∆
′
ε, with ∆′ = p ·∆′

1 and∆′
ε =⇒ ε. From the mass-1 case above we haveΘ =⇒ Θ′

1 p⊕ Θ′
ε

with ∆′
1 �sFS Θ′

1 and∆′
ε �sFS Θ′

ε; from the mass-0 case we haveΘ′
ε =⇒ ε and henceΘ′

1 p⊕ Θ′
ε =⇒ p ·Θ′

1 by
Theorem 3.20(i); thus transitivity yieldsΘ =⇒ p ·Θ′

1, with ∆′ = p ·∆′
1 �sFS p ·Θ

′
1 as required, using Definition 3.2(2).

2

The proof of Theorem 7.20 refers to Theorem 6.20 where the underlying pLTS is assumed to be finitary. As we
would expect, Theorem 7.20 fails for infinitary pLTSs.

Example 7.21 We have seen in Example 7.19 that the states from (19) is related to0 via the relation�sFS. We now
compares with 0 according to�FS. From states we have the weak transitions =⇒ 0 1/2⊕ ε, which cannot be matched
by any transition from0, thuss 6�FS 0. This means that Theorem 7.20 fails for infinitely branchingprocesses.

If we replace states by the states2 from (21), similar phenomenon happens. Therefore, Theorem7.20 also fails
for finitely branching but infinite-state processes. 2

7.3 Precongruence

The purpose of this section is to show that the semantic relation ⊒FS is preserved by the constructs ofpCSP. The
proofs follow closely the corresponding proofs in Section 4of [2], but here there is a significant extra proof obligation:
in order to relate two processes we have to demonstrate that if the first diverges then so does the second.

Here, in order to avoid such complications, we introduce yetanother version of failure simulation; it modifies
Definition 7.18 by checking divergence co-inductively instead of using a predicate.
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Definition 7.22 Define�cFS to be the largest relation inS × D(S) such that ifs �cFS Θ then

1. whenevers =⇒ ε, there are some∆′,Θ′ such thats =⇒ τ−→=⇒ ∆′ =⇒ ε, Θ =⇒ τ−→=⇒ Θ′ and∆′
�cFS Θ

′;
otherwise

2. whenevers α−→ ∆′, for α∈Actτ , then there is aΘ′ with Θ
α
=⇒ Θ′ and∆′

�cFS Θ
′, and

3. whenevers 6A−→ thenΘ =⇒ 6A−→.

Lemma 7.23 The following statements about divergence are equivalent.

(1) ∆ =⇒ ε.

(2) There is an infinite sequence∆ τ−→ ∆1
τ−→ ∆2

τ−→ . . ..

(3) There is an infinite sequence∆ =⇒ τ−→=⇒ ∆1 =⇒ τ−→=⇒ ∆2 =⇒ τ−→=⇒ . . ..

Proof: By the definition of weak transition, it is immediate that(1) ⇔ (2). Clearly we have(2) ⇒ (3). To show
that(3) ⇒ (2), we introduce another characterisation of divergence. Let∆ be a subdistribution in a pLTSL. A pLTS
induced by∆ is a pLTS whose states and transitions are subsets of those inL and all states are reachable from∆.

(4) There is a pLTS induced by∆ where all states have outgoingτ transitions.

It holds that(3) ⇒ (4) because we can construct a pLTS whose states and transitionsare just those used in deriving
the infinite sequence in(3). For this pLTS, each state has an outgoingτ transition, which gives(4) ⇒ (2). 2

The next lemma shows the usefulness of the relation�
c
FS by checking divergence in a co-inductive way.

Lemma 7.24 Suppose∆ �cFS Θ and ∆ =⇒ ε. Then there exist∆′,Θ′ such that∆ =⇒ τ−→=⇒ ∆′ =⇒ ε,
Θ =⇒ τ−→=⇒ Θ′, and∆′

�cFS Θ
′.

Proof: Suppose∆ �cFS Θ and∆ =⇒ ε. In analogy with Proposition 7.16 we can show that�
c
FS is convex. By

Corollary 3.11, we can decomposeΘ as
∑

s∈⌈∆⌉ ∆(s)·Θs and s �
c
FS Θs for eachs ∈ ⌈∆⌉. Now eachs must

also diverge. So there exist∆′
s,Θ

′
s such thats =⇒ τ−→=⇒ ∆′

s =⇒ ε, Θs =⇒ τ−→=⇒ Θ′
s and∆′

s �cFS Θ′
s for each

s ∈ ⌈∆⌉. Let∆′ =
∑

s∈⌈∆⌉ ∆(s)·∆′
s andΘ′ =

∑

s∈⌈∆⌉ ∆(s)·Θ′
s. By Definition 3.2 and Theorem 3.20(i), we have

∆′
�cFS Θ′, ∆ =⇒ τ−→=⇒ ∆′, andΘ =⇒ τ−→=⇒ Θ′. We also have that∆′ =⇒ ε because for each states in ∆′ it

holds thats ∈ ⌈∆′
s⌉ for some∆′

s and∆′
s =⇒ ε, which meanss =⇒ ε. 2

Lemma 7.25 �
c
FS coincides with�sFS.

Proof: We only need to check that the first clause in Definition 7.18 isequivalent to the first clause in Definition 7.22.
For one direction, we consider the relation

R := {(s,Θ) | s =⇒ ε andΘ =⇒ ε}

and showR ⊆ �
c
FS. Supposes R Θ. By Lemma 7.23 there are two infinite sequencess τ−→ ∆1

τ−→ ∆2
τ−→ . . . and

Θ τ−→ Θ1
τ−→ . . .. Then we have both∆1 =⇒ ε andΘ1 =⇒ ε. Note that∆1 =⇒ ε if and only if t =⇒ ε for each

t ∈ ⌈∆1⌉. Therefore,∆1 R Θ1 as we have∆1 =
∑

t∈⌈∆1⌉
∆1(t)·t, Θ1 =

∑

t∈⌈∆1⌉
∆1(t)·Θ1, andt R Θ1. Here

|∆1| = 1 because∆1, like s, is a distribution.
For the other direction, we show that∆ �cFS Θ and∆ =⇒ ε imply Θ =⇒ ε. Then as a special case, we get

s �
c
FS Θ ands =⇒ ε imply Θ =⇒ ε. By repeated application of Lemma 7.24, we can obtain two infinite sequences

∆ =⇒ τ−→=⇒ ∆1 =⇒ τ−→=⇒ . . . andΘ =⇒ τ−→=⇒ Θ1 =⇒ τ−→=⇒ . . . such that∆i �cFS Θi for all i ≥ 1. By
Lemma 7.23 this impliesΘ =⇒ ε. 2
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The advantage of this new relation�cFS over�sFS is that in order to checks �
c
FS Θ whens diverges it is sufficient

to find a single matching moveΘ =⇒ τ−→=⇒ Θ′, rather than an infinite sequence of moves. However to construct this
matching move we cannot rely on clause 2 in Definition 7.22, asthe move generated there might actually be empty,
which we have seen in Example 3.14. Instead we need a method for generating weak moves which contain at least
one occurrence of aτ -action.

Definition 7.26 [Productive moves] Let us writes |A t τ−→p Θ whenever we can infers |A t τ−→p Θ from rule
(par.r) or (par.i). In effect this means thatt must contribute to the action.

Theseproductiveactions are extended to subdistributions in the standard manner, giving∆ τ−→p Θ.

The following lemma appeared as Lemma 6.12 in [4]. It still holds in our current setting.

Lemma 7.27 (1) If Φ =⇒ Φ′ thenΦ |A ∆ =⇒ Φ′ |A ∆ and∆ |A Φ =⇒ ∆ |A Φ′.

(2) If Φ a−→ Φ′ anda 6∈ A thenΦ |A ∆ a−→ Φ′ |A ∆ and∆ |A Φ a−→ ∆ |A Φ′.

(3) If Φ a−→ Φ′, ∆ a−→ ∆′ anda ∈ A then∆ |A Φ τ−→ ∆′ |A Φ′.

(4) (
∑

j∈J pj ·Φj) |A (
∑

k∈K qk ·∆k) =
∑

j∈J

∑

k∈K(pj ·qk)·(Φj |A ∆k).

(5) Given relationsR,R′ ⊆ S×D(S) satisfyinguRΨ wheneveru = s |A t andΨ = Θ |A t with s R′ Θ and
t∈S. Then∆ R′ Θ andΦ∈D(S) implies(∆ |A Φ) R (Θ |A Φ). 2

Proposition 7.28 Suppose∆ �cFS Θ and∆ |A t τ−→p Γ. ThenΘ |A t =⇒ τ−→=⇒ Ψ for someΨ such thatΓ R Ψ,
whereR is the relation given by{(s |A t,Θ |A t) | s �cFS Θ}.

Proof: We first show a simplified version of the result. Supposes �
c
FS Θ ands |A t τ−→p Γ; we prove this entails

Θ |A t =⇒
τ−→=⇒ Ψ such thatΓ R Ψ. There are only two possibilities for inferring the above productive move from

s |A t:

(i) Γ = s |A Φ wheret τ−→ Φ

(ii) or Γ = ∆ |A Φ where for somea ∈ A, s a−→ ∆ andt a−→ Φ.

In the first case we haveΘ |A t τ−→ Θ |A Φ by Lemma 7.27(2) and(s |A Φ) R (Θ |A Φ) by Lemma 7.27(5),
whereas in the second cases �

c
FS Θ impliesΘ =⇒ a−→=⇒ Θ′ for someΘ′ ∈D(S) with ∆ �cFS Θ′, and we have

Θ |A t =⇒
τ−→=⇒ Θ′ |A Φ by Lemma 7.27(1) and (3), and(∆ |A Φ) R (Θ′ |A Φ) by Lemma 7.27(5).

The general case now follows using a standard decomposition/recomposition argument. Since∆ |A t τ−→p Γ,
Lemma 3.5 yields

∆ =
∑

i∈I

pi ·si, si |A t
τ−→p Γi, Γ =

∑

i∈I

pi ·Γi,

for certainsi ∈S, Γi ∈D(S) and
∑

i∈I pi ≤ 1. In analogy with Proposition 7.16 we can show that�
c
FS is convex.

Hence, since∆ �cFS Θ, Corollary 3.11 yields thatΘ =
∑

i∈I pi ·Θi for someΘi ∈D(S) such thatsi �cFS Θi for i∈ I.
By the above argument we haveΘi |A t =⇒ τ−→=⇒ Ψi for someΨi ∈D(S) such thatΓi R Ψi. The requiredΨ
can be taken to be

∑

i∈I pi ·Ψi as Definition 3.2(2) yieldsΓ R Ψ and Theorem 3.20(i) and Definition 3.2(2) yield
Θ |A t =⇒

τ−→=⇒ Ψ. 2

Our next result shows that we can always factor out productive moves from an arbitrary action of a parallel process.

Lemma 7.29 Suppose∆ |A t
τ−→ Γ. Then there exists subdistributions∆→, ∆×, ∆next, Γ× (possibly empty) such

that

(i) ∆ = ∆→ +∆×

(ii) ∆→ τ−→ ∆next

(iii) ∆× |A t
τ−→p Γ

×

(iv) Γ = ∆next |A t+ Γ×
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Proof: By Lemma 3.5∆ |A t
τ−→ Γ implies that

∆ =
∑

i∈I

pi ·si, si |A t
τ−→ Γi, Γ =

∑

i∈I

pi ·Γi,

for certainsi ∈S, Γi ∈D(S) and
∑

i∈I pi ≤ 1. Let J = { i∈ I | si |A t τ−→p Γi }. Note that for eachi ∈ (I − J)
Γi has the formΓ′

i |A t, wheresi
τ−→ Γ′

i. Now let

∆→ =
∑

i∈(I−J)

pi ·si, ∆× =
∑

i∈J

pi ·si

∆next =
∑

i∈(I−J)

pi ·Γ
′
i, Γ× =

∑

i∈J

pi ·Γi

By construction (i) and (iv) are satisfied, and (ii) and (iii)follows by property (2) of Definition 3.2. 2

Lemma 7.30 If ∆ |A t =⇒ ε then there is a∆′ ∈D(S) such that∆ =⇒ ∆′ and∆′ |A t
τ−→p=⇒ ε.

Proof: Suppose∆0 |A t =⇒ ε. By Lemma 7.23 there is an infinite sequence

∆0 |A t
τ−→ Ψ1

τ−→ Ψ2
τ−→ . . . (22)

By induction onk ≥ 0, we find distributionsΓk+1, ∆
→
k , ∆

×
k , ∆k+1, Γ

×
k+1 such that

(i) ∆k |A t
τ−→ Γk+1

(ii) Γk+1 ≤ Ψk+1

(iii) ∆k = ∆→
k +∆×

k

(iv) ∆→
k

τ−→ ∆k+1

(v) ∆×
k |A t

τ−→p Γ
×
k+1

(vi) Γk+1 = ∆k+1 |A t+ Γ×
k+1.

Induction Base:TakeΓ1 := Ψ1 and apply Lemma 7.29.
Induction Step:Assume we already haveΓk, ∆k andΓ×

k . Since∆k |A t ≤ Γk ≤ Ψk andΨk
τ−→ Ψk+1, Proposi-

tion 3.10 gives us aΓk+1 such that∆k |A t
τ−→ Γk+1 andΓk+1 ≤ Ψk+1. Now apply Lemma 7.29.

Let∆′ :=
∑∞

k=0 ∆
×
k . By (iii) and (iv) above we obtain a weakτ move∆0 =⇒ ∆′. Since∆′ |A t =

∑∞
k=0(∆

×
k |A t),

by (v) and Definition 3.2 we have∆′ |A t τ−→p

∑∞
k=1 Γ

×
k . Note that here it does not matter if∆′ = ε. Since

Γ×
k ≤ Γk ≤ Ψk andΨk =⇒ ε it follows by Theorem 3.20(ii) thatΓ×

k =⇒ ε. Hence Theorem 3.20(i) yields
∑∞

k=1 Γ
×
k =⇒ ε. 2

We are now ready to prove the main result of this section, namely that⊑FS is preserved by the parallel operator.

Proposition 7.31 In a finitary pLTS, if∆ ⊒FS Θ then∆ |A Φ ⊒FS Θ |A Φ.

Proof: We first construct the following relation

R := {(s |A t,Θ |A t) | s �
c
FS Θ}

and check thatR ⊆ �
c
FS. As in the proof of Proposition 4.6 in [2], one can check that each strong transition from

s |A t can be matched up by a transition fromΘ |A t, and the matching of failures can also be established. So we
concentrate on the requirement involving divergence.

