
Under consideration for publication in Math. Struct. in Comp. Science

Relating Reasoning Methodologies in
Linear Logic and Process Algebra

Yuxin Deng 1 Robert J. Simmons 2 Iliano Cervesato 3

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240, China.
Email: yuxindeng@sjtu.edu.cn
2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Email: rjsimmon@cs.cmu.edu
3 Carnegie Mellon University, Qatar campus, Qatar.
Email: iliano@cmu.edu

Received 26 April 2013; Revised 3 July 2014

We show that the proof-theoretic notion of logical preorder coincides with the

process-theoretic notion of barbed preorder for a CCS-like process calculus obtained

from the formula-as-process interpretation of a fragment of linear logic. The argument

makes use of other standard notions in process algebra, namely simulation and labeled

transition systems. This result establishes a connection between an approach to reason

about process specifications, the barbed preorder, and a method to reason about logic

specifications, the logical preorder.

1. Introduction

By now, execution-preserving relationships between (fragments of) linear logic and (frag-

ments of) process algebras are well-established (see Cervesato and Scedrov (2009) for an

overview). Abramsky observed early on that linear cut elimination resembles reduction in

CCS and the π-calculus Milner (1989), thereby identifying processes with (some) linear

proofs and establishing the process-as-term interpretation Abramsky (1994). The alter-

native process-as-formula encoding, pioneered by Miller around the same time Miller

(1992), maps process constructors to logical connectives and quantifiers, with the ef-

fect of relating reductions in process algebra with proof steps, in the same way that

logic programming achieves computation via proof search. Specifically, it describes the

state of an evolving concurrent system as a linear logic context. Transitions between

such process states are therefore modeled as transitions between linear logic contexts.

As a member of a context, a formula stands for an individual process in the process

state. On the right-hand side of an intuitionistic derivability judgment, it is a specifi-

cation that a process state can satisfy. The process-as-formula interpretation has been

used extensively in a multitude of domains, in particular in the fields of programming

languages Cervesato et al. (2002), Cervesato and Scedrov (2009), Miller (1992) and secu-

rity Cervesato et al. (2000). For example, Cervesato and Scedrov (2009) developed it into

a logically-based rewriting formalism that subsumes and integrates both process-based

mailto:yuxindeng@sjtu.edu.cn
mailto:rjsimmon@cs.cmu.edu
mailto:iliano@cmu.edu

Y. Deng, R. J. Simmons and I. Cervesato 2

(e.g., the π-calculus) and transition-based languages (e.g., Petri nets) for specifying con-

current systems. In Ehrhard and Laurent (2010) a finitary π-calculus has been translated

into a version of differential interaction nets. In Dam (1994) positive linear and relevant

logics are used to provide logical accounts of static process structures by interpreting for-

mulas on process terms in Milner’s synchronous CCS. Recent work by Caires et al. Caires

and Pfenning (2010), Caires et al. (2012) provides a concurrent computational interpre-

tation of intuitionistic linear logic. Propositions are interpreted as session types, sequent

proofs as processes in the π-calculus, cut reductions as process reductions, and vice versa.

Wadler Wadler (2012) formalized a tight connection between a standard presentation of

session types and linear logic.

Not as well established is the relationship between the rich set of notions and techniques

used to reason about process specifications and the equally rich set of techniques used to

reason about (linear) logic. Indeed, a majority of investigations have attempted to reduce

some of the behavioral notions that are commonplace in process algebra to derivability

within logic. For example, Miller identified a fragment of linear logic that could be used

to observe traces in his logical encoding of the π-calculus, thereby obtaining a language

that corresponds to the Hennessy-Milner modal logic, which characterizes observational

equivalence Miller (1992). A similar characterization was made in Lincoln and Saraswat

(1991), where a sequent Γ ` ∆ in a classical logic augmented with constraints was seen

as process state Γ passing test ∆. Extensions of linear logic were shown to better capture

other behavioral relations: for example, adding definitions allows expressing simulation

as the derivability of a linear implication McDowell et al. (2003), but falls short of bisim-

ulation. Bisimulation was captured in FOλ∆∇, a further extension of linear logic Tiu

and Miller (2004). Interestingly, the nominal aspect of this logic was critical in encoding

late bisimulation, while universal quantification sufficed for its open variant.

This body of work embeds approaches for reasoning about process specifications (e.g.,

bisimulation or various forms of testing) into methods for reasoning with logic (mainly

derivability). Little investigation has targeted notions used to reason about logic (e.g.,

proof-theoretic definitions of equivalence). More generally, techniques and tools developed

for each formalism rarely cross over — and may very well be rediscovered in due time.

Tellingly, process-based definitions and proofs are often coinductive in nature, while

techniques based on proof-theory are generally inductive.

This paper outlines one such relationship — between the inductive methods used to

reason about logic and the coinductive methods used to reason about process calculi.

On the linear logic side, we focus on the inductively-defined notion of logical preorder

(obtained by forsaking symmetry from derivability-based logical equivalence). On the

process-algebraic side, we consider an extensional behavioral relation adapted from the

standard coinductive notion of barbed preorder. We prove that, for two fragments of lin-

ear logic and matching process calculi, these notions coincide. Our proofs rely on other

standard process algebraic notions as stepping stones, namely simulation and labeled

transition systems. The fragments of linear logic, when equipped with our labeled transi-

tion systems, are to some extent analogous to fragments of asynchronous CCS. Therefore,

the simulation relation is tailored for asynchronous communicating processes.

