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Abstract

Simulations and bisimulations are known to be useful for abstracting and

comparing formal systems, and they have recently been introduced into fuzzy

systems. In this study, we provide sound and complete logical characterizations

for simulation and bisimulation, which are defined over fuzzy labeled transition

systems via two variants of the Hennessy-Milner Logic. The logic for character-

izing fuzzy simulation has neither negation nor disjunction, which is very differ-

ent from the well-known logical characterizations of probabilistic simulations,

although the completeness proofs of our characterization results are inspired by

relevant research in probabilistic concurrency theory. The logic for characteriz-

ing fuzzy bisimulation also deviates from that for probabilistic bisimulations.

Keywords: Bisimulation, Completeness, Fuzzy labeled transition system,

Logical characterization, Simulation, Soundness.

1 Introduction

The analysis of fuzzy systems has been the subject of active research during

the last 60 years and many formalisms have been proposed for modeling them,
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including fuzzy automata (e.g., see [2, 3, 7, 28, 29, 31, 36, 38, 44]), fuzzy Petri

nets [40], fuzzy Markov processes [4], and fuzzy discrete event systems [30, 37,

39].

Recently, a new formal model for fuzzy systems called fuzzy labeled tran-

sition systems (FLTSs) was proposed [6, 18, 24]. FLTSs are a natural gener-

alization of the classical labeled transition systems in computer science, where

after performing some action, a system evolves from one state into a fuzzy set

of successor states instead of a unique state. Many formal description tools for

fuzzy systems, such as fuzzy Petri nets and fuzzy discrete event systems [30, 37],

are not FLTSs. However, it is possible to translate a system’s description in

one of these formalisms into an FLTS to represent its behavior.

Bisimulation [34] has been investigated in depth in process algebras because

it offers a convenient co-inductive proof technique for establishing behavioral

equivalence [32]. Bisimulation has mostly been used for verifying formal sys-

tems and it is the foundation of state-aggregation algorithms, which compress

models by merging bisimilar states. State aggregation is used routinely as a

preprocessing step before model checking [1, 19]. Recently, bisimulation has

been introduced into fuzzy systems. For example, Cao et al. [6] considered

bisimulations for FLTSs. Bisimulation-based reasoning also appeared for fuzzy

automata and fuzzy discrete event systems [10, 11, 18, 33, 42, 45].

Following a seminal study that explored the connection between bisimula-

tion and modal logic [22], many studies have characterized various types of

bisimulations using appropriate logics, e.g., [16, 17, 23, 27]. A logic character-

izes a bisimulation soundly and completely when two states are bisimilar if and

only if they satisfy the same set of logical formulae. The significance of logical

characterizations is twofold. Based on a sound and complete logical character-

ization, the problem of checking whether two states are bisimilar is converted

into a logical judgment of whether two states satisfy the same set of logical

formulae, which can benefit from traditional logic theories and be assisted by

some practical tools. A logical characterization also allows model checking to be

performed based on a bisimulation quotient transition system because a logical

formula holds for the quotient if and only if it holds for the original transition

system.

In the present study, we provide logical characterizations of bisimulation and

simulation for FLTSs. Often, a state or system can simulate another but not

vice versa. For example, when we check that an implementation matches its

specification, we normally do not demand that the implementation performs

anything more than that required. It is usually acceptable that the implemen-

tation simulates its specification. Hence, it is also interesting to investigate sim-

ulations. Unlike other studies of fuzzy systems, we define simulation and bisim-
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ulation by virtue of closed subsets of some binary relation (Section 5 provides

a detailed discussion). Moreover, some recent studies of FLTSs and fuzzy au-

tomata have focused mainly on simulations and bisimulations [6, 10, 13, 26, 42],

whereas they did not consider logical characterizations. A logical characteri-

zation of fuzzy bisimulation was provided by [18], but the differences from the

current study are as follows: (1) the logic used in [18] employs recursive formulae

where it interprets a formula as a fuzzy set that gives the measure of satisfac-

tion and unsatisfaction for the formula; and (2) we consider bisimulation and

simulation, whereas [18] only considered bisimulation.

The logic used to characterize fuzzy bisimulation is very similar to Larsen

and Skou’s probabilistic extension of the Hennessy-Milner Logic1. The com-

pleteness proof for our logical characterization of fuzzy bisimulation is also

inspired by [23], who characterized probabilistic bisimulation. Indeed, there

is only a slight difference between the FLTS model and probabilistic labeled

transition systems (PLTSs). This may create the impression that the current

study is a straightforward generalization of the study of PLTSs, but this is

not the case. For PLTSs, disjunction is necessary to characterize simulation,

whereas it is not for FLTSs. For PLTSs, negation is not necessary for char-

acterizing bisimulation and binary conjunction is already sufficient, whereas for

FLTSs, both negation and infinite conjunction are necessary to characterize

bisimulation for general FLTSs, which may be infinitely branching. Moreover,

different techniques are needed to prove characterization theorems for FLTSs

and PLTSs. For example, in the case of PLTSs, the well-known π-λ theorem

holds, which greatly simplifies the completeness proof for the logical character-

ization of bisimulation. However, the π-λ theorem is invalid for FLTSs, so we

adopt a different approach to prove completeness, where we try to construct

a characteristic formula for each equivalence class, i.e., the formula is satisfied

only by the states in that equivalence class. Sections 4.2 and 4.3 provide more

details.

The remainder of this paper is organized as follows. We briefly review some

of the basic concepts used in this study in Section 2. In Section 3, we describe

some properties of simulations and bisimulations for FLTSs. In particular,

similarity and bisimilarity are shown to be closed under the parallel composition

of FLTSs. Section 4 presents the logical characterization theorems. In this

section, we also analyze why the logics characterizing bisimulations for FLTSs

and PLTSs are different. An extended abstract of this part of contents has

appeared in [15]. We introduce some related research in Section 5. Finally,

1Our logic for fuzzy systems originates from computer science and it is intended to be used

for reasoning about fuzzy labeled transition systems, and thus it differs from the fuzzy logic

investigated in [41].
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we give our conclusions in Section 6 by providing a summary of the differences

between the logical characterizations of FLTSs and PLTSs, as well as discussing

future reearch.

2 Preliminaries

In this section, we briefly recall some basic concepts and terminologies from set

theory and fuzzy set theory, before introducing FLTSs.

Let S be an ordinary set. A fuzzy set µ of S is a function that assigns each

element s of S with a value µ(s) in the real unit interval [0, 1]. The support

of µ is the set supp(µ) = {s ∈ S | µ(s) > 0}. We denote F(S) as the set of

all fuzzy sets in S and Ff (S) as the set of all fuzzy sets with finite-support,

i.e., Ff (S) = {µ ∈ F(S) | supp(µ) is finite}. Whenever supp(µ) is a finite set,

such as {s1, s2, · · · , sn}, then a fuzzy set µ can be written in Zadeh’s notation

as follows:

µ =
µ(s1)

s1
+
µ(s2)

s2
+ · · ·+ µ(sn)

sn
.

For any µ ∈ F(S) and U ⊆ S, the notation µ(U) denotes sups∈U µ(s). With a

slight abuse of notation, we sometimes write a possibility distribution as repre-

senting a fuzzy set2.

Let S be a set. For a binary relation R ⊆ S × S, we write sRt if (s, t) ∈ R.

A preorder relation R is a reflexive and transitive relation, and an equivalence

relation is a reflexive, symmetric, and transitive relation. An equivalence re-

lation R partitions a set S into equivalence classes. For s ∈ S, we use [s]R
to denote the unique equivalence class containing s. We drop the subscript R

if the relation considered is clear from the context. Let R(s) denote the set

{s′ | (s, s′) ∈ R}. A set U is said to be R-closed if R(s) ⊆ U for all s ∈ U . We

let R∗ be the reflexive transitive closure of R. Note that if R is a preorder, then

R∗ coincides with R. For any s ∈ S, the set R∗(s) is clearly a R-closed set.

