Verifying Self-stabilizing Population Protocols with Coq

Yuxin Deng* and Jean-Francois Moriin
*Department of Computer Science and Engineering, ShanghaiTbng University, China
fUniversie de Grenoble 1, France

Abstract it. The strength of theorem proving is to deal with large or
even infinite state space by using proof principles such as
Population protocols are an elegant model recently in-induction and co-induction. Interactive theorem provees a
troduced for distributed algorithms running in large and also calledproof assistants
unreliable networks of tiny mobile agents. Correctness Coq is a proof assistant in which high level proof search
proofs of such protocols involve subtle arguments on imfinit commands construct fully formal proofs behind the scene,
sequences of events. We propose a general formalizatiomhich are then verified by a very reliable proof checker.
of self-stabilizing population protocols with the Coq pfoo Beyond formally verifying mathematical theorems, e.g. the
assistant. It is used in reasoning about a concrete protocofamous four color theorem [9], Coq was successfully ap-
for leader election in complete graphs. The protocol isplied to ensure reliability of hardware and software system
formally proved to be correct for networks of arbitrarily in various fields [2]. Examples include multiplier circuits
large size. To this end we develop an appropriate theonf14], concurrent communication protocols [8], devices for
of infinite sequences, including results for reasoning on abbroadband protocols [12], and compilers [11], just to name
stractions. In addition, we provide a constructive correxts a few.
proof for a leader election protocol in directed rings. An In this paper, we report some preliminary results on
advantage of using a constructive setting is that we geverifying self-stabilizing population protocols [3] witGoq.
more informative proofs on the scenarios that converge torhe population protocol model has emerged as a new com-

the desired configurations. putation paradigm for describing mobitd hoc networks
that consist of a humber of mobile nodes interacting with
1. Introduction each other to carry out a computation. A central property of

such protocols is that all nodes must eventually converge to

With the rapid development of mobibed hocnetworks, a the correct configurations, under certain fairness assompt
great number of distributed algorithms have been proposed In [13], Pang, Luo and Deng have used the Spin model
for solving various problems. However, their correctnesschecker [10] to formally verify the self-stabilizing popul
is often informally proved. When an algorithm becomestion protocol for leader election in complete graphs [7] and
complicated, an informal correctness proof is error-pronethe self-stabilizing population protocol for token ciratibn
Higher confidence can be gained if a proof can be rigorouslyn directed rings [3]. However, the automatic part of the
verified. verification was limited to networks of size only up to six,

In the area of formal verification one aims to establishdue to the state explosion problem for larger networks.
system correctness with mathematical rigor. Industriatpr To verify population protocols for large networks, we
tice has shown that in developing complex hardware anaonsider it more appropriate to use the approach of theorem
software systems, more effort is spent on verification ratheproving rather than model checking. As the behavior of
than on construction. Formal methods are playing more andelf-stabilizing protocols is based on infinite executions
more important roles in verifying applied systems. Therewe prove some meta-theorems with Coq in an abstract
are roughly two kinds of approaches in formal verifica-way about some typical operations on infinite sequences
tion: model checkingindtheorem provingModel checking such as mapping operations, which map one sequence into
explores the state space of a system model exhaustivebnother, and temporal logic operations like “eventuallytia
to see if a desirable property is satisfied. Model checkindalways” operators in linear temporal logic. These meta-
is largely automatic and it generates a counterexampltheorems are useful to reason about any type of infinite
when the checked property fails to hold. However, modelsequences, by instantiating the element of an abstraciténfin
checkers usually face the state explosion problem whesequence with appropriate types. We then present a general
verifying large systems. On the other hand, the basic ideformalization of population protocols with Coq. It is used i
for theorem proving is to translate a system specificatioranalyzing a concrete population protocol for leader edecti
into a mathematical theory and then construct a proof of an complete graphs that was proposed by Fischer and Jiang
theorem by generating the intermediate proof steps, oteefuin [7]. Compared with the work of Fischer and Jiang, our

proof is more formal and constructive. For example, [7,If (p',¢') € 4((p,x),(q,y)), then we denote it by
Lemma 1] was shown by contradiction, but we construct((p, z), (¢,¥)) — (p’,¢’) and call it a transition. Aconfigu-

a proof for it by deduction. In [7] a protocol for leader ration C is a mapping” : V — @ assigning to each node its
election in directed rings was also proposed. Howeverinternal state, and aimput assignmend : V' — X specifies
some key parts of its correctness proof are highly informalthe input for each node. Lét andC’ be configurationsy be
We provide an alternative (also manual) correctness proofn input assignment, and v be different nodes. If there is
which is more constructive than the original one and easiea pair (C'(u),C’(v)) € §((C(u), a(u)), (C(v), a(v))), we