The rest of the paper is organized as follows. In Section 2, we briefly review the

Relating Reasoning Methodologies in Linear Logic and Process Algebra 3

Γ; a ` a
init

Γ, A; ∆, A ` C

Γ, A; ∆ ` C
clone

Γ; · ` 1
1R

Γ; ∆ ` C

Γ; ∆,1 ` C
1L

Γ; ∆1 ` A Γ; ∆2 ` B

Γ; ∆1,∆2 ` A⊗B
⊗R

Γ; ∆, A,B ` C

Γ; ∆, A⊗B ` C
⊗L

Γ; ∆, A ` B

Γ; ∆ ` A(B
(R

Γ; ∆1 ` A Γ; ∆2, B ` C

Γ; ∆1,∆2, A(B ` C
(L

Γ; ∆ ` >
>R (no rule >L)

Γ; ∆ ` A Γ; ∆ ` B

Γ; ∆ ` A&B
&R

Γ; ∆, Ai ` C

Γ; ∆, A1 &A2 ` C
&Li

Γ; · ` A

Γ; · ` !A
!R

Γ, A; ∆ ` C

Γ; ∆, !A ` C
!L

Fig. 1. Dual intuitionistic linear logic

general fragment of linear logic we are focusing on and define the logical preorder. Then,

in Section 3, we recall the standard process-as-formula interpretation for a sublanguage

without exponentials and define the notion of barbed preorder. In Section 4, we prove

their equivalence through the intermediary of a simulation preorder defined on the basis

of a labeled transition system. In Section 5, we extend our results and proof techniques to

accommodate exponentials. We conclude in Section 6 by anticipating future developments

enabled by this work.

2. First-Order Intuitionistic Linear Logic

The starting point for our investigation will be intuitionistic linear logic Girard (1987)

sans disjunction A ⊕ B and its unit 0. The formulas of this fragment of propositional

intuitionistic linear logic are defined by the following grammar (a is an atomic formula):

A,B,C ::= a | 1 | A⊗B | A(B | > | A&B | !A

Intuitionistic derivability for this fragment is expressed by means of sequents of the form

Γ; ∆ ` A

where the unrestricted context Γ and the linear context ∆ are multisets of formulas. We

define contexts by means of the following grammar:

Γ,∆ ::= · | ∆, A

Y. Deng, R. J. Simmons and I. Cervesato 4

where “·” represents the empty context, and “,” denotes the context extension operation:

∆, A is the context obtained by adding the formula A to the context ∆. As usual, we

will tacitly treat “,” as an associative and commutative context union operator “∆1,∆2”

with the unit “·”, which indeed allows us to think of contexts as multisets.

Derivability in intuitionistic linear logic is defined by the inference rules in Figure 1,

which follow a standard presentation of propositional intuitionistic linear logic, called

Dual Intuitionistic Linear Logic (or DILL) Barber (1996), Cervesato and Scedrov (2009).

A sequent Γ; ∆ ` A is derivable if there is a valid derivation with Γ; ∆ ` A as its root. A

DILL sequent Γ; ∆ ` A corresponds to !Γ,∆ ` A in Girard’s original presentation Girard

(1987). In the first part of this paper, we will be working with the sublanguage of linear

logic where the unrestricted context Γ is empty and there are no occurrences of the

formula !A. We will then abbreviate the purely linear sequent ·; ∆ ` A as ∆ ` A.

The remainder of the section is as follows: in Section 2.1 we discuss the fundamental

metatheoretic results for dual intuitionistic linear logic — the core of the “proof theorist’s

toolkit.” In Section 2.2, we introduce the logical preorder, a natural semantic relationship

between contexts that will be our connection to the exploration of the “process calculist’s

toolkit” in future sections. In Section 2.3, we reveal the nice connection between these

two approaches. In Section 2.4, we give a purely inductive characterization of the logical

preorder.

2.1. Metatheory of linear logic

Dual intuitionistic linear logic enjoys the same metatheoretic properties as traditional

logic. In particular, it supports inlining lemmas (which is formalized as a property called

the “admissibility of cut”) and proving any formula on the basis of its own assumption

(this “identity” lemma generalizes rule init to arbitrary formulas). These properties are

proved using Gentzen’s methodology, the aforementioned standard toolkit of a working

proof theorist Gentzen (1935), Pfenning (2000). The relevant theorems are these:

Proposition 2.1 (Weakening). If Γ; ∆ ` A, then Γ,Γ′; ∆ ` A for any Γ′.

Proof. By induction on the structure of the given derivation.

Proposition 2.2 (Identity). Γ;A ` A for all formulas A and unrestricted contexts Γ.

Proof. By induction on the structure of the formula A.

This proposition entails that the following “identity” rule is admissible:

Γ;A ` A
id

Proposition 2.3 (Cut admissibility). If Γ; ∆ ` A and Γ′; ∆′, A ` C, then we have

Γ′,Γ; ∆′,∆ ` C.

Proof. We generalize the induction hypothesis by proving the statement of the theorem

together with the statement “if Γ; · ` A and Γ′, A; ∆′ ` C, then Γ′,Γ; ∆′ ` C.” Then the

proof proceeds by mutual, lexicographic induction, first on the structure of the formula

Relating Reasoning Methodologies in Linear Logic and Process Algebra 5

A, and second by induction on the structure of the two given derivations Pfenning (2000).

Proposition 2.3 is called the “cut admissibility” theorem because the proof indicates that

these two “cut” rules are admissible:

Γ; ∆ ` A Γ′; ∆′, A ` C
Γ′,Γ; ∆′,∆ ` C

cut
Γ; · ` A Γ′, A; ∆′ ` C

Γ′,Γ; ∆′ ` C
cut !

From the proof theory perspective, Propositions 2.2 and 2.3 are canonical and estab-

lish fundamental properties of the logic; any system of rules not validating the identity

and cut admissibility theorems can hardly be called a logic. One relevant point about

the proofs of Propositions 2.2 and 2.3 is that they are quite modular with respect to

various sublanguages of linear logic. Essentially any syntactic restriction of the language

of formulas, and certainly every restriction considered in this paper, preserves the va-

lidity of the identity and cut properties. They also hold for larger fragments of linear

logic, for example with additive disjunction or quantifiers (this latter case requires up-

grading the derivability judgment with a context Σ of first-order variables and therefore

the statements of the last two propositions above).

2.2. The logical preorder

Girard’s seminal paper on linear logic Girard (1987) already hinted at a relationship

between the then-new formalism and concurrency. This intuition was later fleshed out

into several interpretations of process algebras into linear logic Abramsky (1994), Miller

(1992). In this paper, we will follow the process-as-formula approach Miller (1992), which

understand each process constructor as one of the connectives or quantifiers of linear logic.

A process is therefore mapped to a linear logic formula and a system of processes to the

context Γ; ∆ of a sequent Γ; ∆ ` A. The formula A on the right-hand side of this sequent

is viewed as an observation or property about these processes. We will formalize and

further discuss these notions in Section 3.