The following two lemmas will be useful when we prove Theorem 3.6 and

3.8, respectively. Their proofs are trivial and thus they are omitted.

Lemma 2.1 Let R ⊆ S × S be a preorder relation and U ⊆ S is R-closed.

Then, U = ∪x∈UR(x). In particular, if R is an equivalence relation, then U =

∪x∈U [x]R.

Lemma 2.2 Let R1 and R2 be two binary relations on S and T , respectively.

Define R = {((s1, t1), (s2, t2)) | (s1, s2) ∈ R1, (t1, t2) ∈ R2}.
2Strictly speaking, a possibility distribution is different from a fuzzy set, although the

former can be viewed as the generalized characteristic function of the latter. See [46] for a

more detailed discussion.
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(1) If R1 and R2 are preorder relations, then R is a preorder relation on

S × T . Moreover, for any (s, t) ∈ S × T , we have R((s, t)) = R1(s)×R2(t);

(2) If R1 and R2 are equivalence relations, then R is an equivalence relation

on S × T . Moreover, for any (s, t) ∈ S × T , we have [(s, t)]R = [s]R1 × [t]R2.

Now, we introduce FLTSs.

Definition 2.3 An FLTS is a triple S = (S,A, α), where S is a set of states,

A is a set of actions, and the transition function α is a mapping from S ×A to

F(S).

A PLTS3 is an FLTS S = (S,A, α), where the transition function α is a

mapping from S×A to D(S). In this case, D(S) = {d : S → [0, 1] |
∑

s∈S d(s) =

1} is the set of all probability distributions on S.

Sometimes, we write s
a−→ µ and s

a[λ]−−→ s′ for α(s, a) = µ and α(s, a)(s′) = λ,

respectively. Note that if s cannot perform action a, then α(s, a)(s′) = 0 for all

s′ ∈ S. An FLTS S = (S,A, α) is said to be image-finite (FfLTS) if for each

state s and label a, α(s, a) ∈ Ff (S).

The FLTSs considered in the current study are deterministic [8] in the sense

that for each state s and label a, the transition function α returns at most one

possibility distribution α(s, a). The PLTSs defined above are usually called

reactive probabilistic systems [20] or labeled Markov chains [16] in probabilistic

concurrency theory. In nondeterministic fuzzy transition systems [8], for a state

and a label, more than one possibility distribution may be returned by the

transition function, which is similar to simple probabilistic automata [43].

Remark 2.4 Since determinism and nondeterminism have different meanings

in different contexts, it is necessary to provide further explanations.

In the classical concurrency theory, a labeled transition system is determin-

istic if the transition relation is a partial function from S × A to S, i.e., after

performing an action, the system changes from the current state into at most

one successor state. A system is nondeterministic if the transition relation is

a partial function from S × A to P(S), i.e., after performing an action, the

system may evolve nondeterministically into one state among a set of successor

states. Similarly, in probabilistic concurrency theory, a probabilistic system is

deterministic if the transition relation is a partial function from S×A to D(S),

i.e., at most one distribution of states can be reached after one transition step.

A probabilistic system is nondeterministic if the transition relation is a partial

3A variety of probabilistic models have been proposed in previous studies. In the present

study, we define PLTSs as reactive probabilistic processes, as studied by [27].
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function from S × A to P(D(S)). Given these concepts, it is appropriate to

refer to our FLTSs as deterministic.

We note that determinism has a different meaning in some studies of fuzzy

automata. For example, Bělohlávek [3] stated that a fuzzy automaton is deter-

ministic if the initial state is a singleton set, the final state is a fuzzy set on

the state space, and the transition function α is a mapping from S × A to S.

Essentially, the same notion was also used by Li and Pedrycz [28]. This kind of

determinism was referred to as crisp-determinism by Ćirić et al. [9]. In addi-

tion, González de Mend́ıvil and Garitagoitia proposed other types of determinism

(see [21] for further details).

As an application, let us illustrate FLTSs using an example related to medi-

cal diagnosis and treatment, as described by Qiu [37] and Lin and Ying [30] (see

also [8, 45]). We assume that there is an unknown bacterial infection. Based

on their experience, the physicians consider that three drugs, i.e., u1, u2, u3,

may be useful for treating this disease. Three possible negative symptoms, i.e.,

v1, v2, v3, must also be considered. The physicians consider that the patient’s

condition can be one of four rough types, i.e., “poor,” “fair,” “good,” or “ex-

cellent”, which are denoted by q1, q2, q3, and q4, respectively. A treatment

(or a negative symptom) may lead to a state among multiple possible states

with certain degrees. For example, the transition q2
u1[0.6]−−−→ q3 means that the

patient’s condition has changed from “fair” to “good” with a possibility of 0.6

after using drug u1, whereas q2
v1[0.3]−−−→ q1 means that the patient’s condition has

changed from “fair” to “poor” with a possibility of 0.3 if the patient has nega-

tive symptom v1. The transition possibilities of these events among states are

estimated by the physicians. In this manner, we obtain FLTS S = (S,A, α),

where S = {q1, q2, q3, q4} and A = {u1, u2, u3, v1, v2, v3}.
A patient’s initial condition may be “poor” and it will become “fair,” “good,”

or even “excellent” after a specific treatment. When a patient’s health becomes

“fair,” we naturally hope that this will improve to become “excellent” instead

of deteriorating. Analogously, if the patient’s condition is “excellent,” it is

desirable to maintain good health and thus a supervisor is necessary to disable

events v1, v2, v3 if they are controllable. A general approach for determining

whether supervisory control exists for fuzzy discrete event systems is in terms of

the fuzzy language equivalence. However, this is not satisfactory because some

strings (negative symptoms) are not accepted if they are controllable. Xing et

al. proposed the use of bisimulation equivalence to solve this problem [45], while

Deng and Qiu [13] also noted some limitations of language equivalence, where

they addressed this problem using simulation equivalence.
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3 Simulation and Bisimulation

In this section, we introduce our notions of simulation and bisimulation for

FLTSs, and we discuss their properties.

Based on the idea of defining bisimulations for PLTSs [17], we require that

if (s, t) is a pair of states in a simulation relation, then t can mimic all the

stepwise behaviors of s with respect to R. Thus, if s can perform an action

on a possibility distribution µ, then t can perform the same action on another

possibility distribution ν such that µ and ν are related via a relation between

distributions established by R-closed sets.

Definition 3.1 Let S = (S,A, α) be an FLTS. A relation R ⊆ S × S is a

simulation relation if (s, t) ∈ R implies that for any action a ∈ A, α(s, a)(U) ≤
α(t, a)(U) for any R-closed set U ⊆ S. For any two states s, t ∈ S, we say that

s is simulated by t in S, which is written as s �S t, if a simulation relation R

exists with (s, t) ∈ R. We omit the subscript S if the FLTS considered is clear

from the context.

A bisimulation relation links states that behave in the same way, i.e., two

states are bisimilar if they can mimic each other’s stepwise behavior.

Definition 3.2 Let S = (S,A, α) be an FLTS. A relation R ⊆ S×S is a bisim-

ulation relation if (s, t) ∈ R implies that for any action a ∈ A, α(s, a)(U) =

α(t, a)(U) for any R-closed set U ⊆ S. Two states s, t ∈ S are bisimilar in S,

which is written as s ∼S t, if there is a bisimulation relation R with (s, t) ∈ R.

We omit the subscript S if the FLTS considered is clear from the context.

Let R = R1 ∪ R2. We observe that if a set U is R-closed, then it is also

Ri-closed for i = 1, 2. It follows that the union of two simulations (resp. bisim-

ulations) is also a simulation (resp. bisimulation). Moreover, � is the largest

simulation, which is called the similarity, because it is the union of all simula-

tions. Similarly, ∼ is the largest bisimulation, which is called the bisimilarity.