Supposes �cFS Θ ands |A t =⇒ ε. We need to find someΓ,Ψ such that

(a) s |A t =⇒
τ−→=⇒ Γ =⇒ ε,

(b) Θ |A t =⇒
τ−→=⇒ Ψ andΓ R Ψ.
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By Lemma 7.30 there are∆′,Γ∈D(S) such thats =⇒ ∆′ and∆′ |A t τ−→p Γ =⇒ ε. Since for finitary processes
�
c
FS coincides with�sFS and�FS by Lemma 7.25 and Theorem 7.20, there must be aΘ′ ∈D(S) such thatΘ =⇒ Θ′ and

∆′
�cFS Θ

′. By Proposition 7.28 we haveΘ′ |A t =⇒ τ−→=⇒ Ψ for someΨ such thatΓ R Ψ. Now s |A t =⇒ ∆′ |A
t τ−→ Γ =⇒ ε andΘ |A t =⇒ Θ′ |A t =⇒

τ−→=⇒ Ψ with Γ R Ψ, which had to be shown.
Therefore, we have shown thatR ⊆ �

c
FS. Now let us focus our attention on the statement of the proposition, which

involves⊒FS .
Suppose∆ ⊒FS Θ. By Proposition 7.7 this means that there is someΘmatch such thatΘ =⇒ Θmatch and∆ �FS

Θmatch. By Theorem 7.20 and Lemma 7.25 we have∆ �cFS Θmatch. Then Lemma 7.27(5) yields(∆ |A Φ) R

(Θmatch |A Φ). Therefore, we have(∆ |A Φ) �cFS (Θ
match |A Φ), i.e.(∆ |A Φ) �FS (Θ

match |A Φ) by Lemma 7.25 and
Theorem 7.20. By Lemma 7.27(1) we also have(Θ |A Φ) =⇒ (Θmatch |A Φ), which had to be established according
to Proposition 7.7. 2

In the proof of Proposition 7.31 we use the characterisationof �FS as�sFS, which assumes the pLTS to be finitary.
In general, the relation�sFS is not closed under parallel composition.

Example 7.32 We use a modification of the infinite state pLTSs in Example 3.17 which as before has statessk with
k ≥ 2, but we add an extraa-looping statesa to give all together the system

for k ≥ 2 sk
τ−→ (sa 1

k2
⊕ sk+1) and sa

a−→ sa .

There is a failure simulationsk �
s
FS (sa 1

k
⊕ 0) because the transitionsk

τ−→ (sa 1

k2
⊕ sk+1) can be matched by a

transition to(sa 1

k2
⊕ (sa 1

k+1
⊕ 0)) which simplifies to just(sa 1

k
⊕ 0) again — i.e. a sufficient simulating transition

would be the identity instance of=⇒.
Now s2 |{a} sa wholly diverges even thoughs2 itself does not, and (recall from above) we haves2 �

s
FS (sa 1

2
⊕ 0).

Yet (sa 1
2
⊕ 0) |{a} sa does not diverge, thuss2 |{a} sa 6�sFS (sa 1

2
⊕ 0) |{a} sa.

Note that this counter-example does not go through if we use failure similarity�FS instead of simple failure sim-
ilarity �

s
FS, sinces2 6�FS (sa 1

2
⊕ 0) — the former has the transitions2 =⇒ sa 1

2
⊕ ε, which cannot be matched by

sa 1
2
⊕ 0. 2

Proposition 7.33 (Precongruence)In a finitary pLTS, ifP ⊒FS Q thenα.P ⊒FS α.Q for α∈Act, and similarly if
P1 ⊒FS Q1 andP2 ⊒FS Q2 thenP1 ⊙ P2 ⊒FS Q1 ⊙Q2 for ⊙ being any of the operators⊓, 2,p⊕ and|A.

Proof: The most difficult case is the closure of failure simulation under parallel composition, which is proved in
Proposition 7.31. The other cases are simpler, thus omitted. 2

Lemma 7.34 In a finitary pLTS, ifP ⊑FS Q then for any testT it holds that[P |Act T ] ⊑FS [Q |Act T ].

Proof: We first construct the following relation

R := {(s |Act t,Θ |Act t) | s �
c
FS Θ}

wheres |Act t is a state in[P |Act T ] andΘ |Act t is a subdistribution in[Q |Act T ], and show thatR⊆�
c
FS.

1. The matching of divergence betweens |Act t andΘ |Act t is almost the same as the proof of Proposition 7.31,
besides that we need to check the requirementst 6ω−→ andΓ 6ω−→ are always met there.

2. We now consider the matching of transitions.

• If s |Act t
ω−→ then this action is actually performed byt. Supposet ω−→ Γ. Thens |Act t

ω−→ s |Act Γ and
Θ |Act t

ω−→ Θ |Act Γ. Obviously we have(s |Act Γ,Θ |Act Γ) ∈R.

• If s |Act t
τ−→ then we must haves |Act t 6ω−→, otherwise theτ transition would be a “scooting” transition

and the pLTS is notω-respecting. It follows thatt 6ω−→. There are three subcases.

– t τ−→ Γ. So the transitions |Act t
τ−→ s |Act Γ can simply be matched up byΘ |Act t

τ−→ Θ |Act Γ.
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– s τ−→ ∆. Sinces �cFS Θ, there exists someΘ′ such thatΘ =⇒ Θ′ and∆ �cFS Θ
′. Note that in this case

t 6ω−→. It follows thatΘ |Act t =⇒ Θ′ |Act t which can match up the transitions |Act t −→ ∆ |Act t
because(∆ |Act t,Θ′ |Act t) ∈R.

– s a−→ ∆ and t a−→ Γ for some actiona ∈ Act. Sinces �
c
FS Θ, there exists someΘ′ such that

Θ
a

=⇒ Θ′ and∆ �cFS Θ
′. Note that in this caset 6ω−→. It follows thatΘ |Act t =⇒ Θ′ |Act Γ which can

match up the transitions |Act t −→ ∆ |Act Γ because(∆ |Act Γ,Θ′ |Act Γ) ∈R.

• Supposes |Act t 6A−→ for anyA ⊆ Act ∪ {ω}. There are two possibilities.

– If s |Act t 6ω−→, then t 6ω−→ and there are two subsetsA1, A2 of A such thats 6A1−−→, t 6A2−−→ and
A = A1 ∪ A2. Sinces �

c
FS Θ there exists someΘ′ such thatΘ =⇒ Θ′ andΘ′ 6A1−−→. Therefore, we

haveΘ |Act t =⇒ Θ′ |Act t 6A−→.
– If s |Act t

ω−→ thent ω−→ andω 6∈ A. Therefore, we haveΘ |Act t
ω−→ andΘ |Act t 6τ−→ because there

is no “scooting” transition inΘ |Act t. It follows thatΘ |Act t 6A−→.

Therefore, we have shown thatR⊆�
c
FS, from which our expected result can be establishing using similar arguments

in the last part of the proof of Proposition 7.31. 2

7.4 Soundness

In this section we prove that failure simulations are sound for showing that processes are related via the failure-based
testing preorder. We assume initially that we are using onlyone success actionω, so that|Ω| = 1.

Because we prune our pLTSs before extracting values from them, we will be concerned mainly withω-respecting
structures.

Definition 7.35 Let ∆ be a subdistribution in a pLTS〈S, {ω, τ},→〉. We writeV (∆) for the set of testing outcomes
{$∆′ | ∆ =⇒≻ ∆′}.

Lemma 7.36 Let∆ andΘ be subdistributions in anω-respecting pLTS〈S, {τ, ω},→〉. If subdistribution∆ is stable
and∆ �FS Θ, thenV (Θ) ≤Sm V (∆).

Proof: We first show that ifs is stable ands �FS Θ thenV (Θ) ≤Sm V (s). Sinces is stable, we have only two cases:

(i) s 6−→ HereV (s) = {0} and sinces �FS Θ we haveΘ =⇒ Θ′ with Θ′ 6−→, whence in factΘ =⇒≻ Θ′ and
$Θ′ = 0. Thus0 ∈ V (Θ) which meansV (Θ) ≤Sm V (s).

(ii) s ω−→ ∆′ for some∆′ Here V (s)={1} andΘ =⇒ Θ′ ω−→ with $Θ′=|Θ′|. Because the pLTS isω-
respecting, in factΘ =⇒≻ Θ′ and so againV (Θ) ≤Sm V (s).

Now for the general case we suppose∆ �FS Θ. Use Proposition 3.10 to decomposeΘ into
∑

s∈⌈∆⌉∆(s)·Θs such
thats �FS Θs for eachs ∈ ⌈∆⌉, and recall each such states is stable. From above we have thatV (Θs) ≤Sm V (s) for
thoses, and soV (Θ) =

∑

s∈⌈∆⌉∆(s)·V (Θs) ≤Sm

∑

∈⌈∆⌉∆(s)·V (s) = V (∆). 2

Lemma 7.37 Let∆ be a subdistribution in anω-respecting pLTS〈S, {τ, ω},→〉. If ∆ =⇒ ∆′ thenV (∆′) ⊆ V (∆).

Proof: Note that if∆′ =⇒≻ ∆′′ then∆ =⇒ ∆′ =⇒≻ ∆′′, so that every extreme derivative of∆′ is also an extreme
derivative of∆. 2

Lemma 7.38 Let ∆ andΘ be subdistributions in anω-respecting pLTS〈S, {τ, ω},→〉. If Θ ⊑FS ∆, then it holds
thatV (Θ) ≤Sm V (∆).

Proof: Let∆ andΘ be subdistributions in anω-respecting pLTS〈S, {τ, ω},→〉. We first claim that

If ∆ �FS Θ, thenV (Θ) ≤Sm V (∆).

We assume∆ �FS Θ. For any∆ =⇒≻ ∆′ we have the matching transitionΘ =⇒ Θ′ such that∆′
�FS Θ

′. It follows
from Lemmas 7.36 and 7.37 thatV (Θ) ⊇ V (Θ′) ≤Sm V (∆′). Consequently, we obtainV (Θ) ≤Sm V (∆).

Now supposeΘ ⊑FS ∆. By Proposition 7.7, there exists someΘ′ such thatΘ =⇒ Θ′ and∆ �FS Θ′. By the
above claim and Lemma 7.37 we obtainV (Θ) ⊇ V (Θ′) ≤Sm V (∆), thusV (Θ) ≤Sm V (∆). 2
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Theorem 7.39 For any finitary processesP andQ, if P ⊑FS Q thenP ⊑pmustQ.

Proof: We reason as follows.

P ⊑FS Q
implies [P |Act T ] ⊑FS [Q |Act T ] Lemma 7.34, for any testT
implies V ([P |Act T ]) ≤Sm V ([Q |Act T ]) [· ] isω-respecting; Lemma 7.38
iff A (T, P ) ≤Sm A (T,Q) Definition 7.35
iff P ⊑pmustQ . Definition 4.9

2

In the proof of the soundness result above we use Lemma 7.34, which holds for finitary processes only. For
infinitary processes, a preorder induced by�

s
FS is not sound for must testing.

Example 7.40 We have seen in Example 7.19 that the states from (19) is related to0 via the relation�sFS. If we apply
testτ.ω to boths and0, we obtain(0, 1] as an outcome set for the former and{1} for the latter. Althoughs �sFS 0, we
haveA (τ.ω, 0) 6≤Sm A (τ.ω, s).

If we replace states by the states2 from (21), similar phenomenon happens. Althoughs2 �sFS 0, we have
A (τ.ω, 0) = {1} 6≤Sm { 1

2} = A (τ.ω, s2). 2

8 Failure simulation is complete for must testing

This section establishes the completeness of the failure simulation preorder w.r.t. the must testing preorder. It does
so in three steps. First we provide a characterisation of thepreorder relation⊑FS by an inductively defined relation.
Secondly, using this, we develop a modal logic which can be used to characterise the failure simulation preorder on
finitary pLTSs. Finally, we adapt the results of [2] to show that the modal formulae can in turn be characterised by
tests; again this result depends on the underlying pLTS being finitary. From this, completeness follows.

8.1 Inductive characterisation

The relation�sFS of Definition 7.18 is given co-inductively: it is the largestfixed point of an equationR= F (R). An
alternative approach therefore is to use thatF (−) to define�sFS as a limit of approximants:

Definition 8.1 For everyk ≥ 0 we define the relations�kFS⊆ S × D(S) as follows:

(i) �
0
FS := S × D(S)

(ii) �
k+1
FS := F (�kFS)

Finally let�∞
FS :=

⋂∞
k=0 �

k
FS.

A simple inductive argument ensures that�
s
FS ⊆ �

k
FS, for everyk ≥ 0, and therefore that�sFS ⊆ �

∞
FS . The converse is

however not true in general.
A (non-probabilistic) example is well-known in the literature: it makes essential use of an infinite branching. LetP

be the processrecx. a.x ands a state in a pLTS which starts by making an infinitary choice, namely for eachk ≥ 0 it
has the option to perform a sequence ofa actions with lengthk in succession and then deadlock. This can be described
by the infinitary CSP expression

e∞
k=0 a

k. Then[P ℄ 6�sFS s, because the move[P ℄ a−→ [P ℄ can not be matched bys.
However an easy inductive argument shows that[P ℄ �kFS a

k for everyk, and therefore that[P ℄ �∞
FS s.

Once we restrict our non-probabilistic systems to be finitely branching, however, a simple counting argument will
show that�sFS coincides with�∞

FS ; see [9, Theorem 2.1] for the argument applied to bisimulation equivalence. In the
probabilistic case we restrict to both finite-stateand finite-branching -systems, and the effect of that is captured by
topologicalcompactness. Finiteness is lost unavoidably when we remember that e.g. the processa ⊓ b can move
via =⇒ to a distribution[a℄ p⊕ [b℄ for any of the uncountably many probabilitiesp ∈ [0, 1]. Nevertheless, those
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uncountably many weak transitions can be generated by arbitrary interpolation of two transitions[a ⊓ b℄ τ−→ [a℄ and[a ⊓ b℄ τ−→ [b℄, and that is the key structural property that compactness captures.
Because compactness follows from closure and boundedness,we approach this topic via closure.
Note that the metric space(D(S), d1) with d1(∆,Θ) = maxs∈S |∆(s) − Θ(s)| and (S → D(S), d2) with

d2(f, g) = maxs∈Sd1(f(s), g(s)) are complete. LetX be a subset of eitherD(S) or S → D(S). Clearly,X is
bounded. So ifX is closed, it is also compact.

