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Abstract

Bisimulation is a well-known behavioral equivalence for discrete event systems and has been developed in fuzzy systems quickly. 
In this paper, we adopt an approach of the relational lifting that is one of the most used methods in the field of bisimulation research, 
to define it for a non-deterministic fuzzy transition system. An O(|S|4| →|2) algorithm is given for testing bisimulation where |S|
is the number of states and | →| the number of transitions in the underlying transition systems. Two different modal logics are 
presented. One is two-valued and indicates whether a state satisfies a formula, which is an extension of Hennessy–Milner logic. 
The other is real-valued and shows to what extent a state satisfies a formula. They both characterize bisimilarity soundly and 
completely. Interestingly, the second characterization holds under a class of fuzzy logics. In addition, this real-valued logic allows 
us to conveniently define a logical metric that captures the similarity between states or systems. That is, the smaller distance, the 
more states alike. Although the work is inspired by the corresponding work in probabilistic systems, it is obviously different. In 
particular, the real-valued logic in this paper remains unexplored in fuzzy systems, even in probabilistic systems.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Bisimulations are established forms of behavioral equivalences for discrete event systems like process algebras, 
Petri nets or automata models and have been widely used in many areas of computer science. They are helpful to 
model-checking by reducing the number of states of systems.

Bisimulations have attracted much attention from researchers who work in the field of fuzzy systems and have been 
developed quickly [3,5–7,9,15,21,31,33]. The bisimulation of Cao et al. [5] is defined on an equivalence relation. This 
paper generalizes it to a general case. In this setting, we require that if (s, t) be a pair of states in a simulation relation 
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R, i.e., sRt , then t can mimic all the stepwise behaviors of s with respect to R. Thus, if s can perform an action and 
evolve into a distribution μ, then t can perform the same action to another distribution ν such that ν can somehow 
simulate the behavior of μ according to R. To formalize the mimicking of μ by ν, we have to lift R to the relation R†

between distributions and require μR†ν. We say that R is a bisimulation provided that R−1, the inverse of R, is also 
a simulation.

A good scientific concept is often elegant, even seen from many different perspectives. Bisimulation is one of such 
concepts in classical and probabilistic systems, as it can be characterized in a great many ways such as fixed point 
theory, modal logics, game theory, coalgebras etc. We believe that (fuzzy) bisimulation is also one of such concepts in 
fuzzy systems. For example, Cao et al. [5] used the fixed point to characterize bisimulations, while Wu and Chen [32]
characterized them by using coalgebras. We will provide in this paper two characterizations, from the perspectives of 
decision algorithms and modal logics.

The algorithm tests whether two states are bisimilar. It is realized through deciding whether they are in the greatest 
bisimulation (bisimilarity) that can be approached by a family inductively defined relations (see Definition 4.1). This 
algorithm is inspired by Baier in [1] but obviously different. Baier decided whether two (probability) distributions are 
related by some lifted relation in terms of the maximum flow algorithm, while we adopts a simple but subtle algorithm 
to do this for two (possibility) distributions (see Algorithm 1). The time complexity of the algorithm determining 
bisimulation is O(|S|4| →|2) where |S| is the number of states and | →| the number of transitions in the underlying 
transition systems.

Because of connections between modal logics and bisimulations, whenever a new bisimulation is proposed, the 
quest starts for the associated logic, such that two states or systems are bisimilar iff they satisfy the same modal log-
ical formulae. Along this line, a great amount of work has appeared that characterizes various kinds of classical (or 
probabilistic) bisimulations by appropriate logics, e.g. [8,10,13,14,17,18,22,27,29,34]. Although, bisimulations have 
been investigated extensively in fuzzy systems, there is little work about the connections between (fuzzy) bisimula-
tions and modal logics. Fan in [15] characterized (fuzzy) bisimulations for fuzzy Kripke structures in terms of Gödel 
modal logic; Wu and Deng in [31] characterized bisimilarity for (deterministic) fuzzy transition systems by using a 
fuzzy style Hennessy–Milner logic.

Another work of this paper is to characterize bisimilarity for (nondeterministic) fuzzy transition systems. We first 
give a Hennessy–Milner style modal logic. This logic is two-sorted and has state formulae and distribution formulae, 
which is different from the logic in [31] only including state formulae. It is two-valued in the sense whether a state 
satisfies a formula or not. We also provide a real-valued modal logic that shows to what extent a state satisfies a 
formula. To the best of our knowledge, this real-valued logic remains unexplored in the literature. Both these two 
logics characterize bisimilarity soundly and completely. Interestingly, the second characterization holds under a class 
of fuzzy logics. It should also be pointed out that two-valued logical characterization is motivated by the corresponding 
work in probabilistic systems. However, the proof in fuzzy case is more difficult than that in probabilistic case, see 
Theorem 5.2 and Remark 5.4 for details. Finally, with the help of the real-valued logic, we define a logical metric 
that is a more robust way of formalizing similarity between fuzzy systems than bisimulations. The smaller the logical 
distance, the more states behave similarly. In particular, the logical distance between two states is 0 iff they are exactly 
bisimilar.

The rest of this paper is structured as follows. We briefly review some basic concepts used in this paper in Section 2. 
Section 3 introduces the notions of lifting operation and bisimulation. Some properties about them are discussed. 
Moreover, an algorithm is given for determining whether two distributions are related by some lifted relation. In 
Section 4, we present an algorithm for testing bisimulation. In the subsequent section, we provide a two-valued and a 
real-valued logics, respectively. They both characterize bisimilarity soundly and completely. In Section 6, we define 
a logical metric to measure the similarity between states or systems. Finally, this paper is concluded in Section 7 with 
some future work.

2. Preliminaries

In this section, we briefly recall some notions used in this paper.
The notions about fuzzy set are mainly borrowed from [5]. Let S be a set and μ a fuzzy set in S. The support of μ

is the set supp(μ) = {s ∈ S | μ(s) > 0}. We denote by F(S) the set of all fuzzy sets in S. Whenever supp(μ) is a finite 
set, say {s1, s2, · · · , sn}, then a fuzzy set μ can be written in Zadeh’s notation as follows:
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μ = μ(s1)

s1
+ μ(s2)

s2
+ · · · + μ(sn)

sn
.

With a slight abuse of notations, we sometimes write a possibility distribution to mean a fuzzy set.1 For any μ ∈F(S)

and U ⊆ S, the notation μ(U) stands for sups∈U μ(s). In particular, μ(∅) = 0.
Given a binary relation R ⊆ S × S, we sometimes write sRt if (s, t) ∈ R. An equivalence relation R partitions a 

set S into equivalence classes. For s ∈ S we write [s]R to mean the unique equivalence class containing s. We drop 
the subscript R if the relation considered is clear from the context. For convenience, we let 

−→
Rs and 

←−
Rs denote the sets 

{s′ | sRs′} and {s′ | s′Rs}, respectively. A set U is said to be R-closed if 
−→
Rs ⊆ U for all s ∈ U .

The following lemma will be useful for the proof of Theorem 5.2 latter.

Lemma 2.1. [31] Let μ, ν ∈F(S) and R be an equivalence relation. If μ([s]) = ν([s]) for all R-equivalence classes 
[s], then μ(U) = ν(U) for any R-closed set U .