Proposition 3.3 Let S = (S,A, α) be an FLTS. Then, ∼ is an equivalence

relation and � is a preorder.

Proof. We show that ∼ is reflexive, symmetric, and transitive.

• The reflexivity is obvious because the identity relation IdS = {(s, s) | s ∈
S} is a bisimulation.
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• Now, we check the symmetry. Suppose that s ∼ t. Then, a bisimulation

R exists such that (s, t) ∈ R. Let R′ = (t, s) ∪ R and we prove that R′ is

a bisimulation.

Note that any R′-closed set U is also R-closed. This holds because xRy

implies xR′y. Suppose that (m,n) ∈ R′, a is any action, and U is any

R′-closed set. We can distinguish two cases, as follows.

– If (m,n) = (t, s), then α(m, a)(U) = α(t, a)(U) = α(s, a)(U) =

α(n, a)(U) since (s, t) ∈ R and by assumption, R is a bisimulation.

– If (m,n) ∈ R, we also find that α(m, a)(U) = α(n, a)(U) because R

is a bisimulation.

Hence, R′ is a bisimulation. Thus, t ∼ s and the symmetry holds.

• To demonstrate the transitivity, we assume that s ∼ t and t ∼ h. Then,

R1 and R2 exist, which are both bisimulations, such that (s, t) ∈ R1 and

(t, h) ∈ R2. Let R′ = (s, h)∪R1∪R2 and we prove that R′ is a bisimulation.

Note that any R′-closed set U is both R1-closed and R2-closed. For any

(m,n) ∈ R′, any action a, and any R′-closed set U , we have two cases to

consider, as folllows.

– If (m,n) = (s, h), then α(s, a)(U) = α(t, a)(U) = α(h, a)(U) because

(s, t) ∈ R1, (t, h) ∈ R2, both R1 and R2 are bisimulations, and U is

also R1-closed and R2-closed. Thus, α(m, a)(U) = α(n, a)(U).

– If (m,n) ∈ R1 or (m,n) ∈ R2. It holds that α(m, a)(U) = α(n, a)(U)

because R1, R2 are bisimulations and U is also R1-closed and R2-

closed.

Hence, R′ is a bisimulation. Thus, s ∼ h and the transitivity holds.

Consequently, R is an equivalence relation, as desired. In a similar manner, we

can show that � is a preorder. �

Proposition 3.4 Let S = (S,A, α) be an FLTS. If R is a bisimulation and

t ∈ R∗(s), then for any action a ∈ A, we have α(s, a)(U) = α(t, a)(U) for any

R-closed set U .

Proof. If t ∈ R∗(s), then states t1, ..., tn exist with n ≥ 0 such that

sRt1, t1Rt2, ..., tnRt .
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Figure 1: Bisimilarity is strictly finer than simulation equivalence.

Since R is a bisimulation, then we find that

α(s, a)(U) = α(t1, a)(U) = ... = α(t, a)(U) .

�

Two states s, t ∈ S are said to be simulation equivalent, which is denoted

by s ' t, if s � t and t � s. Bisimilarity implies simulation equivalence but not

vice versa.

Example 3.5 Consider the FLTS depicted in Figure 1. Let S = {s, t, s1, s2, s3}
and R = {(x, x) | x ∈ S} ∪ {(s, t), (s3, s1)}. It is easy to check that R is a sim-

ulation, and thus s � t. Now, let R′ = {(x, x) | x ∈ S} ∪ {(t, s)}. Obviously,

R′ is also a simulation, and hence we have t � s. It follows that s and t are

simulation equivalent.

Now, we assume by contradiction that s and t are bisimilar. Then, a bisim-

ulation R exists with (s, t) ∈ R. Let s
a−→ µ and t

a−→ ν. Then, we have

µ(R∗(s3)) = ν(R∗(s3)). Since µ(R∗(s3)) 6= 0 and ν takes a non-zero value

only at s1, then we can infer that s1 ∈ R∗(s3). By Proposition 3.4, we have

α(s3, b)(R
∗(s2)) = α(s1, b)(R

∗(s2)), which contradicts the fact that s1 can per-

form action b on a nonempty distribution whereas s3 cannot. Hence, s and t

are not bisimilar.

The following theorem is very important for proving the logical characteri-

zation theorems in the next section.

Theorem 3.6 Let S = (S,A, α) be an FLTS.

(1) A preorder relation R ⊆ S×S is a simulation iff for all (s, t) ∈ R, a ∈ A
and x ∈ S, we have α(s, a)(R(x)) ≤ α(t, a)(R(x)).

(2) An equivalence relation R ⊆ S×S is a bisimulation iff for all (s, t) ∈ R,

a ∈ A and all equivalence classes [x] of R, we have α(s, a)([x]) = α(t, a)([x]).
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Proof. (1) For any x ∈ S, R(x) is R-closed since R is a preorder. By Lemma

2.1, any R-closed set is the union of these R(x), and any possibility distribution

also preserves arbitrary unions. Thus, the desired result follows.

(2) Similar to the proof of (1). �

It should be noted that Theorem 3.6(2) also holds for PLTSs [23]. However,

Theorem 3.6(1) does not hold for PLTSs. This is because from α(s, a)(R(x)) ≤
α(t, a)(R(x)), for any x ∈ S, we cannot conclude that α(s, a)(U) ≤ α(t, a)(U)

for any R-closed set U . This is supported by the following example.

Example 3.7 Let S = {s1, s2, s3, s4} and R = {(si, si) | i = 1, · · · , 5} ∪
{(s1, s3), (s2, s3)}. Obviously, R is a preorder. Moreover, R(s1) = {s1, s3},
R(s2) = {s2, s3}, and R(si) = {si} for i = 3, 4. Take two probability distri-

butions d1, d2 ∈ D(S) and let d1 assign probabilities of 0.6 and 0.4 to s1 and

s2, respectively, and 0 to other states; d2 assign probabilities of 0.2, 0.4, and

0.4 to states s1, s3 and s4, respectively, and 0 for state s2. Then, it is easy to

verify that d1(R(si)) ≤ d2(R(si)) (i = 1, · · · , 4). However, for the R-closed set

U = {s1, s2, s3}, we have d1(U) = 1 > d2(U) = 0.6.

Let S = (S,A, α) and T = (T,B, β) be two FLTSs. Following [6], we

consider their parallel composition, which is defined as follows:

S ‖ T = (S × T,A ∪B, δ),

where for all (s1, t1), (s2, t2) ∈ S × T and action a, we have

δ((s1, t1), a)((s2, t2)) =



α(s1, a)(s2) ∧ β(t1, a)(t2), if a ∈ A ∩B

α(s1, a)(s2), if a ∈ A\B and t2 = t1

β(t1, a)(t2), if a ∈ B\A and s2 = s1

0, otherwise.

In the composite FLTS S ‖ T , all the actions in the set A ∩ B must be syn-

chronized by the two systems S and T , and all of the other actions may be

interleaved.

The following theorem shows that simulation and bisimulation are preserved

by the parallel composition operator.

Theorem 3.8 Let S = (S,A, α) and T = (T,B, β) be two FLTSs.

(1) If s1 �S s2 and t1 �T t2, then (s1, t1) �S‖T (s2, t2).

(2) If s1 ∼S s2 and t1 ∼T t2, then (s1, t1) ∼S‖T (s2, t2).

10



Proof. As an example, let us prove (2). Define

R = {((s, t), (s′, t′)) | (s, s′) ∈∼S , (t, t′) ∈∼T }.