The study of process calculi is primarily concerned with the relationships between

different processes, but the only judgment that we have so far for linear logic is deriv-

ability, Γ; ∆ ` A, which expresses that the process state (Γ; ∆) satisfies the formula or

specification A.

In the formulation of logics for process calculi, a central judgment is P |= φ, which

states that the process P satisfies some formula φ. This leads to a natural definition of

a logical preorder, where P �l Q if P |= φ implies Q |= φ for all φ; in other words, if the

set of formulas satisfied by the former is included in the set of formulas satisfied by the

latter. See e.g., Hennessy and Milner (1985) for an example in classical process algebra

and Deng et al. (2007), Deng and Du (2011) in probabilistic process algebra. Our goal is

to give a definition of P �l Q where P and Q are process states in their incarnation as

linear logic formulas.

If we choose to look at the derivability judgment Γ; ∆ ` A as analogous to the judg-

ment P |= φ, then it gives us an obvious way of relating process states: a specific process

Y. Deng, R. J. Simmons and I. Cervesato 6

state (Γspecific ; ∆specific) is generalized by a general process state (Γgeneral ; ∆general) if

all formulas A satisfied by the specific process are also satisfied by the general pro-

cess. In other words, we can define a preorder (Γspecific ; ∆specific) �l (Γgeneral ; ∆general),

which we will also call the logical preorder, which holds if Γspecific ; ∆specific ` C implies

Γgeneral ; ∆general ` C for all C.

This is an intuitively reasonable definition, but, as we explain below, that definition

requires us to assume some specific properties of the logic. By giving a slightly more

general (but ultimately equivalent) definition of the logical preorder, we can avoid making

a priori assumptions about the relationship between logical derivability and the logical

preorder.

Definition 2.4 (Logical preorder). The logical preorder is the smallest relation �l on

states such that (Γ1; ∆1) �l (Γ2; ∆2) if, for all Γ′, ∆′, and C, we have Γ′,Γ1; ∆′,∆1 ` C
implies Γ′,Γ2; ∆′,∆2 ` C.

The only difference between our informal motivation and Definition 2.4 is that, in the

latter, the specific and general process states must both satisfy the same formula C after

being extended with the same unrestricted context Γ′ and linear context ∆′.

Because the (R and !L rules are invertible (for each rule, the conclusion implies

the premise), this definition is equivalent to the definition that does not use extended

contexts. This is because, if Γ′ = A1, . . . , An and ∆′ = B1, . . . , Bm, then the judgment

Γ′,Γ; ∆′,∆ ` C can be derived if and only if the judgment

Γ; ∆ ` !A1(. . .(!An(B1(. . .(Bm(C

can be derived. However, the proof of invertibility relies on the metatheory of linear logic

as presented in the previous section. The more “contextual” version in Definition 2.4

allows us to talk about the relationship between the derivability judgment and the logical

preorder without baking in any assumptions about invertibility.

Altogether, we are taking the view, common in practice, that the context part of the

sequent (Γ; ∆) represents the state of some system component and that the consequent

A corresponds to some property satisfied by this system. Then, the logical preorder

compares specifications on the basis of the properties they satisfy, possibly after the

components they describe are plugged into a larger system.

As a sanity check, we can verify that the relation �l is indeed a preorder. Note that this

is independent of the actual rules defining derivability. It follows only from the definition

of the relation and the fact that informal implication is itself reflexive and transitive.

This means that �l is a preorder for any fragment of linear logic we may care to study.

Theorem 2.5. The logical preorder �l is a preorder.

Proof. We need to show that �l is reflexive and transitive.

Reflexivity:Expanding the definition, the reflexivity statement, (Γ; ∆) �l (Γ; ∆) for all

A assumes the form “for all Γ′, ∆′ and A if Γ,Γ′; ∆,∆′ ` A, then Γ,Γ′; ∆,∆′ ` A”.

This holds trivially.

Transitivity:We want to prove that if (∆1; Γ1) �l (∆2; Γ2) and (∆2; Γ2) �l (∆3; Γ3)

Relating Reasoning Methodologies in Linear Logic and Process Algebra 7

then (∆1; Γ1) �l (∆3; Γ3). By the definition of �l, we know that for any Γ′, ∆′ and

A′, if Γ1,Γ
′; ∆1,∆

′ ` A′ then Γ2,Γ
′; ∆2,∆

′ ` A′. Similarly, for any Γ′′, ∆′′ and A′′, if

Γ2,Γ
′′; ∆2,∆

′′ ` A′′ then Γ3,Γ
′′; ∆3,∆

′′ ` A′′. If we choose Γ′′, ∆′′ and A′′ to be

precisely Γ′, ∆′ and A′ respectively, we can chain these two implications, obtaining

that for any Γ′, ∆′ and A′, if Γ1,Γ
′; ∆1,∆

′ ` A′ then Γ3,Γ
′; ∆3,∆

′ ` A′. This is

however exactly the definition of logical preorder: therefore (∆1; Γ1) �l (∆3; Γ3).

Therefore �l is indeed a preorder.

2.3. Relating cut, identity, and the logical preorder

We have now defined two judgments. The derivability judgment of linear logic, written

as Γ; ∆ ` A, declares that the process state (Γ; ∆) meets the specification set by A. The

logical preorder (Γ1; ∆1) �l (Γ2; ∆2), says that the process state (Γ1; ∆1) can act as a

specific instance of the more general process state (Γ2; ∆2). Recall from the introduction

that linear logic formulas have two natures: they are both 1) the specifications that a

process state can satisfy and 2) the atomic constituents of a process state. By the conven-

tion that (·; ∆) can be written as ∆, we can also think of the formula A as synonymous

with the singleton process state (·;A).

The derivability judgment Γ; ∆ ` A says that A is one specification that the pro-

cess state (Γ; ∆) satisfies; of course it may satisfy many other specifications as well —

interpreted as a specification, the formula A is specific, and the process state (Γ; ∆)

is general. We relate a specific and general process states with the logical preorder:

(Γspecific ; ∆specific) �l (Γgeneral ; ∆general). This suggests that, if the two natures of a for-

mula are in harmony, we can expect that Γ; ∆ ` A exactly when (·;A) �l (Γ; ∆), a

suggestion that is captured by the following proposition:

Proposition 2.6 (Harmony for the logical preorder). Γ; ∆ ` A if and only if

A �l (Γ; ∆).