Definition 8.2 A relationR ⊆ S×D(S) is said to beclosedif for every s ∈ S the sets · R= {∆ | s R ∆ } is
closed.

Two examples of closed relations are=⇒ and a
=⇒ for anya, as shown by Lemma 6.12 and Corollary 6.15.

Our next step is to show that each of the relations�
k
FS are closed. This requires some results to be first established.

Lemma 8.3 Let R⊆ S × D(S) be closed. ThenCh(R) is also closed.

Proof: Straightforward. 2

Corollary 8.4 Let R⊆ S × D(S) be closed and convex. ThenR is also closed.

Proof: For any∆ ∈ D(S), we know from Proposition 3.9 that∆· R= {Exp∆(f) | f ∈ Ch(R)}. The function
Exp∆(−) is continuous. By Lemma 8.3 the set of choice functions ofR is closed, and it is also bounded, thus being
compact. Its image is also compact, thus being closed. 2

Lemma 8.5 Let R ⊆ S ×D(S) be closed and convex, andC ⊆ D(S) be closed. Then the set{∆ | ∆· R ∩C 6=
∅ } is also closed.

Proof: First defineE : D(S) × (S → D(S)) → D(S) by E (Θ, f) = ExpΘ(f), which is obviously continuous.
Then we know from the previous lemma thatCh(R) is closed. Finally let

Z = π1(E
−1(C) ∩ (D(S)×Ch(R)))

whereπ1 is the projection onto the first component of a pair. We observe that the continuity ofE ensures that the
inverse image of the closed setC is closed. Furthermore,E −1(C) ∩ (D(S) ×Ch(R)) is compact because it is both
closed and bounded. Its image under the continuous functionπ1 is also compact. It follows thatZ is closed. But
Z = {∆ | ∆· R ∩C 6= ∅ } because

∆ ∈ Z iff (∆, f) ∈ E
−1(C) for somef ∈ Ch(R)

iff E (∆, f) ∈ C for somef ∈ Ch(R)

iff Exp∆(f) ∈ C for somef ∈ Ch(R)

iff ∆ R ∆′ for some∆′ ∈ C

The last line is an application of Proposition 3.9, which requires convexity ofR. 2

An immediate corollary of this last result is:

Corollary 8.6 In a finitary pLTS the following sets are closed:

(i) {∆ | ∆ =⇒ ε }

(ii) {∆ | ∆ =⇒ 6A−→}

Proof: By Lemma 6.12 we see that=⇒ is closed and convex. Therefore, we can apply the previous lemma with
C = {ε} to obtain the first result. To obtain the second we apply it with C = {Θ | Θ 6A−→}, which is easily seen to
be closed. 2
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The result is also used in the proof of:

Proposition 8.7 In a finitary pLTS, for everyk ≥ 0 the relation�kFS is closed and convex.

Proof: By induction onk. Fork = 0 it is obvious. So let us assume that�
k
FS is closed and convex. We have to show

that

s · �(k+1)
FS is closed and convex, for every states (23)

If s =⇒ ε then this follows from the corollary above, since in this cases · �(k+1)
FS coincides with{∆ | ∆ =⇒ ε }. So

let us assume that this is not the case.
For everyA ⊆ Act let RA = {∆ | ∆ =⇒ 6A−→}, which we know by the corollary above to be closed and is

obviously convex. Also for everyΘ, α letGΘ,α = {∆ | (∆· α
=⇒)∩ (Θ · �kFS) 6= ∅ }. By Corollary 6.16, the relation

α
=⇒ is lifted from a closed convex relation. By Corollary 8.4, the assumption that�kFS is closed and convex implies
that�kFS is also closed. So we can appeal to Lemma 8.5 and conclude thateachGΘ,α is closed. By Definition 3.2(2) it

is also easy to see thatGΘ,α is convex. But it follows thats · �(k+1)
FS is also closed and convex as it can be written as

∩{RA | s 6A−→} ∩ ∩{GΘ,α | s α−→ Θ }

2

Before the main result of this section we need one more technical result.

Lemma 8.8 Let S be a finite set of states. SupposeRk ⊆ S × D(S) is a sequence of closed convex relations such
thatR(k+1) ⊆ Rk. Then(∩∞

k=0 Rk) ⊆ (∩∞
k=0 Rk).

Proof: Let R∞ denote(∩∞
k=0 Rk), and suppose∆ Rk Θ for everyk ≥ 0. We have to show that∆ R∞ Θ.

LetG = { f : S → D(S) | Θ = Exp∆(f) }, which is easily seen to be a closed set. For eachk let we know
from Lemma 8.3 that the setCh(Rk) is closed. Finally consider the collection of closed setsHk = Ch(Rk) ∩ G;
since∆ Rk Θ, Proposition 3.9 assures us that all of these are non-empty.Also H(k+1) ⊆ Hk and therefore by the
finite-intersection property [16]∩∞

k=0H
k is also non-empty.

Let f be an arbitrary element of this intersection. For any states ∈ dom(R∞), and for everyk ≥ 0 since
dom(R∞) ⊆ dom(Rk) we haves Rk f(s), that iss R∞ f(s). Sof is a choice function forR∞, f ∈ Ch(R∞).
From convexity and Proposition 3.9 it follows that∆ R∞ Exp∆(f). But from the definition of theG we know that
Θ = Exp∆(f), and the required result follows. 2

Theorem 8.9 In a finitary pLTS,s �sFS Θ if and only if s �∞
FS Θ.

Proof: Since�sFS ⊆ �
∞
FS it is sufficient to show the opposite inclusion, which by definition holds if�∞

FS is a failure
simulation, viz. if�∞

FS ⊆ F (�∞
FS ). Supposes �

∞
FS Θ, which means thats �

k
FS Θ for everyk ≥ 0. According to

Definition 7.18, in order to shows F (�∞
FS ) Θ we have to establish three properties, the first and last of which are

trivial (for they are independent on the argument ofF ).
So supposes α−→ ∆′. We have to show thatΘ α

=⇒ Θ′ for someΘ′ such that∆′
�∞

FS Θ′.
For everyk ≥ 0 there exists someΘ′

k such thatΘ α
=⇒ Θ′

k and∆′
�kFS Θ

′
k. Now construct the sets

Dk = {Θ′ | Θ α
=⇒ Θ′ and∆′

�kFS Θ
′ }.

From Lemma 6.12 and Proposition 8.7 we know that these are closed. They are also non-empty andDk+1 ⊆ Dk. So
by the finite-intersection property the set

⋂∞
k=0D

k is non-empty. For anyΘ′ in it we knowΘ
α
=⇒ Θ′ and∆′

�kFS Θ
′

for everyk ≥ 0. By Proposition 8.7, the relations�kFS are all closed and convex. Therefore, Lemma 8.8 may be applied
to them, which enables us to conclude∆′

�∞
FS Θ′. 2

For Theorem 8.9 to hold, it is crucial that the pLTS is assumedto be finitary.
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Example 8.10 Consider an infinitely branching pLTS with four statess, t, u, v, 0 and the transitions are

• s a−→ 0 1
2
⊕ s

• t a−→ 0, t a−→ t

• u a−→ u

• v τ−→ u p⊕ t for all p ∈ (0, 1).

This is a finite-state but not finitely branching system, due to the infinite branch inv. We have thats �
k
FS v for all

k ≥ 0 but we do not haves �sFS v.
We first observe thats �

s
FS v does not hold becauses will eventually deadlock with probability1, whereas a

fraction ofv will go to u and never deadlock.
We now show thats �kFS v for all k ≥ 0. For anyk we start the simulation by choosing the movev τ−→ (u 1

2k
⊕ t).

By induction onk we show that
s �kFS (u 1

2k
⊕ t). (24)

The base casek = 0 is trivial. So suppose we already have (24). We now show thats �
(k+1)
FS (u 1

2k+1
⊕ t). Neither

s nor t nor u can diverge or refuse{a}, so the only relevant move is thea-move. We know thats can do the move
s a−→ 0 1

2
⊕ s. This can be matched up by(u 1

2k+1
⊕ t) a−→ (0 1

2
⊕ (u 1

2k
⊕ t)). 2

Analogously to what we did for�sFS, we also give an inductive characterisation of⊒FS : For everyk ≥ 0 let∆ ⊒k
FS

Θ

if there exists aΘ =⇒ Θmatchsuch that∆ �kFS Θ
match, and let⊒∞

FS
denote

⋂∞
k=0 ⊒k

FS
.

Corollary 8.11 In a finitary pLTS,∆ ⊒FS Θ if and only if ∆ ⊒∞
FS

Θ.

Proof: Since�sFS ⊆ �
k
FS for everyk ≥ 0, it is straightforward to prove one direction: ∆ ⊒FS Θ implies∆ ⊒∞

FS
Θ.

For the converse,∆ ⊒∞
FS

Θ means that for everyk we have someΘk satisfyingΘ =⇒ Θk and∆ �kFS Θk. By
Proposition 7.7 we have to find someΘ∞ such thatΘ =⇒ Θ∞ and∆ �kFS Θ∞. This can be done exactly as in the
proof of Theorem 8.9. 2

8.2 The modal logic

Let F be the set of modal formulae defined inductively as follows:

• div,⊤ ∈ F

• ref (A) ∈ F whenA ⊆ Act,

• 〈a〉ϕ ∈ F whenϕ∈F anda∈Act,

• ϕ1 ∧ ϕ2 ∈ F whenϕ1, ϕ2 ∈ F ,

• ϕ1 p⊕ ϕ2 ∈ F whenϕ1, ϕ2 ∈ F andp ∈ [0, 1].

This generalises the modal language used in [2] by the addition of the new constantdiv, representing the ability of a
process to diverge. In [2] there is the probabilistic choiceoperator

⊕

i∈I pi ·ϕi, whereI is a non-empty finite index
set, and

∑

i∈I pi = 1. This can be simulated in our language by nested use of the binary probabilistic choice.
Relative to a given pLTS〈S,Actτ ,→〉 thesatisfaction relation|=⊆ D(S)× F is given by:

• ∆ |= ⊤ for any∆ ∈ D(S),

• ∆ |= div iff ∆ =⇒ ε,

• ∆ |= ref(A) iff ∆ =⇒ 6A−→,

• ∆ |= 〈a〉ϕ iff there is a∆′ with ∆
a

=⇒ ∆′ and∆′ |= ϕ,

• ∆ |= ϕ1 ∧ ϕ2 iff ∆ |= ϕ1 and∆ |= ϕ2,
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• ∆ |= ϕ1 p⊕ ϕ2 iff there are∆1,∆2 ∈ D(S) with ∆1 |= ϕ1 and∆2 |= ϕ2, such that∆ =⇒ p ·∆1 + (1−p)·∆2.

We write∆ ⊒F Θ when∆ |= ϕ impliesΘ |= ϕ for all ϕ∈F — note the opposing directions. This is because the
modal formulae express “bad” properties of our processes, ultimately divergence and refusal: thusΘ ⊑F ∆ means
that any bad thing implementation∆ does must have been allowed by the specificationΘ.

ForpCSP processes we useP ⊑F Q to abbreviate[P ℄ ⊑F [Q℄ in the pLTS given in Section 2.
The set of formulae used here is obtained from that in Section7 of [2] by adding one operator,div, and relaxing the

constraint on the construction of probabilistic choice formulae. But the interpretation is quite different, as it usesthe
new silent move relation=⇒. As a result our satisfaction relation no longer enjoys a natural, and expected, property.
In the non-probabilistic setting if a recursive CCS processP satisfies a modal formula from HML, then there is a
recursion-free finite unwinding ofP which also satisfies it. Intuitively this reflects the fact that if a non-probabilistic
process does a bad thing, then at some (finite) point it must actually do it. But this is not true in our new, probabilistic
setting: for exampleQ1 given in Example 4.10 can do ana and then refuse anything; but all finite unwindings of it
achieve that with probability strictly less than one. That is, whereas[Q1℄ |= 〈a〉⊤, no finite unwinding ofQ1 will
satisfy〈a〉⊤.

Our first task is to show that the interpretation of the logic is consistent with the operational semantics of processes.

Theorem 8.12 If ∆ ⊒FS Θ then∆ ⊒F Θ.

Proof: We must show that if∆ ⊒FS Θ then whenever∆ |= ϕ we haveΘ |= ϕ. The proof proceeds by induction on
ϕ:

• The case whenϕ = ⊤ is trivial.

• Supposeϕ is div. Then∆ |= div means that∆ =⇒ ε and we have to showΘ =⇒ ε, which is immediate from
Lemma 7.3.

• Supposeϕ is 〈a〉ϕa. In this case we have∆ a
=⇒ ∆′ for some∆′ satisfying∆′ |= ϕa. The existence of a

correspondingΘ′ is immediate from Definition 7.2 Case 1 and the induction hypothesis.

• The case whenϕ is ref(A) follows by Definition 7.2 Clause 2, and the caseϕ1 ∧ ϕ2 by induction.

• Whenϕ is ϕ1 p⊕ ϕ2 we appeal again to Definition 7.2 Case 1, usingα := τ to infer the existence of suitableΘ′
1

andΘ′
2. 2

We proceed to show that the converse to this theorem also holds, so that the failure simulation preorder⊑FS coincides
with the logical preorder⊑F.

The idea is to mimic the development in Section 7 of [2], by designingcharacteristic formulaewhich capture the
behaviour of states in a pLTS. But here the behaviour is not characterised relative to�sFS, but rather to the sequence of
approximating relations�kFS.

Definition 8.13 In a finitary pLTS〈S,Actτ ,→〉, thekth characteristic formulaeϕks , ϕk∆ of statess∈S and subdistri-
butions∆∈D(S) are defined inductively as follows:

• ϕ0
s = ⊤ andϕ0

∆ = ⊤,

• ϕk+1
s = div, provideds =⇒ ε,

• ϕk+1
s = ref (A)∧

∧

s
a−→∆〈a〉ϕ

k
∆ whereA = {a∈Act | s 6a−→}, provideds 6τ−→,

• ϕk+1
s =

∧

s
a−→∆〈a〉ϕ

k
∆ ∧

∧

s
τ−→∆ ϕ

k
∆ otherwise,

• andϕk+1
∆ = (div) 1−|∆|⊕ (

⊕

s∈⌈∆⌉
∆(s)
|∆| ·ϕ

k+1
s ) .