to be formalized. Realizing the formalization with Coq is say thatC goes toC’ via edgee = (u,v) by transition
tractable, but would be quite complex because of somé(C(u),a(u)), (C(v),a(v))) — (C'(u),C’'(v)), abbrevi-
subtleties that heavily involve a strong notion of fairness ated to(C, a) < C’ (other nodes are not affected and thus

so we leave it as future work. keep their states unchanged). A pair of a transitioand
Our contributions are threefold: an edgee constitutes aractiono = (r,e). If C' goes toC’
ia some edge, the@ can go toC’ in onestep written as

1) We develop some meta-theorems for manipulatin ,
g : - LC) — C.
infinite sequences. Some properties about mappin o o] .
operations and temporal logic operations are of in- An executioris an infinite sequence of configurations and

dependent interest and would be useful for other CoSSignmMentsCo, ao), (le1,0<1), -+, (€,), ... such that
users. Co € C and for eachi it holds that(C;, ;) — Ciyq1. A

2) We present a general formalization of population IorO_behaviorcan be represented by a trace of input or output
tocols with Cog. assignments specifying desirable input or output of each

3) We analyze a concrete population protocol for leadef©de-F is animplementatiorof output behaviot3,,,; under

election in complete graphs. We prove its correctnesdPut behgvioer, if any executioq OfP matches a trace in
for networks of arbitrarily large size. The proof is Bout Provided that the input trace is ifi;,. A stable behav-

conducted in a formal and rigorous way. We alsolor specifies a desirable suffix for each trace. Intuitively, it

provide a constructive correctness proof for the leadefM€ans that a desirable property eventually holds, whatever
election protocol in directed rings. the initial conditions. If P is an implementation of stable

behavior B* from all possible configurations, theR is a
self-stabilizing implementatioaf B*.
In the area of formal verification, fairness is typically

The paper is structured as follows. In Section 2 we
briefly recall the definition of population protocols and

a few fairness conditions. In Section 3 we give a brief
introduction to Coa. develop some meta the%rems abo needed to prove liveness properties. It is concerned with a
infinite sequences (lnd thenprovide a general formal'rzatit;lf%lir resolution of non-determinism, .e., faimess coodi

q ' P 9 are used to rule out somenrealistic runs due to non-

of population prqtocols. In Section 4 we for_mal_ly Prove a ..o minism. Leth — (Co, 0), (Chr 1), -+ (Ciy), - .
concrete population protocol for leader election in corteple :

i) X e an execution.
graphs. In Section 5 we consider a leader election protoco
in rings and propose an alternative correct proof. Finally, Definition 1 (Strong global fairness) For everyC, «, and
conclude the paper in Section 6. C’ such that(C,) — C', if (C;, a;) = (C, «) for infinitely
manyi, then(C;, «;) = (C,) and C;41 = C’ for infinitely
manyi. (Hence, the steC,a) — C’ is taken infinitely

2. The Population Protocol Model many times in%.)

A population protocol [3] runs on an underlying network Definition 2 (Strong local fairness) For every actiono,
that can be described by a directed gragh= (V, E) with- if o is enabled in(C;,«;) for infinitely manyi, then
out multi-edges and self-loops. Each vertex represents €Ci, i) — Ciy for infinitely manyi. (Hence, the actionr
simple finite-state sensing device — the same on each verték taken infinitely many times if.)

— and each edgéu,v) means that as aninitiator could It should be noticed that global fairness is strictly streng

possiblly interact Wit_h_’ as arespon.der) than local fairness [7]. The former requires that eatdp
Devices are specified by a (uniqueiptocol formalized 5t can be taken infinitely often is actually taken infinitel

by a tupleP(Q,C, X, Y, O, 6) which contains often, while the latter asserts that eaahtion which is
« a finite setQ of states, enabled infinitely often is actually taken infinitely often.
« a setC of configurations, Since one action can be enabled in different configurations,
« a finite setX of input symbols, the global fairness condition insists that an action shdeld
« a finite setY” of output symboals, taken infinitely often in all such configurations, whereas th
« an output functiorO : Q — Y, and local fairness condition only requires that it occurs inéty

« a transition functior : (Q x X) x (Q x X) — 2¢*Q, often in one of such configurations.