Clearly, we have ((s1, t1), (s2, t2)) ∈ R. By Proposition 3.3, ∼S and ∼T are

equivalence relations on S and T , respectively. Lemma 2.2 (2) implies that R is

an equivalence relation on S × T . To establish (s1, t1) ∼S‖T (s2, t2), it suffices

to show that R is a bisimulation on S ‖ T . By Theorem 3.6(2), we only need

to check that

δ((s, t), a)([(s′′, t′′)]R) = δ((s′, t′), a)([(s′′, t′′)]R) (1)

for any ((s, t), (s′, t′)) ∈ R, a ∈ A ∪ B, and any equivalence class [(s′′, t′′)]R of

R. By the definition of parallel composition, three cases need to be considered.

1. a ∈ A ∩B. In this case, we have

δ((s, t), a)([(s′′, t′′)]R) = δ((s, t), a)([s′′]∼S × [t′′]∼T ) (by Lemma 2.2 (2))

= supm∈[s′′]∼S ,n∈[t′′]∼T δ((s, t), a)((m,n))

= supm∈[s′′]∼S ,n∈[t′′]∼T α(s, a)(m) ∧ β(t, a)(n)

= supm∈[s′′]∼S supn∈[t′′]∼T α(s, a)(m) ∧ β(t, a)(n)

= supm∈[s′′]∼S α(s, a)(m) ∧ β(t, a)([t′′]∼T )

= α(s, a)([s′′]∼S ) ∧ β(t, a)([t′′]∼T ).

Similarly, we can also prove that

δ((s′, t′), a)([(s′′, t′′)]R) = α(s′, a)([s′′]∼S ) ∧ β(t′, a)([t′′]∼T ).

Note that ((s, t), (s′, t′)) ∈ R, which means that s ∼S s′ and t ∼T t′. By

Theorem 3.6(2), we have

α(s, a)([s′′]∼S ) = α(s′, a)([s′′]∼S ) and β(t, a)([t′′]∼T ) = β(t′, a)([t′′]∼T ).

As a consequence, the equation in (1) holds, as desired.

2. a ∈ A\B. We distinguish two subcases as follows.

• If t /∈ [t′′]∼T , then t 6= n for any n ∈ [t′′]∼T . It follows that

δ((s, t), a)([(s′′, t′′)]R) = sup
m∈[s′′]∼S ,n∈[t′′]∼T

δ((s, t), a)((m,n)) = 0.

Since t ∼T t′, we must have t′ /∈ [t′′]∼T . For the same reason, we

derive that δ((s′, t′), a)([(s′′, t′′)]R) = 0. Hence, the equation in (1)

holds.
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• If t ∈ [t′′]∼T , then we can infer that

δ((s, t), a)([(s′′, t′′)]R) = supm∈[s′′]∼S ,n∈[t′′]∼T δ((s, t), a)((m,n))

= supm∈[s′′]∼S α(s, a)(m)

= α(s, a)([s′′]∼S ).

Similarly, we can also prove that

δ((s′, t′), a)([(s′′, t′′)]R) = α(s′, a)([s′′]∼S ).

Note that s ∼S s′, which implies that α(s, a)([s′′]∼S ) = α(s′, a)([s′′]∼S ).

It follows that the equation in (1) holds.

3. a ∈ B\A. This is analogous to the latter case, and thus it is omitted.

This completes the proof of this theorem.

�

4 Logical Characterizations of Bisimulation and

Simulation

Specification, i.e., the description of the required properties of an implemen-

tation, is a major issue for transition systems [43]. These properties are best

expressed as formulae in a logic language. In this section, we introduce a variant

of the Hennessy-Milner Logic [22] to characterize bisimulation. We also show

that a negation-free sub-logic is sufficient to characterize simulation.

4.1 Logic

Let A be a countable set of actions ranged over by a, b, · · · , and let > be a

propositional constant. The language Lbi of formulae is the least set generated

by the following BNF grammar:

ϕ ::= > |
∧
i∈I ϕi | ¬ϕ | 〈a〉pϕ,

where I is a possibly uncountable index set and p is a real number in the unit

interval [0, 1]. This is the basic logic that we employ to establish the logical

characterization of bisimulation for an FLTS.

Note that the formulae in Lbi are defined inductively, so we can only generate

formulae of finite depth such as >, 〈a〉p>, ¬〈a〉p>, 〈a〉p〈b〉r>, 〈a〉p¬〈b〉r>, etc.

Let us fix an FLTS S = (S,A, α). The semantic interpretation of the

formulae in Lbi is given by:

12



• s |=bi >, for any state s;

• s |=bi

∧
i∈I ϕi iff for each i ∈ I, s |=bi ϕi;

• s |=bi ¬ϕ iff s 6|=bi ϕ;

• s |=bi 〈a〉pϕ iff ∃A ⊆ S. (∀s′ ∈ A. s′ |= ϕ) ∧ (α(s, a)(A) ≥ p).

We write [[ϕ]] for the set {s ∈ S | s |=bi ϕ}. Then, it is immediate that

s |=bi 〈a〉pϕ iff α(s, a)([[ϕ]]) ≥ p, i.e., sups′∈[[ϕ]] α(s, a)(s′) ≥ p. Thus, s |=bi 〈a〉pϕ
means that the state s can make an a-move to a state that satisfies ϕ with a

possibility greater than p. In the sequel, we always use this fact as the semantic

interpretation of the formula 〈a〉pϕ in Lbi.
Again, we consider the FLTS depicted in Figure 1 and we see that s satisfies,

among others, the formula 〈a〉 1
2
¬〈b〉 3

4
>, i.e., s |=bi 〈a〉 1

2
¬〈b〉 3

4
>, because s can

make an a-move to state s3, which is a deadlock state, and thus it cannot

perform action b with a possibility of at least 3
4
. In addition, since s can make

an a-move to state s1 with a possibility of 2
3

followed by a b-move to state s2
with a possibility of 3

4
, we can see that s |=bi 〈a〉 1

2
〈b〉 3

4
> also holds.

Let Th(s) = {ψ | s |=bi ψ} be the set of formulae satisfied by state s,

which is called the theory of state s. For example, in Figure 1, the set Th(t)

includes, among others, the formulae 〈a〉p>(p ≤ 2
3
), 〈a〉p〈b〉r>(p ≤ 2

3
, r ≤ 3

4
)

and ¬〈a〉p〈b〉r>(p > 2
3
, r ∈ [0, 1]).

Two states s, t ∈ S are logically equivalent if Th(s) = Th(t). In other words,

the two states cannot be distinguished by the logic Lbi because s |=bi ψ ⇐⇒
t |=bi ψ for any ψ ∈ Lbi.

In the following, we explain why the logic Lbi is selected to characterize

bisimulation for FLTSs. In previous studies, various extensions of the Hennessy-

Milner Logic have been proposed. We consider two that have been proposed in

the setting of PLTSs.

Larsen and Skou [27] used the logic Lls to characterize probabilistic bisim-

ulation for image-finite reactive systems, which comprises the following set of

formulae:

ϕ ::= > | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉pϕ,

where p is a rational number in the unit interval [0, 1]. We write |=ls for the

satisfaction relation of this logic. Then, s |=ls 〈a〉pϕ iff ∃A ⊆ S. (∀s′ ∈ A. s′ |=ls

ϕ) ∧ (α(s, a)(A) ≥ p), where α(s, a) ∈ D(S), i.e., the state s can make an a-

move to a probability distribution that evolves into a state satisfying ϕ with

a probability of at least p. Similarly, s |=ls 〈a〉pϕ iff α(s, a)([[ϕ]]) ≥ p, i.e.,∑
s′∈[[ϕ]] α(s, a)(s′) ≥ p.

13
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Figure 2: Two states cannot be distinguished without negation in NLTSs.