Lemma 8.14 For everyk ≥ 0, s∈S and∆∈D(S) we haves |= ϕks and∆ |= ϕk∆.

Proof: By induction onk, with the case whenk = 0 being trivial. The inductive case of the first statement proceeds
by an analysis of the possible moves froms, from which that of the second statement follows immediately. 2

Lemma 8.15 Fork ≥ 0,
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(i) Θ |= ϕks impliess �kFS Θ,

(ii) Θ |= ϕk∆ impliesΘ =⇒ Θmatchsuch that∆ �kFS Θ
match,

(iii) Θ |= ϕk∆ implies∆ ⊒k
FS

Θ.

Proof: For everyk part (iii) follows trivially from (ii). We prove (i) and (ii)simultaneously, by induction onk, with
the casek = 0 being trivial. The inductive case, fork + 1, follows the argument in the proof of Lemma 7.3 of [2].

(i) First supposes =⇒ ε. Thenϕk+1
s = div and thereforeΘ |= div, which gives the requiredΘ =⇒ ε.

Now supposes τ−→ ∆. Here there are two cases; if in additions =⇒ ε we have already seen thatΘ =⇒ ε and
this is the required matching move fromΘ, since∆ �kFS ε. So let us assume thats 6=⇒ ε. Then by the definition
of ϕk+1

s we must have thatΘ |= ϕk∆, and we obtain the required matching move fromΘ from the inductive
hypothesis: induction on part (ii) gives someΘ′ such thatΘ =⇒ Θ′ and∆ �kFS Θ

′.

The matching move fors a−→ Θ is obtained in a similar manner.

Finally supposes 6A−→. Since this impliess 6τ−→, by the definition ofϕk+1
s we must have thatΘ |= ref (A), which

actually means thatΘ =⇒ 6A−→.

(ii) By definitionϕk+1
∆ = (div) 1−|∆|⊕ (

⊕

s∈⌈∆⌉
∆(s)
|∆| ·ϕ

k+1
s ) and thusΘ =⇒ (1− |∆|)·Θdiv+

∑

s∈⌈∆⌉ ∆(s)·Θs
such thatΘdiv |= div andΘs |= ϕk+1

s . By definition,Θdiv =⇒ ε, so by Theorem 3.20(i) and the reflexivity
and transitivity of=⇒ we obtainΘ =⇒

∑

s∈⌈∆⌉ ∆(s)·Θs. By part (i) we know thats �
k+1
FS Θs for everys in

⌈∆⌉, which in turn means that∆ �
k+1
FS

∑

s∈⌈∆⌉ ∆(s)·Θs. 2

Theorem 8.16 In a finitary pLTS,∆ ⊒F Θ if and only if∆ ⊒FS Θ.

Proof: One direction follows immediately from Theorem 8.12. For the opposite direction suppose∆ ⊒F Θ. By
Lemma 8.14 we have∆ |= ϕk∆, and henceΘ |= ϕk∆, for all k ≥ 0. By part (iii) of the previous lemma we thus know
that∆ ⊒∞

FS
Θ. That∆ ⊒FS Θ now follows from Corollary 8.11. 2

8.3 Characteristic tests for formulae

The import of Theorem 8.16 is that we can obtain completenessof the failure simulation preorder with respect to
the must-testing preorder by designing for each formulaϕ a test which in some sense characterises the property of
a process of satisfyingϕ. This has been achieved for the pLTS generated by the recursion free fragment ofpCSP in
Section 8 of [2]. Here we generalise this technique to the pLTS generated by the set of finitarypCSP terms.

As in [2], the generation of these tests depends on crucial characteristics of the testing functionA (−,−), which
are summarised in Lemmas 8.17 and 8.20 below, correspondingto Lemmas 6.7 and 6.8 in [2] respectively.

Lemma 8.17 Let∆ be apCSP process, andT, Ti be tests.

1. o ∈ A (ω,∆) iff o = |∆| ·~ω.

2. ~0 ∈ A (τ.ω,∆) iff ∆ =⇒ ε.

3. ~0 ∈ A (
e
a∈A a.ω,∆) iff ∆ =⇒ 6A−→.

4. Suppose the actionω does not occur in the testT . Theno ∈ A (τ.ω2 a.T,∆) with o(ω) = 0 iff there is a
∆′ ∈ D(sCSP) with ∆

a
=⇒ ∆′ ando ∈ A (T,∆′).

5. o ∈ A (T1 p⊕ T2,∆) iff o = p ·o1 + (1−p)·o2 for certainoi ∈ A (Ti,∆).

6. o ∈ A (T1 ⊓ T2,∆) if there are aq ∈ [0, 1] and∆1,∆2 ∈ D(sCSP) such that∆ =⇒ q ·∆1 + (1−q)·∆2 and
o = q ·o1 + (1−q)·o2 for certainoi ∈ A (Ti,∆i).

Here~0, ~ω ∈ [0, 1]Ω, with~0(ω) = 0 for all ω ∈ Ω, and~ω(ω) = 1 but~ω(ω′) = 0 wheneverω′ 6= ω.

Proof:
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1. Sinceω |Act ∆
ω−→, the states in the support of[ω |Act ∆] have no other outgoing transitions thanω. Therefore

[ω |Act ∆] is the unique extreme derivative of itself, and as$[ω |Act ∆] = |∆| ·~ω we haveA (ω,∆) = {|∆| ·~ω}.

2. (⇐) Assume∆ =⇒ ε. By Lemma 7.27(1) we haveτ.ω |Act ∆ =⇒ τ.ω |Act ε. All states involved in this
derivation (that is, all statesu in the support of the intermediate distributions∆→

i and∆×
i of Definition 3.13)

have the formτ.ω |Act s, and thus satisfyu 6ω−→ for all ω ∈Ω. Therefore we have[τ.ω |Act ∆] =⇒ [τ.ω |Act ε].
Trivially, [τ.ω |Act ε] = ε is stable, and hence an extreme derivative of[τ.ω |Act ∆]. Moreover,$ε = ~0, so
~0 ∈ A (τ.ω,∆).

(⇒) Suppose~0 ∈ A (τ.ω,∆), i.e., there is some extreme derivativeΓ of [τ.ω |Act ∆] such that$Γ = ~0.
Given the operational semantics ofpCSP, all statesu ∈ ⌈Γ⌉ must have one of the formsu = [τ.ω |Act t]
or u = [ω |Act t]. As $Γ = ~0, the latter possibility cannot occur. It follows that all transitions contributing
to the derivation[τ.ω |Act ∆] =⇒≻ Γ are obtained by means of the rule(par.r), and in factΓ has the form
[τ.ω |Act ∆′] for some distribution∆′ with ∆ =⇒ ∆′. AsΓ must be stable, yet none of the states in its support
are, it follows that⌈Γ⌉ = ∅, i.e.∆′ = ε.

3. LetT :=
e
a∈A a.ω.

(⇐) Assume∆ =⇒ ∆′ 6A−→ for some∆′. ThenT |Act ∆ =⇒ T |Act ∆′ by Lemma 7.27(1), and by the
same argument as in the previous case,[T |Act ∆] =⇒ [T |Act ∆′]. All states in the support ofT |Act ∆′ are
deadlocked. So[T |Act ∆] =⇒≻ [T |Act ∆] and$(T |Act ∆) = ~0. Thus we have~0 ∈ A (T,∆).

(⇒) Suppose~0 ∈ A (T,∆). By the very same reasoning as in Case 2 we find that∆ =⇒ ∆′ for some∆′ such
thatT |Act ∆′ is stable. This implies∆′ 6A−→.

4. LetT be a test in which the success actionω does not occur, and letU := τ.ω 2 a.T .

(⇐) Assume there is a∆′ ∈ D(sCSP) with ∆
a

=⇒ ∆′ ando ∈ A (T,∆′). Without loss of generality we
may assume that∆ =⇒ ∆pre a−→ ∆post =⇒ ∆′. Using Lemma 7.27(1) and (3), and the same reasoning as
in the previous cases,[U |Act ∆] =⇒ [U |Act ∆pre] τ−→ [T |Act ∆post] =⇒ [T |Act ∆′] =⇒ Γ for a stable
subdistributionΓ with $Γ = o. It follows thato ∈ A (U,∆).

(⇒) Supposeo ∈ A (U,∆) with o(ω) = 0. Then there is a stable subdistributionΓ such that[U |Act ∆] =⇒ Γ
and$Γ = o. Sinceo(ω) = 0 there is no state in the support ofΓ of the formω |Act t. Hence there must be a
∆′ ∈D(sCSP) such that∆ =⇒ a−→ ∆′ and[T |Act ∆′] =⇒ Γ. It follows thato ∈ A (T,∆′).

5. (⇐) Assumeoi ∈ A (Ti,∆) for i = 1, 2. Then[Ti |Act ∆] =⇒ Γi for some stableΓi with $Γi = oi. By
Theorem 3.20(i) we have[(T1 p⊕ T2) |Act ∆] = p ·[T1 |Act ∆]+ (1−p)·[T2 |Act ∆] =⇒ p ·Γ1 + (1−p)·Γ2, and
p ·Γ1 + (1−p)·Γ2 is stable. Moreover,$(p ·Γ1 + (1−p)·Γ2) = p ·o1 + (1−p)·o2, soo ∈ A (T1 p⊕ T2,∆).

(⇒) Supposeo ∈ A (T1 p⊕ T2,∆). Then there is a stableΓ with $Γ = o such that[(T1 p⊕ T2) |Act ∆] =
p ·[T1 |Act ∆] + (1−p)·[T2 |Act ∆] =⇒ Γ. By Theorem 3.20(ii) there areΓi for i = 1, 2, such that[Ti |Act
∆] =⇒ Γi andΓ = p ·Γ1+(1−p)·Γ2. AsΓ1 andΓ2 are stable, we have$Γi ∈A (Ti,∆) for i = 1, 2. Moreover,
o = $Γ = p ·$Γ1 + (1−p)·$Γ2.

6. Supposeq ∈ [0, 1] and∆1,∆2 ∈D(pCSP) with ∆ =⇒ q ·∆1 + (1−q)·∆2 andoi ∈ A (Ti,∆i). Then there
are stableΓi with [Ti |Act ∆i] =⇒ Γi and$Γi = oi. Now [(T1 ⊓ T2) |Act ∆] =⇒ q ·[(T1 ⊓ T2) |Act ∆1]
+ (1−q)·[(T1 ⊓ T2) |Act ∆2]

τ−→ q ·[T1 |Act ∆1] + (1−q)·[T2 |Act ∆2] =⇒ q ·Γ1 + (1−q)·Γ2. The latter
subdistribution is stable and satisfies$(q ·Γ1 + (1−q)·Γ2) = q ·o1 + (1−q)·o2. Henceq ·o1 + (1−q)·o2 ∈
A (T1 ⊓ T2,∆). 2

We also have the converse to part (6) of this lemma, again mimicking Lemma 6.8 of [2]. For that purpose, we use two
technical lemmas whose proofs are similar to those for Lemmas 7.29 and 7.30 respectively.

Lemma 8.18 Suppose∆ |A (T1 ⊓ T2)
τ−→ Γ. Then there exist subdistributions∆→, ∆×

1 , ∆×
2 , ∆next (possibly

empty) such that

(i) ∆ = ∆→ +∆×
1 +∆×

2

(ii) ∆→ τ−→ ∆next
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(iii) Γ = ∆next |A (T1 ⊓ T2) + ∆×
1 |A T1 +∆×

2 |A T2

Proof: By Lemma 3.5∆ |A (T1 ⊓ T2)
τ−→ Γ implies that

∆ =
∑

i∈I

pi ·si, si |A (T1 ⊓ T2)
τ−→ Γi, Γ =

∑

i∈I

pi ·Γi,

for certainsi ∈S, Γi ∈D(sCSP) and
∑

i∈I pi ≤ 1. LetJ1 = { i∈ I | Γi = si |A T1 } andJ2 = { i∈ I | Γi = si |A
T2 }. Note that for eachi ∈ (I − J1 − J2) we haveΓi in the formΓ′

i |A (T1 ⊓ T2), wheresi
τ−→ Γ′

i. Now let

∆→ =
∑

i∈(I−J1−J2)

pi ·si, ∆×
k =

∑

i∈Jk

pi ·si, ∆next =
∑

i∈(I−J1−J2)

pi ·Γ
′
i .

wherek = 1, 2. By construction (i) and (iii) are satisfied, and (ii) follows by property (2) of Definition 3.2. 2

Lemma 8.19 If ∆ |A (T1 ⊓ T2) =⇒≻ Ψ then there areΦ1 andΦ2 such that

(i) ∆ =⇒ Φ1 +Φ2

(ii) Φ1 |A T1 +Φ2 |A T2 =⇒≻ Ψ

Proof: Suppose∆0 |A (T1 ⊓ T2) =⇒≻ Ψ. We know from Definition 3.13 that there is a collection of subdistributions
Ψk,Ψ

→
k ,Ψ

×
k , for k ≥ 0, satisfying the properties

∆0 |A (T1 ⊓ T2) = Ψ0 = Ψ→
0 + Ψ×

0

Ψ→
0

τ−→ Ψ1 = Ψ→
1 + Ψ×

1
...

...
Ψ→
k

τ−→ Ψk+1 = Ψ→
k+1 + Ψ×

k+1
...

Ψ =
∑∞

k=0 Ψ
×
k

andΨ is stable.
TakeΓ0 := Ψ0. By induction onk ≥ 0, we find distributionsΓk+1, ∆

→
k , ∆

×
k1, ∆

×
k2, ∆k+1 such that

(i) ∆k |A (T1 ⊓ T2)
τ−→ Γk+1

(ii) Γk+1 ≤ Ψk+1

(iii) ∆k = ∆→
k +∆×

k1 +∆×
k2

(iv) ∆→
k

τ−→ ∆k+1

(v) Γk+1 = ∆k+1 |A (T1 ⊓ T2) + ∆×
k1 |A T1 +∆×

k2 |A T2

Induction Step:Assume we already haveΓk and∆k. Note that∆k |A (T1 ⊓ T2) ≤ Γk ≤ Ψk = Ψ→
k + Ψ×

k and
T1 ⊓ T2 can make aτ move. SinceΨ is stable, we know that eitherΨ×

k = ε or Ψ×
k 6τ−→. In both cases it holds that

∆k |A (T1 ⊓ T2) ≤ Ψ→
k . Proposition 3.10 gives a subdistributionΓk+1 ≤ Ψk+1 such that∆k |A (T1 ⊓ T2)

τ−→
Γk+1. Now apply Lemma 8.18.

