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Abstract

Population protocols are an elegant model recently in-
troduced for distributed algorithms running in large and
unreliable networks of tiny mobile agents. Correctness
proofs of such protocols involve subtle arguments on infinite
sequences of events. We propose a general formalization
of self-stabilizing population protocols with the Coq proof
assistant. It is used in reasoning about a concrete protocol
for leader election in complete graphs. The protocol is
formally proved to be correct for networks of arbitrarily
large size. To this end we develop an appropriate theory
of infinite sequences, including results for reasoning on ab-
stractions. In addition, we provide a constructive correctness
proof for a leader election protocol in directed rings. An
advantage of using a constructive setting is that we get
more informative proofs on the scenarios that converge to
the desired configurations.

1. Introduction

With the rapid development of mobilead hocnetworks, a
great number of distributed algorithms have been proposed
for solving various problems. However, their correctness
is often informally proved. When an algorithm becomes
complicated, an informal correctness proof is error-prone.
Higher confidence can be gained if a proof can be rigorously
verified.

In the area of formal verification one aims to establish
system correctness with mathematical rigor. Industrial prac-
tice has shown that in developing complex hardware and
software systems, more effort is spent on verification rather
than on construction. Formal methods are playing more and
more important roles in verifying applied systems. There
are roughly two kinds of approaches in formal verifica-
tion: model checkingand theorem proving. Model checking
explores the state space of a system model exhaustively
to see if a desirable property is satisfied. Model checking
is largely automatic and it generates a counterexample
when the checked property fails to hold. However, model
checkers usually face the state explosion problem when
verifying large systems. On the other hand, the basic idea
for theorem proving is to translate a system specification
into a mathematical theory and then construct a proof of a
theorem by generating the intermediate proof steps, or refute

it. The strength of theorem proving is to deal with large or
even infinite state space by using proof principles such as
induction and co-induction. Interactive theorem provers are
also calledproof assistants.

Coq is a proof assistant in which high level proof search
commands construct fully formal proofs behind the scene,
which are then verified by a very reliable proof checker.
Beyond formally verifying mathematical theorems, e.g. the
famous four color theorem [9], Coq was successfully ap-
plied to ensure reliability of hardware and software systems
in various fields [2]. Examples include multiplier circuits
[14], concurrent communication protocols [8], devices for
broadband protocols [12], and compilers [11], just to name
a few.

In this paper, we report some preliminary results on
verifying self-stabilizing population protocols [3] withCoq.
The population protocol model has emerged as a new com-
putation paradigm for describing mobilead hoc networks
that consist of a number of mobile nodes interacting with
each other to carry out a computation. A central property of
such protocols is that all nodes must eventually converge to
the correct configurations, under certain fairness assumption.

In [13], Pang, Luo and Deng have used the Spin model
checker [10] to formally verify the self-stabilizing popula-
tion protocol for leader election in complete graphs [7] and
the self-stabilizing population protocol for token circulation
in directed rings [3]. However, the automatic part of the
verification was limited to networks of size only up to six,
due to the state explosion problem for larger networks.

To verify population protocols for large networks, we
consider it more appropriate to use the approach of theorem
proving rather than model checking. As the behavior of
self-stabilizing protocols is based on infinite executions,
we prove some meta-theorems with Coq in an abstract
way about some typical operations on infinite sequences
such as mapping operations, which map one sequence into
another, and temporal logic operations like “eventually” and
“always” operators in linear temporal logic. These meta-
theorems are useful to reason about any type of infinite
sequences, by instantiating the element of an abstract infinite
sequence with appropriate types. We then present a general
formalization of population protocols with Coq. It is used in
analyzing a concrete population protocol for leader election
in complete graphs that was proposed by Fischer and Jiang
in [7]. Compared with the work of Fischer and Jiang, our



proof is more formal and constructive. For example, [7,
Lemma 1] was shown by contradiction, but we construct
a proof for it by deduction. In [7] a protocol for leader
election in directed rings was also proposed. However,
some key parts of its correctness proof are highly informal.
We provide an alternative (also manual) correctness proof,
which is more constructive than the original one and easier
to be formalized. Realizing the formalization with Coq is
tractable, but would be quite complex because of some
subtleties that heavily involve a strong notion of fairness,
so we leave it as future work.

