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Abstract

In contrast to its wealth of applications in mathematics, the Kantorovich metric
started to be noticed in computer science only in recent years. We give a brief survey
of its applications in probabilistic concurrency, image retrieval, data mining, and
bioinformatics. This paper highlights the usefulness of the Kantorovich metric as a
general mathematical tool for solving various kinds of problems in rather unrelated
domains.
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1 Introduction

The transportation problem has been playing an important role in linear pro-
gramming due to its general formulation and methods of solution. The original
transportation problem, formulated by the French mathematician G. Monge
in 1781 [21], consists of finding an optimal way of shovelling a pile of sand
into a hole of the same volume. In the 1940s, the Russian mathematician and
economist L.V. Kantorovich, who was awarded a Nobel prize in economics
in 1975 for the theory of optimal allocation of resources, gave a relaxed for-
mulation of the problem and proposed a variational principle for solving the
problem [16]. Unfortunately, Kantorovich’s work went unrecognized during a
long period of time. The later known Kantorovich metric has appeared in the
literature under different names, because it has been rediscovered historically
several times from different perspectives. Many metrics known in measure
theory, ergodic theory, functional analysis, statistics, etc. are special cases
of the general definition of the Kantorovich metric [34]. The elegance of the
formulation, the fundamental character of the optimality criterion, as well as
the wealth of applications, which keep arising, place the Kantorovich metric



in a prominent position among the mathematical works of the 20th century.
In addition, this formulation can be computed in polynomial time [22], which
is an appealing feature for its use in solving applied problems. For example, it
is widely used to solve a variety of problems in business and economy such as
market distribution, plant location, scheduling problems etc. However, as far
as we know the metric attracted the attention of computer scientists only in
recent years. In this short paper, we give a brief survey of recent applications
of the Kantorovich metric in computer science. In order to give the reader a
feel for how the metric has been used, we take five examples from four dif-
ferent areas in computer science: probabilistic concurrency, image retrieval,
data mining, and bioinformatics. In some cases, the metric is directly used
to compute similarities of the objects we are interested in; in the other cases,
variations of the metric are adapted to meet our requirements. The purpose
of this paper is to review some existing applications so as to highlight the use-
fulness of the Kantorovich metric as a general mathematical tool for solving
various kinds of problems in rather unrelated domains.

2 Kantorovich metric

Roughly speaking, the Kantorovich metric provides a way of measuring the
distance between two distributions. Of course, this requires first a notion of
distance between the basic features that are aggregated into the distributions,
which is often referred to as the ground distance. For example, in the case of
color, the ground distance measures dissimilarity between individual colors.
In other words, the Kantorovich metric defines a “lifted” distance, or dissimi-
larity, between two distributions of mass in a space that is itself endowed with
a ground distance. For color, this means finding distances between image
color distributions. There are a host of metrics available in the literature (see
e.g. [13]) to quantify the distance between probability measures; see [24] for
a comprehensive review of metrics in the space of probability measures. The
Kantorovich metric has an elegant formulation and a natural interpretation
in terms of the transportation problem.

We now recall the mathematical definition of the Kantorovich metric. Let
(S, d) be a separable metric space. (This condition will be used by Theorem 2.4
below.)

Definition 2.1 Given any two Borel probability measures P and Q on S, the
Kantorovich distance between P and Q is defined by

K(P, Q) = sup

{
∣
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∣
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: ||f || ≤ 1

}

.

where || · || is the Lipschitz semi-norm defined by ||f || = supx 6=y
|f(x)−f(y)|

d(x,y)
for

a function f : S → R with R being the set of all real numbers.

The Kantorovich metric has an alternative characterisation. We denote by
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P(S) the set of all Borel probability measures on S such that for all z ∈ S, if
P ∈ P(S) then

∫

S
d(x, z)P(x) < ∞. We write M(P, Q) for the set of all Borel

probability measures on the product space S×S with marginal measures P and
Q, i.e. if µ ∈ M(P, Q) then

∫

y∈S
dµ(x, y) = dP(x) and

∫

x∈S
dµ(x, y) = dQ(y)

hold.

Definition 2.2 For P, Q ∈ P(S), we define the metric L as follows:

L(P, Q) = inf

{
∫

d(x, y)dµ(x, y) : µ ∈ M(P, Q)

}

.

Lemma 2.3 If (S, d) is a separable metric space then K and L are metrics
on P(S).

The famous Kantorovich-Rubinstein duality theorem gives a dual repre-
sentation of K in terms of L.