3. Lifting and bisimulation

This section, consisting of two subsections, is devoted to the notions and some properties about relational lifting 
and bisimulation.

3.1. Relational lifting

In order to compare the behavior of two states, we often need to invoke relations between two distributions by 
lifting relations between states. Next, we will consider a typical lifting operation by using weight functions. It is 
originally given in [19] to compare probability distributions. A fuzzy analogue [5] is as follows.

Definition 3.1. Let R ⊆ S × S be a relation. The lifted relation R† ⊆ F(S) × F(S) is a relation over possibility 
distributions such that μR†ν iff a weight function e : S ×S → [0, 1] exists with respect to R and satisfies the following 
lifting conditions:

(E1) μ(s) = supt∈S e(s, t), for any s ∈ S;
(E2) ν(t) = sups∈S e(s, t), for any t ∈ S;
(E3) e(s, t) = 0, if (s, t) /∈ R.

We sometimes write e(s, U) (resp. e(U, t)) for supt∈U e(s, t) (resp. sups∈U e(s, t)) for any s ∈ S and U ⊆ S. In 
particular, e(s, ∅) = 0 and e(∅, s) = 0 for any s ∈ S.

The following theorem gives a sufficient and necessary condition to determine whether two distributions are related 
by some lifted relation.

Theorem 3.2. Let S be a set, R ⊆ S × S and μ, ν ∈F(S). Then μR†ν iff for any s ∈ S,

μ(s) ≤ ν(
−→
Rs) and ν(s) ≤ μ(

←−
Rs).

Proof. “=⇒” Suppose μR†ν. We first prove that μ(s) ≤ ν(
−→
Rs). Since μR†ν holds, a weight function e exists and 

satisfies E1, E2 and E3. Two cases need to be considered.
Case 1. If 

−→
Rs = ∅, then ν(

−→
Rs) = 0 and μ(s) = e(s, 

−→
Rs) = e(s, ∅) = 0.

Case 2. If 
−→
Rs �= ∅, then

1 Strictly speaking a possibility distribution is different from a fuzzy set, though the former can be viewed as the generalized characteristic 
function of the latter. See [36] for more detailed discussion.
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ν(
−→
Rs) = sup

t∈−→
Rs

ν(t)

= sup
t∈−→

Rs
sups′∈S e(s′, t)

= sups′∈S sup
t∈−→

Rs
e(s′, t)

= sups′∈S e(s′,−→Rs)

≥ e(s,
−→
Rs) (since s ∈ S)

= e(s, S)

= μ(s).

Hence, μ(s) ≤ ν(
−→
Rs) holds. In a similar way, we can prove that ν(s) ≤ μ(

←−
Rs).

“⇐=” Suppose that μ(s) ≤ ν(
−→
Rs) and ν(s) ≤ μ(

←−
Rs).

Let

W(s, t) =
{

min(μ(s), ν(t)) if (s, t) ∈ R

0, otherwise.

It suffices to verify that W satisfies E1 and E2. For any s ∈ S,

supt∈S W(s, t) = sup
t∈−→

Rs
W(s, t)

= sup
t∈−→

Rs
μ(s) ∧ ν(t)

= μ(s) ∧ sup
t∈−→

Rs
ν(t)

= μ(s) ∧ ν(
−→
Rs)

= μ(s).

In a similar way, we can obtain that sups∈S W(s, t) = ν(t). This completes the proof. �
This theorem shows that without help from weight functions, we can still determine whether μR†ν only depending 

on μ, ν and R themselves.
Based on Theorem 3.2, we give an algorithm to check if two distributions are in some lifted relation.

Algorithm 1 Given a finite set S, R ⊆ S × S, μ, and ν, determine whether μR†ν.

1: function R†(S, R, μ, ν)
2: Initialize arrays A and B to be zero.
3: for all s ∈ S do
4: if μ(s) ≤ ν(

−→
Rs) then

5: A[s] = 1

6: if ν(s) ≤ μ(
←−
Rs) then

7: B[s] = 1

8: if (mins∈S(A[s] ∧ B[s]) == 0) then
9: return FALSE

10: return TRUE

Clearly, Step 3–7 is O(|S|2) and Step 8 is O(|S|). Hence, the Algorithm 1 is in O(|S|2).
In the probabilistic setting, determine whether two (probability) distributions are related by some lifted relation 

adopts the maximum flow algorithm [1], while ours is completely different.
The operation R† enjoys some interesting properties that are helpful for understanding Proposition 3.6 latter.

Lemma 3.3. The operation R† has the following properties.

1. It preserves the equality relation:

(Eq(S))† = Eq(F(S))

where Eq(S) = {(s, s) | s ∈ S}.
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2. It is monotone:

R1 ⊆ R2 =⇒ R
†
1 ⊆ R

†
2 .

3. It preserves relation composition:

(R1 ◦ R2)
† = R

†
1 ◦ R

†
2

where R1 ◦ R2 = {(s, t) | ∃s′ ∈ S. sR1s
′ ∧ s′R2t}.

4. It commutes with inverse of relation:

(R−1)† = (R†)−1.

5. It preserves reflexivity, symmetry and transitivity, and thus, if R is an equivalence relation, then so is R†.

Proof. As an example, we choose to prove 3. It suffices to prove that two sets (R1 ◦ R2)
† and R†

1 ◦ R
†
2 contain each 

other.
(1)

(R1 ◦ R2)
† ⊆ R

†
1 ◦ R

†
2 .

Let R1, R2 ⊆ S × S and (μ, η) ∈ (R1 ◦ R2)
†. Then, Theorem 3.2 implies that for any s ∈ S,

μ(s) ≤ η(
−−−−−−→
(R1 ◦ R2)s) and η(s) ≤ μ(

←−−−−−−
(R1 ◦ R2)s). (�)

For any t ∈ S, define:

ν(t) = sup{μ(s) ∧ η(s′) | s ∈ ←−−
(R1)t ∧ s′ ∈ −−→

(R2)t }.
Note that, if 

←−−
(R1)t = ∅ or 

−−→
(R2)t = ∅, then ν(t) = 0.

Now, we prove that (ν, η) ∈ R
†
2 . Again by Theorem 3.2, it suffices to verify that for any t ∈ S,

ν(t) ≤ η(
−−→
(R2)t ) and η(t) ≤ ν(

←−−
(R2)t ).

On one hand,

ν(t) = sup{μ(s) ∧ η(s′) | s ∈ ←−−
(R1)t ∧ s′ ∈ −−→

(R2)t }
≤ sup

s′∈−−−→
(R2)t

η(s′)
= η(

−−→
(R2)t ).

On the other hand,

ν(
←−−
(R2)t ) = sup

s∈←−−−
(R2)t

ν(s)

= sup
s∈←−−−

(R2)t
sup{μ(s1) ∧ η(s2) | s1 ∈ ←−−−

(R1)s ∧ s2 ∈ −−−→
(R2)s}

≥ sup
s∈←−−−

(R2)t
sup

s1∈←−−−−
(R1)s

μ(s1) ∧ η(t) (since t ∈ −−−→
(R2)s if s ∈ ←−−

(R2)t )

= η(t) ∧ sup{μ(s1) | s ∈ ←−−
(R2)t ∧ s1 ∈ ←−−−

(R1)s}
= η(t) ∧ sup

s1∈←−−−−−−−
(R1◦R2)t

μ(s1)

= η(t) ∧ μ(
←−−−−−−
(R1 ◦ R2)t )

= η(t) (by (�)).