3. Formal Verification with Coq on the branch — it could b® 0 or P (S q) for some
g. AbstractingP, pO andst ep in nat i nd yields a proof
In this section we briefly introduce Coq, develop someof the usual induction principle over natural numbers. As
meta-theorems about infinite sequences, and then presentafunction, it illustrates some important features of the

general formalization of population protocols. type theory of Coq: polymorphism, inductive and dependent
types.Set andPr op have themselves the tyde pe; there
3.1. A brief introduction to Coq is actually a cumulative hierarchy of types called universe

but the technical details are not important here. We justinee

Coq is one of the most popular proof assistants for formafo know thatType is the right level to be used for general
verifications. It is based on a constructive type theoretidiotions such as higher order data structures.
setting, called theCalculus of (co-)Inductive Constructions ~ Altogether, the features of Coq allow us to formalize
(CIC), which can be summarized both as a polymorphignathematical theories in a typed and precise but still very
typed lambda-calculus enriched with universes, inductivedeneral setting. It should be noticed that this setting is
and co-inductive types and a language for describing mathPasicallyconstructive existence proofs carry a computation
ematical definitions and proofs [1], [4]. These two aspect®f the witness. This can be relaxed if the principle of
are actually related thanks to the well-known Curry-Howard excluded middle REM) is used: PEM can safely be added
De Bruijn isomorphism, which maps propositions to typesas an axiom. A proof is always more informative when it
and proofs to functional objects or strongly normalizingis constructive, hence most Coq users prefer to forget PEM
programs. whenever possible.

Let us illustrate some concepts by a few examples. One Other constructs used in the sequel, sucheasrds are
of the simplest inductive types isat, with the usual Special cases of inductive types (i.e with only one con-
constructor®andS; nat has itself the typ&et , the realm structor;fieldsare just projections). When defining inductive

of data structures: types, dependent types can also be used for constructors.
| nductive nat : Set := It is especia!ly conven!ent for formalizing algebraic stru
O: nat ' tures (a carrier, operations and algebraic laws) and we use
| S: nat -> nat. them extensively — see the simple illustrations below, e.g.
Pr ot ocol .

Total recursive functional programs on arguments of type Coq offers an environment where users can state mathe-

nat can be defined. For example, the binary sum of tWomatical definitions using types, concrete objects, fumtio
natural numbers can be defined as follows. over them, then interactively prove theorems. Obvious proo

Fi xpoint plus (n m nat} {struct n} : Set steps are automated, but clever ones, e.g. inductive argu-
: |= gﬁt ch nwth ments or intermediate subgoals, require user interactions
== m

Infinite objects such as streams or traces are dealt with
using co-inductivetypes, which are defined like inductive
types but it is not assumed that the number of construc-

In order to ensure termination, a structurally decreasingors for making an inhabitant is finite. Fixpoint definitions
argument is specified byt ruct n. At the same level as over co-inductive arguments are not allowed. Co-inductive
Set , we have the realRr op of propositions. For instance, objects are constructed using cofixpoints definitions.

a predicate over natural numbers has the type ->

Prop. Given such a predicate, a proofp0 of P 0 and a 3.2, Infinite sequences and temporal logic
proofstep of forall n, Pn -> P (S n), we can

| Sp=>S(pluspm
end.

construct a proof o n for all natural numbers, using As we have seen in Section 2, the behavior of self-
the following functional (primitive recursive) program: stabilizing protocols is inherently based on infinite execu
Fi xpoint natind (n:nat) {struct n}: P n tion sequences. We have proved some meta-theorems in
= match n return (P n) with an abstract way about many typical operations on infinite
| 0 =>p0 sequences such as mapping operations which map one

| Sqg=>step q (natind q)

ond infinite sequence into another and temporal logic operation

to express properties like certain event occurs infinitely
The type ofnatind is forall n, P n, that is a often in a sequence. In principle, these meta-theorems are
dependent typesince the type of the result depends onuseful for manipulating any type of infinite sequences (by
the value of the argumenst ep, seen as a function from instantiating the elements of the abstract infinite segeienc
numbersn and proofs ofP n and returning a proof oP with appropriate types), not just for executions of popolat
(S n), has a slightly more complex dependent type. Inprotocols. We formalized such a theory in Coq. Here are
the match construct itself, the type of the result dependshe main definitions and results to be used in the rest of

the paper. In the following definitiong; is a Type,s is an
infinite sequence of elements of typeandP is a predicate
on such sequences (except foow, whereP is a predicate
on T). Note thatevent ual | y is inductive whileal ways
co-inductive.