Our contributions are threefold:

1) We develop some meta-theorems for manipulating
infinite sequences. Some properties about mapping
operations and temporal logic operations are of in-
dependent interest and would be useful for other Coq
users.

2) We present a general formalization of population pro-
tocols with Coq.

3) We analyze a concrete population protocol for leader
election in complete graphs. We prove its correctness
for networks of arbitrarily large size. The proof is
conducted in a formal and rigorous way. We also
provide a constructive correctness proof for the leader
election protocol in directed rings.

The paper is structured as follows. In Section 2 we
briefly recall the definition of population protocols and
a few fairness conditions. In Section 3 we give a brief
introduction to Coq, develop some meta-theorems about
infinite sequences, and then provide a general formalization
of population protocols. In Section 4 we formally prove a
concrete population protocol for leader election in complete
graphs. In Section 5 we consider a leader election protocol
in rings and propose an alternative correct proof. Finally,we
conclude the paper in Section 6.

2. The Population Protocol Model

A population protocol [3] runs on an underlying network
that can be described by a directed graphG = (V, E) with-
out multi-edges and self-loops. Each vertex represents a
simple finite-state sensing device – the same on each vertex
– and each edge(u, v) means thatu as aninitiator could
possibly interact withv as aresponder.

Devices are specified by a (unique)protocol, formalized
by a tupleP (Q, C, X, Y, O, δ) which contains

• a finite setQ of states,
• a setC of configurations,
• a finite setX of input symbols,
• a finite setY of output symbols,
• an output functionO : Q → Y , and
• a transition functionδ : (Q×X)× (Q×X) → 2Q×Q.

If (p′, q′) ∈ δ((p, x), (q, y)), then we denote it by
((p, x), (q, y)) → (p′, q′) and call it a transition. Aconfigu-
ration C is a mappingC : V → Q assigning to each node its
internal state, and aninput assignmentα : V → X specifies
the input for each node. LetC andC′ be configurations,α be
an input assignment, andu, v be different nodes. If there is
a pair (C′(u), C′(v)) ∈ δ((C(u), α(u)), (C(v), α(v))), we
say thatC goes toC′ via edgee = (u, v) by transition
((C(u), α(u)), (C(v), α(v))) → (C′(u), C′(v)), abbrevi-
ated to(C, α)

e
−→ C′ (other nodes are not affected and thus

keep their states unchanged). A pair of a transitionr and
an edgee constitutes anaction σ = (r, e). If C goes toC′

via some edge, thenC can go toC′ in onestep, written as
(C, α) → C′.

An executionis an infinite sequence of configurations and
assignments(C0, α0), (C1, α1), . . . , (Ci, αi), . . . such that
C0 ∈ C and for eachi it holds that(Ci, αi) → Ci+1. A
behaviorcan be represented by a trace of input or output
assignments specifying desirable input or output of each
node.P is animplementationof output behaviorBout under
input behaviorBin, if any execution ofP matches a trace in
Bout provided that the input trace is inBin. A stable behav-
ior specifies a desirable suffix for each trace. Intuitively, it
means that a desirable property eventually holds, whatever
the initial conditions. IfP is an implementation of stable
behaviorBs from all possible configurations, thenP is a
self-stabilizing implementationof Bs.

In the area of formal verification, fairness is typically
needed to prove liveness properties. It is concerned with a
fair resolution of non-determinism, i.e., fairness conditions
are used to rule out someunrealistic runs due to non-
determinism. LetE = (C0, α0), (C1, α1), . . . , (Ci, αi), . . .
be an execution.

Definition 1 (Strong global fairness) For everyC, α, and
C′ such that(C, α) → C′, if (Ci, αi) = (C, α) for infinitely
manyi, then(Ci, αi) = (C, α) andCi+1 = C′ for infinitely
many i. (Hence, the step(C, α) → C′ is taken infinitely
many times inE.)

Definition 2 (Strong local fairness) For every action σ,
if σ is enabled in (Ci, αi) for infinitely many i, then
(Ci, αi)

σ
−→ Ci+1 for infinitely manyi. (Hence, the actionσ

is taken infinitely many times inE.)