Hence, (ν, η) ∈ R
†
2 . In a similar way, we can also prove that (μ, ν) ∈ R

†
1 . It follows that (μ, η) ∈ R

†
1 ◦ R

†
2 and then 

(R1 ◦ R2)
† ⊆ R

†
1 ◦ R

†
2 as desired.

(2)

R
†
1 ◦ R

†
2 ⊆ (R1 ◦ R2)

†.

We directly use Definition 3.1 to prove it. Suppose that (μ, η) ∈ R
†
1 ◦R

†
2 . Then there exists a ν such that (μ, ν) ∈ R

†
1

and (ν, η) ∈ R
†. Further, two weight functions e1 and e2 exist and both satisfy E1, E2 and E3.
2
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Let

e(s, t) = sup
s′∈S

e1(s, s
′) ∧ e2(s

′, t).

It remains to verify that e satisfies E1, E2 and E3.
First, if e(s, t) > 0, then by the definition of e, ∃s′ ∈ S such that e1(s, s′) > 0 and e2(s

′, t) > 0. It follows from e1
and e2 satisfying E3 that (s, s′) ∈ R1 and (s′, t) ∈ R2, implying (s, t) ∈ R1 ◦ R2. That is, e satisfies E3.

Second,

e(s, S) = supt∈S e(s, t)

= supt∈S sups′∈S e1(s, s
′) ∧ e2(s

′, t)
= sups′∈S supt∈S e1(s, s

′) ∧ e2(s
′, t)

= sups′∈S[e1(s, s
′) ∧ supt∈S e2(s

′, t)]
= sups′∈S e1(s, s

′) ∧ ν(s′) (since e2 satisfies E1)
= sups′∈S e1(s, s

′)
= μ(s) (since e1 satisfies E1).

The second step from the bottom holds since e1 satisfies E2 and then ν(s′) ≥ e1(s, s′) for any s ∈ S. In a similar 
way, we can also get that e(S, t) = η(t). In summary, e satisfies E1, E2 and E3 and hence (μ, η) ∈ (R1 ◦ R2)

†. So, 
R

†
1 ◦ R

†
2 ⊆ (R1 ◦ R2)

† holds. This completes the proof. �
3.2. Bisimulation

In this subsection, we introduce bisimulation. First, we recall the notion of the nondeterministic fuzzy transition 
system (NFTS, for short).

Definition 3.4. [5] An NFTS is a triple M = (S, A, →), where S is a set of states, A is a set of actions, and →⊆
S × A ×F(S) is the transition relation.

From each state s, more than one possibility distribution may be reached by performing action a, while in an
FTS (deterministic fuzzy transition system), at most one possibility distribution may be reached. We sometimes write 
s

a−→ μ for (s, a, μ) ∈→. For each a ∈ A and s ∈ S, we let Ta(s) = {μ ∈ F(S) | s
a−→ μ}. An NFTS is image-finite if 

for each a ∈ A and s ∈ S, the set Ta(s) is finite and for any μ ∈ Ta(s), the supp(μ) is also finite; an NFTS is finitely 
branching if for each s ∈ S, the set {(a, μ) | s a−→ μ, a ∈ A, μ ∈F(S)} is finite, further, this NFTS is finitary if the set 
S is also finite.

In the following, we motivate our work from two aspects: differences between an FTS and an NFTS, and some 
limitations of fuzzy language equivalence.

To better understand them, we consider an example related to medical diagnosis and treatment, as described by Cao 
et al. [5], Qiu [28] and Xing et al. [33]. We assume that there is an unknown bacterial infection. Based on his experi-
ence, a physician believes that two drugs, say a1 and a2, may be useful for treating this disease. Three possible negative 
symptoms, e.g., b1, b2, b3, must also be considered. A patient’s condition can be in one of four rough types, e.g., 
“poor”, “fair”, “good”, and “excellent”, which are denoted by the capital letters P , F , G and E, respectively. A treat-
ment (or a negative symptom) may lead to a state among multiple possible states with certain degree. For example, 

the transition F
a1[0.6]−−−−→ E means that the patient’s condition has changed from “fair” to “excellent” with possibility 

0.6 after using drug a1, whereas F
b1[0.3]−−−−→ P means that the patient’s condition has changed from “fair” to “poor” 

with possibility 0.3 if the patient has negative symptom b1. The transition possibilities of these events are estimated 
by the physician. Different physical conditions of patients may lead to nondeterministic changes even if the patients 
are in the same state and are given the same treatment. For example, we may have the following two transitions:

P
a1−→ {0.2

P
+ 0.7

F
} and P

a1−→ {0.3

F
+ 0.6

G
+ 0.2

E
}.

In this manner, we obtain an NFTS (S, A, →), where S = {P, F, G, E}, A = {a1, a2, b1, b2, b3} and →⊆ S ×A ×
F(S).
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A patient’s initial condition may be “poor” and it will become “fair,” “good,” or even “excellent” after a specific 
treatment. When a patient’s health becomes “fair,” we naturally hope that this will improve to become “excellent” 
instead of deteriorating. Analogously, if the patient’s condition is “excellent,” it is desirable to maintain good health 
and thus a supervisor is necessary to disable events b1, b2 and b3 if they are controllable. A general approach for deter-
mining whether supervisory control exists for fuzzy discrete event systems is in terms of fuzzy language equivalence. 
However, this is not satisfactory because some strings (negative symptoms) are not accepted if they are controllable. 
Xing et al. [33] proposed the use of fuzzy bisimulation equivalence to solve this problem, while Deng and Qiu [11]
also noted some limitations of fuzzy language equivalence. They addressed this problem using fuzzy simulation 
equivalence whose expressiveness is stronger than that of fuzzy language equivalence.

Cao et al. [5] studied the behavioral distance for NFTSs. It is a more robust way of formalizing behavioral similarity 
than bisimulations, which can be applied to quantitative verification of systems. Cao and Ezawa [4] pointed out that de-
terministic fuzzy automata and nondeterministic fuzzy automata that extend FTSs and NFTSs with an initial state and 
a fuzzy set over final states, respectively, accept the same class of fuzzy languages. That is, for any nondeterministic 
fuzzy automata M, there exists a deterministic fuzzy automata M′ such that they are (weakly) language-equivalent. 
Recently, Pan et al. [26] investigated strong language equivalence. They pointed out that strong language equivalence 
is strictly finer than weak language equivalence and the expressive power of nondeterministic fuzzy automata is more 
powerful than that of deterministic fuzzy automata with respect to strong language equivalence. Please see [4,26] for 
more details.

In addition, Cao and Ezawa noted that an NFTS can easily be combined into an FTS. However, after their com-
bination, the transitions in the deterministic system can differ from any transition in the nondeterministic system. For 
instance, by combining the transitions above and taking their supremum, we obtain the following transition:

P
a1−→ {0.2

P
+ 0.7

F
+ 0.6

G
+ 0.2

E
},

which is completely different from any one of the two transitions above. From a semantic view point, we consider that 
this way of reducing NFTSs to FTSs is unsatisfactory. Moreover, the expressive power of the logics characterizing 
bisimilarity, respectively, for FTSs and NFTSs, are also different (see Section 5), which in turn shows the difference 
between these two systems.