Col nductive infseq (T: Type) Type : =
Cons : T ->infseq T -> infseq T.

Definition now P s : Prop :=
match s with Cons x s => P x end.

Col nductive always P : infseq T -> Prop : =
| Always : forall s, Ps ->
always P (tl s) -> always P s.
I nductive eventually P: infseq T -> Prop : =
| EO : forall s, Ps -> eventually P s
| E_next forall x s, eventually Ps ->
eventually P (Cons x s).

Definition inf_often P s :
al ways (eventually P) s.

Prop : =

Record Prot ocol Type : = nkProtocol {
Q: Set (* states *)
X Set ; (* input symbols x)
G: Gaph ; (* underlying graph *)
rules : Set (* transition rules *)

).

where states, input symbols, and transition rules can be
inductively defined. Underlying graphs can be specified in
various ways. For example, we may use a finite set of natural
numbers to represent the vertices of a finite graph, thussedge
become relations on natural numbers.

;= nkG aph {
(* edges *)

Record G aph :
E : nat
}.

To facilitate our reasoning, we record the action that
makes a configuration evolve into another one in a step
of transition. Consequently, an execution is defined as an
infinite sequence ofvents where an event is a triple in
the form (C, a, o) composed of a configuratiafl, an input
assignmente, and an actions. Every two consecutive

Type
-> nat -> Prop

A key for reasoning is to use abstract views, as given by @vents in the sequence are related by a transition. The
functionf . For instance, an abstract view of a configurationjnfinite sequence as a whole is defined co-inductively: if
will be the number of nodes satisfying a given property.; s an infinite sequence of events, two evefds, a1, o)

Such a function is lifted on infinite sequences usingrthe
operator:

CoFi xpoi nt nmap
(f: A->B) (s:
match s with

Cons x s => Cons (f x) (map f s)
end.

infseq A): infseq B : =

and (Cs, g, 02) are related by one step of transition, the
concatenatioiCs, as, 02)s is an execution, then appending
the even{C1, a1, 01) in the front of the execution gives rise
to an enlarged executiofCy, a1, 01)(Ca, ag, 02)s.

Definition events : =
(configs * inputs * actions)% ype.

In order to reason using abstract views, we proved &ol nducti ve execution:infseq events -> Prop: =

number of lemmas saying that, for instance, if for sl
we haveP s entailsQ (rmap f s), thenal ways P s

entailsal ways Q (map f s) and conversely. A similar
lemma is available for thevent ual | y operator but an

additional technical condition — extensionality, which is

satisfied in most practical cases — is requiredPoand Q

3.3. A general formalization of population protocols

Cons_exec
forall (Cl C2 : configs)
(al phal al pha2 : inputs)
(sigmal signma2 : actions)

(s : infseq events),
transition C1 C2 al phal sigmal ->

execution (Cons (C2, al pha2, sigma2) s) ->
execution (Cons (Cl, al phal, sigml)
(Cons (C2, alpha2, sigm?2) s)).

An important ingredient in verifying population protocols

The behavior of a population protocol is usually describeds to model fairness conditions. An actienis considered
by a set of interaction rules (see e.g. Figure 1). On the leff pe enabled in event if the configuration component in
and the responder should be matched by the rules. On the it it coincides with the action component of. Lifting

and the responder after the transition has been taken.

enabled and occurs infinitely often. Thus, the definition

We now present a general way of formalizing populationgf strong local fairness follows, wherenf enabl ed

protocols in Cog. See Section 4 for the modeling of agngi nf _occurred involves the predicaté nf _of t en
concrete protocol. When verifying population protocols in gefined in Section 3.2.

Coq, we do not explicity model output behavior as it can
be ignored without loss of generality as far as correctress i
concerned. Instead, we find it convenient to directly reason
about executions, which involve no output symbols. So the

type of protocols is defined by

Definition strong_l ocal _fairness

(s : infseq events) Prop : =
forall sigma : actions,
inf_enabled sigm s ->
inf_occurred sigma s.