Let Φ1 =
∑∞
k=0 ∆

×
k1 andΦ2 =

∑∞
k=0 ∆

×
k2. By (iii) and (iv) above we obtain a weakτ move∆ =⇒ Φ1 + Φ2.

For k ≥ 0, let Γ→
k := ∆k |A (T1 ⊓ T2), let Γ×

0 := ε and letΓ×
k+1 := ∆×

k1 |A T1 + ∆×
k2 |A T2. Moreover,

Γ := Φ1 |A T1 +Φ2 |A T2. Now all conditions of Definition 3.23 are fulfilled, so∆0 |A (T1 ⊓ T2) =⇒ Γ is an initial
segment of∆0 |A (T1 ⊓ T2) =⇒ Ψ. By Proposition 3.24 we haveΦ1 |A T1 +Φ2 |A T2 =⇒≻ Ψ. 2

Lemma 8.20 If o ∈ A (T1 ⊓ T2,∆) then there are aq ∈ [0, 1] and∆1,∆2 ∈ D(sCSP) such that∆ =⇒ q ·∆1 +
(1−q)·∆2 ando = q ·o1 + (1−q)·o2 for certainoi ∈ A (Ti,∆i).

Proof: If o ∈ A (T1 ⊓ T2,∆) then there is an extreme derivativeΨ of [(T1 ⊓ T2) |Act ∆] such that$Ψ = o. By
Lemma 8.19 there areΦ1,2 such that
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(i) ∆ =⇒ Φ1 +Φ2

(ii) and [T1 |Act Φ1] + [T2 |Act Φ2] =⇒≻ Ψ.

By Theorem 3.20(ii) there are some subdistributionsΨ1 andΨ2 such thatΨ = Ψ1 + Ψ2 andTi |Act Φi =⇒≻ Ψi for
i = 1, 2. Let o′i = $Ψi. AsΨi is stable we obtaino′i ∈ A (Ti,Ψi). We also haveo = $Ψ = $Ψ1 + $Ψ2 = o′1 + o′2.

We now distinguish two cases:

• If Ψ1 = ε, then we take∆i = Φi, oi = o′i for i = 1, 2 andq = 0. Symmetrically, ifΨ2 = ε, then we take
∆i = Φi, oi = o′i for i = 1, 2 andq = 1.

• If Ψ1 6= ε andΨ2 6= ε, then we letq = |Φ1|
|Φ1+Φ2|

, ∆1 = 1
q
Φ1, ∆2 = 1

1−qΦ2, o1 = 1
q
o′1 ando2 = 1

1−q o
′
2.

It is easy to check thatq ·∆1+(1−q)·∆2 = Φ1+Φ2, q ·o1+(1−q)·o2 = o′1+ o
′
2 andoi ∈ A (Ti,∆i) for i=1, 2. 2

Proposition 8.21 For every formulaϕ ∈ F there exists a pair(Tϕ, vϕ) with Tϕ anΩ-test andvϕ ∈ [0, 1]Ω such that

∆ |= ϕ if and only if ∃o ∈ A (Tϕ,∆) : o ≤ vϕ. (25)

Tϕ is called acharacteristic testof ϕ andvϕ its target value.

Proof: The proof is adapted from that of Lemma 8.1 in [2], from where we take the following remarks: As in vector-
based testingΩ is assumed to be countable (cf. page 17) andΩ-tests are finite expressions, for everyΩ-test there is
anω∈Ω not occurring in it. Furthermore, if a pair(Tϕ, vϕ) satisfies requirement (25), then any pair obtained from
(Tϕ, vϕ) by bijectively renaming the elements ofΩ also satisfies that requirement. Hence two given characteristic tests
can be assumed to beΩ-disjoint, meaning that noω ∈Ω occurs in both of them.

Our modal logicF is identical to that used in [2], with the addition of one extra constantdiv. So we need a new
characteristic test and target value for this latter formula, and reuse those from [2] for the rest of the language:4

• Letϕ = ⊤. TakeTϕ := ω for someω ∈Ω, andvϕ := ~ω.

• Letϕ = div. TakeTϕ := τ.ω for someω ∈Ω, andvϕ := ~0.

• Letϕ = ref(A) with A ⊆ Act. TakeTϕ :=
e
a∈A a.ω for someω∈Ω, andvϕ := ~0.

• Let ϕ = 〈a〉ψ. By induction,ψ has a characteristic testTψ with target valuevψ. TakeTϕ := τ.ω2a.Tψ where
ω ∈Ω does not occur inTψ, andvϕ := vψ.

• Let ϕ = ϕ1 ∧ ϕ2. Choose anΩ-disjoint pair(Ti, vi) of characteristic testsTi with target valuesvi, for i = 1, 2.
Furthermore, letp∈ (0, 1] be chosen arbitrarily, and takeTϕ := T1 p⊕ T2 andvϕ := p ·v1 + (1−p)·v2.

• Let ϕ = ϕ1 p⊕ ϕ2. Again choose anΩ-disjoint pair (Ti, vi) of characteristic testsTi with target valuesvi,
i = 1, 2, this time ensuring that there are two distinct success actionsω1, ω2 that do not occur in any of these
tests. LetT ′

i := Ti 1
2
⊕ ωi andv′i :=

1
2vi +

1
2 ~ωi. Note that fori = 1, 2 we have thatT ′

i is also a characteristic test
of ϕi with target valuev′i. TakeTϕ := T ′

1 ⊓ T
′
2 andvϕ := p ·v′1 + (1−p)·v′2.

Note thatvϕ(ω) = 0 wheneverω∈Ω does not occur inTϕ.
As in the proof of Lemma 8.1 of [2] we now check by induction onϕ that (25) above holds; the proof relies on

Lemmas 8.17 and 8.20.

• Letϕ = ⊤. For all∆ ∈ D(sCSP) we have∆ |= ϕ as well as∃o ∈ A (Tϕ,∆) : o ≤ vϕ, using Lemma 8.17(1).

• Letϕ = div. Suppose∆ |= ϕ. Then we have that∆ =⇒ ε. By Lemma 8.17(2),~0∈A (Tϕ,∆).

Now suppose∃o∈A (Tϕ,∆) : o ≤ vϕ. This implieso = ~0, so by Lemma 8.17(2),∆ =⇒ ε. Hence∆ |= ϕ.

• Letϕ = ref(A) with A ⊆ Act. Suppose∆ |= ϕ. Then∆ =⇒ 6A−→. By Lemma 8.17(3),~0∈A (Tϕ,∆).

Now suppose∃o∈A (Tϕ,∆) : o ≤ vϕ. This implieso = ~0, so∆ =⇒ 6A−→ by Lemma 8.17(3). Hence∆ |= ϕ.

• Let ϕ = 〈a〉ψ with a∈Act. Suppose∆ |= ϕ. Then there is a∆′ with ∆
a

=⇒ ∆′ and∆′ |= ψ. By induction,
∃o∈A (Tψ,∆

′) : o ≤ vψ . By Lemma 8.17(4),o∈A (Tϕ,∆).

4However, because we employ state-based testing here, as opposed to action-based testing in [2], we translate the action-based testω2 a.Tψ
for the action modality〈a〉ψ into the state-based testτ.ω2 a.Tψ .
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Now suppose∃o∈A (Tϕ,∆) : o ≤ vϕ. This implieso(ω) = 0, so by Lemma 8.17(4) there is a∆′ with ∆
a

=⇒ ∆′

ando∈A (Tψ,∆
′). By induction,∆′ |=ψ, so∆ |=ϕ.

• Letϕ = ϕ1∧ϕ2 and suppose∆ |= ϕ. Then∆ |= ϕi for i=1, 2 and hence, by induction,∃oi ∈A (Ti,∆) : oi ≤ vi.
Thuso := p ·o1 + (1−p)·o2 ∈A (Tϕ,∆) by Lemma 8.17(5), ando ≤ vϕ.

Now suppose∃o∈A (Tϕ,∆) : o ≤ vϕ. Then, using Lemma 8.17(5),o = p ·o1 + (1−p)·o2 for certain
oi ∈A (Ti,∆). Recall thatT1, T2 areΩ-disjoint tests. One hasoi ≤ vi for bothi = 1, 2, for if oi(ω) > vi(ω) for
somei = 1 or 2 andω∈Ω, thenω must occur inTi and hence cannot occur inT3−i. This impliesv3−i(ω) = 0
and thuso(ω) > vϕ(ω), in contradiction with the assumption. By induction,∆ |= ϕi for i = 1, 2, and hence
∆ |= ϕ.

• Let ϕ = ϕ1 p⊕ ϕ2. Suppose∆ |= ϕ. Then there are∆1,∆2 ∈D(sCSP) with ∆1 |= ϕ1 and∆2 |= ϕ2 such that
∆ =⇒ p ·∆1 + (1−p)·∆2. By induction, fori = 1, 2 there areoi ∈A (Ti,∆i) with oi ≤ vi. Hence, there are
o′i ∈A (T ′

i ,∆i) with o′i ≤ v′i. Thuso := p ·o′1 + (1−p)·o′2 ∈A (Tϕ,∆) by Lemma 8.17(6), ando ≤ vϕ.

Now suppose∃o∈A (Tϕ,∆) : o ≤ vϕ. Then, by Lemma 8.20, there areq ∈ [0, 1] and∆1,∆2 ∈D(sCSP) such
that∆ =⇒ q ·∆1+(1−q)·∆2 ando = q ·o′1+(1−q)·o′2 for certaino′i ∈A (T ′

i ,∆i). Now∀i : o′i(ωi)=v
′
i(ωi)=

1
2 ,

so, using thatT1, T2 areΩ-disjoint tests,12q = q ·o′1(ω1) = o(ω1) ≤ vϕ(ω1) = p ·v′1(ω1) = 1
2p and likewise

1
2 (1−q) = (1−q)·o′2(ω2) = o(ω2) ≤ vϕ(ω2) = (1−p)·v′2(ω2) =

1
2 (1−p). Together, these inequalities say that

q = p. Exactly as in the previous case one obtainso′i ≤ v′i for bothi = 1, 2. Given thatT ′
i = Ti 1

2
⊕ ωi, using

Lemma 8.17(5), it must be thato′i =
1
2oi +

1
2 ~ωi for someoi ∈ A (Ti,∆i) with oi ≤ vi. By induction,∆i |= ϕi

for i = 1, 2, and hence∆ |= ϕ. 2

Theorem 8.22 If ∆ ⊒Ω
pmustΘ then∆ ⊒F Θ.

Proof: Suppose∆ ⊒Ω
pmust Θ and∆ |= ϕ for someϕ ∈ F . Let Tϕ be a characteristic test ofϕ with target valuevϕ.

Then Proposition 8.21 yields∃o ∈ A (Tϕ,∆) : o ≤ vϕ, and hence, given that∆ ⊒Ω
pmustΘ, by the Smyth preorder we

have∃o′ ∈ A (Tϕ,Θ) : o′ ≤ vϕ. ThusΘ |= ϕ. 2

Corollary 8.23 For any finitary processesP andQ, if P ⊑mustQ thenP ⊑FS Q.

Proof: From Theorems 8.22 and 8.16 we know that ifP ⊑Ω
pmust Q thenP ⊑FS Q. Theorem B.4 from Section B.1

tells us thatΩ-testing is reducible to scalar testing. So the required result follows. 2

9 Simulations and may testing

In this section we follow the same strategy as for failure simulations and testing (Section 7) except that we restrict our
treatment to full distributions: this is possible because partial distributions are not necessary for this case; and itis
desirable because the approach becomes simpler as a result.

Definition 9.1 [Simulation Preorder] Define⊑S to be the largest relation inD1(S)× D1(S) such that if∆ ⊑S Θ
then

whenever∆ α
=⇒ (

∑

i pi∆
′
i), for finitely manypi with

∑

i pi = 1, there areΘ′
i with Θ

α
=⇒ (

∑

i piΘ
′
i)

and∆′
i ⊑S Θ′

i for eachi.

Note that, unlike for Definition 9.1, this summation cannot be empty.
Again it is trivial to see that⊑S is reflexive and transitive; and again it is sometimes easierto work with an

equivalent formulation based on a state-level “simulation” defined as follows.

Definition 9.2 [Simulation] Define�S to be the largest relation inS × D1(S) such that ifs �S Θ then whenever
s α−→ ∆′ there is aΘ′ with Θ

α
=⇒ Θ′ and∆′

�S Θ
′.
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Definition 9.2 differs from the analogous Definition 7.18 in three ways: it is missing the clause for divergence, and
for refusal; and it is (implicitly) limited to α

=⇒-transitions that simulate by producing full distributions only5. Without
that latter limitation, any simulation relation could be scaled down uniformly without losing its simulation properties,
for example allowing counter-intuitivelya to be simulated bya 1

2
⊕ ε.

Lemma 9.3 The above preorder and simulation are equivalent in the following sense: for distributions∆,Θ we have
∆ ⊑S Θ just when there is aΘmatchwith Θ =⇒ Θmatchand∆ �S Θ

match.

Proof: The proof is as for the failure case, except that in Theorem 7.20 we can assume total distributions, and so do
not need the second part of its proof where divergence is treated. 2

9.1 Soundness

In this section we prove that simulations are sound for showing that processes are related via the may-testing preorder.
We assume initially that we are using only one success actionω, so that|Ω| = 1.

Because we prune our pLTSs before extracting values from them, we will be concerned mainly withω-respecting
structures, and for those we have the following.

Lemma 9.4 Let ∆ andΘ be two distributions. If∆ is stable and∆ �S Θ, thenV (∆) ≤Ho V (Θ).

Proof: We first show that ifs is stable ands �S Θ thenV (s) ≤Ho V (Θ). Sinces is stable, we have only two cases:

(i) s 6−→ HereV (s)={0} and sinceV (Θ) is not empty we haveV (s) ≤Ho V (Θ).

(ii) s ω−→ ∆′ for some∆′ HereV (s)={1} andΘ =⇒ Θ′ ω−→ with V (Θ′)={1}. By Lemma 7.37 specialised
to full distributions, we have1 ∈ V (Θ). Therefore,V (s) ≤Ho V (Θ).