Based on these reasons, we consider bisimulations for NFTSs. Main contributions include algorithmic and logical 
characterizations that are useful for model checking. We are now ready to introduce the notion of bisimulation.

Definition 3.5. A relation R ⊆ S × S is a simulation if whenever sRt , then for any transition s
a−→ μ, there exists a 

transition t
a−→ ν such that μR†ν. If both R and R−1 are simulations, then R is abisimulation. Two states s, t ∈ S are 

bisimilar, denoted as s ∼ t , if there is a bisimulation R with sRt .

If R is an equivalence relation, then Definition 3.5 coincides with Definition 9 of Cao et al. [5]. That is, an equiv-
alence relation R ⊆ S × S is a bisimulation if whenever sRt , then for any transition s

a−→ μ, there exists a transition 
t

a−→ ν such that μ([s′]) = ν([s′]) for all R-equivalence classes [s′].
Bisimulation is preserved by the equality, inverse, union and the composition of relations, which are summarized 

in the following proposition.

Proposition 3.6. The following statements hold.

1. Eq(S) is a bisimulation;
2. If R is a bisimulation, then so is R−1;
3. If Ri is a bisimulations (i ∈ I ), then so is 

⋃
i∈I Ri ;

4. If Ri is a bisimulation (i = 1, 2), then so is R1 ◦ R2.

Proof. The proofs are not hard by Lemma 3.3 and hence are omitted. �
Proposition 3.6 (3) implies that ∼ is the greatest bisimulation because it is the union of all bisimulations, called 

bisimilarity. Moreover, it is an equivalence relation by Proposition 3.6 (1, 2, 4). Hence, if s ∼ t , then for any transition 
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s
a−→ μ, there exists a transition t

a−→ ν such that μ([s′]) = ν([s′]) for all ∼-equivalence classes [s′]. This fact will be 
used in the proof of Theorem 5.2.

The following lemma will be useful for analyzing Example 5.1 latter.

Lemma 3.7. Let μ, ν be two distributions over S and R a symmetric relation. If μR†ν then μ(U) = ν(U) for any 
R-closed set U .

Proof. Suppose that μR†ν. Then a weight function e exists and satisfies E1, E2 and E3. For any R-closed set U , we 
have

μ(U) = sups∈U μ(s)

= sups∈U supt∈S e(s, t)

= sup{(s, t)∈R|s∈U} e(s, t)
= sup{(s, t)∈R|t∈U} e(s, t)
= supt∈U sups∈S e(s, t)

= supt∈U ν(t)

= ν(U)

The fourth equality above needs a bit explanation. On one hand, if s ∈ U and (s, t) ∈ R then t ∈ U because U is 
R-closed. On the other hand, by the symmetry of R we see from (s, t) ∈ R that (t, s) ∈ R. Then if t ∈ U we obtain 
s ∈ U because U is R-closed. As a result, we have that {(s, t) ∈ R | s ∈ U} = {(s, t) ∈ R | t ∈ U}. �

The converse of this lemma does not hold, which is witnessed by the following example.

Example 3.8. Let S = {s1, s2} and R = {(s1, s2), (s2, s1)}. Consider the following two distributions:

μ = 0.2

s1
+ 0.3

s2
, ν = 0.1

s1
+ 0.3

s2
.

The only non-empty R-closed set is S and μ(S) = ν(S) = 0.3. However, Theorem 3.2 implies that (μ, ν) /∈ R†

because 
−→
Rs2 = {s1} and μ(s2) > ν(

−→
Rs2).

The bisimulation for an FTS given by Wu and Deng in [31] can be generalized to an NFTS. That is, a relation 
R ⊆ S × S is a bisimulation if whenever sRt , then for any transition s

a−→ μ, there exists a transition t
a−→ ν such that 

μ(U) = ν(U) for any R-closed set U . Lemma 3.7 and Example 3.8 show that the bisimulation in Definition 3.5 is 
finer than this under the symmetric assumption. But, when restricted to an equivalence relation, these two notions are 
equivalent.

4. Algorithmic characterization

In this section, we present an algorithm for checking if two states s and t are bisimilar in a finitary NFTS. The 
most direct method to do it is to judge whether the pair (s, t) is in the bisimilarity. For this purpose, we need a little 
preparation.

As in the classical setting, (fuzzy) bisimilarity can be approached by a family inductively defined relations in a 
finitary NFTS.

Definition 4.1. Let (S, A, →) be an NFTS. We define:

• R0 := S × S;
• sRn+1t , for n ≥ 0, if

1. whenever s
a−→ μ, then a transition t

a−→ ν exists such that μR
†
nν;

2. whenever t
a−→ ν, then a transition s

a−→ μ exists such that νR
†
nμ.
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Lemma 4.2. Let (S, A, →) be an NFTS. Then
(1) Rn is symmetric for all n ≥ 0;
(2) Rn ⊇ Rn+1 for all n ≥ 0;
(3) If M = (S, A, →) is finitely branching, then ∼= ⋂

n≥0 Rn.

Proof. (1) is straightforward. Making use of Lemma 3.3 (2), we can prove (2) by induction, we omit it. (3) can be 
similar to prove by Proposition 4.4 in [13], we also omit it. �

Now, we present an algorithm for testing bisimulation.

Algorithm 2 Given a finitary transition system (S, A, →) and s0, t0 ∈ S, determine whether s0 ∼ t0.
1: function BIS(s0, t0)
2: Let R0 = S × S, j = 0.
3: repeat
4: j := j + 1
5: Rj := Rj−1
6: for all (s, t) ∈ Rj−1 do

7: for all s
a−→ μ do

8: if there does not exist t a−→ ν such that μR
†
j−1ν then

9: Rj := Rj \{(s, t), (t, s)}
10: until Rj = Rj−1
11: if (s0, t0) /∈ Rj then
12: return FALSE
13: return TRUE

Proposition 4.3. The Algorithm 2 correctly determine whether s0 and t0 are bisimilar and is in O(|S|4| →|2).

Proof. Definition 4.1 and Lemma 4.2 show that in a finitary transition system, if we can find a j such that Rj = Rj−1, 
then ∼= Rj . Hence, the algorithm correctly answers whether s0 and t0 are bisimilar when it terminates.

As complexity, Step 5–9 equal to determine for all rules like s
a−→ μ, whether there exists a rule t

b−→ ν satisfying 
(s, t) ∈ Rj−1, a = b and μR

†
j−1ν. Since checking whether μR

†
j−1ν can be done by Algorithm 1 in O(|S|2), Step 

5–9 take O(|S|2| →|2). In order to find a j such that Rj = Rj−1, the algorithm loops at most |S|2−|S|
2 times. This is 

because that (si, si) (i = 1, 2, · · · , |S|) cannot be deleted from any Rj , as si ∼ si . On the other hand, if (si, sj ) (i �= j ) 
is deleted from some Rm, then (sj , si) is also deleted from this Rm because Rm is symmetric. That is, if Rj �= Rj−1, 
then |Rj | ≤ |Rj−1| − 2. Hence, the time complexity of this algorithm is O(|S|4| →|2). �
5. Logical characterizations

In this section, we embark upon the relationship between bisimilarity and logics. More concretely, we will show 
that two states are bisimilar iff they satisfy the same logical formulae or they have the same values on logical formulae.