A distributed system or a population protocol is said to becontradiction, which is less informative than a direct and

self-stabilizing[6] if it satisfies the following two properties: constructive proof (cf. the lemmav_eq_1 below). In [13]
« convergencestarting from an arbitrary configuration, the Spin model checker [10] is employed to show that the
the system is guaranteed to reach a correct configur@JgOI’ithm is valid under an even weaker notion of fairness

tion; which says that if an activity is continuously often enabled
« closure once the system reaches a correct configurathen it has to be executed infinitely often. However, the
tion, it cannot become incorrect any more. verification is done for complete graphs of size only up

Our verification follows this guidance and roughly proceedd© Six. For larger sizes, the model checker fails and the

in two stages. In the first stage, we prove that a correcgorrectness of the algorithm is again manually shown.

configuration can always be reached eventually, regardless

of the starting configurations. In the second stage, wet.2. Verification

prove that a network remains stable once it enters into a

correct configuration. As usual, we must make appropriate We first specify a population protocol model in Cog. Let

assumptions about fairness conditions. Max_numbe a variable. We consider a protocol that consists
of nodes labeled with natural numbers ranging frénto

4. Self-stabilizing Leader Election in Complete Max_num In complete graphs every two different nodes

Graphs are connected via an edge. So we define a gf@&pin the
following way.

In this section, we show that self-stabilizing leader elec-Defi ni ti on Conpl ete_graph_edge (u v : nat)
tion in complete graphs can be achieved under strong : Prop :=
local fairness with the help of an eventually correct leader Y <= Max_num/\ v <= Max_num/\ u <> v.
detector. Definition GL : = nkG aph Conpl et e_graph_edge.
4.1. Algorithm We use two kinds of states: means being a leader and

N is the opposite. Two kinds of input symbols are possible:

The algorithm was originally given in [7]. Every node T means the presence of at least one leader in the network
has one bit memory which represents two states, being andF is the opposite. For the transition rules, we explicitly
leader) or not (). The leader detector gives each nodemodel two kinds of idle transitionsSf ayl and St ay2
an input true) or false () to indicate that whether there below) that keep the state of each node unchanged, besides
is a leader in the network. The detector may give wrongthe three transition rules given in Figure 1. A protocol is
answers sometimes, but it will eventually return a correcthen defined as follows.
answer permanently._A non-leader becomes a leader, Whgn, g ctive states : Set ‘= L | N
the leader detector signals the absence of a leader, and thgducti ve i nput_synbols : Set := T | F.
responder is not a leader. When two leaders interact, thenductive tran_rules : Set :=
responder becomes a non-leader. Otherwise, no state change?ul €1 | Rule2 | Rule3 | Stayl | Stay2.
occurs. The algorithm is described by the three interactiofPe! | ni tion P1 == %Plr ot °G§°| |
rules in Figure 1. On the left hand side, the state and input of states nput_symbols tran_rules.
an initiator and a responder should be matched. The symbol The five transition rules give rise to the following transi-
“x” denotes that the input can always be matched. On th&on relation.

right hand side, the state of the two nodes would be updatefas i nition transition (CC: configs)
by the rule. (al pha :inputs) (sigma: actions) : Prop :=
match sigma with (rule, (u, v)) =>
Rule 1. ((L, #),(L, %) — ((L),(-)) u <= Max_num/\ v <= Max_num/\
Rule 2. ((—=, F),(—=, %) — (L), (-)) match rule with
Rule 3. ((_7 T)7(_7 *)) - ((_)7(_)) | Rulel => Cu=L/\ Cv =1L
Each node outputs its own state. | Rul e/2\ :S Cuu:=LN/) \ CC x z H
)) /[N C u=L/\ C v =N
Figure 1. Leader election in complete graphs /\ alpha u=F
| Rule3 =>Cu=N/\ Cv =N
In [7], it has already been manually shown that the [\ C u=N/\C v=N
algorithm implements self-stabilizing leader electiormam- /A alpha u =T
A . | Stayl =>Cu=L/\ Cv =N
plete graphs under both global fairness and local fairness, N C u=LJ/\C v=N
provided the existence of an eventual leader detector. How- | Stay2 =>Cu=N/\ Cv =1L
ever, an important Lemma [7, Lemma 1] was proved by I\ C u=N/\C v=1L

end Lemma execution_keep_1 trans :

/\ forall w, w<>u->w<>v -> forall s, execution s ->
Cw=C w al ways (now faithful _tr) s ->
end. eventual |l y
(now (total _| eaders (eq 1))) s ->
We also need to ensure that the eventual leader detector eventual |y
is faithful: it signalsT if there is at least one leader in the (al ways(now (total _| eaders (eq 1)))) s.

network, and\ for the opposite. Faithfulness is reflected via 3)
input assignments.