Now for the general case we suppose∆ �S Θ. Use Proposition 3.10 to decomposeΘ into
∑

s∈⌈∆⌉ ∆(s)·Θs such
thats �S Θs for eachs ∈ ⌈∆⌉, and recall each such states is stable. From above we have thatV (s) ≤Ho V (Θs) for
thoses, and soV (∆) =

∑

∈⌈∆⌉∆(s)·V (s) ≤Ho

∑

s∈⌈∆⌉∆(s)·V (Θs) = V (Θ). 2

Lemma 9.5 Let ∆ andΘ be distributions in anω-respecting finitary pLTS〈S, {τ, ω},→〉. If ∆ �S Θ, then we have
V (∆) ≤Ho V (Θ).

Proof: Since∆ �S Θ, we consider subdistributions∆′′ with∆ =⇒≻ ∆′′; by distillation of divergence (Theorem 6.20)
we have full distributions∆′, ∆′

1 and∆′
2 and probabilityp such thats =⇒ ∆′ = (∆′

1 p⊕ ∆′
2) and∆′′ = p ·∆′

1 and
∆′

2 =⇒ ε. There is thus a matching transitionΘ =⇒ Θ′ such that∆′
�S Θ′. By Proposition 3.10, we can find

distributionsΘ′
1,Θ

′
2 such thatΘ′ = Θ′

1 p⊕ Θ′
2, ∆′

1 �S Θ
′
1 and∆′

2 �S Θ
′
2.

Since⌈∆′
1⌉ = ⌈∆′′⌉ we have that∆′

1 is stable. It follows from Lemma 9.4 thatV (∆′
1) ≤Ho V (Θ′

1). Thus we
finish off with

V (∆′′)
= V (p ·∆′

1) ∆′′ = p ·∆′
1

= p ·V (∆′
1) linearity ofV

≤Ho p ·V (Θ′
1) above argument based on distillation

= V (p ·Θ′
1) linearity ofV

≤Ho V (Θ′) Θ′ = Θ′
1 p⊕ Θ′

2

≤Ho V (Θ) . Lemma 7.37 specialised to full distributions

Since∆′′ was arbitrary, we have our result. 2

Lemma 9.6 Let ∆ andΘ be distributions in anω-respecting finitary pLTS〈S, {τ, ω},→〉. If ∆ ⊑S Θ, then it holds
thatV (∆) ≤Ho V (Θ).

5Even though for simplicity of presentation in Definition 3.2the relation=⇒ was defined by using subdistributions, it can be equivalently defined
by using full distributions.
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Proof: Suppose∆ ⊑S Θ. By Lemma 9.3, there exists someΘmatch such thatΘ =⇒ Θmatch and∆ �S Θmatch. By
Lemmas 9.5 and 7.37 we obtainV (∆) ≤Ho V (Θ′) ⊆ V (Θ). 2

Theorem 9.7 For any finitary processesP andQ, if P ⊑S Q thenP ⊑pmayQ.

Proof: We reason as follows.

P ⊑S Q
implies [P |Act T ] ⊑S [Q |Act T ] the counterpart of Lemma 7.34 for simulation, for any testT

implies V ([P |Act T ]) ≤Ho V ([Q |Act T ]) [·] is ω-respecting; Lemma 9.6
iff A (T, P ) ≤Ho A (T,Q) Definition 7.35
iff P ⊑pmayQ . Definition 4.9

2

9.2 Completeness

Let L be the subclass ofF by skipping thediv andref (A) clauses. We writeP ⊑L Q just when[P ℄ |= ϕ implies[Q℄ |= ϕ. We have the counterparts of Theorems 8.16 and 8.22, with similar proofs.

Theorem 9.8 In a finitary pLTS∆ ⊑L Θ if and only if∆ ⊑S Θ.

Theorem 9.9 For anypCSP processesP andQ, if P ⊑Ω
pmayQ thenP ⊑L Q.

Corollary 9.10 SupposeP andQ are finitarypCSP processes. IfP ⊑pmayQ thenP ⊑S Q.

Proof: From Theorems 9.8 and 9.9 we know that ifP ⊑Ω
pmay Q thenP ⊑S Q. Theorem B.4 from Section B.1 says

thatΩ-testing is reducible to scalar testing. So the required result follows. 2

As one would expect, the completeness result in Corollary 9.10 would fail for infinitary processes.

Example 9.11 Consider the states2 which we saw in Example 3.17. It turns out that

τ.(0 1
2
⊕ a) ⊑pmay s2

However, we do not have
τ.(0 1

2
⊕ a) �S s2

because the transition
τ.(0 1

2
⊕ a) τ−→ (0 1

2
⊕ a)

cannot be matched by a transition froms2 as there is nofull distribution∆ such thats2 =⇒ ∆ and(0 1
2
⊕ a) �S ∆.

2

10 Conclusion and related work

In this paper we continued our previous work [4, 5, 2] in our quest for a testing theory for processes which exhibit
both nondeterministic and probabilistic behaviour. We have generalised our results in [2] of characterising the may
preorder as a simulation relation and the must preorder as a failure-simulation relation, from finite processes to finitary
processes. Although the general proof schema is inherited from [2], the details here are much more complicated.
One important reason is the inapplicability of structural induction, an important proof principle used in proving some
fundamental properties for finite processes, when we shift to finitary processes. So we have to make use of more
advanced mathematical tools such as fixed points on completelattices, compact sets in topological spaces, especially
in complete metric spaces, etc. Technically, we develop weak transitions between probabilistic processes, elaborate
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their topological properties, and capture divergence in terms of partial distributions. In order to obtain the characteri-
sation results of testing preorders as simulation relations, we found it necessary to investigate fundamental structural
properties of derivation sets (finite generability) and similarities (infinite approximations), which are of independent
interest. The use of Markov Decision Processes and Zero-Onelaws was essential in obtaining our results.

There is a great amount of work about probabilistic testing semantics and simulation semantics. Here we mention
the closely related work [24], where Segala defined two preorders called trace distribution precongruence (⊑TD)
and failure distribution precongruence (⊑FD ). He proved that the former coincides with an action-based version of
⊑Ω

pmay and that for “probabilistically convergent” systems the latter coincides with an action-based version of⊑Ω
pmust.

The condition of probabilistic convergence amounts in our framework to the requirement that for∆∈D1(S) and
∆ =⇒ ∆′ we have|∆′| = 1. In [17] it has been shown that⊑TD coincides with a notion of simulation akin to⊑S.
Other probabilistic extensions of simulation and testing approaches occurring in the literature are reviewed in [4, 2].
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A Further properties of weak derivation
In this section we expose some less obvious properties of derivations, relating to their behaviour at infinity. One important property
is that if we associate each state with a weight, which is a value in [−1, 1], then the maximum payoff realisable by following all
possible weak derivations can in fact be achieved by some static derivative policy. The property depends on our working within
finitary pLTSs — that is, ones in which the state space is finite and the (unlifted) transition relation is finite-branching.

It turns out that to prove this property we need a notion ofbounded continuityof real functions, which we introduce below.

A.1 Bounded continuity
Proposition A.1 (Bounded continuity - nonnegative function) Given a functionf : N ×N→ R≥0 satisfying the conditions

C1. f is monotonic in the second parameter, i.e.j1 ≤ j2 impliesf(i, j1) ≤ f(i, j2) for all i, j1, j2 ∈ N;

C2. for anyi ∈ N, the limit limj→∞ f(i, j) exists;

C3. the partial sumsSn =
∑n

i=0
limj→∞ f(i, j) are bounded, i.e. there exists somec ∈ R≥0 such thatSn ≤ c for all n ≥ 0;

then it holds that
∞
∑

i=0

lim
j→∞

f(i, j) = lim
j→∞

∞
∑

i=0

f(i, j).

Proof: First we show that, for any givenn∈N:

n
∑

i=0

lim
j→∞

f(i, j) = lim
j→∞

n
∑

i=0

f(i, j). (26)

Let ǫ be any positive real number. Then, for anyi = 0, . . . , n, by C1 andC2 the sequence{f(i, j)}∞j=0 is nondecreasing and
converges tolimj→∞ f(i, j), so there must be akiǫ such that for allj ≥ kiǫ

0 ≤ lim
j→∞

f(i, j)− f(i, j) ≤
ǫ

n+1
.

Let kǫ := max{kiǫ | 0 ≤ i ≤ n}. Then, for allj ≥ kǫ

0 ≤

(

n
∑

i=0

lim
j→∞

f(i, j)

)

−

(

n
∑

i=0

f(i, j)

)

=
n
∑

i=0

(

lim
j→∞

f(i, j) − f(i, j)

)

≤
n
∑

i=0

ǫ

n+1
= ǫ .

Since{
∑n

i=0
f(i, j)}∞j=0 is a nondecreasing sequence, this yields (26).

By C3 the sequence{Sn}∞n=0 is bounded. Since it is also nondecreasing, it converges toℓ :=
∑∞
i=0

limj→∞ f(i, j). Hence
the left-hand side of the desired equality exists. For anyi, j ∈N we havef(i, j) ≤ limj→∞ f(i, j), so

∑n

i=0
f(i, j) ≤ Sn ≤ ℓ.

Since also the sequence{
∑n

i=0
f(i, j)}∞n=0 is nondecreasing,

∑∞
i=0

f(i, j) = limn→∞

∑n

i=0
f(i, j) exists and is bounded byℓ.

By C1 we have thatj1 ≤ j2 implies
∑∞
i=0

f(i, j1)≤
∑∞
i=0

f(i, j2). So alsor := limj→∞

∑∞
i=0

f(i, j) exists and is bounded byℓ.
It remains to show thatℓ ≤ r. For anyj, n ∈ N we have

∑n

i=0
f(i, j) <

∑∞
i=0

f(i, j) < r. Hencelimj→∞

∑n

i=0
f(i, j) exists

and is bounded byr. By (26) this givesSn ≤ r for anyn∈N. Thusℓ = limn→∞ Sn ≤ r. 2

Proposition A.2 [Bounded continuity - general function] Given a functionf : N×N→ Rwhich satisfies the following conditions

C1. For all i, j1, j2 ∈ N, we havej1 ≤ j2 implies |f(i, j1)| ≤ |f(i, j2)|.

C2. For anyi ∈ N, the limit limj→∞ |f(i, j)| exists.

C3. For anyn ∈ N, the partial sumSn =
∑n

i=0
limj→∞ |f(i, j)| is bounded, i.e. there exists somec ∈ R≥0 such thatSn ≤ c

for all n ≥ 0.

C4. For all i, j1, j2 ∈ N, we havej1 ≤ j2 impliesf(i, j1) + |f(i, j1)| ≤ f(i, j2) + |f(i, j2)|.

then it holds that
∞
∑

i=0

lim
j→∞

f(i, j) = lim
j→∞

∞
∑

i=0

f(i, j).

Proof: For anyi, j ∈ N, we havef(i, j) + |f(i, j)| ≤ 2|f(i, j)| ≤ 2 limj→∞ |f(i, j)| by C1 andC2. Therefore, for anyi ∈ N,
the sequence{f(i, j) + |f(i, j)|}∞j=0 has a limit. That is, we have the condition
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C5. For anyi ∈ N, the limit limj→∞(f(i, j) + |f(i, j)|) exists.

Moreover, it holds thatlimj→∞(f(i, j) + |f(i, j)|) ≤ 2 limj→∞ |f(i, j)|. It follows that

C6. For anyn ∈ N, the partial sum
∑n

i=0
limj→∞(f(i, j) + |f(i, j)|) ≤ 2

∑n

i=0
limj→∞ |f(i, j)| ≤ 2c.

By Proposition A.1 and conditionsC1, C2 andC3, we infer that

lim
j→∞

∞
∑

i=0

|f(i, j)| =

∞
∑

i=0

lim
j→∞

|f(i, j)|. (27)

By Proposition A.1 and conditionsC4, C5 andC6, we infer that

lim
j→∞

∞
∑

i=0

(f(i, j) + |f(i, j)|) =
∞
∑

i=0

lim
j→∞

(f(i, j) + |f(i, j)|). (28)

Since
∑∞
i=0

f(i, j) =
∑∞
i=0

(f(i, j) + |f(i, j)|) −
∑∞
i=0

|f(i, j)|, we then have

limj→∞

∑∞
i=0

f(i, j) = limj→∞(
∑∞
i=0

(f(i, j) + |f(i, j)|) −
∑∞
i=0

|f(i, j)|)
[existence of the two limits by (27) and (28)]

= limj→∞

∑∞
i=0

(f(i, j) + |f(i, j)|) − limj→∞

∑∞
i=0

|f(i, j)|
[by (27) and (28)]

=
∑∞
i=0

limj→∞(f(i, j) + |f(i, j)|) −
∑∞
i=0

limj→∞ |f(i, j)|
=

∑∞
i=0

(limj→∞(f(i, j) + |f(i, j)|) − limj→∞ |f(i, j)|)
=

∑∞
i=0

limj→∞(f(i, j) + |f(i, j)| − |f(i, j)|)
=

∑∞
i=0

limj→∞ f(i, j)

2

A.2 Realising payoffs
We aim to establish that in a finitary pLTS the maximum payoff realisable by following all possible weak derivations can beattained
by using some static derivative policy. In order to do that, we need to formalise some concepts such as discounted weak derivation,
discounted payoff etc.

Definition A.3 [Discounted weak derivation] Thediscounted weak derivation∆ =⇒δ ∆′ for discount factorδ (0 ≤ δ ≤ 1) is
obtained from a weak derivation by discounting eachτ transition byδ. That is, there is a collection of∆→

k and∆×
k satisfying

∆ = ∆→
0 +∆×

0

∆→
0

τ−→ ∆→
1 +∆×

1

...
∆→
k

τ−→ ∆→
k+1 +∆×

k+1

...

such that∆′ =
∑∞
k=0

δk∆×
k .

It is trivial that the relation=⇒1 coincides with=⇒ given in Definition 3.13.
Below we fix a finite state spaceS = {s1, ..., sn} with n ≥ 1 and deal with vectors. For example, a subdistribution∆ ∈ D(S)

can be viewed as then-dimensional vector〈∆(s1), ...,∆(sn) 〉. Similarly, a weight functionw can be considered as then-
dimensional vector〈w(s1), ...,w(sn) 〉.

Definition A.4 [Discounted payoff] Given a discountδ and weight functionw, thediscounted payoff functionPδ,wmax : S → R is
defined by

P
δ,w
max(s) = sup{w �∆′ | s =⇒δ ∆

′}

and we will generalise it to be of typeD(S) → R by lettingPδ,wmax(∆) =
∑

s∈⌈∆⌉∆(s) · Pδ,wmax(s).