Desharnais et al. [16] showed that negation is not necessary to characterize

bisimulations for reactive systems, and this holds even for general reactive sys-

tems that may not be image-finite. The syntax of their logic Ldep is as follows:

ϕ ::= > | ϕ1 ∧ ϕ2 | 〈a〉pϕ,

where p is a rational number in the unit interval [0, 1]. We write |=dep for the

satisfaction relation of this logic. In particular, s |=dep 〈a〉pϕ iff s |=ls 〈a〉pϕ.

Remark 4.1 A subtle difference between the logic Lbi and Ldep is that p is a real

number in the formula 〈a〉pϕ in the logic Lbi, whereas it is a rational number in

the logic Ldep. A consequence of the restriction is that the set of all the formulae

in the logic Ldep is countable, whereas the set of all the formulae in the logic Lbi
is uncountable. This has an implication for the proof of Theorem 4.10.

There is only a slight difference between an FLTS and a PLTS, which raises

a natural question: can the logic Ldep characterize bisimulations for FLTSs?

The answer to this question is no, according to the following two examples.

Example 4.2 In this example, we compare FLTSs with nondeterministic la-

beled transition systems (NLTSs) and PLTSs.

Consider the two states s and t in Figure 2. A simple formula that distin-

guishes them is 〈a〉¬〈b〉>, which means that a state can perform an a action

and then be in a state where it cannot perform a b action. Thus, state s satis-

fies this formula whereas state t does not. It is well known that they cannot be

distinguished by a negation-free formula of the Hennessy-Milner logic [22].

Now, consider the PLTSs in Figure 3, where m 6= 0. It is easy to see that

t |=dep 〈a〉1〈b〉1> but s 6|=dep 〈a〉1〈b〉1>.

Hence, s and t can be distinguished without negation in this PLTS.
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Figure 3: Two states can be distinguished without negation in PLTSs.

However, the case is different for FLTSs. In Example 3.5, we show that

the two states s and t in Figure 1 are not bisimilar, but they cannot be distin-

guished by the logic Ldep. This is explained as follows. Since s |=bi 〈a〉pϕ iff

sups′∈[[ϕ]] α(s, a)(s′) ≥ p, then the non-trivial formulae that both s and t satisfy

are

〈a〉p> (p ≤ 2

3
), 〈a〉q〈b〉r> (q ≤ 2

3
and r ≤ 3

4
)

and binary conjunction of these formulae. Moreover, the formulae that both s

and t do not satisfy are

〈a〉p> (p >
2

3
) and 〈a〉q〈b〉r> (q >

2

3
or r >

3

4
).

Hence, the logic Ldep cannot distinguish s and t. However, we can easily distin-

guish these two states if negation is allowed. For instance, we have

s |=bi 〈a〉 1
2
¬〈b〉 3

4
> but t 6|=bi 〈a〉 1

2
¬〈b〉 3

4
>.

Example 4.3 In this example, we show that finite conjunction is insufficient

to characterize bisimulations for FLTSs. This example has been adapted from

Example 5.1 in [23].

The only difference between the two FLTSs in Figure 4 is that t has a tran-

sition to itself. First, we show that s and t are not bisimilar. Let

S = {s, t, t0, t1, t2, · · · }, t
a−→ µ, tn

a−→ µn(n = 1, 2, · · · ), and s
a−→ ν.

Now, suppose that s and t are bisimilar. Then, a bisimulation R exists with

(s, t) ∈ R. It follows that

ν(R∗(t)) = µ(R∗(t)) =
1

2
.

Since ν takes values of 0 at s and t, R∗(t) includes at least one tn(n = 0, 1, 2, · · · ).

Thus, it follows from Proposition 3.4 that

µn(R∗(t)) = µ(R∗(t)) =
1

2
.
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Figure 4: Two states cannot be distinguished without infinite conjunction in

FLTSs.

Since µn takes a value of 1
2

only at tn−1 and 0 otherwise, then

tn−1 ∈ R∗(t) and µn−1(R
∗(t)) = µ(R∗(t)) =

1

2
.

If we continue in this manner, then we finally obtain t0 ∈ R∗(t). It follows that

α(t0, a)(R∗(t)) = µ(R∗(t)) =
1

2
,

which leads to a contradiction because t can perform an a-action on a nonempty

distribution whereas t0 cannot. Hence, s and t are not bisimilar.

However, in the logic Ldep, we cannot find a formula that can distinguish s

and t due to the following reasons. Obviously, all formulae satisfied by s can

also be satisfied by t. Hence, in order to distinguish them we need to find a

formula that can be satisfied by t but not by s. In the logic Ldep, the formulae

satisfied by t are:

>, 〈a〉p1>, 〈a〉p1〈a〉p2>, 〈a〉p1〈a〉p2〈a〉p3>, · · · ,

and binary conjunction of these formulae, where pi ≤ 1
2
(i = 1, 2, 3, · · · ). How-

ever, all these formulae can also be satisfied by s. Hence, the logic Ldep cannot

distinguish s and t in this FLTS.

The situation is different if infinite conjunction is allowed. Consider the

formula ϕi defined as follows: ϕ0 = >, and ϕi = (〈a〉 1
2
)(i)>, which means that

〈a〉 1
2
〈a〉 1

2
· · · 〈a〉 1

2︸ ︷︷ ︸
i times

>.

Let ϕ =
∧
i∈N ϕi. Then, t |=bi ϕ. By mathematical induction, we can prove that

for any n,

tn |=bi ϕn but tn 6|=bi ϕn+1.
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Then, it follows that tn 6|=bi ϕ for any n. Now, let ψ = 〈a〉 1
2
ϕ. Then, t |=bi ψ

because t ∈ [[ϕ]] and µ(t) = 1
2
. However, s 6|=bi ψ since ν takes nonzero values

only at tn (n = 0, 1, · · · ) and tn 6∈ [[ϕ]]. Consequently, we find a formula with

infinite conjunction to distinguish s from t.

Hence, the logic Lbi is selected instead of Ldep to characterize bisimulations

for FLTSs.

4.2 Logical Characterization of Bisimulation

In this section, we show that two states are observationally indistinguishable or

bisimilar iff they are logically indistinguishable. Symbolically,

s ∼ t iff Th(s) = Th(t).

The following two technical lemmas will be useful for proving this fact.

Lemma 4.4 [35] states that when considering logics with negation, it is im-

possible for the set of formulae satisfied by one state to be strictly included in

the set of formulae satisfied by another state.

Lemma 4.4 Given a logic with negation, for each pair of states s and t if

Th(s) ⊆ Th(t), then Th(s) = Th(t).

The second lemma states that the transition possibilities to sets of the form

[[ψ]] are determined completely by the formulae.

Lemma 4.5 Given an FLTS S = (S,A, α) and the logic Lbi, for any two

states s, t ∈ S, if Th(s) = Th(t), then for any formula ψ ∈ Lbi and a ∈ A,

α(s, a)([[ψ]]) = α(t, a)([[ψ]]).

Proof. Without loss of generality, let us assume that a formula ψ exists such

that α(s, a)([[ψ]]) < α(t, a)([[ψ]]). Then, we can squeeze in a number p with

α(s, a)([[ψ]]) < p ≤ α(t, a)([[ψ]]). It follows that t |=bi 〈a〉pψ but s 6|=bi 〈a〉pψ,

which contradicts Th(s) = Th(t). �

Theorem 4.6 Given an FLTS S = (S,A, α) and the logic Lbi, for any two

states s, t ∈ S, s ∼ t iff Th(s) = Th(t).

Proof. First we show the soundness, i.e.,

∀s, t ∈ S. s ∼ t =⇒ Th(s) = Th(t).
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Let s, t ∈ S, s ∼ t, and ψ be a formula. We show that s |=bi ψ ⇐⇒ t |=bi ψ by

structural induction on ψ. The cases of > and conjunction are trivial. Now, we

consider other cases as follows.