Our correctness theorem now follows from the above
lemmas. Starting from arbitrary configurations, the

Definition faithful (C: configs) number of leaders will eventually keep being one,
(alpha : inputs) : Prop := provided that the leader detector will eventually keep
((exi St<S \'(/Bi nat, e b o> being faithful and strong local fairness is assumed.

v <= Max_num v = -
(forall v : nat Theorem correct ness :

v <= Max nu’m->alphav=T)) forall s : infseq events,

/\ - execution s ->

((forall v : nat, eventual |y .
v <= Max_num->Cv = N) -> (al ways (now faithful _tr)) s ->

(forall v : nat, strong_l ocal _fairness s ->

v <= Max_num-> alpha v = F)). eventual 'y

So far we have completed the specification of the protocol.
To prove that the protocol is self-stabilizing, we calcealdte

(al ways(now (total _| eaders (eq 1)))) s.

As can be seen, the above reasoning is based on tracing
the numbers of leaders in the network. Instead of reasoning

number of leaders in the network and proceed in three StP3hout an infinite execution, which is an infinite sequence

1)

2)

We begin with two auxiliary lemmas. The first one of events{e;}$,, it is often more convenient to reason
states that if there is no leader in the network, themabout an infinite sequence of numbds;}>°,, wheren;
eventually some leaders will be created, provided thafs the number of leaders determined by the configuration

the leader detector is eventually faithful. extracted from event;, for all i > 0. So the mapping
Lemma zero: operation introduced in Section 3.2 is extremely usefuéher
forall s : infseq events, For example, to prove the theoresmecut i on_t o_one,

execution s ->

eventual ly (now faithful _tr) s ->

now (total _| eaders (eq 0)) s ->
eventual l y(now (total _| eaders (le 1))) s.

we have used the following auxiliary lemma

Lemma execution_to_one_map :
i forall s, executions ->
The second one says that if there are at least one strong | ocal fairness s ->

leader in the network, then the number will decrease al ways (now faithful _tr) s ->
and eventually reach one exactly, provided that the NOW E' el Il) (map abStrlaCt_”at E)t'> ot
leader detector keeps being faithful and the assumption SV&Mtually (now (eq 1)) (map abstract_nat s).

strong local fairness is employed. Note that our onlyyhere abst r act _nat is essentially the function of ab-
use of P!EM is there. It is limited to the handling of stracting the number; from evente;. Therefore, by apply-
strong fairness. ing the mapping operatiomap abstract_nat s yields
Theor em execution_to_one : the infinite sequence of numbers as an abstract view of the

foral| s, execution s -> infinite executions. The detailed Coq script can be found
strong_l ocal _fairness s ->

al ways (now faithful tr) s -> in [5].
now (total _|l eaders (le 1)) s -> In this way, we have proved the correctness of the leader
eventual l y(now (total |eaders (eq 1))) s. election algorithm in a complete graph of sikx_num
The above two properties imply that starting from arbi- Since Max_num is assumed to be an arbitrary natural
trary configurations, eventually the number of leadersnumber, the algorithm is in fact correct for complete graphs
reaches one, if the leader detector is always faithful. of sizen, for any natural number.
Lenma ev_eq_1 :
forall s, execution s ->

strong_l ocal _fairness s -> 5. Self-stabilizing Leader Election in Rings
al ways (now faithful _tr) s ->

eventual l y(now (total _| eaders (eq 1))) s.
In this step we show that if the number of leaders In this section, we show that self-stabilizing leader elec-
is one, then it remains unchanged, provided that thdion in rings can be achieved under global fairness with the
leader detector is always faithful. help of a leader detector that is eventually correct.

5.1. Algorithm steps of [7], our proof provides a better intuition of the
progress towards the desired configurations.

In [7] an algorithm for self-stabilizing leader election in We use the notion gbrotected leadegiven in [7], which
rings was also proposed, which is more complicated thais a leader such that there is no bullet between him and
the one for complete graphs. In this algorithm, each nodgome shield in the ring. Transitions preserve the existence
has three types of memory slots for tokens: a bullet SR)t (of a protected leader, which can be shown by induction on
a leader mark slotl(), and a shield sloty). (—) represents the rules in Figure 2.
an empty slot, and a full slot is denoted by its token. The We first remark that the leader detector is eventually
order of slots in each node is (bullet, leader, shield). Theaithful, hence for any given execution, we consider a suffix

leader detector gives each node an input trig ¢r false where only faithful transitions are fired. Then we distirgjui
(F) to indicate that whether there is a leader in the networkthree stages in the remaining execution.