Theorem 2.4 (Kantorovich-Rubinstein [17]) If (S, d) is a separable met-
ric space then for any two distributions P, Q ∈ P(S) we have K(P, Q) =
L(P, Q).

In view of the above theorem, many papers in the literature directly take
Definition 2.2 as the definition of the Kantorovich metric. Here we keep the
original definition, but it is helpful to understand K by using L. Intuitively,
a probability measure µ ∈ M(P, Q) can be understood as a transportation
from one unit mass distribution P to another unit mass distribution Q. If the
distance d(x, y) represents the cost of moving one unit of mass from location
x to location y then the Kantorovich distance gives the optimal total cost of
transporting the mass of P to Q. We refer the reader to Villani’s book [35] for
an excellent exposition on the Kantorovich metric and the duality theorem.

Many problems in computer science only involve finite state spaces, so
discrete distributions with finite supports are sometimes more interesting than
continuous distributions. For two discrete distributions P and Q with finite
supports {x1, ..., xn} and {y1, ..., ym}, respectively, minimizing the total cost
of a discretized version of the transportation problem reduces to the following
linear programming problem:

minimize
∑n

i=1

∑m

j=1 µ(xi, yj)d(xi, yj)

subject to • ∀1 ≤ i ≤ n :
∑m

j=1 µ(xi, yj) = P(xi)

• ∀1 ≤ j ≤ m :
∑n

i=1 µ(xi, yj) = Q(xj)

• ∀1 ≤ i ≤ n, 1 ≤ j ≤ m : µ(xi, yj) ≥ 0.

(1)

Since (1) is a special case of the discrete mass transportation problem, some
well-known polynomial time algorithm like [22] can be employed to solve it,
which is an attractive feature for computer scientists.
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3 Applications in probabilistic concurrency

In this section we present two applications of the Kantorovich in probabilistic
concurrency: one is in defining behavioural pseudometrics and the other in
defining (bi-)simulations.

3.1 Behavioural pseudometrics

The Kantorovich metric has been used by van Breugel et al. for defining
behavioural pseudometrics on fully probabilistic systems [30,33,29] and reac-
tive probabilistic systems [31,32,27,28]; and by Desharnais et al. for labelled
Markov chains [8,10] and labelled concurrent Markov chains [9]; and later on
by Ferns et al. for Markov decision processes [11,12]; and by Deng et al. for
action-labelled quantitative transition systems [4]. Given a pseudometric m

on a finite set of states, a typical problem to measure similarities of the be-
haviour of probabilistic processes is how to lift m to be a pseudometric m̂

on distributions over states 1 . An elegant definition of lifting is via the Kan-
torovich metric. We illustrate the basic idea by considering the simple case of
dealing with distributions over a finite state space.

Let P and Q be distributions on a finite set S of states. Suppose the
distance m(s, t) between any two states s and t is bounded by 1. In [30] the
distance m̂(P, Q) is given by the value of the following linear programming
problem:

maximize
∑

s∈S(P(s) − Q(s))xs

subject to • ∀s, t ∈ S : xs − xt ≤ m(s, t)

• ∀s ∈ S : 0 ≤ xs ≤ 1.

(2)

This problem can be dualized and then simplified to yield the following prob-
lem:

minimize
∑

s,t∈S ystm(s, t)

subject to • ∀s ∈ S :
∑

t∈S yst = P(s)

• ∀t ∈ S :
∑

s∈S yst = Q(t)

• ∀s, t ∈ S : yst ≥ 0.

(3)

Now (3) is in the same form as (1).

3.2 (Bi-)simulations

Given a state space S, a probabilistic bisimulation or simulation is a relation
R over states. However, in many models a step of transition leads a state to

1 To some extent, this is related to measuring the distances between quantum states, so
it is reasonable to expect applications of the Kantorovich metric in quantum mechanics as
well [37].
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a distribution and so when defining (bi-)simulations we need to lift R to be a
relation R† over distributions. One way of lifting [15] is given as follows; there
are other equivalent definitions (see e.g. [18,5,7,6]).

Definition 3.1 Given a relation R ⊆ S × S, we lift it to a relation R† ⊆
P(S) × P(S) by letting P R† Q whenever there exists a weight function w :
S × S → [0, 1] such that

(i) ∀s ∈ S :
∑

t∈S w(s, t) = P(s)

(ii) ∀t ∈ S :
∑

s∈S w(s, t) = Q(t)

(iii) ∀s, t ∈ S : w(s, t) > 0 ⇒ s R t.

This way of lifting binary relations has an intrinsic connection with the
lifting of pseudometrics via the Kantorovich metric given in (3), as stated by
the next proposition which is a novel result of the paper.