It should be noticed that global fairness is strictly stronger
than local fairness [7]. The former requires that eachstep
that can be taken infinitely often is actually taken infinitely
often, while the latter asserts that eachaction which is
enabled infinitely often is actually taken infinitely often.
Since one action can be enabled in different configurations,
the global fairness condition insists that an action shouldbe
taken infinitely often in all such configurations, whereas the
local fairness condition only requires that it occurs infinitely
often in one of such configurations.



3. Formal Verification with Coq

In this section we briefly introduce Coq, develop some
meta-theorems about infinite sequences, and then present a
general formalization of population protocols.

3.1. A brief introduction to Coq

Coq is one of the most popular proof assistants for formal
verifications. It is based on a constructive type theoretic
setting, called theCalculus of (co-)Inductive Constructions
(CIC), which can be summarized both as a polymorphic
typed lambda-calculus enriched with universes, inductive
and co-inductive types and a language for describing math-
ematical definitions and proofs [1], [4]. These two aspects
are actually related thanks to the well-known Curry-Howard-
De Bruijn isomorphism, which maps propositions to types
and proofs to functional objects or strongly normalizing
programs.

Let us illustrate some concepts by a few examples. One
of the simplest inductive types isnat, with the usual
constructorsO andS; nat has itself the typeSet, the realm
of data structures:

Inductive nat : Set :=
O : nat

| S : nat -> nat.

Total recursive functional programs on arguments of type
nat can be defined. For example, the binary sum of two
natural numbers can be defined as follows.

Fixpoint plus (n m: nat} {struct n} : Set
:= match n with
| 0 => m
| S p => S (plus p m)
end.

In order to ensure termination, a structurally decreasing
argument is specified bystruct n. At the same level as
Set, we have the realmProp of propositions. For instance,
a predicate over natural numbers has the typenat ->
Prop. Given such a predicateP, a proofp0 of P 0 and a
proof step of forall n, P n -> P (S n), we can
construct a proof ofP n for all natural numbersn, using
the following functional (primitive recursive) program:

Fixpoint natind (n:nat) {struct n}: P n
:= match n return (P n) with
| 0 => p0
| S q => step q (natind q)
end.

The type of natind is forall n, P n, that is a
dependent type, since the type of the result depends on
the value of the argument;step, seen as a function from
numbersn and proofs ofP n and returning a proof ofP
(S n), has a slightly more complex dependent type. In
the match construct itself, the type of the result depends

on the branch – it could beP 0 or P (S q) for some
q. AbstractingP, p0 andstep in natind yields a proof
of the usual induction principle over natural numbers. As
a function, it illustrates some important features of the
type theory of Coq: polymorphism, inductive and dependent
types.Set andProp have themselves the typeType; there
is actually a cumulative hierarchy of types called universes,
but the technical details are not important here. We just need
to know thatType is the right level to be used for general
notions such as higher order data structures.

Altogether, the features of Coq allow us to formalize
mathematical theories in a typed and precise but still very
general setting. It should be noticed that this setting is
basicallyconstructive: existence proofs carry a computation
of the witness. This can be relaxed if the principle of
excluded middle (PEM) is used: PEM can safely be added
as an axiom. A proof is always more informative when it
is constructive, hence most Coq users prefer to forget PEM
whenever possible.

Other constructs used in the sequel, such asrecords, are
special cases of inductive types (i.e with only one con-
structor;fieldsare just projections). When defining inductive
types, dependent types can also be used for constructors.
It is especially convenient for formalizing algebraic struc-
tures (a carrier, operations and algebraic laws) and we use
them extensively – see the simple illustrations below, e.g.
Protocol.

Coq offers an environment where users can state mathe-
matical definitions using types, concrete objects, functions
over them, then interactively prove theorems. Obvious proof
steps are automated, but clever ones, e.g. inductive argu-
ments or intermediate subgoals, require user interactions.

Infinite objects such as streams or traces are dealt with
using co-inductivetypes, which are defined like inductive
types but it is not assumed that the number of construc-
tors for making an inhabitant is finite. Fixpoint definitions
over co-inductive arguments are not allowed. Co-inductive
objects are constructed using cofixpoints definitions.