Proof. This will be a simple corollary of Theorem 2.7 below — read on.

Proposition 2.6 should be seen as a sort of sanity check that the logical preorder’s

notion of “more specific” and “more general” makes sense relative to the derivability

judgment’s notion. A result that initially surprised us is that this sanity check is exactly

equivalent to the classic sanity checks of the proof theorists: identity and cut admissibility.

Theorem 2.7. Proposition 2.6 holds if and only if Propositions 2.2 and 2.3 hold.

Proof. This theorem establishes the equivalence between two propositions; both direc-

tions can be established independently.

Assuming harmony, prove identity and cut. For the identity theorem, we must

show A ` A for some arbitrary formula A. By harmony, it suffices to show A �l A, and

�l is reflexive (Theorem 2.5).

For the cut admissibility theorem, we are given Γ; ∆ ` A and Γ′; ∆′, A ` C and must

prove Γ′,Γ; ∆′,∆ ` C. By harmony and the first given derivation, we have A �l (Γ; ∆).

Expanding Definition 2.4, this means that, for all Γ′, ∆′, and C, we have Γ′; ∆′, A ` C

Y. Deng, R. J. Simmons and I. Cervesato 8

implies Γ′,Γ; ∆′,∆ ` C. So by letting Γ′ = Γ′, ∆′ = ∆′, and C = C and applying the

second given derivation Γ′; ∆′, A ` C, we get Γ′,Γ; ∆′,∆ ` C, which was what we needed

to prove.

Assuming identity and cut, prove harmony. For the forward implication, we

are given Γ; ∆ ` A and we need to prove A �l (Γ; ∆). Expanding Definition 2.4, this

means that, for an arbitrary Γ′, ∆′, and C, we are given Γ′; ∆′, A ` C and need to prove

Γ′,Γ; ∆′,∆ ` C. The statement of cut admissibility, Proposition 2.3, is that if Γ; ∆ ` A
and Γ′; ∆′, A ` C, then Γ′,Γ; ∆′,∆ ` C. We have the two premises, and the conclusion

is what we needed to prove.

For the reverse implication, we are given A �l (Γ; ∆) and we need to prove Γ; ∆ ` A.

Expanding Definition 2.4, this means that, for all Γ′, ∆′, and C, we have that Γ′; ∆′, A `
C implies Γ′,Γ; ∆′,∆ ` C. So by letting Γ′ = ·, ∆′ = ·, and C = A, we have that A ` A
implies Γ; ∆ ` A. The conclusion is what we needed to show, and the premise is exactly

the statement of identity, Proposition 2.2, so we are done.

It is critical to note that Theorem 2.7 holds entirely independently of the actual def-

inition of the derivability judgment Γ; ∆ ` A. This means, in particular, that it holds

independently of the actual validity of Propositions 2.2 and 2.3 as they were presented

here, and that it holds for any alternative definition of the derivability judgment that we

might present. Furthermore, because Propositions 2.2 and 2.3 do, of course, hold for dual

intuitionistic linear logic, Proposition 2.6 holds as a simple corollary of Theorem 2.7.

The proof theorist’s sanity checks are motivated by arguments that are somewhat philo-

sophical. In Girard’s Proofs and Types, cut and identity are motivated by an observation

that hypotheses and conclusions should have equivalent epistemic strength Girard et al.

(1989). Martin Löf’s judgmental methodology gives a weaker sanity check, local sound-

ness Martin-Löf (1996), which was augmented by Pfenning and Davies with a sanity

check of local completeness Pfenning and Davies (2001). Local soundness and complete-

ness take the verificationist viewpoint that the meaning of a logical connective is given by

its introduction rules in a natural deduction presentation of the logic. This means that

the elimination rules must be justified as neither too strong (soundness) nor too weak

(completeness) relative to the introduction rules. The surprising (at least, initially, to

us) equivalence of Proposition 2.6 to the critical sanity checks of sequent calculi suggests

that the process state interpretation of linear logic can actually be treated as fundamen-

tal, that is, as a philosophical organizing principle for sequent calculus presentations of

logic. This connection between the logical preorder and the core reasoning methodologies

for linear logic grounds our subsequent exploration, which will rely more heavily on the

reasoning methodologies used in the study of process algebra.

2.4. Re-characterizing the logical preorder

In the previous section, we have argued for the canonicity of the logical preorder by

motivating harmony and showing that harmony is equivalent to the canonical properties

of cut and identity. However, it is not obvious, given our discussion so far that it is easy

or even possible to prove interesting properties of the logical preorder. In this section, we

Relating Reasoning Methodologies in Linear Logic and Process Algebra 9

show that there is an alternate characterization of the logical preorder for DILL directly

in terms of the existing derivability judgment Γ; ∆ ` A. This re-characterization makes it

more obvious that the logical preorder is a fundamentally inductive concept. However, it

relies on the provability rules for a specific logic, here DILL, while our original definition

is fully general.

This re-characterization depends on the auxiliary concepts of the tensorial product of

a linear context ∆, written
⊗

∆, and exponential linearization of an unrestricted context

Γ, written !Γ, which are defined as follows:{⊗
(·) = 1⊗
(∆, A) = (

⊗
∆)⊗A

{
!(·) = ·
!(Γ, A) = (!Γ), !A

The main result of this section is given by the following theorem.

Theorem 2.8. (Γ1; ∆1) �l (Γ2; ∆2) iff Γ2; ∆2 `
⊗

∆1⊗
⊗

!Γ1.

Proof. (⇒) Assume that (Γ1; ∆1) �l (Γ2; ∆2). Then, by definition, for every Γ, ∆

and A such that Γ1,Γ; ∆1,∆ ` A is derivable, there is a derivation of Γ2,Γ; ∆2,∆ ` A.

Take Γ = ∆ = · and A =
⊗

∆1⊗
⊗

!Γ1. If we can produce a derivation of Γ1; ∆1 `⊗
∆1⊗

⊗
!Γ1, then our desired result follows. Here is a schematic derivation of this

sequent:

Γ1; ∆1 `
⊗

∆1
⊗R,1R, id

· · ·

Γ1;Ci ` Ci
id

Γ1; · ` Ci
clone

Γ1; · ` !Ci
!R

Γ1; · `
⊗

!Γ1
⊗R,1R

Γ1; ∆1 `
⊗

∆1⊗
⊗

!Γ1

⊗R

Here, we assume that Γ1 expands to C1, . . . , Ci, . . . , Cn for an appropriate n ≥ 0.