5.1. Two-valued logic

In [31], Wu and Deng gave the logic Lbi as follows:

ϕ ::= � | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉pϕ,

where a ∈ A and p ∈ [0, 1]. This is the basic logic that we employ to establish the logical characterization of bisimi-
larity for an FTS. But, as we see in the next example that is adapted from Example 5.1 [10], it is not enough for the 
more general setting of NFTSs. Here, in an NFTS, the formulae in the logic Lbi are interpreted as usual. For example, 
s |= 〈a〉pϕ means that there exists a transition s

a−→ μ such that μ([ [ϕ] ]) ≥ p.
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Fig. 1. s and t are not bisimilar but cannot be distinguished by Lbi .

μ0 μ1 μ2 ν0 ν1 ν2

{s1} 0.2 0.6 0 0.6 0.2 0
{s2} 0 0.2 0.6 0 0.6 0.2
{s3} 0.6 0 0.2 0.2 0 0.6

Example 5.1. Consider the NFTS shown in the Fig. 1 where μ0, μ1, μ2 and ν0, ν1, ν2 are given in the diagram above. 
States s and t are not bisimilar. Suppose for a contradiction that they are bisimilar. Then a bisimulation R exists such 
that (s, t) ∈ R. Let R′ = R ∪ R−1. Then R′ is a symmetric relation and Proposition 3.6 (2, 3) implies that it is also a 
bisimulation. It follows from Lemma 3.7 that for a given μ ∈ Ta(s), a ν ∈ Ta(t) exists such that μ(U) = ν(U) for all 
R′-closed sets U . However, this does not hold since the only relevant possible R′-closed subsets U ∈ {{s1}, {s2}, {s3}}. 
Hence s and t are not bisimilar. The logic Lbi having a modality that can only describe one behavior after a label 
will not be able to distinguish between s and t . For example, for any p ∈ [0, 1] and any formula ϕ ∈ Lbi , either s and 
t both satisfy 〈a〉pϕ, or both not satisfy 〈a〉pϕ. Moreover, the negation, conjunction do not add any distinguishing 
power.

Hence the logic Lbi cannot characterize bisimilarity for NFTSs (after the proof of Theorem 5.2, we continue 
explaining the reason). We need a new logic that originates from Jonsson et al. [20]. This logic is two-sorted and has 
two kinds of formulae: one that is interpreted on states and another that is interpreted on possibility distributions.

Let A be a set of actions ranged over a, b, · · · , and let � be a propositional constant. The language L of formulae 
is given by the following BNF grammar:

ϕ ::= � | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉ψ
ψ ::= ψ1 ∧ ψ2 | ¬ψ | [ϕ]p

where a ∈ A and p ∈ [0, 1]. We call ϕ a state formula and ψ a distributive formula.
Fix an NFTS (S, A, →), the satisfaction relation is defined by

• s |=L �, for any s ∈ S;
• s |=L ϕ1 ∧ ϕ2 iff s |= ϕi for i = 1, 2;
• s |=L ¬ϕ iff s �|=L ϕ;
• s |=L 〈a〉ψ iff a transition s

a−→ μ exists such that μ |=L ψ ;
• μ |=L ψ1 ∧ ψ2 iff μ |=L ψi for i = 1, 2;
• μ |=L ¬ψ iff μ �|=L ψ ;
• μ |=L [ϕ]p iff μ({s | s |=L ϕ}) ≥ p.

Our logic L differs from the logic [20] in two aspects: one is that distribution formulae [20] include �, the other is 
that distribution formulae [20] are interpreted over probability distributions.

Let [ [ϕ] ]L = {s | s |=L ϕ}, and let T hL(s) = {ϕ ∈ L | s |= ϕ} be the set of state formulae that are satisfied by s, i.e., 
the theory of s.

In the rest of this subsection, we prove the logical characterization theorem, which says that two states are bisimilar 
iff they are logically indistinguishable.

Theorem 5.2. Let the set S be countably infinite and the NFTS (S, A, →) be image-finite. Then for any two states 
s, t ∈ S, s ∼ t iff T hL(s) = T hL(t).
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Proof. (=⇒) Let s, t ∈ S be any two states and s ∼ t . We show that s |=L ϕ ⇔ t |=L ϕ. Since ∼ is an equivalence 
relation and hence is symmetric, we only need to prove s |=L ϕ ⇒ t |=L ϕ. We proceed it by structural induction on 
ϕ ∈ L. The cases of �, conjunction and negation are trivial. Now consider the case ϕ ≡ 〈a〉ψ . Let s |=L 〈a〉ψ . There 
are three possibilities:

• If ψ ≡ ψ1 ∧ ψ2, then s |=L 〈a〉(ψ1 ∧ ψ2). So, a transition s
a−→ μ exists such that μ |=L ψ1 ∧ ψ2, i.e., μ |=L ψi

for i = 1, 2. Further since s ∼ t , a transition t
a−→ ν exists such that μ(∼)†ν. By induction, we have ν |=L ψi for 

i = 1, 2, and then ν |=L ψ1 ∧ ψ2. It follows that t |=L 〈a〉(ψ1 ∧ ψ2).
• If ψ ≡ ¬ψ1, the analysis is trivial.
• If ψ ≡ [φ]p , then s |=L 〈a〉[φ]p . So, a transition s

a−→ μ exists such that μ |=L [φ]p . That is, μ([ [φ] ]L) ≥ p. 

Since s ∼ t , a transition t
a−→ ν exists such that μ(∼)†ν. By induction, [ [φ] ]L is ∼-closed, Lemma 2.1 implies that 

ν([ [φ] ]L) = μ([ [φ] ]L) ≥ p, i.e., ν |=L [φ]p . Hence t |=L 〈a〉[φ]p .

(⇐=) Define R = {(s, t) | T hL(s) = T hL(t)}. Then R is obvious an equivalence relation. It suffices to prove that 
R is a bisimulation.

Let G = {[si] | i ∈ I } be the set of all equivalence classes of R. Note that G is countable because of our restriction 
to countable state space S. For all i, j ∈ I , if sj /∈ [si], that is, j �= i, then T hL(si) �= T hL(sj ), thus since L is closed 
under negation, a formula ϕij exists such that si |=L ϕij but sj �|=L ϕij . We fix an arbitrary index k. For each i ∈ I , 
define �k

i = ∧
j≤k ϕij . It is then easy to see that for each i ∈ I , the formula �k

i only has finite conjunctions, and

[si] ⊆ [[�k
i ]]L ⊆ [si] ∪

⋃
m∈I∧m>k

[sm]. (1)

For any i ∈ I and any μ ∈F(S) with finite support, it is easy to get that

μ([si]) = inf
k∈I

μ([[�k
i ]]L). (2)

Now let (s, t) ∈ R, and s
a−→ μ. It remains to show that there exists a transition t

a−→ ν such that μ([si]) =
ν([si]) (i ∈ I ).

Define

�k =
∧

i∈I∧i≤k

[�k
i ]pi

where pi = μ([si]). Obviously, �k only has finite conjunctions for arbitrary k. The left part in Equation (1) shows 
that μ([ [�k

i ] ]L) ≥ pi = μ([si]) for all i ≤ k, implying μ |=L �k . Since k is arbitrary, μ |=L �k for all k ∈ I .