(1) ψ ≡ ¬ϕ. In this case, s |=bi ψ ⇐⇒ s 6|=bi ϕ. By structural induction, we

have s 6|=bi ϕ⇐⇒ t 6|=bi ϕ. Now, we also have t 6|=bi ϕ⇐⇒ t |=bi ψ.

(2) ψ ≡ 〈a〉pϕ. By structural induction, [[ϕ]] is ∼-closed for any formula ϕ.

It follows from s ∼ t that α(s, a)([[ϕ]]) = α(t, a)([[ϕ]]). Then, it is immediate

that s |=bi ψ ⇐⇒ t |=bi ψ.

For completeness, we define R = {(s, t) | Th(s) = Th(t)}. It suffices to

prove that R is a bisimulation. Obviously, R is an equivalence relation. Let

G = {[si] | i ∈ I} be the set of all equivalence classes of R. Then, by Theorem

3.6(2), it remains to show that for any (s, t) ∈ R, a ∈ A, and i ∈ I,

α(s, a)([si]) = α(t, a)([si]). (2)

First, we claim that for any equivalence class [si], a characteristic formula

ϕi exists such that [[ϕi]] = [si]. This can be proved as follows.

• If G contains only one equivalence class [x], then S = [x]. Thus, we can

take the characteristic formula as being > because [[>]] = [x].

• If G contains more than one equivalence class, then for any i, j ∈ I with

i 6= j, a formula ϕij exists such that si |=bi ϕij and sj 6|=bi ϕij. Oth-

erwise, for any formula ϕ, si |=bi ϕ implies sj |=bi ϕ, which means that

Th(si) ⊆ Th(sj). It follows from Lemma 4.4, that Th(si) = Th(sj).

Thus, sj ∈ [si], which contradicts the fact that si and sj are taken from

different equivalence classes. For each i ∈ I, define ϕi =
∧
j 6=i ϕij, then by

construction, [[ϕi]] = [si]. Let us check the last equality. First, if sk ∈ [[ϕi]]

for some k ∈ I, then sk |=bi ϕi, which means that sk |=bi ϕij for all j 6= i.

Thus, sk 6∈ [sj] for all j 6= i, and this in turn implies that sk ∈ [si]. Second,

if sk ∈ [si], then sk |=bi ϕi as si |=bi ϕi, which means that sk ∈ [[ϕi]].

This completes the proof of the claim that each equivalence has a character-

istic formula.

Now, suppose that (s, t) ∈ R. For any action a ∈ A and index i ∈ I, by the

claim above and Lemma 4.5, we can infer that

α(s, a)([si]) = α(s, a)([[ϕi]]) = α(t, a)([[ϕi]]) = α(t, a)([si])

. Hence, the equation in (2) holds. �

In the proof given above, the idea of using characteristic formulae is inspired

by [23]. We can see that the logic Lbi is highly expressive because it characterizes
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bisimulation as well as equivalence classes in the sense that a formula for each

equivalence class necessarily exists that is satisfied only by the states in that

class.

Moreover, from the construction of formula ϕi above, we can see that infinite

conjunction is indeed necessary. The advantage of infinite conjunction is that

it allows for a universal description of a class of states of interest. However,

infinity is difficult to process in real applications. Fortunately, in most practical

applications, the support of a fuzzy set is finite and the state space is at most

countable. Then, the logic Lbi restricted to binary conjunction, i.e., the logic

Lls, is already sufficient to characterize bisimulation for FLTSs, as we show in

the following.

Theorem 4.7 Given the logic Lls, and if we let the state space S be countable

and S = (S,A, α) is an FfLTS; then, for any two states s, t ∈ S, s ∼ t iff

Th(s) = Th(t).

Proof. Theorem 4.6 implies the soundness. For the completeness, let R, G,

and {ϕij}i,j∈I be defined as given. Note that G is now countable because of

our restriction to a countable state space S. We fix an arbitrary index k. For

each i ∈ I, define Φk
i =

∧
j≤k ϕij. It is then easy to see that for each i ∈ I, the

formula Φk
i only has finite conjunctions, and

[si] ⊆ [[Φk
i ]] ⊆ [si] ∪

⋃
m∈I∧m>k

[sm]. (3)

Hence, for any µ ∈ Ff (S), µ([si]) ≤ µ([[Φk
i ]]) ≤ µ([si] ∪

⋃
m∈I∧m>k[sm]), i.e.,

µ([si]) ≤ µ([[Φk
i ]]) ≤ µ([si]) ∨ µ(

⋃
m∈I∧m>k

[sm]).

If we fix an arbitrary index i and take the infimum for k ∈ I, then we can obtain

µ([si]) ≤ inf
k∈I

µ([[Φk
i ]]) ≤ inf

k∈I
[µ([si]) ∨ µ(

⋃
m∈I∧m>k

[sm])],

i.e.,

µ([si]) ≤ inf
k∈I

µ([[Φk
i ]]) ≤ µ([si]) ∨ inf

k∈I
µ(

⋃
m∈I∧m>k

[sm]). (4)

We argue that

inf
k∈I

µ(
⋃

m∈I∧m>k

[sm]) = 0. (5)

In fact, since supp(µ) is finite, a sufficiently large number N ∈ I exists such

that for any s ∈ supp(µ), some ms ∈ I exists with ms < N and s ∈ [sms ]. Thus,
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we always have µ(
⋃
m∈I∧m>k[sm]) = 0 when k ≥ N . Hence, the equation in (5)

holds.

By combining (4) and (5), for any i ∈ I and any µ ∈ Ff (S), we have

µ([si]) = inf
k∈I

µ([[Φk
i ]]). (6)

Now let (s, t) ∈ R. It remains to show that α(s, a)([si]) = α(t, a)([si]) for any

a ∈ A and i ∈ I. By the left part of (3), we have α(s, a)([[Φk
i ]]) ≥ α(s, a)([si])

for each i ∈ I, thereby implying that s |=bi 〈a〉piΦk
i for each i, k ∈ I, where

pi = α(s, a)([si]). By the definition of R, t |=bi 〈a〉piΦk
i for each i, k ∈ I. Hence,

α(t, a)([[Φk
i ]]) ≥ pi for each i ∈ I. Again, by the right part of (3), for an arbitrary

index i and any k ∈ I, we can obtain

pi ≤ α(t, a)([[Φk
i ]]) ≤ α(t, a)([si]) ∨ α(t, a)(

⋃
m∈I∧m>k

[sm]).

It follows that

pi ≤ α(t, a)([si]) ∨ inf
k∈I

α(t, a)(
⋃

m∈I∧m>k

[sm]).

Thus, by (5), we have pi ≤ α(t, a)([si]), i.e.

α(s, a)([si]) ≤ α(t, a)([si])

for each i ∈ I. Now, suppose that an i0 ∈ I exists such that α(s, a)([si0 ]) <

α(t, a)([si0 ]). Then, we can take ε0 > 0 such that

α(s, a)([si0 ]) < α(s, a)([si0 ]) + ε0 < α(t, a)([si0 ]).

For this ε0, by applying (6) to [si0 ], we can see that some k0 ∈ I exists such that

α(s, a)([[Φk0
i0

]]) < α(s, a)([si0 ]) + ε0.

Thus, since

α(t, a)([[Φk0
i0

]]) ≥ α(t, a)([si0 ]) > α(s, a)([si0 ]) + ε0,

we have

s 6|=bi 〈a〉α(s,a)([si0 ])+ε0Φ
k0
i0

but t |=bi 〈a〉α(s,a)([si0 ])+ε0Φ
k0
i0
,

which contradicts Th(s) = Th(t). Hence, for each i ∈ I, α(s, a)([si]) =

α(t, a)([si]), as desired. �
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4.3 Analysis

Next, we explain why the logic Ldep can characterize bisimulations for PLTSs

but not for FLTSs, which is essentially because the π-λ theorem [5] plays a

crucial role in the logical characterizations for PLTSs whereas it does not for

FLTSs.