The algorithm is described by the following rules. 1) There is eventually a (protected) leader by rule 1,

which is always enabled if no leader is present. From

Rule 1. ((x * %, F),(x * %, x)) — ((BLS),(* * %)) this stage, there always exists a protected leader in the
Rule 2. ((x — S,T),(* x %, %)) — ((x ——), (=% 9)) ring.

gzgz i‘ ((((: f f’ :;))’ ((* o 3% - Egg ﬁ :g’ E:i *S)))) 2) At the next stage, rule 1 is disallowed because of the
Rule 5. (¢ % — 7T)7(B . ®) — (B- _)7’(_ %)) faithfulness of the leader detector, then no creation of

shields can occur. By rules 2 and 3, the number of
shields {,) cannot increase when it is greater than
1. Moreover, Lemma 1 below shows thaf can-
not always keep unchanged either because of global
fairness, hence it will eventually decrease and then
reachesl.

At this stage, we have exactly one shield. Moreover,
Lemma 2 below shows that the number of leaders
(#:) will eventually decrease when it is greater than
1. However, whenf; reachesl, it will keep being

1 forever, which can be shown by induction on the
transition rules.

Each node outputs its own state.
Figure 2. Leader election in rings

When two nodes interact and the initiator’s input is false
(F), a leader and a shield are created. At the same time, 3)
a bullet is fired (rule 1). This is the only way for leaders
and shields to be created. When the initiator’s input is true
(T, the following rules apply: Shields move forward around
the ring (rules 2 and 3), and bullets move backward (rule
5). Bullets are absorbed by any shield they encounter (rules
2 and 3) but kill any leaders along the way (rule 5). If a
bullet moves into a node already containing a bullet, the twd_-emma 1: In a fair execution of faithful transitions starting
bullets merge into one. Similarly, when two shields meetwith 5 > 2, eventuallyf; decreases by 1.
they merge into one. A leader fires a bullet whenever it is

the initiator of an interaction (rules 3 and 4). Proof: In every configuratior”’ such thatg, > 2, let

i andj (i < j) be the two smallest locations containing a
shield; letd = j — i andm = min(d, n — d) wheren is the
size of the ring. Intuitivelyd measures the distance fram

. ... toj, andn — d measures the distance frofmto i, while
It has been shown in [7] that leader election in rings J " Jmrio ¢

does not work under the local fairness condition, but it 's the smallest distance betweeand j. After a faithful
’ transition step, there are three possibilities:

works under the global fairness condition. Unfortunately, _ _ _
the correctness proof provided in [7] is unsatisfactoryt Fo 1) The two shields at and j are not affected by the

5.2. A correctness proof

example, the crucial [7, Lemma 10] is shown in a highly transition, so_in the new configuratim‘{. the locations
informal way. In fact, that lemma heavily involves the Olf th? two shields are the same ag(ini.e.i’ =i and
global fairness condition and its proof is far from being J =7 _ _ _
straightforward. 2) The shield at moves forward, so in configuratiadi’

Our proof differs in several respects from the original one we havei’ =i+ 1 andj’ = j. _ _ _
given in [7]. In particular, the latter consists essenyiaifl 3) The shield afj moves forwarq, so in configuratiaf’
characterizing the set of infinitely recurring configurago we have’ =i andj’ = j+1 (if j <n—1),0ri’ =0
of any given fair execution: this set happens to boil down andj’ =i (if j =n—1).

to configurations with exactly one permanent leader and’he last case corresponds to the firing of rules 2 or 3 on
one moving shield (and innocuous bullets). This characterthe shield at locatiory, but whenj = n — 1 the roles of
ization is quite elegant but involves many non-constrctiv « and j are reversed to ensure thak j. In the first case
arguments and moreover forgets some crucial details, ase havem’ = m, but in each of the last two cases we
mentioned above. Besides completing the missing proo€an have eithern’ = m — 1 or m' = m + 1. Suppose

that we always havés; > 2. As the set of configurations is the techniques developed in this paper can be adapted to
finite, there exists a configuration where rules 2 or 3 will beformally prove other population protocols so as to increase

enabled oni infinitely often. Then global fairness ensures our confidence on their correctness.

that the corresponding transitions will take place anavill

eventually decrease by.1Som will eventually reachp, that
is, the two shields will merge into one. O

Acknowledgments We thank the anonymous referees for
useful comments on an earlier version of the paper. Deng
would like to acknowledge the support of the National
Lemma 2: In a fair execution of faithful transitions starting Natural Science Foundation of China (Grant No. 60703033).
with f; = 1, eventuallyf; decreases by 1.