Proposition 3.2 Let R be a binary relation and m a pseudometric on a state
space S satisfying

s R t iff m(s, t) = 0 (4)

for any s, t ∈ S. Then it holds that

P R† Q iff m̂(P, Q) = 0

for any distributions P, Q ∈ P(S).

Proof. Suppose P R† Q. From Definition 3.1 we know there is a weight
function w such that

(i) ∀s ∈ S :
∑

t∈S w(s, t) = P(s)

(ii) ∀t ∈ S :
∑

s∈S w(s, t) = Q(t)

(iii) ∀s, t ∈ S : w(s, t) > 0 ⇒ s R t.

By substituting w(s, t) for ys,t in (3), the three constraints there can be satis-
fied. For any s, t ∈ S we distinguish two cases:

(i) either w(s, t) = 0

(ii) or w(s, t) > 0. In this case we have s R t, which implies m(s, t) = 0 by
(4).

Therefore, we always have w(s, t)m(s, t) = 0 for any s, t ∈ S. Consequently,
∑

s,t∈S w(s, t)m(s, t) = 0 and the optimal value of the problem in (3) must be
0, i.e. m̂(P, Q) = 0, and the optimal solution is determined by w.

The above reasoning can be reversed to show that the optimal solution of
(3) determines a weight function, thus m̂(P, Q) = 0 implies P R† Q. 2

By the way, the lifting operation given in Definition 3.1 can also be char-
acterised as a maximum flow problem in a network [1].
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4 Application in image retrieval

The Earth Mover’s distance (EMD) was introduced by Rubner et al. [25,26]
as an empirical way to measure color and texture similarities. It was shown
to outperform many other texture similarity measures when used for tex-
ture classification and segmentation [23]. Formally, it is defined for “sig-
natures” of the form {(x1, p1), ..., (xm, pm)}, where xi is the center of data
cluster i and pi is the number of points in the cluster. Given two signatures
P = {(x1, p1), ..., (xn, pn)} and Q = {(y1, q1), ..., (ym, qm)}, whose total masses
may not be equal, the EMD is defined in terms of the value of the linear
programming problem:

minimize
∑n

i=1

∑m

j=1 fijd(xi, yj)

subject to • ∀1 ≤ i ≤ n :
∑m

j=1 fij ≤ pi

• ∀1 ≤ j ≤ m :
∑n

i=1 fij ≤ qj

•
∑n

i=1

∑m

j=1 fij = min(
∑n

i=1 pi,
∑m

j=1 qj)

• ∀1 ≤ i ≤ n, 1 ≤ j ≤ m : fij ≥ 0.

(5)

where fij is the flow (the amount of earth moved) from cluster i to cluster
j, and d(xi, yj) is some measure of dissimilarity between xi and yj, say the
Euclidean distance in R. In the EMD terminology, the value of the objective
function in (5) is the work required to move earth from one signature to an-
other. Once the optimal flow f ∗

ij is found, the Earth Mover’s distance between
P and Q is defined as

EMD(P, Q) =

∑n

i=1

∑m

j=1 f ∗
ijd(xi, yj)

∑n

i=1

∑m

j=1 f ∗
ij

(6)

For signatures with the same total mass the EMD is a true metric on distri-
butions, and it is exactly the same as the Kantorovich metric, as noticed in
[19] 2 .

In [3], three other special forms of the Kantorovich metric were proposed
to compare color histograms of images. Moreover, as a generalization of the
problem of measuring image similarity, video clips can also be measured with
the help of the Kantorovich metric, which turns out to be an effective technique
[14].

5 Application in data mining

In [36] a Kantorovich distance based metric was proposed to compare clus-
terings. Given a dataset D = {x1, ..., xr}, suppose two clustering results Cls1

2 In [19] the Mallows metric is used, which is a special case of the Kantorovich metric.
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and Cls2 are obtained. They contain n and m clusters, respectively. Denote
the n clusters in Cls1 by C1, ..., Cn, and the m clusters in Cls2 by C ′

1, ..., C
′
m.

Let the probability matrix generated by Cls1 be P = (pij), where pij denotes
the probability that object xi belongs to cluster Cj. Let the corresponding
matrix generated by Cls2 be Q = (qij).