Definition A.5 [Max-seeking policy] Given a pLTS, discountδ and weighted functionw, we say a static derivative policydpp is
max-seekingwith respect toδ andw if for all s the following requirements are met.
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1. If dpp(s)↑, thenw(s) ≥ δ · Pδ,wmax(∆1) for all s τ−→ ∆1.

2. If dpp(s) = ∆ then

(a) δ · Pδ,wmax(∆) ≥ w(s) and

(b) P
δ,w
max(∆) ≥ P

δ,w
max(∆1) for all s τ−→ ∆1.

Lemma A.6 Given a finitely branching pLTS, discountδ and weighted functionw, there always exists a max-seeking policy.

Proof: Given a pLTS, discountδ and weighted functionw, the discounted payoffPδ,wmax(s) can be calculated for each states. Then
we can define a derivative policydpp in the following way. For any states, if w(s) ≥ δ · Pδ,wmax(∆1) for all s τ−→ ∆1, then we set
dpp undefined ats. Otherwise, we choose a transitions τ−→ ∆ among the finite number of outgoing transitions froms such that
P
δ,w
max(∆) ≥ P

δ,w
max(∆1) for all other transitionss τ−→ ∆1, and we setdpp(s) = ∆. 2

Given a pLTS, discountδ, weight functionw, and derivative policydpp, we define the functionF δ,dpp,w : (S → R) → (S →R) by

F
δ,dpp,w := λf.λs.

{

w(s) if dpp(s)↑
δ · f(∆) if dpp(s) = ∆

(29)

wheref(∆) =
∑

s∈⌈∆⌉∆(s) · f(s).

Lemma A.7 Given a pLTS, discountδ < 1, weight functionw, and derivative policydpp, the functionF δ,dpp,w has a unique fixed
point.

Proof: We first show that the functionF δ,dpp,w is a contraction mapping. Letf, g be any two functions of typeS → R.

|F δ,dpp,w(f)− F δ,dpp,w(g)|

= sup{|F δ,dpp,w(f)(s)− F δ,dpp,w(g)(s)| | s ∈ S}

= sup{|F δ,dpp,w(f)(s)− F δ,dpp,w(g)(s) | | s ∈ S and dpp(s)↓}
= δ · sup{|f(∆) − g(∆)| | s ∈ S anddpp(s) = ∆ for some∆}
≤ δ · sup{|f(s′)− g(s′)| | s′ ∈ S}
= δ · |f − g|
< |f − g|

By Banach unique fixed point theorem, the functionF δ,dpp,w has a unique fixed point. 2

Lemma A.8 Given a pLTS, discountδ, weight functionw, and max-seeking policydpp, the functionPδ,wmax is a fixed point of
F δ,dpp,w.

Proof: We need to show thatF δ,dpp,w(Pδ,wmax)(s) = P
δ,w
max(s) holds for any states. We distinguish two cases.

1. If dpp(s)↑, thenF δ,dpp,w(Pδ,wmax)(s) = w(s) = P
δ,w
max(s) as expected.

2. If dpp(s) = ∆, then the arguments are more involved. First note that Ifs =⇒δ ∆′′, then by Definition A.3 there exist
some∆→

0 ,∆×
0 ,∆1,∆

′′ such thats = ∆→
0 +∆×

0 , ∆→
0

τ−→ ∆1, ∆1 =⇒δ ∆′′ and∆′ = ∆×
0 + δ ·∆′′. So we can do the

following calculation.

P
δ,w
max(s)

= sup{w �∆′ | s =⇒δ ∆
′}

= sup{w � (∆×
0 + δ ·∆′′) | s = ∆→

0 +∆×
0 ,∆

→
0

τ−→ ∆1, and∆1 =⇒δ ∆
′′

for some∆→
0 ,∆×

0 ,∆1,∆
′′}

= sup{w �∆×
0 + δ · w �∆′′ | s = ∆→

0 +∆×
0 ,∆

→
0

τ−→ ∆1, and∆1 =⇒δ ∆
′′

for some∆→
0 ,∆×

0 ,∆1,∆
′′}

= sup{w �∆×
0 + δ · sup{w �∆′′ | ∆1 =⇒δ ∆

′′} | s = ∆→
0 +∆×

0 and∆→
0

τ−→ ∆1

for some∆→
0 ,∆×

0 ,∆1}

= sup{w �∆×
0 + δ · Pδ,wmax(∆1) | s = ∆→

0 +∆×
0 and∆→

0
τ−→ ∆1

for some∆→
0 ,∆×

0 ,∆1}

= sup{(1− p) · w(s) + pδ · Pδ,wmax(∆1) | p ∈ [0, 1] ands τ−→ ∆1

for some∆1} [s can be split intops+ (1− p)s only]
= sup{(1− p) · w(s) + pδ · Pδ,wmax(∆1) | p ∈ [0, 1] ands τ−→ ∆1

for some∆1}

= sup{(1− p) · w(s) + pδ · sup{Pδ,wmax(∆1) | s
τ−→ ∆1} | p ∈ [0, 1]}

= max(w(s), δ · sup{Pδ,wmax(∆1) | s
τ−→ ∆1})

= δ · Pδ,wmax(∆) [asdpp is max-seeking]
= F δ,dpp,w(Pδ,wmax)(s)
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2

Definition A.9 [Discounted weak SDP-derivation] Let∆ be a subdistribution anddpp a static derivative policy. We define a
collection of subdistributions∆k as follows.

∆0 = ∆
∆k+1 =

∑

{∆k(s) · dpp(s) | s ∈ ⌈∆k⌉ and dpp(s)↓} for all k ≥ 0.

Then∆×
k is obtained from∆k by letting

∆×
k (s) =

{

0 if dpp(s)↓
∆k(s) otherwise

for all k ≥ 0. Then thediscounted weak SDP-derivation∆ =⇒δ,dpp ∆′ determines a unique subdistribution∆′ with ∆′ =
∑∞
k=0

δk∆×
k .

In other words, if∆ =⇒δ,dpp ∆′ then∆ comes from the discounted weak derivation∆ =⇒δ ∆
′ which is constructed by following

the derivative policydpp when choosingτ transitions from each state. In the special case when the discount factorδ = 1, we see
that=⇒1,dpp becomes=⇒dpp as defined in page 33.

Definition A.10 [Policy-following payoff] Given a discountδ, weight functionw, and derivative policydpp, thepolicy-following
payoff functionPδ,dpp,w : S → R is defined by

P
δ,dpp,w(s) = w �∆′

where∆ is determined by the discounted weak SDP-derivations =⇒δ,dpp ∆′.

Lemma A.11 For any discountδ, weight functionw, and derivative policydpp, the functionPδ,dpp,w is a fixed point ofF δ,dpp,w.

Proof: We need to show thatF δ,dpp,w(Pδ,dpp,w)(s) = P
δ,dpp,w(s) holds for any states. There are two cases.

1. If dpp(s)↑, thens =⇒δ,dpp ∆′ implies∆′ = s. Thus,Pδ,dpp,w(s) = w(s) = F δ,dpp,w(Pδ,dpp,w)(s) as required.

2. Supposedpp(s) = ∆1. If s =⇒δ,dpp ∆′ thens τ−→ ∆1, ∆1 =⇒δ,dpp ∆′′ and∆′ = δ∆′′ for some subdistribution∆′′.
Therefore,

P
δ,dpp,w(s)

= w �∆′

= w � δ∆′′

= δ · w �∆′′

= δ · Pδ,dpp,w(∆1)
= F δ,dpp,w(Pδ,dpp,w)(s)

2

Proposition A.12 Let δ ∈ [0, 1) be a discount andw a weight function. Ifdpp is a max-seeking policy with respect toδ andw,
thenPδ,wmax = P

δ,dpp,w.

Proof: By Lemma A.7, the functionF δ,dpp,w has a unique fixed point. By Lemmas A.8 and A.11, bothP
δ,w
max andPδ,dpp,w are fixed

points of the same functionF δ,dpp,w, which means thatPδ,wmax andPδ,dpp,w coincide with each other. 2

Lemma A.13 Supposes =⇒ ∆′ with ∆′ =
∑∞
i=0

∆×
i for some properly related∆×

i . Let {δj}∞j=0 be a nondecreasing sequence
of discount factors converging to1. Then for any weight functionw it holds that

w �∆′ = lim
j→∞

∞
∑

i=0

δ
i
j(w �∆×

i ).

Proof: Let f : N ×N → R be the function defined byf(i, j) = δij(w � ∆×
i ). We check thatf satisfies the four conditions in

Proposition A.2.

1. f satisfies conditionC1. For all i, j1, j2 ∈ N, if j1 ≤ j2 thenδij1 ≤ δij2 . It follows that

|f(i, j1)| = |δij1(w �∆×
i )| ≤ |δij2(w �∆×

i )| = |f(i, j2)|.
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2. f satisfies conditionC2. For anyi ∈ N, we have

lim
j→∞

|f(i, j)| = lim
j→∞

|δij(w �∆×
i )| = |w �∆×

i |. (30)

3. f satisfies conditionC3. For anyn ∈ N, the partial sumSn =
∑n

i=0
limj→∞ |f(i, j)| is bounded because

n
∑

i=0

lim
j→∞

|f(i, j)| =

n
∑

i=0

|w �∆×
i | ≤

∞
∑

i=0

|w �∆×
i | ≤

∞
∑

i=0

|∆×
i | = |∆′|

where the first equality is justified by (30).

4. f satisfies conditionC4. For anyi, j1, j2 ∈ N, if j1 ≤ j2 then

f(i, j1) + |f(i, j1)|
= δij1(w �∆×

i ) + |δij1(w �∆×
i )|

= δij1(w �∆×
i + |w �∆×

i |)
≤ δij2(w �∆×

i + |w �∆×
i |)

= f(i, j2) + |f(i, j2)|.

Therefore, we can use Proposition A.2 to do the following inference.

limj→∞

∑∞
i=0

δij(w �∆×
i )

=
∑∞
i=0

limj→∞ δij(w �∆×
i )

=
∑∞
i=0

w �∆×
i

= w �

∑∞
i=0

∆×
i

= w �∆′

2

Corollary A.14 Let {δj}∞j=0 be a nondecreasing sequence of discount factors convergingto 1. For any derivative policydpp and
weight functionw, it holds thatP1,dpp,w = limj→∞ P

δj ,dpp,w.

Proof: We need to show thatP1,dpp,w(s) = limj→∞ P
δj,dpp,w(s), for any states. Note that for any discountδj , each states

enables a unique discounted weak SDP-derivations =⇒δj ,dpp ∆j such that∆j =
∑∞
i=0

δij∆
×
i for some properly related∆×

i . Let
∆′ =

∑∞
i=0

∆×
i . We haves =⇒1,dpp ∆′. Then we can infer that

limj→∞ P
δj ,dpp,w(s)

= limj→∞ w �∆j

= limj→∞ w �

∑∞
i=0

δij∆
×
i

= limj→∞

∑∞
i=0

δij(w �∆×
i )

= w �∆′ by Lemma A.13
= P

1,dpp,w(s)

2

Theorem A.15 In a finitary pLTS, for any weight functionw there exists a derivative policydpp such thatP1,w
max = P

1,dpp,w.

Proof: Let w be a weight function. By Proposition A.12, for every discount factord < 1 there exists a max-seeking derivative
policy dpp with respect toδ andw such that

P
δ,w
max = P

δ,dpp,w
. (31)

Since the pLTS is finitary, there are finitely many different static derivative policies. There must exist a derivative policy dpp such
that (31) holds for infinitely many discount factors. In other words, for every nondecreasing sequence{δn}

∞
n=0 converging to1,

there exists a subsequence{δnj }
∞
j=0 and a derivative policydpp⋆ such that

P
δnj

,w
max = P

δnj
,dpp⋆,w for all j ≥ 0. (32)
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For any states, we infer as follows.

P
1,w
max(s)

= sup{w �∆′ | s =⇒ ∆′}
= sup{limj→∞

∑∞
i=0

δinj
(w �∆×

i ) | s =⇒ ∆′ with ∆′ =
∑∞

i=0
∆×
i } by Lemma A.13

= limj→∞ sup{
∑∞
i=0

δinj
(w �∆×

i ) | s =⇒ ∆′ with ∆′ =
∑∞

i=0
∆×
i }

= limj→∞ sup{w �

∑∞
i=0

δinj
∆×
i | s =⇒ ∆′ with ∆′ =

∑∞
i=0

∆×
i }

= limj→∞ sup{w �∆′′ | s =⇒δnj
∆′′}

= limj→∞ P
δnj

,w
max (s)

= limj→∞ P
δnj

,dpp⋆,w
(s) by (32)

= P
1,dpp⋆,w(s) by Corollary A.14

2

B Comparison of extremal testing with resolution-based testing
In this section we compare extremal testing with resolution-based testing for finitary pLTSs. We first show that for resolution-based
testing it is sufficient to use a singleton set of success actions, i.e.|Ω|= 1. Then we show that the maximum and minimum testing
outcomes in a finitary pLTS can be attained by static resolutions; this property plays a key role in establishing that extremal testing
coincides with resolution-based testing. Since the must case was already treated in Section 5.2.1, here we concentrateon the may
case.

B.1 Scalar versus Vector testing
In [5] it was shown that for finitary pLTSs, and resolution-based testing, it is sufficient to use scalar testing. We wish toapply this
result in our setting, to obtain Theorem B.4 below; however to do so we need to demonstrate that the manner in which the value
obtained from a resolution used in that paper coincides withour use of least fixed points.

Definition B.1 Let ∆ be a subdistribution in a deterministic pLTS〈S,Ωτ ,→〉. The probability that∆ starts with a sequence of
actionsℵ ∈ Σ∗, is given byPrR(∆,ℵ), wherePrR : S × Σ∗ → [0, 1] is defined inductively:

PrR(s, ε) := 1 andPrR(s, αℵ) :=

{

PrR(∆,ℵ) if s α−→ ∆
0 otherwise

andPrR(∆,ℵ) = Exp∆(PrR( ,ℵ)). The notationε denotes the empty sequence of actions andαℵ the sequence starting with
α ∈ Σ and continuing withℵ ∈ Σ∗. The valuePrR(s,ℵ) is the probability thats starts with a sequenceℵ.

Let Σ∗α be the set of finite sequences inΣ∗ that containsα just once, namely at the end. Then the probability that∆ ever
reaches an actionα is given by

∑

ℵ∈Σ∗α PrR(∆,ℵ).