3.2. Infinite sequences and temporal logic

As we have seen in Section 2, the behavior of self-
stabilizing protocols is inherently based on infinite execu-
tion sequences. We have proved some meta-theorems in
an abstract way about many typical operations on infinite
sequences such as mapping operations which map one
infinite sequence into another and temporal logic operations
to express properties like certain event occurs infinitely
often in a sequence. In principle, these meta-theorems are
useful for manipulating any type of infinite sequences (by
instantiating the elements of the abstract infinite sequence
with appropriate types), not just for executions of population
protocols. We formalized such a theory in Coq. Here are
the main definitions and results to be used in the rest of



the paper. In the following definitions,T is a Type,s is an
infinite sequence of elements of typeT andP is a predicate
on such sequences (except fornow, whereP is a predicate
on T). Note thateventually is inductive whilealways
co-inductive.

CoInductive infseq (T: Type) : Type :=
Cons : T -> infseq T -> infseq T.

Definition now P s : Prop :=
match s with Cons x s => P x end.

CoInductive always P : infseq T -> Prop :=
| Always : forall s, P s ->

always P (tl s) -> always P s.

Inductive eventually P : infseq T -> Prop :=
| E0 : forall s, P s -> eventually P s
| E_next : forall x s, eventually P s ->

eventually P (Cons x s).

Definition inf_often P s : Prop :=
always (eventually P) s.

A key for reasoning is to use abstract views, as given by a
functionf. For instance, an abstract view of a configuration
will be the number of nodes satisfying a given property.
Such a function is lifted on infinite sequences using themap
operator:

CoFixpoint map
(f: A->B) (s: infseq A): infseq B :=
match s with
Cons x s => Cons (f x) (map f s)
end.

In order to reason using abstract views, we proved a
number of lemmas saying that, for instance, if for alls,
we haveP s entailsQ (map f s), thenalways P s
entailsalways Q (map f s) and conversely. A similar
lemma is available for theeventually operator but an
additional technical condition – extensionality, which is
satisfied in most practical cases – is required onP andQ.

3.3. A general formalization of population protocols

The behavior of a population protocol is usually described
by a set of interaction rules (see e.g. Figure 1). On the left
hand side of each rule, the state and the input of the initiator
and the responder should be matched by the rules. On the
right hand side, the rule specifies the state of the initiator
and the responder after the transition has been taken.

We now present a general way of formalizing population
protocols in Coq. See Section 4 for the modeling of a
concrete protocol. When verifying population protocols in
Coq, we do not explicitly model output behavior as it can
be ignored without loss of generality as far as correctness is
concerned. Instead, we find it convenient to directly reason
about executions, which involve no output symbols. So the
type of protocols is defined by

Record Protocol : Type := mkProtocol {
Q : Set ; (* states *)
X : Set ; (* input symbols *)
G : Graph ; (* underlying graph *)
rules : Set (* transition rules *)

}.

where states, input symbols, and transition rules can be
inductively defined. Underlying graphs can be specified in
various ways. For example, we may use a finite set of natural
numbers to represent the vertices of a finite graph, thus edges
become relations on natural numbers.

Record Graph : Type := mkGraph {
E : nat -> nat -> Prop (* edges *)

}.

To facilitate our reasoning, we record the action that
makes a configuration evolve into another one in a step
of transition. Consequently, an execution is defined as an
infinite sequence ofevents, where an event is a triple in
the form(C, α, σ) composed of a configurationC, an input
assignmentα, and an actionσ. Every two consecutive
events in the sequence are related by a transition. The
infinite sequence as a whole is defined co-inductively: if
s is an infinite sequence of events, two events(C1, α1, σ1)
and (C2, α2, σ2) are related by one step of transition, the
concatenation(C2, α2, σ2)s is an execution, then appending
the event(C1, α1, σ1) in the front of the execution gives rise
to an enlarged execution(C1, α1, σ1)(C2, α2, σ2)s.

Definition events :=
(configs * inputs * actions)%type.