Let X be a set. A family P of subsets of X is called a π-class if it is closed

under finite intersection; a family L of subsets of X is called a λ-class if it is

closed under complementations and countable disjoint unions; and a family M
of subsets of X is called a σ-algebra if it contains X, and it is closed under

complementations and countable unions.

Theorem 4.8 (The π-λ theorem) Let P be a π-class of a set X. Then, σ(P)

is the smallest λ-class containing P, where σ(P) is a σ-algebra containing P.

The next proposition is a typical application of the π-λ theorem, which

shows us that when two probability distributions agree on a π-class, then they

also agree on the generated σ-algebra.

Proposition 4.9 Let S be a state space, A0 = {[[ϕ]] | ϕ ∈ Ldep}, and A =

σ(A0). For any d, d′ ∈ D(S), if d(A) = d′(A) for any A ∈ A0, then d(B) =

d′(B) for any B ∈ A.

Proof. Let

P = {A ∈ A | d(A) = d′(A)}.

Then, P is closed under countable disjoint unions because probability distribu-

tions are σ-additive. Furthermore, d(S) = d′(S) = 1 implies that if A ∈ P , then

d(S\A) = d(S) − d(A) = d′(S) − d′(A) = d′(S\A), i.e. S\A ∈ P . Thus, P is

also closed under complementation. It follows that P is a λ-class. Note that

A0 is a π-class given the equation [[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]. Since A0 ⊆ P , then

we can apply the π-λ Theorem 4.8 to obtain A = σ(A0) ⊆ P ⊆ A, i.e., A = P .

Therefore, d(B) = d′(B) for any B ∈ A. �

Theorem 4.10 Given the logic Ldep and let S = (S,A, α) be a PLTS. Then,

for any two states s, t ∈ S, s ∼ t iff Th(s) = Th(t).

Proof. The proof of soundness is conducted as described in Theorem 4.6. In

the following, we focus on the completeness. Let R = {(s, t) | Th(s) = Th(t)}.
It suffices to show that R is a bisimulation. Obviously, R is an equivalence

relation. Moreover, for any x ∈ S, the equivalence class containing x is

[x] =
⋂
{[[φ]] | x |= φ} ∩

⋂
{S\[[φ]] | x 6|= φ}. (7)
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In (7), only countable intersections are used because the set of all the formulae

in the logic Ldep is countable. Let A0 be defined as in Proposition 4.9. Then,

each equivalence class of R is a member of σ(A0).

In addition, for any (s, t) ∈ R, Th(s) = Th(t) implies that for any a ∈ A
and φ ∈ Ldep, α(s, a)([[φ]]) = α(t, a)([[φ]]), the proof of which is exactly the same

as that for Lemma 4.5. Thus, by Proposition 4.9, we have

α(s, a)([x]) = α(t, a)([x]), (8)

where [x] is any equivalence class of R. Then, it follows from applying Theorem

3.6(2) to PLTSs that the equivalence relation R is a bisimulation. �

Therefore, the logic Ldep can characterize a bisimulation for PLTSs, and

this logic has neither negation nor infinite conjunction. Moreover, the result

given above holds for general PLTSs, which are not necessarily image-finite.

However, a counterpart of Theorem 4.10 for FLTSs would not be valid. For

possibility distributions, the family of sets P in the proof of Proposition 4.9 is

not closed under complementation or countable intersections. Thus, we cannot

show that all equivalence classes are in P (i.e., σ(A0)). It follows that (8) cannot

be established for FLTSs.

4.4 Logical Characterization of Simulation

The logic that characterizes simulations for FLTSs is the negation-free fragment

of the logic Lbi called Lsi, which is given as follows.

ϕ ::= > |
∧
i∈I ϕi | 〈a〉pϕ.

The semantics of Lsi is defined in the same manner as Lbi. In this subsection,

Th(s) = {ψ | s |=si ψ}.

Theorem 4.11 Given an FLTS S = (S,A, α) and the logic Lsi, for any two

states s, t ∈ S, s � t iff Th(s) ⊆ Th(t).

Proof. First, we show the soundness. Let s, t ∈ S, s � t and ψ be a formula.

We can prove s |=si ψ =⇒ t |=si ψ by structural induction on ψ. The cases

for > and conjunction are trivial. Now, consider ψ ≡ 〈a〉pϕ. By structural

induction, [[ϕ]] is �-closed for any formula ϕ. If we assume that s |=si ψ, then

α(s, a)([[ϕ]]) ≥ p. Since s � t, we obtain α(t, a)([[ϕ]]) ≥ α(s, a)([[ϕ]]) ≥ p, i.e.,

t |=si ψ.

Next, we show the completeness. Let R = {(s, t) | Th(s) ⊆ Th(t)} and

it suffices to prove that R is a simulation. Obviously, R is a preorder. Let

S = {si | i ∈ I}.
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First, we claim that for any i ∈ I, a characteristic formula ϕi exists such

that [[ϕi]] = R(si). This can be proved as follows.

• If for all j ∈ I, sj ∈ R(si), then R(si) = S. Thus, we can take > as being

the characteristic formula because [[>]] = R(si).

• If some j ∈ I exists with sj 6∈ R(si), then there must be a formula

ϕij such that si |=si ϕij and sj 6|=si ϕij. Otherwise, for any formula ϕ,

si |=si ϕ implies that sj |=si ϕ, which means that Th(si) ⊆ Th(sj) and

thus (si, sj) ∈ R, and this contradicts the assumption that sj 6∈ R(si). For

each i ∈ I, define ϕi = ∧sj 6∈R(si)ϕij, and then by construction, we have

[[ϕi]] = R(si).

Now, let (s, t) ∈ R, a be any action, and define ϕa = ∧i∈I〈a〉piϕi, where

pi = α(s, a)(R(si)) for each i ∈ I. For each i ∈ I, we have s |=si 〈a〉piϕi, and

thus s |=si ϕa. By the definition of R, we have t |=si ϕa, which means that for

each i ∈ I, t |=si 〈a〉piϕi. Thus, for each i ∈ I, we have

α(t, a)(R(si)) = α(t, a)([[ϕi]]) ≥ pi = α(s, a)(R(si)).

From Theorem 3.6(1), it follows that R is a simulation. �

In the construction of the formula ϕ above, we can see that only finite

conjunctions are needed if the state space is finite. In this case, the logic Lsi
restricted to binary conjunction, i.e., the logic Ldep, is already sufficient to

characterize simulations for FLTSs. This result can be generalized to image-

finite FLTSs.

Theorem 4.12 Let S = (S,A, α) be an FfLTS, where the state space S is

countable. Then, for any two states s, t ∈ S, s � t iff Th(s) ⊆ Th(t) with

respect to the logic Ldep.

Proof. The soundness follows from Theorem 4.11. For the completeness, let

R, S = {si | i ∈ I} and {ϕij}sj 6∈R(si) is defined as given in Theorem 4.11. Now,

the index set I is enumerative because the state space S is countable. We fix an

arbitrary index k. For each i ∈ I, define Φk
i =

∧
j≤k∧sj /∈R(si)

ϕij. Intuitively, Φk
i

is satisfied by all states in R(si) but it is not satisfied by any state sj with j ≤ k

and sj /∈ R(si). However, since the maximal index of the finite conjunction is

k, then Φk
i may be satisfied by some states sj with j > k. Hence, for each i ∈ I,

R(si) ⊆ [[Φk
i ]] ⊆ R(si) ∪ {sj ∈ S | j ∈ I ∧ j > k}. (9)

Suppose that (s, t) ∈ R. It remains to show that for any a ∈ A, α(s, a)(R(si)) ≤
α(t, a)(R(si)) for each i ∈ I. Because of the first inclusion in (9), we have
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α(s, a)([[Φk
i ]]) ≥ α(s, a)(R(si)) for each i, k ∈ I, which implies that s |=si 〈a〉piΦk

i

for each i, k ∈ I, where pi = α(s, a)(R(si)). By the definition of R, we have

t |=si 〈a〉piΦk
i for each i, k ∈ I and hence α(t, a)([[Φk

i ]]) ≥ pi for each i ∈ I. By

the second inclusion in (9), for any i, k ∈ I, we have

pi ≤ α(t, a)([[Φk
i ]]) ≤ α(t, a)(R(si)) ∨ α(t, a)({sj ∈ S | j ∈ I ∧ j > k}).