On the other hand, fix an ε > 0, by the Equation (2), ∀i ∈ I , ∃li, ε ∈ I and a formula �li, ε

i such that

μ([[�li, ε

i ]]L) < μ([si]) + ε.

Now, let us fix a k and let l = maxi≤k li, ε . Then by the construction of �k
i , we have that [ [�l

i] ]L ⊆ [ [�li, ε

i ] ]L for any 
i ≤ k. It follows that for any i ≤ k,

μ([[�l
i]]L) ≤ μ([[�li, ε

i ]]L) < μ([si]) + ε = pi + ε.

Define


k =
∧

i∈I∧i≤k

¬[�l
i]pi+ε .

Then 
k only has finite conjunctions and μ |=L 
k . Since k can be arbitrary, μ |=L 
k for all k ∈ I .
Hence s |=L 〈a〉(�k ∧ 
k) for all k ∈ I . By the definition of R, t |=L 〈a〉(�k ∧ 
k) for all k ∈ I . From state t

there are only finitely many outgoing transitions labeled by a since we are considering an image-finite NFTS, thus the 
Pigeonhole principle applies and a νε exists such that t

a−→ νε and νε |=L �k ∧ 
k for infinitely many indices k ∈ Z

with Z ⊆ I . That is, νε |=L �k and νε |=L 
k for infinitely many indices k ∈ Z with Z ⊆ I .
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First, νε |=L �k implies that for k ∈ Z and i ≤ k,

pi ≤ νε([[�k
i ]]L) ≤ νε([si]) ∨ νε(

⋃
m∈I∧m>k

[sm]).

Hence,

pi ≤ inf
k∈Zνε([[�k

i ]]L) ≤ νε([si]) ∨ inf
k∈Zνε(

⋃
m∈I∧m>k

[sm]).

It then follows from (2) that pi ≤ νε([si]) for each i ≤ k. Further, Z is infinite implies that for each i ∈ I ,

μ([si]) ≤ νε([si]). (3)

Second, νε |=L 
k implies that for k ∈ Z and i ≤ k,

νε([[�l
i]]L) < pi + ε = μ([si]) + ε.

Again by the left part of the Equation (1) and Z being infinite, we have that for each i ∈ I ,

νε([si]) < μ([si]) + ε. (4)

Combining (3) and (4), we have that, for each i ∈ I ,

μ([si]) ≤ νε([si]) < μ([si]) + ε. (5)

In summary, we have shown that, for any given ε, a νε exists such that the inequalities in (5) holds. Thanks to 
image-finiteness, the Pigeonhole principle applies again and a transition t

a−→ ν exists such that, for infinitely many ε,

μ([si]) ≤ ν([si]) < μ([si]) + ε. (6)

Since ε can be arbitrarily small, we have that μ([si]) = ν([si]) for each i ∈ I , as desired. �
The benefit of logical characterization is to help us find a witness formula when two states are not bisimilar.

Example 5.3. Consider the Fig. 1. Let ϕ = 〈a〉([〈b〉[�]1]0.2 ∧ [〈d〉[�]1]0.6). Then it can be verified that s |=L ϕ but 
t �|=L ϕ. Hence s and t are not bisimilar.

Remark 5.4. (1) The proof of Theorem 5.2 is inspired by that of Theorem 6.3 [18]. However, it is more dif-
ficult because we can directly obtain μ([si]) = ν([si]) from μ([si]) ≤ ν([si]) (the left part in Equation (6)) in 
[18]. The reason is as follows. Suppose that there exists an i0 ∈ I such that μ([si0]) < ν([si0 ]), then we have that ∑

i∈I μ([si]) < ∑
i∈I ν([si]), which gives rise to a contradiction, as in this case, μ and ν are probability distributions 

and then 
∑

i∈I μ([si]) = ∑
i∈I ν([si]) = 1.

(2) Now, we continue explaining why the logic Lbi cannot characterize bisimilarity for NFTSs. The reason is that 
the logic Lbi is not enough to deal with the formula 〈a〉(�k ∧ 
k) that plays a key role in proving Theorem 5.2. In 
order to obtain the expected result of Theorem 5.2, we need to decompose the formula 〈a〉pϕ in the logic Lbi into two 
formulae, one is 〈a〉ψ that is interpreted over states, the other is [ϕ]p that is interpreted over distributions. In addition, 
we can only depend on state formulae to characterize bisimilarity for NFTSs, if the formula 〈a〉pϕ is changed into 

the formula 〈a〉[(pi, qi), (φi, ϕi)]ni=1. The s |= 〈a〉[(pi, qi), (φi, ϕi)]ni=1 means that a transition s
a−→ μ exists such that 

μ([ [φi] ]) ≥ pi and μ([ [ϕi] ]) < qi for all 1 ≤ i ≤ n. Under this interpretation, we can also obtain the Equation (6) and 
then finish the proof of Theorem 5.2. The similar idea can be found in [10].

5.2. Real-valued logic

In this subsection, we focus on a real-valued logic that is also suited to characterize bisimilarity.
This part needs the implication operators satisfying the following condition: for any a, b ∈ [0, 1],

a ⇒ b = 1 iff a ≤ b. (7)

The following four implication operators satisfy this condition.
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• Łukasiewicz implication: a ⇒ b = min(1 − a + b, 1);
• Gödel implication: a ⇒ b = 1 if a ≤ b, and b otherwise;
• Goguen implication: a ⇒ b = 1 if a = 0, and min( b

a
, 1) otherwise;

• Fodor implication [16] (also called R0 implication [30]): a ⇒ b = 1 if a ≤ b, and max(1 − a, b) otherwise.

The real-valued logic has the following formulae:

ϕ ::= � | ϕ1 ∧ ϕ2 | ϕ → p | p → ϕ | ϕ � p | 〈a〉ψ
ψ ::= ψ1 ∧ ψ2 | ψ → p | p → ψ | ϕ†

where a ∈ A and p ∈ [0, 1]. We write ϕ ↔ p for (ϕ → p) ∧ (p → ϕ). The ϕ ranges over the set of all state formulae 
Ls , and the ψ ranges over the set of all distribution formulae Ld .

Let us fix an NFTS (S, A, →) and interpret the formulae above.

Definition 5.5. A state formula ϕ ∈ Ls evaluates in s ∈ S as follows:

• [ [�] ](s) = 1,
• [ [ϕ1 ∧ ϕ2] ](s) = min([ [ϕ1] ](s), [ [ϕ2] ](s)),
• [ [ϕ → p] ](s) = [ [ϕ] ](s) ⇒ p,
• [ [p → ϕ] ](s) = p ⇒ [ [ϕ] ](s),
• [ [ϕ � p] ](s) = max([ [ϕ] ](s) − p, 0),
• [ [〈a〉ψ] ](s) = max

s
a−→μ

[ [ψ] ](μ),

and a distribution formula ψ ∈ Ld evaluates in μ ∈F(S) as follows:

• [ [ψ1 ∧ ψ2] ](μ) = min([ [ψ1] ](μ), [ [ψ2] ](μ)),
• [ [ψ → p] ](μ) = [ [ψ] ](μ) ⇒ p,
• [ [p → ψ] ](μ) = p ⇒ [ [ψ] ](μ),
• [ [ϕ†] ](μ) = sups∈S μ(s) ∧ [ [ϕ] ](s).