CoInductive execution:infseq events -> Prop:=
Cons_exec :
forall (C1 C2 : configs)

(alpha1 alpha2 : inputs)
(sigma1 sigma2 : actions)
(s : infseq events),

transition C1 C2 alpha1 sigma1 ->
execution (Cons (C2, alpha2, sigma2) s) ->
execution (Cons (C1, alpha1, sigma1)

(Cons (C2, alpha2, sigma2) s)).

An important ingredient in verifying population protocols
is to model fairness conditions. An actionσ is considered
to be enabled in eventx if the configuration component in
x allows the action. The action is considered to occur in
x if it coincides with the action component ofx. Lifting
these to infinite sequence, we can discuss if an action is
enabled and occurs infinitely often. Thus, the definition
of strong local fairness follows, whereinf_enabled
and inf_occurred involves the predicateinf_often
defined in Section 3.2.

Definition strong_local_fairness
(s : infseq events) : Prop :=
forall sigma : actions,
inf_enabled sigma s ->
inf_occurred sigma s.



A distributed system or a population protocol is said to be
self-stabilizing[6] if it satisfies the following two properties:

• convergence: starting from an arbitrary configuration,
the system is guaranteed to reach a correct configura-
tion;

• closure: once the system reaches a correct configura-
tion, it cannot become incorrect any more.

Our verification follows this guidance and roughly proceeds
in two stages. In the first stage, we prove that a correct
configuration can always be reached eventually, regardless
of the starting configurations. In the second stage, we
prove that a network remains stable once it enters into a
correct configuration. As usual, we must make appropriate
assumptions about fairness conditions.

4. Self-stabilizing Leader Election in Complete
Graphs

In this section, we show that self-stabilizing leader elec-
tion in complete graphs can be achieved under strong
local fairness with the help of an eventually correct leader
detector.

4.1. Algorithm

The algorithm was originally given in [7]. Every node
has one bit memory which represents two states, being a
leader (L) or not (−). The leader detector gives each node
an input true (T ) or false (F ) to indicate that whether there
is a leader in the network. The detector may give wrong
answers sometimes, but it will eventually return a correct
answer permanently. A non-leader becomes a leader, when
the leader detector signals the absence of a leader, and the
responder is not a leader. When two leaders interact, the
responder becomes a non-leader. Otherwise, no state change
occurs. The algorithm is described by the three interaction
rules in Figure 1. On the left hand side, the state and input of
an initiator and a responder should be matched. The symbol
“∗” denotes that the input can always be matched. On the
right hand side, the state of the two nodes would be updated
by the rule.

Rule 1. ((L, ∗), (L, ∗)) → ((L), (−))
Rule 2. ((−, F), (−, ∗)) → ((L), (−))
Rule 3. ((−, T), (−, ∗)) → ((−), (−))

Each node outputs its own state.

Figure 1. Leader election in complete graphs

In [7], it has already been manually shown that the
algorithm implements self-stabilizing leader election incom-
plete graphs under both global fairness and local fairness,
provided the existence of an eventual leader detector. How-
ever, an important Lemma [7, Lemma 1] was proved by

contradiction, which is less informative than a direct and
constructive proof (cf. the lemmaev_eq_1 below). In [13]
the Spin model checker [10] is employed to show that the
algorithm is valid under an even weaker notion of fairness
which says that if an activity is continuously often enabled
then it has to be executed infinitely often. However, the
verification is done for complete graphs of size only up
to six. For larger sizes, the model checker fails and the
correctness of the algorithm is again manually shown.

4.2. Verification

We first specify a population protocol model in Coq. Let
Max_num be a variable. We consider a protocol that consists
of nodes labeled with natural numbers ranging from0 to
Max_num. In complete graphs every two different nodes
are connected via an edge. So we define a graphG1 in the
following way.

Definition Complete_graph_edge (u v : nat)
: Prop :=
u <= Max_num /\ v <= Max_num /\ u <> v.

Definition G1 := mkGraph Complete_graph_edge.

We use two kinds of states:L means being a leader and
N is the opposite. Two kinds of input symbols are possible:
T means the presence of at least one leader in the network
andF is the opposite. For the transition rules, we explicitly
model two kinds of idle transitions (Stay1 and Stay2
below) that keep the state of each node unchanged, besides
the three transition rules given in Figure 1. A protocol is
then defined as follows.