Proof: Bullets are always eventually fired by fairness References

and rules 3 and 4. The reasoning is similar to Lemma 1,

: ; 1] The Coq Proof Assistant Reference Manu&bailable at
ll’ésellggrthe distance between a bullet and an unpr%tectec{ http://coq.inria.fr/V8.1pl3/refman/index.html.

[2] The Coq user contributionsAvailable at

We are confident that the formal verification of this algo- http://coq.inria.fr/contribs-eng.html.

rithm can roughly follow the same idea used in Section 4.2,
but the details would be much more complex though still [3] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-

tractable, because of some pitfalls like the one in Footfiote stabilizing population protocols. IRroc. OPODIS'05 vol-
that involves global fairness. ume 3974 ofLNCS pages 103-117. Springer, 2005.

. [4] Y. Bertot and P. Castérarinteractive Theorem Proving and
6. Concluding Remarks Program Development. Coq'Art: The Calculus of Inductive
Constructions Springer Verlag, 2004.

We have proposed a general formalization of population 5] Y. Deng and J.-F. Monin. Coq script for self-stabilizing

protocols with Cog. It has been used in successfully veri- "~ popylation protocols — http://basics.sjtu.edu.cryuxin/Cog/
fying a concrete self-stabilizing protocol for leader ¢i@a script.rar.

in complete graphs. To do this, we have developed someéB] E Diik Self-stabilizi . e of dibtrted
; S ; . Dijkstra. Self-stabilizing systems in spite of dibtrte
meta-theorems about abstract infinite sequences, which are /"o SO the ACM7(11):643-644, 1974,
of independent interest. To our knowledge, this is the first
experiment of verifying population protocols by using the [7] M. J. Fischer and H. Jiang. Self-stabilizing leader elec
approach of theorem proving. In addition, we have proposed tion in networks of finite-state anonymous agents. In
an alternative correctness proof for the leader electi@a pr Proc. OPODIS’06 volume 4305 ofLNCS pages 395-409.
tocol in rings given in [7], which is more constructive than Springer, 2006.
the original proof. o o _[8] E. Giménez. A Calculus of Infinite Constructions and its
Constructive proofs provide interesting hints on possible =~ application to the verification of communicating systeRisD
implementations. For instance, if we are going to implement thesis, Ecole Normale Supérieure de Lyon, 1996.
the leader election protocol for rings in a quantitativerfea] G. Gonthi A rer-checked fof the f
. . . . ontnhier. computer-checke proor O e Tour
work where shields and bullets move with gertam speeds, colour theorem. http://research.microsoft.com/en+uas/u
then the proof of Lemma 1 suggests th_at shields shou!d be people/gonthier/4colproof.pdf.
given speeds as different as possible, instead of a uniform
speed, in order to let the numbers of shields converge as so¢#0] G. J. Holzmann. The Spin Model Checker: Primer and
as possible. Similarly, the proof of Lemma 2 suggests that ~ Reference ManualAddison-Wesley, 2003.
letting bullets move faster than shields would acceleriage t [%1] X. Leroy. Formal certification of a compiler back-end: or
rate of convergence for the numbers of leaders. Even thoug programming a compiler with a proof assistant. Pnoc.
we are still far from a quantitative analysis of the protgcol POPL'06, pages 42-54. ACM, 2006.

such hints emerge clearly. [(12] J-F. Monin. Provi i orithim for ATM in G
; e ; : .-F. Monin. Proving a real time algorithm tor In Coq
We believe that verifying the protocol for rings with In Proc. TYPES'98volume 1512 ofLNCS pages 277293,

Coq is also feasible, by formalizing our correctness proof Springer, 1998.

along similar lines in the verification of the protocol for

complete graphs, but the details would be much mordl3] J. Pang, Z. Luo, and Y. Deng. On automatic verification of
complicated though tractable. As a future case study it doul self-stabilizing population protocols. Proc. TASE'08pages
be interesting to realize this verification, or to investigi 185-192. IEEE Computer Society, 2008.

[14] C. Paulin-Mohring. Circuits as streams in Coq: Verifioa

of a sequential multiplier. IfProc. TYPES'96volume 1158
of LNCS pages 216-230. Springer, 1996.

1. Note thatm might temporarily increase i > %, but will decrease
wheneverd < . The requirement of global fairness is crucial here, as
local fairness cannot ensure that will eventually diminish.