(⇐) Assume now that Γ2; ∆2 `
⊗

∆1⊗
⊗

!Γ1 with derivationD. To show that (Γ1; ∆1) �l
(Γ2; ∆2), we need to show that, given Γ, ∆, A and a derivation D1 of Γ1,Γ; ∆1,∆ ` A,

we can construct a derivation of Γ2,Γ; ∆2,∆ ` A.

To do so, we start by weakening D with Γ and D1 with Γ2 by means of Proposi-

tion 2.1. Let D′ and D′1 be the resulting derivations of Γ2,Γ; ∆2 `
⊗

∆1⊗
⊗

!Γ1 and

Γ2,Γ1,Γ; ∆1,∆ ` A respectively. We then build the desired derivation schematically as

follows:

D′
Γ2,Γ; ∆2 `

⊗
∆1⊗

⊗
!Γ1

D′1
Γ2,Γ1,Γ; ∆1,∆ ` A
Γ2,Γ; ∆1, !Γ1,∆ ` A

!L

Γ2,Γ;
⊗

∆1⊗
⊗

!Γ1,∆ ` A
⊗L,1L

Γ2,Γ; ∆2,∆ ` A
cut

This replaces an extensional test that considers arbitrary contexts and goal formulas

with an existential test that only requires exhibiting a single derivation. This makes it

Y. Deng, R. J. Simmons and I. Cervesato 10

evident that the logical preorder is a semi-decidable relation. It is interesting to specialize

this result to the fragment of our language without exponentials nor permanent contexts.

We obtain:

Corollary 2.9. ∆1 �l ∆2 iff ∆2 `
⊗

∆1.

For this language fragment, it is decidable whether ∆ ` A has a derivation. Therefore,

the logical preorder relation is decidable too: given ∆1 and ∆2, it is decidable whether

∆1 �l ∆2.

3. Process Interpretation and the Barbed Preorder

The remainder of this paper will explore the relationship between the logical preorder

just introduced and a second relation, the barbed preorder, that emerges from trying to

directly understand transitions on linear logic process states. We will do so gradually.

Indeed, this section and the next will concentrate on a fragment of intuitionistic linear

logic as presented in Section 2. This language is given by the following grammar:

Formulas A,B,C ::= a | 1 | A⊗B | a(B | > | A&B

This fragment is purely linear (there is no exponential !A) and the antecedents of linear

implications are required to be atomic. Our derivability judgment will always have an

empty unrestricted context. Therefore, we will write it simply ∆ ` A. As a consequence,

the definition of logical preorder simplifies to “∆1 �l ∆2 iff, for all ∆ and A, if ∆1,∆ ` A
then ∆2,∆ ` A.

This section is written from a process calculus perspective; we will forget, for now, that

we presented a sequent calculus in Figure 1 that assigns meaning to the propositions of

this fragment of linear logic. In that story, the meaning of propositions is given by the

definition of derivability ∆ ` A which treats A as a specification that the process state ∆

satisfies. In this story, we will try to understand propositions directly by describing their

behavior as constituents of a process state directly. The result is somewhat analogous to

a fragment of CCS Milner (1989) with CSP-style internal choice Hoare (1985):

a atomic process that sends a

1 null process

A⊗B process that forks into processes A and B

a(B process that receives a and continues as B

> stuck process

A&B process that can behave either as A or as B

According to this interpretation, a process state ∆ is a system of interacting processes

represented by formulas. Then, the empty context “·” is interpreted as a null process

while the context constructor “,” is a top-level parallel composition. This structure,

which makes contexts commutative monoids, is interpreted as imposing a structural

equivalence among the corresponding systems of processes. We write this equivalence

as ≡ when stressing this interpretation. It is the least relation satisfying the following

Relating Reasoning Methodologies in Linear Logic and Process Algebra 11

(∆,1) ∆ (1)

(∆, A⊗B) (∆, A,B) (⊗)

(∆, A&B) (∆, A) (&1)

(∆, A&B) (∆, B) (&2)

(∆, a, a(B) (∆, B) (()

(No rule for >)

Fig. 2. The transition formulation of a fragment of linear logic

equations:

∆, · ≡ ∆

∆1,∆2 ≡ ∆2,∆1

∆1, (∆2,∆3) ≡ (∆1,∆2),∆3

We will always consider contexts modulo this structural equality, and therefore treat

equivalent contexts as syntactically identical.

The analogy with CCS above motivates the reduction relation between process states

defined in Figure 2. A formula A⊗B (parallel composition) transitions to the two for-

mulas A and B in parallel (rule ⊗), for instance, and a formula A&B (choice) either

transitions to A or to B (rules &1 and &2). The rule corresponding to implication

is also worth noting: a formula a(B can interact with an atomic formula a to produce

the formula B; we think of the atomic formula a as sending a message asynchronously

and a(B as receiving that message.

Proof theory interlude A proof theorist will recognize the strong relationship be-

tween the rules in Figure 2 and the left rules from the sequent calculus presentation in

Figure 1. This relationship has been studied in details in Cervesato and Scedrov (2009).

It is made explicit in the current setting by the following proposition:

Proposition 3.1. If ∆ ∆′ and ∆′ ` C, then ∆ ` C.

Proof. This proof proceeds by case analysis on the reduction ∆ ∆′. Most of the

cases are straightforward, we give two. If we have a reduction by &2, then we have

∆, A ` C and must prove ∆, A&B ` C, which we can do by rule &L2. Alternatively, if

we have a reduction by (, then we have ∆ ` B and must prove ∆, a, a(B ` C. We

can prove a ` a by init, and therefore the result follows by (L.

This theorem can also be understood as demonstrating the admissibility of the following

rule:

∆ ∆′ ∆′ ` A
∆ ` A

transition

This single rule essentially replaces all the left rules in Figure 1. This includes rule (L

in the instance studied here (and larger fragment), a derivation of whose left premise can

always be inlined so the context ∆1 degenerates to just a. A detailed study, inclusive of

all proofs, can be found in Cervesato and Scedrov (2009).