Inductive states : Set := L | N.
Inductive input_symbols : Set := T | F.
Inductive tran_rules : Set :=

Rule1 | Rule2 | Rule3 | Stay1 | Stay2.
Definition P1 := mkProtocol

states input_symbols G1 tran_rules.

The five transition rules give rise to the following transi-
tion relation.

Definition transition (C C’: configs )
(alpha :inputs ) (sigma: actions) : Prop :=
match sigma with (rule, (u, v)) =>
u <= Max_num /\ v <= Max_num /\
match rule with

| Rule1 => C u = L /\ C v = L
/\ C’ u = L /\ C’ v = N

| Rule2 => C u = N /\ C v = N
/\ C’ u = L /\ C’ v = N
/\ alpha u = F

| Rule3 => C u = N /\ C v = N
/\ C’ u = N /\ C’ v = N
/\ alpha u = T

| Stay1 => C u = L /\ C v = N
/\ C’ u = L /\ C’ v = N

| Stay2 => C u = N /\ C v = L
/\ C’ u = N /\ C’ v = L



end
/\ forall w, w <> u -> w <> v ->

C w = C’ w
end.

We also need to ensure that the eventual leader detector
is faithful: it signalsT if there is at least one leader in the
network, andN for the opposite. Faithfulness is reflected via
input assignments.

Definition faithful (C : configs)
(alpha : inputs) : Prop :=
((exists v : nat,

v <= Max_num /\ C v = L) ->
(forall v : nat,

v <= Max_num -> alpha v = T))
/\
((forall v : nat,

v <= Max_num -> C v = N) ->
(forall v : nat,

v <= Max_num -> alpha v = F)).

So far we have completed the specification of the protocol.
To prove that the protocol is self-stabilizing, we calculate the
number of leaders in the network and proceed in three steps.

1) We begin with two auxiliary lemmas. The first one
states that if there is no leader in the network, then
eventually some leaders will be created, provided that
the leader detector is eventually faithful.
Lemma zero:

forall s : infseq events,
execution s ->
eventually (now faithful_tr) s ->
now (total_leaders (eq 0)) s ->
eventually(now (total_leaders (le 1))) s.

The second one says that if there are at least one
leader in the network, then the number will decrease
and eventually reach one exactly, provided that the
leader detector keeps being faithful and the assumption
strong local fairness is employed. Note that our only
use of PEM is there. It is limited to the handling of
strong fairness.
Theorem execution_to_one :

forall s, execution s ->
strong_local_fairness s ->
always (now faithful_tr) s ->
now (total_leaders (le 1)) s ->
eventually(now (total_leaders (eq 1))) s.

The above two properties imply that starting from arbi-
trary configurations, eventually the number of leaders
reaches one, if the leader detector is always faithful.
Lemma ev_eq_1 :

forall s, execution s ->
strong_local_fairness s ->
always (now faithful_tr) s ->
eventually(now (total_leaders (eq 1))) s.

2) In this step we show that if the number of leaders
is one, then it remains unchanged, provided that the
leader detector is always faithful.

Lemma execution_keep_1_trans :
forall s, execution s ->
always (now faithful_tr) s ->
eventually
(now (total_leaders (eq 1))) s ->

eventually
(always(now (total_leaders (eq 1)))) s.

3) Our correctness theorem now follows from the above
lemmas. Starting from arbitrary configurations, the
number of leaders will eventually keep being one,
provided that the leader detector will eventually keep
being faithful and strong local fairness is assumed.

Theorem correctness :
forall s : infseq events,
execution s ->
eventually
(always (now faithful_tr)) s ->
strong_local_fairness s ->
eventually
(always(now (total_leaders (eq 1)))) s.

As can be seen, the above reasoning is based on tracing
the numbers of leaders in the network. Instead of reasoning
about an infinite execution, which is an infinite sequence
of events{ei}

∞

i=0, it is often more convenient to reason
about an infinite sequence of numbers{ni}

∞

i=0, whereni

is the number of leaders determined by the configuration
extracted from eventei, for all i ≥ 0. So the mapping
operation introduced in Section 3.2 is extremely useful here.
For example, to prove the theoremexecution_to_one,
we have used the following auxiliary lemma

Lemma execution_to_one_map :
forall s, execution s ->
strong_local_fairness s ->
always (now faithful_tr) s ->
now (le 1) (map abstract_nat s) ->
eventually (now (eq 1))(map abstract_nat s).

whereabstract_nat is essentially the function of ab-
stracting the numberni from eventei. Therefore, by apply-
ing the mapping operationmap abstract_nat s yields
the infinite sequence of numbers as an abstract view of the
infinite executions. The detailed Coq script can be found
in [5].