Definition B.2 Let ∆ be a subdistribution in a deterministic pLTS〈S,Ωτ ,→〉. We define its success tupleW(∆) ∈ [0, 1]n be
such that(W(∆))i is the probability that∆ reaches the actionωi.

Then if∆ is a subdistribution in a (not necessarily deterministic) pLTS 〈S,Ωτ ,→〉 we define the set of its success tuples to be
those resulting as above from all its resolutions:

W(∆) := {W(Θ) | 〈R,Θ,→R〉 is a resolution of∆}.

Proposition B.3 Let∆ be a subdistribution in a deterministic pLTS〈S,Ωτ ,→〉. It holds thatW(∆) = V(∆).

Proof: We need to show that∀i : (W(∆))i = (V(∆))i, i.e.
∑

ℵ∈Σ∗ωi PrR(∆,ℵ) = (V(∆))i, for which it suffices to show that
∑

ℵ∈Σ∗ωi

PrR(s,ℵ) = (V(s))i for all s ∈ S. (33)

SinceV =
⊔

n∈NV
n, we have that(V(s))i =

⊔

n∈N(Vn)i. Letting ℵ ∈ Σ∗ be a sequence of actions, we write|ℵ| for its
length. The sequence of reals{

∑

ℵ∈Σ∗ωi ,|ℵ|≤n PrR(s,ℵ)}
∞
n=0 is nondecreasing and bounded by1, so it converges and we have

∑

ℵ∈Σ∗ωi PrR(s,ℵ) =
⊔

n∈N∑ℵ∈Σ∗ωi ,|ℵ|≤n PrR(s,ℵ). We now prove by induction onn that
∑

ℵ∈Σ∗ωi ,|ℵ|≤n

PrR(s,ℵ) = (Vn(s))i for all n ∈ N. (34)

which will yield (33) immediately.
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• The base case isn = 0. Then∀i :
∑

ℵ∈Σ∗ωi ,|ℵ|≤n PrR(s,ℵ) = 0 andV0(s)(ωi) = 0.

• Now supposing (34) holds for somen, we consider the case forn+ 1. If s 6−→, then we have
∑

ℵ∈Σ∗ωi ,|ℵ|≤n+1

PrR(s,ℵ) = 0 = (Vn+1(s))i.

If s α−→ ∆′ for some actionα and distribution∆′, then there are two possibilities:

– α = ωi. We then have(Vn+1(s))i = 1. Note that ifℵ is a finite non-empty sequence without any occurrence ofωi,
thenPrR(s,ℵωi) = 0. In other words,

∑

ℵ∈Σ∗ωi ,|ℵ|≤n+1
PrR(s,ℵ) = PrR(s, 〈ωi〉) = 1.

– α 6= ωi. Then(Vn+1(s))i = (Vn(∆))i. On the other hand,PrR(s, α′ℵ) = 0 if α 6= α′. Therefore,
∑

ℵ∈Σ∗ωi ,|ℵ|≤n+1
PrR(s,ℵ) =

∑

αℵ∈Σ∗ωi ,|αℵ|≤n+1
PrR(s, αℵ)

=
∑

αℵ∈Σ∗ωi ,|αℵ|≤n+1
PrR(∆

′,ℵ)

=
∑

ℵ∈Σ∗ωi ,|ℵ|≤n PrR(∆
′,ℵ)

= (Vn(∆′))i by induction
= (Vn+1(s))i

2

As a corollary of Proposition B.3, we haveA r(T, P ) = W([T |Act P ℄) for any processP and testT . Therefore, the testing
preorders⊑Ω

pmay,⊑Ω
pmustdefined in Section 4.2 coincides with those in Definition 6 of [5]. Now Theorem 4 of [5] (to be accurate, the

variant of that theorem for state-based testing) tells us that when testing finitary processes it suffices to use a single success action
rather than using multiple success actions. That is,

Theorem B.4 For finitary processes:

• P ⊑Ω
pmay Q if and only if P ⊑pmay Q

• P ⊑Ω
pmustQ if and only if P ⊑pmustQ 2

In view of the above theorem we can assume that only a single success actionω is used in tests, and in this setting we compare
extremal testing and resolution-based testing.

B.2 Extremal versus resolution-based testing
Consider the set of all functions from a finite setR to [0, 1], denoted by[0, 1]R, and the distance functiond over [0, 1]R defined by
d(f, g) = max |f(r) − g(r)|r∈R. We can check that([0, 1]R, d) constitutes a complete metric space. Letδ ∈ (0, 1] be a discount
factor. Given a deterministic pLTS〈R, {ω, τ},→〉, the discounted version of the functionalR in Section 4.2,Rδ : [0, 1]R →
[0, 1]R is defined by

R
δ(f)(r) =







1 if r ω−→
0 if r 6ω−→ andr 6τ−→
δ · f(∆) if r 6ω−→ andr τ−→ ∆

(35)

wheref(∆) = Exp∆(f). Below we show thatRδ is a continuous function over the complete lattice[0, 1]R. So the least fixed
point of Rδ, denoted byVδ, has the characterisationVδ =

⊔

n∈N V
δ,n, whereVδ,n is then-th iteration ofRδ over⊥. Note that

if there is no discount, i.e.δ = 1, we see thatRδ,Vδ coincides withR,V respectively. Similarly, we can defineVsup
δ. (There is

no need of treatingVinf
δ because the counterpart of Theorem B.8 forVinf can be established without using discount.)

Lemma B.5 1. For anyδ ∈ (0, 1], the functionalsRδ andR
δ
max are continuous;

2. If δ1, δ2 ∈ (0, 1] andδ1 ≤ δ2, then we haveRδ1 ≤ R
δ2 andR

δ1
max ≤ R

δ2
max;

3. Let{δn}n≥1 be a nondecreasing sequence of discount factors convergingto 1. Then
⊔

n∈NR
δn = R and

⊔

n∈NR
δn
max =

Rmax.

Proof: We only considerR, the case forRmax is similar.

1. Letf0 ≤ f1 ≤ ... be a nondecreasing chain in[0, 1]R. We need to show that

R
δ(
⊔

n≥0

fn) =
⊔

n≥0

R
δ(fn) (36)

For anyr ∈ R, we are in one of the following three cases:
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(a) r ω−→. We have
R
δ(
⊔

n≥0
fn)(r) = 1 by (35)

=
⊔

n≥0
1

=
⊔

n≥0
R
δ(fn)(r)

= (
⊔

n≥0
R
δ(fn))(r)

(b) r 6ω−→ andr 6τ−→. Similar to last case. We have

R
δ(
⊔

n≥0

fn)(r) = 0 = (
⊔

n≥0

R
δ(fn))(r).

(c) Otherwise,r τ−→ ∆ for some distribution∆ ∈ D1(R). Then we infer that

R
δ(
⊔

n≥0
fn)(r) = δ · (

⊔

n≥0
fn)(∆) by (35)

= δ ·
∑

r∈⌈∆⌉∆(r) · (
⊔

n≥0
fn)(r)

= δ ·
∑

r∈⌈∆⌉∆(r) · (
⊔

n≥0
fn(r))

= δ ·
∑

r∈⌈∆⌉

⊔

n≥0
∆(r) · fn(r)

= δ ·
∑

r∈⌈∆⌉ limn→∞ ∆(r) · fn(r)

= δ · limn→∞

∑

r∈⌈∆⌉∆(r) · fn(r) by Proposition A.1
= δ ·

⊔

n≥0

∑

r∈⌈∆⌉∆(r) · fn(r)

= δ ·
⊔

n≥0
fn(∆)

=
⊔

n≥0
δ · fn(∆)

=
⊔

n≥0
R
δ(fn)(r)

= (
⊔

n≥0
R
δ(fn))(r)

In the above reasoning, Proposition A.1 can be applied because we can define the functionf : R ×N → R≥0 by letting
f(r, n) = ∆(r) · fn(r) and check thatf satisfies the three conditions in Proposition A.1. IfR is finite, we can extend it to
a countable setR′ ⊇ R and requiref(r′, n) = 0 for all r′ ∈ R′\R andn ∈ N.

(a) f satisfies conditionC1. For anyr ∈ R′ andn1, n2 ∈ N, if n1 ≤ n2 thenfn1 ≤ fn2 . It follows that

f(r, n1) = ∆(r) · fn1(r) ≤ ∆(r) · fn2(r) = f(r, n2).

(b) f satisfies conditionC2. For anyr ∈ R′, the sequence{∆(r) · fn(r)}
∞
n=0 is nondecreasing and bounded by∆(r). It

follows that the limitlimn→∞ f(r, n) exists.

(c) f satisfies conditionC3. For anyR′′ ⊆ R′, the partial sum
∑

r∈R′′ limn→∞ f(r, n) is bounded because

∑

r∈R′′

lim
n→∞

f(r, n) =
∑

r∈R′′

lim
n→∞

∆(r) · fn(r) ≤
∑

r∈R′′

∆(r) ≤
∑

r∈R

∆(R) = 1.

2. Straightforward by the definition ofR.

3. For anyf ∈ [0, 1]R andr ∈ R we show that

R(f)(r) = (
⊔

n∈NR
δn)(f)(r). (37)

We focus on the non-trivial case thatr τ−→ ∆ for some distribution∆ ∈ D1(R).

(
⊔

n∈NR
δn)(f)(r) =

⊔

n∈NR
δn(f)(r)

=
⊔

n∈Nδn · f(∆)
= f(∆) · (

⊔

n∈Nδn)
= f(∆) · 1
= R(f)(r)

2

Lemma B.6 Let {δn}n≥1 be a nondecreasing sequence of discount factors convergingto 1.

• V =
⊔

n∈NVδn
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• Vsup =
⊔

n∈NVsup
δn

Proof: We only considerV; the case forVsup is similar. We use the notationlfp(f) for the least fixed point of the functionf over
a complete lattice. Recall thatV andVδn are the least fixed points ofR andR

δn respectively, so we need to prove that

lfp(R) =
⊔

n∈Nlfp(Rδn) (38)

We now show two inequations.
For anyn ∈ N, we haveδn ≤ 1, so Lemma B.5 (2) yieldsRδn ≤ R. It follows that lfp(Rδn) ≤ lfp(R), thus

⊔

n∈Nlfp(Rδn) ≤ lfp(R).
For the other direction,lfp(R) ≤

⊔

n∈Nlfp(Rδn), it suffices to show that
⊔

n∈Nlfp(Rδn) is a pre-fixed point ofR, i.e.
R(
⊔

n∈Nlfp(Rδn)) ≤
⊔

n∈Nlfp(Rδn), which we derive as follows. Let{δn}n≥1 be a nondecreasing sequence of discount
factors converging to1.

R(
⊔

n∈Nlfp(Rδn))

= (
⊔

m∈NR
δm)(

⊔

n∈Nlfp(Rδn)) by Lemma B.5 (3)
=

⊔

m∈NR
δm(
⊔

n∈Nlfp(Rδn))
=

⊔

m∈N⊔n∈NR
δm(lfp(Rδn)) by Lemma B.5 (1)

=
⊔

m∈N⊔n≥mR
δm(lfp(Rδn))

≤
⊔

m∈N⊔n≥mR
δn(lfp(Rδn)) by Lemma B.5 (2)

=
⊔

n∈NR
δn(lfp(Rδn))

=
⊔

n∈Nlfp(Rδn)

This completes the proof of (38). 2

We say a resolution of a pLTS isstatic if its associated resolving function is injective.

Lemma B.7 Supposeδ < 1 and∆ is a subdistribution in a finitely branching pLTS〈S, {τ, ω},→〉. There exists a static resolution
〈R,Θ,→〉 of ∆ with resolving functionf such thatVδ(r) = Vsup

δ(f(r)) for all r ∈ R.

Proof: Let 〈R,Θ,→〉 be a resolution with an injective resolving functionf such that

if r τ−→ Θ′ thenVsup
δ(f(Θ′)) = max{Vsup

δ(∆′) | f(r) τ−→ ∆′}.

The pLTS under consideration is finitely branching, which ensures the existence of the such resolving functionf .
Let g : R → [0, 1] be the function defined byg(r) = Vsup

δ(f(r)) for all r ∈ T . Below we show thatg is a fixed point ofRδ.
If r ω−→ thenf(r) ω−→. Therefore,Rδ(g)(r) = 1 = Vsup

δ(f(r)) = g(r). Now supposer 6ω−→ andr τ−→ Θ′. By the definition of
f , we havef(r) 6ω−→, f(r) τ−→ f(Θ′) with Vsup

δ(f(Θ′)) = max{Vsup
δ(∆′) | f(r) τ−→ ∆′}. Therefore,

R
δ(g)(r) = δ · g(Θ′)

= δ ·
∑

r′∈RΘ(r′) · g(r′)

= δ ·
∑

r′∈RΘ(r′) · Vsup
δ(f(r′))

= δ ·
∑

s∈S f(Θ′)(s) · Vsup
δ(s)

= δ · Vsup
δ(f(Θ′))

= δ ·max{Vsup
δ(∆′)|f(r) τ−→ ∆′}

= Vsup
δ(f(r))

= g(r)

Sinceδ < 1, the functionalRδ is a contraction mapping. It follows from the Banach fixed point theorem thatRδ has a unique
fixed point. So we derive thatg coincides withVδ, i.e.Vδ(r) = g(r) = Vsup

δ(f(r)) for all r ∈ R. 2

Theorem B.8 Let ∆ be a subdistribution in a finitary pLTS〈S, {τ, ω},→〉. There exists a static resolution〈R,Θ,→〉 of ∆ such
that ExpΘ(V) = Exp∆(Vsup).

Proof: By Lemma B.7, for every discount factord ∈ (0, 1) there exists a static resolution which achieves the maximumprobability
of success. Since the pLTS is finitary, there are finitely manydifferent static resolutions. There must exist a static resolution that
achieves the maximum probability of success for infinitely many discount factors. In other words, for every nondecreasing sequence
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{δn}n≥1 converging to1, there exists a subsequence{δnk}k≥1 and a static resolution〈R,Θ,−→〉 with resolving functionf such
thatVδnk (r) = Vsup

δnk (f(r)) for all r ∈ R andk = 1, 2, .... By Lemma B.6, we have that, for everyr ∈ R,

V(r) =
⊔

k∈NVδnk (r)
=

⊔

k∈NVsup
δnk (f(r))

= Vsup(f(r))

It follows that ExpΘ(V) = Exp∆(Vsup). 2
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