Let ∗ be the reflexive and transitive closure of . Then an easy induction proves a

Y. Deng, R. J. Simmons and I. Cervesato 12

variant of Proposition 3.1 that strengthens to ∗. It yields the following admissible

rule.

∆ ∗ ∆′ ∆′ ` A
∆ ` A

transition∗

Another statement that we can prove is that, given the transition rule or the transition∗

rule, all the left rules of the sequent calculus are admissible. Such a proof is straightfor-

ward; the only interesting case is proving (L admissible. However, we will not discuss

this property any further in this paper. (This concludes our proof theory interlude.)

We will now define the barbed preorder in Section 3.1 and explore some of its properties

in Section 3.2.

3.1. The barbed preorder

As we once again forget that we know anything about the proof-theoretic notion of

derivability, we turn to the following question: what does it mean for one process state

to behave like another process state?† Any relation R that declares ∆1 R ∆2 when ∆1’s

behavior can be imitated by ∆2 will be called a behavioral preorder,‡ and we will describe

a set of desiderata for what makes a good behavioral preorder.

The most fundamental thing a process can do is to be observed; observations are

called “barbs” in the language of the process calculists. We start with the idea that we

can observe only the presence of an atomic proposition in a context. Therefore, if we want

to claim (∆1, a) is imitated by ∆2 (that is, if (∆1, a) R ∆2 for some behavioral preorder

R), then we should be able to observe the presence of a in ∆2. But it is not quite right

to require that ∆2 ≡ (∆′2, a); we need to give the process state ∆2 some time to compute

before it is forced to cough up an observation. For this reason we introduce the auxiliary

notation ∆⇓a, which says that ∆ ∗ (∆′, a) for some ∆′. This auxiliary notion lets

us define our first desideratum: behavioral preorders should be barb-preserving.

That is, if we say that (∆1, a) can be imitated by ∆2, then it had better be the case that

∆2 ⇓a.

The next two desiderata do not require any auxiliary concepts. If a process ∆1 is

imitated by ∆2, and ∆1 ∆′1, then we should expect ∆2 to be able to similarly evolve to

a state that imitates ∆′1. In other words, behavioral preorders should be reduction-

closed. The third desideratum has to do with surrounding contexts. If ∆1 is imitated

by ∆2, then if we put both ∆1 and ∆2 in parallel with some other process state ∆′, then

(∆2,∆
′) should still imitate (∆1,∆

′). In other words, behavioral preorders should

be compositional.

† The following discussion is intended to be a gentle introduction to some core ideas in process calculus.
We want to stress that, with the exception of partition preservation, this section discusses standard

and elementary concepts in the process calculus literature.
‡ This is a convenient misnomer: while the largest behavioral preorder (which we will name the barbed
preorder) will turn out to be a true preorder, we will not stipulate that every behavioral preorder is

a proper preorder, and indeed many of them are not reflexive — the empty relation will satisfy all of

our desiderata for being a behavioral “preorder.”

Relating Reasoning Methodologies in Linear Logic and Process Algebra 13

These three desiderata — barb-preservation, reduction-closure, and compositionality

— are standard ideas in what we have been calling the “process calculist’s toolkit,”

and it would be possible to define behavioral preorders entirely in terms of these three

desiderata. To foreshadow the developments of the next section, we will eventually want

to show that the logical preorder ∆1 �l ∆2 is sound — that it is a behavioral pre-

order according to these desiderata. This would be provable: the logical preorder is

barb-preserving, reduction-closed, and compositional. However, the logical preorder is

incomplete with respect to these three desiderata. Here is a sketch of the reason why:

there is a barb-preserving, reduction-closed, and compositional behavioral preorder which

says that the process state (a(1, b(1) is imitated by the process state (a(b(1).§

However, (a(1, b(1) 6�l (a(b(1) because a(1, b(1 ` (a(1)⊗ (b(1) but

a(b(1 6` (a(1)⊗ (b(1).

The logical preorder is, to a degree, fixed and canonical due to its relationship with

the standard metatheory of the sequent calculus, so if we want the logical preorder to

be complete with respect to our desiderata, we have to add additional desideratum.

The culprit for incompleteness, as we identified it, was the derivation rule for A ⊗ B,

which requires us to partition a process state into two parts and observe those parts

independently. The nullary version of this is 1, the unit of ⊗, which requires us to split

a process state into zero pieces; that is only possible if the process state’s linear context

is empty. Motivated by this possibility, we add a fourth desideratum, that behavioral

preorders should be partition-preserving. In the binary case, this means that, if

(∆1a,∆1b) is imitated by ∆2, then it must be the case that ∆2 ∗ (∆2a,∆2b) where ∆1a

is imitated by ∆2a and ∆1b is imitated by ∆2b. In the nullary case, this means that, if ·
is imitated by ∆, then it must be the case that ∆2 ∗ ·.¶

Formally, these desiderata are captured by the following definition. In this definition, we

use the more traditional notation from process calculus and say that ∆ ↓a if ∆ = (∆′, a)

for some ∆′.

Definition 3.2. Let R be a binary relation over states. We say that R is

— barb-preserving if, whenever ∆1 R ∆2 and ∆1 ↓a for any atomic proposition a, we

have that ∆2 ⇓a.

§ The proof that there is a barb-preserving, reduction-closed, and compositional relation R such that

(a(1, b(1) R (a(b(1) is complex. The simplest way we know how to establish this is to

define a labeled transition system which is equivalent to the largest barb-preserving, reduction-closed,
and compositional relation. We can then show that, according to this labeled transition system,

(a(1, b(1) is related to (a(b(1) in a simulation for asynchronous communicating processes.
This is essentially the same development we will perform in Section 4 for �b, the largest barb-
preserving, reduction-closed, compositional, and partition-preserving relation, that we are about to

define.
¶ A concept reminiscent of this notion of partition-preservation has been given in probabilistic process

algebras Deng and Hennessy (2011); the similar concept goes by the name Markov bisimulation in

that setting. The idea is that, in order to compare two distributions, we decompose them into an equal
number of point distributions on states and then compare states pointwise. In the literature there are
also formalisms with locality-aware semantics, such as the synchronous CCS and spatial logic Caires

and Cardelli (2003).