In this way, we have proved the correctness of the leader
election algorithm in a complete graph of sizeMax_num.
Since Max_num is assumed to be an arbitrary natural
number, the algorithm is in fact correct for complete graphs
of sizen, for any natural numbern.

5. Self-stabilizing Leader Election in Rings

In this section, we show that self-stabilizing leader elec-
tion in rings can be achieved under global fairness with the
help of a leader detector that is eventually correct.



5.1. Algorithm

In [7] an algorithm for self-stabilizing leader election in
rings was also proposed, which is more complicated than
the one for complete graphs. In this algorithm, each node
has three types of memory slots for tokens: a bullet slot (B),
a leader mark slot (L), and a shield slot (S). (−) represents
an empty slot, and a full slot is denoted by its token. The
order of slots in each node is (bullet, leader, shield). The
leader detector gives each node an input true (T ) or false
(F ) to indicate that whether there is a leader in the network.
The algorithm is described by the following rules.

Rule 1. ((∗ ∗ ∗, F ), (∗ ∗ ∗, ∗)) → ((B L S), (∗ ∗ ∗))
Rule 2. ((∗ − S, T ), (∗ ∗ ∗, ∗)) → ((∗ −−), (− ∗ S))
Rule 3. ((∗ L S, T ), (∗ ∗ ∗, ∗)) → ((B L −), (− ∗ S))
Rule 4. ((∗ L −, T ), (− ∗ ∗, ∗)) → ((B L −), (− ∗ ∗))
Rule 5. ((∗ ∗ −, T ), (B ∗ ∗, ∗)) → ((B −−), (− ∗ ∗))

Each node outputs its own state.

Figure 2. Leader election in rings

When two nodes interact and the initiator’s input is false
(F ), a leader and a shield are created. At the same time,
a bullet is fired (rule 1). This is the only way for leaders
and shields to be created. When the initiator’s input is true
(T ), the following rules apply: Shields move forward around
the ring (rules 2 and 3), and bullets move backward (rule
5). Bullets are absorbed by any shield they encounter (rules
2 and 3) but kill any leaders along the way (rule 5). If a
bullet moves into a node already containing a bullet, the two
bullets merge into one. Similarly, when two shields meet,
they merge into one. A leader fires a bullet whenever it is
the initiator of an interaction (rules 3 and 4).

5.2. A correctness proof

It has been shown in [7] that leader election in rings
does not work under the local fairness condition, but it
works under the global fairness condition. Unfortunately,
the correctness proof provided in [7] is unsatisfactory. For
example, the crucial [7, Lemma 10] is shown in a highly
informal way. In fact, that lemma heavily involves the
global fairness condition and its proof is far from being
straightforward.

Our proof differs in several respects from the original one
given in [7]. In particular, the latter consists essentially in
characterizing the set of infinitely recurring configurations
of any given fair execution: this set happens to boil down
to configurations with exactly one permanent leader and
one moving shield (and innocuous bullets). This character-
ization is quite elegant but involves many non-constructive
arguments and moreover forgets some crucial details, as
mentioned above. Besides completing the missing proof

steps of [7], our proof provides a better intuition of the
progress towards the desired configurations.

We use the notion ofprotected leadergiven in [7], which
is a leader such that there is no bullet between him and
some shield in the ring. Transitions preserve the existence
of a protected leader, which can be shown by induction on
the rules in Figure 2.

We first remark that the leader detector is eventually
faithful, hence for any given execution, we consider a suffix
where only faithful transitions are fired. Then we distinguish
three stages in the remaining execution.

1) There is eventually a (protected) leader by rule 1,
which is always enabled if no leader is present. From
this stage, there always exists a protected leader in the
ring.