A cluster Cj is characterized by the r-dimensional vector (p1j , p2j, ..., prj)
T ,

denoted by ξj. Similarly, denote the vector characterizing cluster C ′
j by γj =

(q1j , q2j, ..., qr,j)
T . To reflect the significance of each cluster for the purpose

of comparison, we assign a weight to each cluster. Let the weight assigned
to Cj be αj with

∑n

j=1 αj = 1, and those to C ′
j be βj with

∑m

j=1 βj = 1. So
Cls1 corresponds to the distribution P = {(ξ1, α1), ..., (ξn, αn)} and Cls2 to
Q = {(γ1, β1), ..., (γm, βm)}. The distance between Cls1 and Cls2 is the value
of the following linear programming problem:

minimize
∑n

j=1

∑m

k=1 wjk

∑r

i=1 |pij − qik|

subject to • ∀1 ≤ j ≤ n :
∑m

k=1 wjk = αj

• ∀1 ≤ k ≤ m :
∑n

j=1 wjk = βk

• ∀1 ≤ j ≤ n, 1 ≤ k ≤ m : wjk ≥ 0.

(7)

The clustering distance defined above is a Kantorovich distance.

6 Application in bioinformatics

An important problem in bioinformatics is to determine similarities and dis-
similarities among DNA sequences, which can be used to detect the structural
signature of a genome as well as to identify phylogenetic relationships among
different species. One approach to solving this problem is based on statistical
analysis of large DNA sequences using distribution of DNA words, which is
a simple yet effective statistical tool to capture information about structural
patterns, and these can reveal biologically significant features in a DNA se-
quence (see e.g. [2]). A DNA sequence is formed using an alphabet of four
letters {A, T, C, G} denoting four DNA bases: adenine, thymine, cytosine and
guanine, respectively. A statistical summarization relies on various frequen-
cies of DNA k-words, which are k-tuples formed via these four letters. Let
k ≥ 1 and Wk denote the set of all possible k-words formed using the alphabet
{A, T, C, G}. Clearly, the size of the set Wk is 4k. For a given DNA sequence
and a word w ∈ Wk, let fw be the relative frequency of the word w in the
sequence, where the words in the sequence may have one or more overlapping
letters. For example, in a sequence like ATTCGGCA..., the first 4-word is
ATTC, the second one is TTCG, the third one is TCGG and so on. The
4k-dimensional frequency vector (fw)w∈Wk

constitutes a statistical summary
of the given DNA sequence, and we have

∑

w∈Wk
fw = 1 with fw ≥ 0 for all

w ∈ Wk. A comparison between a pair of DNA sequences to judge their sim-
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ilarities and dissimilarities can be carried out by comparing their associated
frequency vectors, say (fw)w∈Wk

and (gw)w∈Wk
. In [20] an appropriate metric

for calculating the distance of two k-words is chosen. It is then lifted to be a
metric over frequency vectors in terms of the Kantorovich metric. This idea
has been implemented in a tool and some encouraging experimental results
have been obtained.

7 Concluding remarks

We have briefly surveyed some recent applications of the Kantorovich metric
in computer science. In general, production planning problems spread over a
large variety of research areas, but lead to the same mathematical problem,
namely the transportation problem. Therefore, the Kantorovich metric will
probably find many more applications in the future. For example, this can
be envisaged in relevant areas such as knowledge representation, statistical
clustering, data mining, information retrieval, bioinformatics etc., all of which
demand appropriate ways of computing similarity/dissimilarity between ob-
jects.
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[37] K. Życzkowski and W. Slomczyński. The Monge distance between quantum
states. Journal of Physics A: Mathematical and General, 31(45):9095–9104,
1998.

A Mathematical properties of the pseudometric m̂

Given the ground distance function m, the pseudometric m̂ on distributions
(cf. Section 3.1) enjoys some simple but useful mathematical properties which
we list below.

(i) (Nonnegativity) m̂(P, Q) ≥ 0, with m̂(P, Q) = 0 if P = Q.

(ii) (Symmetry) m̂(P, Q) = m̂(Q, P).

(iii) (Triangle inequality) m̂(P, R) ≤ m̂(P, Q) + m̂(Q, R).

(iv) (Possibility of extension) m̂(P, Q) = m̂(P′, Q′) where dom(P′) = dom(P)∪
{s} and P′(s) = 0, similarly for Q′ with respect to Q.

(v) (Convexity) For 0 ≤ p ≤ 1, we have

m̂(p · P + (1 − p) · R, p · Q + (1 − p) · R) = p · m̂(P, Q).

(vi) (Joint convexity) For 0 ≤ p ≤ 1, we have

m̂(p ·P+(1−p) ·Q, p ·P′+(1−p) ·Q′) ≤ p ·m̂(P, P′)+(1−p) ·m̂(Q, Q′).
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