Y. Deng, R. J. Simmons and I. Cervesato 14

— reduction-closed if ∆1 R ∆2 implies that whenever ∆1 ∆′1, there exists ∆′2 such

that ∆2 ∗ ∆′2 and ∆′1 R ∆′2.

— compositional if ∆1 R ∆2 implies (∆′,∆1) R (∆′,∆2) for all ∆′.

— partition-preserving if ∆1 R ∆2 implies that

1 if ∆1 ≡ ·, then ∆2 ∗ ·,

2 for all ∆1a and ∆1b, if ∆1 ≡ (∆1a,∆1b) then there exist ∆2a and ∆2b such that

∆2 ∗ (∆2a,∆2b) and furthermore ∆1a R ∆2a and ∆1b R ∆2b.

These desiderata are useful in letting us conclude that one process does not imitate an-

other. Barb-preservation lets us conclude that a is not imitated by (b, b, b), and reduction-

closure furthermore lets us conclude that (b, b(a) is not imitated by (b, b, b). Partition-

preservation lets us conclude that (a(b, a(c) is not imitated by a(a((b⊗ c). Com-

positionality lets us conclude that (a(b, b(c) is not imitated by (a(c), because if

we put both process states in parallel with the process state b, then we would be able

to step, in the former case, to (a(b, c) and then observe that (a(b, c) ↓c; the process

(a(c, b) is unable to keep up.

Concluding that (a(1, b(1) is not imitated by (a(b(1) — as is required by

our goal of completeness relative to the logical preorder — requires compositionality and

partition-preservation. If (a(1, b(1) is imitated by (a(b(1), then by partition

preservation (and the fact that (a(b(1) can make no transitions), we must be able

to split (a(b(1) into two parts, ∆ and ∆′ so that a(1 is imitated by ∆ and b(1

is imitated by ∆′. That necessarily means that ∆ = · and ∆′ = (a(b(1) or vice-

versa. Because of compositionality, if (a(1) were imitated by · then (a, a(1) would

be imitated by a, but (a, a(1) ∗ · and a 6 ∗ ·. Therefore, (a(1) cannot be imitated

by ·, and by a similar argument (b(1) cannot be imitated by ·. This furthermore

refutes the proposition that (a(1, b(1) is imitated by (a(b(1), as we had hoped.

Partition-preservation is discussed further in Remark 4.17.

Our desiderata allow us to define the most generous behavioral preorder by coinduction;

we call this relation the barbed preorder. The definition has an innocent-until-proven-

guilty flavor: unless there is some reason, arising from the desiderata, that one process

cannot imitate another, then the barbed preorder declares the two process states to be

in relation. This coinductive definition is standard from process algebra (modulo our

additional requirement of partition-preservation).

Definition 3.3 (Barbed preorder). The barbed preorder, denoted by �b, is the largest

relation over process states which is barb-preserving, reduction-closed, compositional, and

partition-preserving.

Barbed equivalence, which is the symmetric closure of the barbed preorder, has been

widely studied in concurrency theory, though its appearance in linear logic seems to be

new. It is also known as reduction barbed congruence and used in a variety of process

calculi Honda and Tokoro (1992), Rathke and Sobocinski (2008), Fournet and Gonthier

(2005), Deng and Hennessy (2011).

Relating Reasoning Methodologies in Linear Logic and Process Algebra 15

3.2. Properties of the barbed preorder

Having defined the barbed preorder as the largest barb-preserving, reduction-closed,

compositional, and partition-preserving binary relation over process states, we will close

out this section by proving a few technical lemmas.

We start with three small “multistep” lemmas: the first lets us act as if reduction closure

was defined exclusively in terms of ∗, the second lets us act as if barb preservation

was defined exclusively in terms of ⇓a, and the third lets us do something similar for

partition preservation. These will be used later on, and also help us prove that �b is

actually a preorder. Theorem 3.7 establishes that �b is indeed a preorder. Differently from

the common phrase “behavioral preorders” discusses above, which are not necessarily

preorders, our barbed preorder is a genuine preorder. Finally, Lemma 3.9 is a technical

lemma about observations that we need later on in the proof of Theorem 4.12, and the

atom renaming lemma (Lemma 3.8) is needed to prove this technical lemma.

Lemma 3.4 (Multistep reduction closure). Suppose ∆1 �b ∆2. If ∆1 ∗ ∆′1, then

there exists a ∆′2 such that ∆2 ∗ ∆′2 and ∆′1 �b ∆′2.

Proof. We proceed by induction on the number of steps in ∆1 ∗ ∆′1.

— Suppose ∆1 ∗ ∆′1 in zero steps (that is, ∆1 ≡ ∆′1). Then ∆2 ∗ ∆2 in zero steps

and ∆′1 �b ∆2 by assumption.

— Suppose ∆1 ∆′′1
∗ ∆′1. Since ∆1 �b ∆2, there exists some ∆′′2 such that ∆2 ∗

∆′′2 and ∆′′1 �b ∆′′2 . The induction hypothesis then implies the existence of some ∆′2
such that ∆′′2

∗ ∆′2 and ∆′1 �b ∆′2. Since the relation ∗ is transitive, we have

∆2 ∗ ∆′2 as required.

Lemma 3.5 (Multistep barb preservation). Suppose ∆1 �b ∆2. If ∆1 ⇓a then

∆2 ⇓a.

Proof. If ∆1 ⇓a, then there exists ∆′1 with ∆1 ∗ ∆′1 and ∆′1 ↓a. By multistep re-

duction closure (Lemma 3.4), there exists ∆′2 such that ∆2 ∗ ∆′2 and ∆′1 �b ∆′2. The

latter and ∆′1 ↓a together imply ∆′2 ⇓a, i.e. there exists some ∆′′2 such that ∆′2
∗ ∆′′2

and ∆′′2 ↓a. The transitivity of ∗ then yields ∆2 ∗ ∆′′2 . It follows that ∆2 ⇓a.

Lemma 3.6 (Multistep partition preservation). Suppose ∆1 �b ∆2. If ∆1 ∗ ·,
then ∆2 ∗ ·, and if ∆1 ∗ (∆1a,∆1b), then there exist ∆2a and ∆2b such that ∆2 ∗

(∆2a,∆2b), ∆1a �b ∆2a, and ∆1b �b ∆2b.