It follows that

pi ≤ α(t, a)(R(si)) ∨ inf
k∈I

α(t, a)({sj ∈ S | j ∈ I ∧ j > k}).

Similar to the proof of Eq. (5) given in Theorem 4.7 we also find that infk∈I α(t, a)({sj ∈
S | j ∈ I ∧ j > k}) = 0, and hence pi ≤ α(t, a)(R(si)), i.e., for each i ∈ I,

α(s, a)(R(si)) ≤ α(t, a)(R(si)). By Theorem 3.6(1), we conclude that R is a

simulation. �

It should be noted that the completeness proofs for Theorems 4.11 and 4.12

are inspired by (although they differ from) the corresponding proofs in [23]. In

the present study, we rely greatly on Theorem 3.6(1), which holds for FLTSs but

not for PLTSs, as shown at the end of Section 3. The completeness proofs for

simulations in [23] employ finitely-generated R-closed sets, thereby necessitating

the use of disjunctions in the logical characterizations of simulations for PLTSs,

as described in [17].

5 Related Work

Fuzzy simulations and bisimulations have attracted much attention from re-

searchers in the field. Next, we briefly summarize some of the recent research

in this area.

Errico and Loreti [18] proposed a notion of fuzzy bisimulation and applied

it to fuzzy reasoning. Kupferman and Lusting [26] defined a latticed simulation

between two lattice-valued Kripke structures, which they applied to latticed

games. Pan et al. [33] studied simulation for lattice-valued doubly labeled tran-

sition systems. Cao et al. [6] defined a fuzzy bisimulation relation between two

different FLTSs by a correlational pair based on some relation. Ćirić et al. [10]

introduced two types of simulations (forward and backward) and four types of

bisimulations (forward, backward, forward-backward, and backward-forward)

for fuzzy automata. Sun et al. [42] investigated forward and backward bisimu-

lations for fuzzy automata. Deng and Qiu [13], and Xing et al. [45] addressed

the supervisory control of fuzzy discrete event systems by using simulation e-

quivalence and bisimulation equivalence, respectively. Damljanović et al. [12]
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also studied simulation and bisimulation for weighted automata in a similar

manner, as also described in [10, 11].

All of these approaches can be divided into two classes. In the first class,

simulations or bisimulations are based on a crisp relation on the state space, and

thus one state is either (bi)similar to another state or not. As with [6, 12, 18,

42, 45], the present study belongs to this class. In the second class, simulations

or bisimulations are based on a fuzzy relation (or a lattice-valued relation) on

the state space, which shows the degree to which one state is (bi)similar to

another. This approach was adapted in [10, 13, 26, 33]. In addition, in [18], a

bisimulation is necessarily an equivalence relation, which is not the case in [6]

and the present study.

There are other approaches for defining simulations and bisimulations for

FLTSs, which were inspired by relevant research into PLTSs. For example,

we can use the post-fixed points of a function [23] and lift relations by weight

functions [25, 14]. A fuzzy analogue of the lifting operation is given as follows

[8].

Let R ⊆ S × S be any relation. The lifted relation RF ⊆ F(S) × F(S)

is a relation over possibility distributions such that µRFν iff a weight function

e : S × S → [0, 1] exists with respect to R such that the following lifting

conditions hold:

• µ(s) = supt∈S e(s, t), for any s ∈ S;

• ν(t) = sups∈S e(s, t), for any t ∈ S;

• e(s, t) = 0, if (s, t) 6∈ R.

Using the lifting operation above, we can define another simulation for FLT-

Ss, as follows.

Let S = (S,A, α) be an FLTS. A relation R ⊆ S × S is a simulation if

whenever sRt, then for any transition s
a−→ µ, some transition t

a−→ ν exists with

µRFν.

If R is a preorder, then the two approaches for defining simulations, i.e., one

based on relation lifting and the other based on R-closed sets, are equivalent

for PLTSs [23], but they are different for FLTSs. In fact, for any µ, ν ∈ F(S),

µRFν implies that µ(U) ≤ ν(U) for any R-closed set U . However, the converse

does not hold in general. Next, we provide a counter-example.

Example 5.1 Let S = {s1, s2} and R = {(s1, s1), (s2, s2), (s1, s2)}. There are

only two R-closed sets: {s2} and {s1, s2}. Let µ be the possibility distribution

with µ(s1) = 0 and µ(s2) = 1
2
. Let ν be the distribution with ν(s1) = 1

3
and

ν(s2) = 2
3
. Then, we can see that for any R-closed U , µ(U) ≤ ν(U). However,

25



in this case, a weight function does not exist that satisfies the above lifting

conditions. Therefore, we have (µ, ν) 6∈ RF .

Nevertheless, if R is an equivalence relation, then the two approaches for

defining bisimulations are equivalent for FLTSs [8].

6 Conclusion and Future Work

In this study, we investigated two fuzzy variants of the Hennessy-Milner Logic

and characterized bisimulations and simulations for FLTSs soundly and com-

pletely. Compared with the logical characterizations for PLTSs, the following

are the main differences.

• Characterizing simulations. For PLTSs, disjunction is necessary and bi-

nary conjunction is already sufficient [17], whereas for FLTSs, infinite

conjunction is generally necessary but disjunction is not, i.e., the logic

Lsi. The logic with binary conjunction, Ldep, can characterize simulation

for FfLTSs.

• Characterizing bisimulations. For PLTSs, negation is not necessary and

binary conjunction is already sufficient, i.e., the logic Ldep, whereas for

FLTSs, both negation and infinite conjunction are necessary, i.e., the logic

Lbi. The logic with binary conjunction, Lls, can characterize bisimulation

for an FfLTS.

In future research, it would be interesting to consider a logical characteriza-

tion of simulation defined by relation lifting. We will probably need to adapt

the logic Lsi or impose some restrictions on the possibility distributions.

Another research direction may be to investigate logical characterizations for

nondeterministic fuzzy transition systems [7, 8]. We consider that the logic for

nondeterministic systems may need distribution semantics [35], i.e., the seman-

tic interpretation of the logic is given in terms of distributions. In [8], Cao et

al. noted that a nondeterministic fuzzy labeled system can easily be combined

into a deterministic fuzzy labeled system. However, after their combination,

the transitions in the deterministic system can differ from any transition in

the nondeterministic system. For instance, we again consider the example of

medical diagnosis from Section 2. Suppose that based on their experience, two

physicians give the following two transitions:

α(poor, u1) = 0.3
poor + 0.5

fair
+ 0.3

good

α(poor, u1) = 0.4

fair
+ 0.4

good
+ 0.2

excellent
.
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By combining the transitions and taking their supremum, we obtain the follow-

ing transition:

β(poor, u1) = 0.3
poor + 0.5

fair
+ 0.4

good
+ 0.2

excellent

which is completely different from any one of the two transitions above. From

a semantic view point, we consider that this way of reducing nondeterministic

fuzzy transition systems to deterministic ones is unsatisfactory.

At present, we are still unclear about the relationship between our (bi)simulation

and the corresponding concepts defined for fuzzy automata, so we leave this as

further research.
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