2) At the next stage, rule 1 is disallowed because of the
faithfulness of the leader detector, then no creation of
shields can occur. By rules 2 and 3, the number of
shields (♯s) cannot increase when it is greater than
1. Moreover, Lemma 1 below shows that♯s can-
not always keep unchanged either because of global
fairness, hence it will eventually decrease and then
reaches1.

3) At this stage, we have exactly one shield. Moreover,
Lemma 2 below shows that the number of leaders
(♯l) will eventually decrease when it is greater than
1. However, when♯l reaches1, it will keep being
1 forever, which can be shown by induction on the
transition rules.

Lemma 1: In a fair execution of faithful transitions starting
with ♯s ≥ 2, eventually♯s decreases by 1.

Proof: In every configurationC such that♯s ≥ 2, let
i and j (i < j) be the two smallest locations containing a
shield; letd = j − i andm = min(d, n− d) wheren is the
size of the ring. Intuitively,d measures the distance fromi
to j, and n − d measures the distance fromj to i, while
m is the smallest distance betweeni andj. After a faithful
transition step, there are three possibilities:

1) The two shields ati and j are not affected by the
transition, so in the new configurationC′ the locations
of the two shields are the same as inC, i.e. i′ = i and
j′ = j.

2) The shield ati moves forward, so in configurationC′

we havei′ = i + 1 andj′ = j.
3) The shield atj moves forward, so in configurationC′

we havei′ = i andj′ = j +1 (if j < n−1), or i′ = 0
andj′ = i (if j = n − 1).

The last case corresponds to the firing of rules 2 or 3 on
the shield at locationj, but whenj = n − 1 the roles of
i and j are reversed to ensure thati < j. In the first case
we havem′ = m, but in each of the last two cases we
can have eitherm′ = m − 1 or m′ = m + 1. Suppose



that we always have♯s ≥ 2. As the set of configurations is
finite, there exists a configuration where rules 2 or 3 will be
enabled oni infinitely often. Then global fairness ensures
that the corresponding transitions will take place andm will
eventually decrease by 11. Som will eventually reach0, that
is, the two shields will merge into one.

Lemma 2: In a fair execution of faithful transitions starting
with ♯s = 1, eventually♯l decreases by 1.

Proof: Bullets are always eventually fired by fairness
and rules 3 and 4. The reasoning is similar to Lemma 1,
using the distance between a bullet and an unprotected
leader.

We are confident that the formal verification of this algo-
rithm can roughly follow the same idea used in Section 4.2,
but the details would be much more complex though still
tractable, because of some pitfalls like the one in Footnote1
that involves global fairness.

6. Concluding Remarks

We have proposed a general formalization of population
protocols with Coq. It has been used in successfully veri-
fying a concrete self-stabilizing protocol for leader election
in complete graphs. To do this, we have developed some
meta-theorems about abstract infinite sequences, which are
of independent interest. To our knowledge, this is the first
experiment of verifying population protocols by using the
approach of theorem proving. In addition, we have proposed
an alternative correctness proof for the leader election pro-
tocol in rings given in [7], which is more constructive than
the original proof.

Constructive proofs provide interesting hints on possible
implementations. For instance, if we are going to implement
the leader election protocol for rings in a quantitative frame-
work where shields and bullets move with certain speeds,
then the proof of Lemma 1 suggests that shields should be
given speeds as different as possible, instead of a uniform
speed, in order to let the numbers of shields converge as soon
as possible. Similarly, the proof of Lemma 2 suggests that
letting bullets move faster than shields would accelerate the
rate of convergence for the numbers of leaders. Even though
we are still far from a quantitative analysis of the protocol,
such hints emerge clearly.

We believe that verifying the protocol for rings with
Coq is also feasible, by formalizing our correctness proof
along similar lines in the verification of the protocol for
complete graphs, but the details would be much more
complicated though tractable. As a future case study it would
be interesting to realize this verification, or to investigate if

1. Note thatm might temporarily increase ifd >
n

2
, but will decrease

wheneverd ≤ n

2
. The requirement of global fairness is crucial here, as

local fairness cannot ensure thatm will eventually diminish.

the techniques developed in this paper can be adapted to
formally prove other population protocols so as to increase
our confidence on their correctness.
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