Here conjunction and implication are interpreted as usual. The formula ϕ � p returns the difference [ [ϕ] ](s) − p if 
[ [ϕ] ](s) ≥ p, and 0 otherwise for any s ∈ S. The formula 〈a〉ψ specifies the property for a state to perform action a
and result in a possible distribution to satisfy ψ . Because of nondeterminism, from s there may be several transitions 
labeled by the same action a, e.g. s

a−→ μi with i ∈ I . We take the optimal case by letting [ [〈a〉ψ] ](s) be the maximal 
[ [ψ] ](μi) when i ranges over I . Each state formulae ϕ immediately induces a distribution formula ϕ†.

Main differences between our real-valued logic and those for probabilistic systems (see for example, [2,12]) are 
that our real-valued logic includes implication formulae and it can characterize bisimilarity under a class of fuzzy 
logics satisfying the Equation (7).

The following lemma is important for proving Theorem 5.7.

Lemma 5.6. Let M = (S, A, →) be finitary and G = {[si] | i ∈ I } be the set consisting of all equivalence classes of 
the equivalence relation R, where R = {(s, t) | [ [ϕ] ](s) = [ [ϕ] ](t), ϕ ∈ Ls}. If for any μ, ν ∈F(S), a k0 ∈ I exists such 
that μ([sk0]) �= ν([sk0 ]), then a state formula ϕ ∈ Ls exists such that [ [ϕ†] ](μ) �= [ [ϕ†] ](ν).

Proof. Note that G is finite since the M being finitary implies S is finite. Let μ, ν ∈ F(S) and μ([sk0 ]) �= ν([sk0 ]). 
We consider two cases.

Case 1. G includes only one equivalence class [sk0], then [sk0] = S. In this case, the state formula � satisfies 
[ [�†] ](μ) �= [ [�†] ](ν), since [ [�†] ](μ) = μ(S) = μ([sk0 ]) and [ [�†] ](ν) = ν(S) = ν([sk0 ]).

Case 2. G includes at least two equivalence classes. We first prove the following claim: for all j ∈ I and j �= k0, 
a state formula ϕ′ ∈ Ls exists such that

[[ϕ′]](sk0) = 1 and [[ϕ′]](sj ) < 1. (∗)
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First, it is easy to see that for each j �= k0, a state formula ϕk0j ∈ Ls exists such that [ [ϕk0j ] ](sk0) �= [ [ϕk0j ] ](sj )
(otherwise sj ∈ [sk0 ]).

Define:

ϕ′
k0j

= ϕk0j ↔ [[ϕk0j ]](sk0).

Then for all j �= k0, [ [ϕ′
k0j

] ](sk0) = 1 and [ [ϕ′
k0j

] ](sj ) < 1.
Second, let

ϕ′ =
∧
j �=k0

ϕ′
k0j

.

Then ϕ′ satisfies for all j �= k0,

[[ϕ′]](sk0) = 1 and [[ϕ′]](sj ) < 1.

This completes the proof of the claim (∗) above.
Now, we prove that there exists a state formula ϕ such that [ [ϕ†] ](μ) �= [ [ϕ†] ](ν).
Since μ([sk0]) �= ν([sk0 ]), without loss of generality, suppose that μ([sk0]) > ν([sk0 ]).
Taking p > 0 such that ν([sk0]) < 1 − p < μ([sk0 ]) and let ϕ = ϕ′ � p. Then it follows from the claim (∗) that

[[ϕ]](sk0) = 1 − p and [[ϕ]](sj ) = max([[ϕ′]](sj ) − p,0) < 1 − p

for all j �= k0.
Now, we have that

[[ϕ†]](μ) = [[[ϕ]](sk0) ∧ μ([sk0 ])] ∨ [supj �=k0
[[ϕ]](sj ) ∧ μ([sj ])]

= (1 − p) ∨ [supj �=k0
[[ϕ]](sj ) ∧ μ([sj ])]

= 1 − p (since [[ϕ]](sj ) < 1 − p for all j �= k0),

and,

[[ϕ†]](ν) = [[[ϕ]](sk0) ∧ ν([sk0 ])] ∨ [supj �=k0
[[ϕ]](sj ) ∧ ν([sj ])]

= ν([sk0 ]) ∨ [supj �=k0
[[ϕ]](sj ) ∧ ν([sj ])]

< 1 − p.

The last step holds because ν([sk0]) < 1 − p, [ [ϕ] ](sj ) < 1 − p for all j ∈ I and j �= k0 and I is a finite set.
That is, we find a state formula ϕ ∈ Ls such that [ [ϕ†] ](μ) �= [ [ϕ†] ](ν). �
Another version of the logical characterization theorem is given as follows.

Theorem 5.7. Let M = (S, A, →) be finitary. For any s, t ∈ S, s ∼ t iff [ [ϕ] ](s) = [ [ϕ] ](t) for all ϕ ∈ Ls .

Proof.
(=⇒) Let s ∼ t . Then we prove [ [ϕ] ](s) = [ [ϕ] ](t) for any ϕ ∈ Ls by structure induction on ϕ. We only consider 

ϕ ≡ 〈a〉ψ , the other cases are immediate. We first prove the following fact: for any μ, ν ∈F(S),

μ ∼ ν implies that [[ψ]](μ) = [[ψ]](ν) for any ψ ∈ Ld (∗∗)

where μ ∼ ν means that μ([s]) = ν([s]) for all ∼ equivalence classes [s].
– ψ ≡ ψ1 ∧ ψ2, ψ1 → p, p → ψ1, which are straightforward by inductions on ψ1 and ψ2.
– ψ ≡ ϕ

†
1 . In this case,

[[ϕ†
1 ]](μ) = sups′∈S μ(s′) ∧ [[ϕ1]](s′)

= sups′∈S μ([s′]∼) ∧ [[ϕ1]](s′)
= sups′∈S ν([s′]∼) ∧ [[ϕ1]](s′)
= [[ϕ†

1 ]](ν).

The second step holds because by induction on ϕ1, we have that [ [ϕ1] ](s′) = [ [ϕ1] ](t ′) for all t ′ ∈ [s′]∼, and the third 
step holds since μ ∼ ν and then μ([s′]∼) = ν([s′]∼) for all s′ ∈ S. We have proven the fact (∗∗) above.
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Fig. 2. s and t are distinguished by the real-valued logic.

Now, consider ϕ ≡ 〈a〉ψ . We have that [ [ϕ] ](s) = [ [〈a〉ψ] ](s) = max
s

a−→μ
[ [ψ] ](μ). Since s ∼ t , for any transition 

s
a−→ μ, a transition t

a−→ ν exists such that μ(C) = ν(C) for all ∼ equivalence classes C. That is, μ ∼ ν. It follows 
from the fact (∗∗) that [ [ψ] ](μ) = [ [ψ] ](ν). This leads to [ [ϕ] ](s) ≤ [ [ϕ] ](t). On the other hand, the symmetry of ∼
implies that [ [ϕ] ](t) ≤ [ [ϕ] ](s) also holds. Thus [ [ϕ] ](s) = [ [ϕ] ](t) as desired.

(⇐=) Let R and G be defined as Lemma 5.6. It suffices to prove that R is a bisimulation. Now, let (s, t) ∈ R

and s
a−→ μ. Then we need to prove that there exists a transition t

a−→ ν such that μ([si]) = ν([si]) for all i ∈ I . 
Suppose for a contradiction that no a-transition from t satisfies this condition. Then for each νk (k ∈ J ) with t

a−→ νk , 
an equivalence class [sik ] ∈ G exists such that μ([sik ]) �= νk([sik ]). It follows from Lemma 5.6 that a state formula 
ϕk ∈ Ls exists such that [ [ϕ†

k ] ](μ) �= [ [ϕ†
k ] ](νk).

Define:

ψk = ϕ
†
k ↔ [[ϕ†

k ]](μ).

Then for all k ∈ J , [ [ψk] ](μ) = 1 and [ [ψk] ](νk) < 1.
Let ϕ = 〈a〉 ∧k∈J ψk . Then we infer that

[[ϕ]](s) = max
s

a−→μ′ [[
∧

k∈J ψk]](μ′)
≥ [[∧k∈J ψk]](μ)

= mink∈J [[ψk]](μ)

= 1.

So [ [ϕ] ](s) = 1. On the other hand,

[[ϕ]](t) = max
t

a−→νk

[[∧j∈J ψj ]](νk)

= max
t

a−→νk

minj∈J [[ψj ]](νk)

≤ max
t

a−→νk

[[ψk]](νk)

< 1 (since [[ψk]](νk) < 1 and (S,A →) is finitary).

Hence [ [ϕ] ](s) �= [ [ϕ] ](t), which contradicts (s, t) ∈ R. We have finished the proof. �
Remark 5.8. (1) For FTSs, the two-sorted logic degenerates into the logic only including state formulae:

ϕ ::= � | ϕ1 ∧ ϕ2 | ϕ → p | p → ϕ | ϕ � p | 〈a〉ϕ.

(2) Note that conditions of Theorems 5.2 and 5.7 are different. The former requires that the transition system be 
image-finite but the state space can be countably infinite, while the latter requires that the transition system be finitary, 
which implies that the state space is finite.

Sometimes, it is convenient to determine whether two states are bisimilar by using this real-valued logic.

Example 5.9. Consider the Fig. 2. Let ϕ = 〈a〉(〈b〉�† � 0.6)†. Then we have

[[ϕ]](s) = 0.2 and [[ϕ]](t) = 0.

Hence s and t are not bisimilar.
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6. Logical metric

The behavioral distance given by Cao et al. [5] is a more robust way of formalizing similarity between fuzzy 
systems than bisimulations, which is defined as the greatest fixed point of some function. In this section, we present a 
new approach, i.e., a logical approach, to measuring similarity between fuzzy systems. With the help of the real-valued 
logic, we can easily reach this goal.

Definition 6.1. The logical distance between s and t is defined as follows:

d(s, t) = 1 − inf
ϕ∈Ls

([[ϕ]](s) ⇔ [[ϕ]](t)).

Theorem 5.7 tells us that under a finitary transition system, s and t are bisimilar iff d(s, t) = 0. Moreover, it is easy 
to see that d(s, t) satisfies:

(D1) d(s, s) = 0;
(D2) d(s, t) = d(t, s).
If we require further two conditions: the implication is a residual implication and has an adjoint t-norm ⊗ such that 

for any a, b, c ∈ [0, 1],
a ≤ b ⇒ c iff a ⊗ b ≤ c,

then, we can infer that
(D3) d(s, t) ≤ d(s, s′) ⊕ d(s′, t) for any s, s′, t ∈ S, where ⊕ is the dual t-conorm of the ⊗, defined as a ⊕ b =

1 − [(1 − a) ⊗ (1 − b)] for any a, b ∈ [0, 1].
If the implication is taken as Łukasiewicz implication, then d is a pseudometric, and it is a pseudo-ultrametric [5]

when the implication is the Gödel implication. In fact, d is a crisp relation under Gödel implication. i.e., d(s, t) = 0
or d(s, t) = 1 for any s, t ∈ S. More generally, we have the following proposition.

Proposition 6.2. If the implication satisfies a ⇒ 0 = 0 for any a > 0, then d is a crisp relation.

Proof. Suppose that d(s, t) > 0. Then a formula ϕ1 exists such that [ [ϕ1] ](s) ⇔ [ [ϕ1] ](t) < 1. Define ϕ2 = ϕ1 ↔
[ [ϕ1] ](s), we have that [ [ϕ2] ](s) = 1 and [ [ϕ2] ](t) < 1. Further, let ϕ = ϕ2 � [ [ϕ2] ](t). Then we can get that [ [ϕ] ](s) > 0
and [ [ϕ] ](t) = 0. As a result, [ [ϕ] ](s) ⇔ [ [ϕ] ](t) = 0 that forces d(s, t) = 1. That is, d is a crisp relation. �

Hence, d is a crisp relation under Gödel and Goguen implications.
Let

S(s, t) = 1 − d(s, t).

Then, we can get that: (1) S(s, s) = 1; (2) S(s, t) = S(t, s); and (3) S(s, s′) ⊗ S(s′, t) ≤ S(s, t). That is, S is a 
(generalized) similarity relation of Zadeh [35]. This says that the smaller the logical distance, the more states alike.

Example 6.3. Consider the Fig. 2 again, we can compute d(s, t) = 0.2 under Łukasiewicz and Fodor implications and 
hence S(s, t) = 0.8, which shows that the similarity between processes s and t is 0.8.

Now let us consider the transitivity of bisimilarity. Since ∼ is an equivalence relation, we know that s1 ∼ s2 and 
s2 ∼ s3 imply s1 ∼ s3. That is, d(s1, s2) = 0 and d(s2, s3) = 0 imply d(s1, s3) = 0. If we wish the logical distance to 
have a quantitative transitivity, i.e.,

d(s1, s2) ≤ r and d(s2, s3) ≤ r imply d(s1, s3) ≤ r,

called r-transitivity, then the following proposition holds whose proof is straightforward and hence is omitted.

Proposition 6.4. If the implication satisfies (a ⇒ b) ∧ (b ⇒ c) ≤ a ⇒ c for any a, b, c ∈ [0, 1], then d has 
r-transitivity.

It can be verified that d has r-transitivity under Fodor implication when r < 1 .
2
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7. Conclusion and future work

We have given an O(|S|4| →|2) algorithm to test bisimulations for NFTSs. We have already characterized bisim-
ilarity for NFTSs by using two different modal logics soundly and completely. Moreover, we have defined a logical 
metric to capture similarity between states such that the smaller distance, the more states alike.

There are several problems that are worth further study. First, in the present article, the logical distance d is different 
from the behavioral distance df of Cao et al. [5] under the presented four implications. This is witnessed by Fig. 2, 
where df (s, t) = 0.8. It would be interesting to find an appropriate real-valued logic to characterize the behavioral
distance df (see [12]). Second, apply our theory to model-checking of fuzzy systems (see for example, [23–25]). 
That is, given an NFTS M and a two-valued (resp. real-valued) state formula ϕ, determine whether M satisfies the 
two-valued formula ϕ (resp. what extent M satisfies the real-valued formula ϕ).
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