Proof. In the first case, we assume ∆1 ∗ · and have by multistep reduction closure

(Lemma 3.4) that ∆2 ∗ ∆′2 such that · �b ∆′2. Then, by partition preservation, we

have that ∆′2
∗ ·. The result then follows by the transitivity of ∗.

In the second case, we assume ∆1 ∗ (∆1a,∆1b) and have by multistep reduction

closure (Lemma 3.4) that ∆2 ∗ ∆′2 such that (∆1a,∆1b) �b ∆′2. Then, by partition

preservation, we have that ∆′2
∗ (∆2a,∆2b) such that ∆1a �b ∆2a and ∆1b �b ∆2b.

The result then follows by the transitivity of ∗.

Y. Deng, R. J. Simmons and I. Cervesato 16

The following three proofs, of Theorem 3.7, Lemma 3.8, and Lemma 3.9, proceed by

coinduction. We prove a property P of the barbed preorder �b by defining some relation

R in such a way that it is barb-preserving, reduction-closed, compositional, and partition-

preserving, which establishes that R ⊆ �b. Below we only provide a detailed proof for

Lemma 3.9.

Theorem 3.7. �b is a preorder.

Proof. A preorder is a reflexive and transitive relation. It is straightforward to show

that the identity relation, Rid such that ∆ Rid ∆ for all ∆, is barb-preserving, reduction-

closed, compositional, and partition-preserving. Since �b is the largest relation with these

properties, we have that Rid ⊆ �b and therefore �b is reflexive.

For transitivity we can define the relation

R := {(∆1,∆3) | there is some ∆2 with ∆1 �b ∆2 and ∆2 �b ∆3}.

and show that R ⊆ �b.

Lemma 3.8 (Atom renaming). If ρ is a bijective function substituting atomic propo-

sitions for atomic propositions, then ρ∆1 �b ρ∆2 implies ∆1 �b ∆2

Proof. Two extra lemmas are needed to prove this property. The first, the transi-

tion renaming property, is that ∆ ∆′ iff ρ∆ ρ∆′. This is shown by case anal-

ysis on the given reduction. The second, the multistep transition renaming property,

is that ∆ ∗ ∆′ iff ρ∆ ∗ ρ∆′. This is shown by induction on the structure of

the given reduction and the transition renaming property. Then we define the relation

R := {(∆1,∆2) | ρ∆1 �b ρ∆2} and show that R ⊆ �b.

Lemma 3.9 (Fresh atom removal). If (∆1, a) �b (∆2, a), where a occurs neither in

∆1 nor in ∆2, then ∆1 �b ∆2.

Proof. Consider the relation

R := {(∆1,∆2) | there exists a 6∈ (∆1 ∪∆2) with (∆1, a) �b (∆2, a)}.

It will suffice to show thatR ⊆ �b, because in that case, given (∆1, a) �b (∆2, a) for some

a that occurs neither in ∆1 or ∆2, we will know that ∆1 R ∆2, which will in turn imply

∆1 �b ∆2. We can show that R is barb-preserving, reduction-closed, compositional, and

partition-preserving. Suppose ∆1 R ∆2, that is that (∆1, a) �b (∆2, a) for some arbitrary

a such that a 6∈ ∆1 and a 6∈ ∆2.

Barb-preserving We assume ∆1 ↓b for some arbitrary b and must show that ∆2 ⇓b. It

cannot be the case that ∆1 ↓a, so we have a 6= b. Pick another fresh atomic proposition

c 6∈ (∆1 ∪∆2). By the definition of ↓b and the assumption ∆1 ↓b, we know that ∆1 ≡
∆′1, b. By the compositionality on (∆1, a) �b (∆2, a) we get (b(a(c,∆1, a) �b
(b(a(c,∆2, a). Using rule (we infer that

(b(a(c,∆1, a) (a(c,∆′1, a) (∆′1, c)

Relating Reasoning Methodologies in Linear Logic and Process Algebra 17

which means (b(a(c,∆1, a)⇓c. Then we have (b(a(c,∆2, a)⇓c by multistep

barb preservation (Lemma 3.5). That is, (b(a(c,∆2, a) ∗ (∆′, c). By induction

on the structure of (8), b(a(c must be consumed to produce c, meaning that

∆2 ∗ (∆′2, b) and, consequently, ∆2 ⇓b.
Reduction-closed We assume ∆1 ∆′1 for some arbitrary ∆′1. Clearly, we have

(∆1, a) (∆′1, a). By the definition of reduction-closure on (∆1, a) �b (∆2, a), we

obtain (∆2, a) ∗ ∆∗ and (∆′1, a) �b ∆∗. Moreover, the former implies ∆∗ ≡ (∆′2, a)

with a 6∈ ∆′2 for some ∆′2, by induction on the multistep reduction. So we can rewrite

the latter as (∆′1, a) �b (∆′2, a), which means that ∆′1 R ∆′2.

Compositional We must show (∆,∆1) R (∆,∆2) for arbitrary ∆. Pick another

fresh atomic proposition b 6∈ (∆1 ∪ ∆2 ∪ ∆). By atom renaming (Lemma 3.8) on

(∆1, a) �b (∆2, a) we get (∆1, b) �b (∆2, b). Then (∆,∆1, b) �b (∆,∆2, b) for any ∆

by compositionality. It follows that (∆,∆1) R (∆,∆2).

Partition-preserving We first assume ∆1 ≡ ·. Since (∆1, a) �b (∆2, a) we have a �b
(∆2, a). Then (a, a (1) �b (∆2, a, a(1) by compositionality. By rule (, rule

 1, and the transitivity of ∗, we see that (a, a(1) ∗ ·. Then (∆2, a, a(1) ∗ ·
by multistep partition preservation. By structural induction on ∆2, we obtain that

∆2 ∗ ·.
We next assume ∆1 ≡ (∆1a,∆1b) and must show that ∆2 ∗ (∆2a,∆2b) such that

∆1a R ∆2a and ∆1b R ∆2b. Pick another fresh atomic proposition b 6∈ (∆1 ∪∆2). By

the compositionality on (∆1, a) �b (∆2, a), we have (∆1a,∆1b, a, b) �b (∆2, a, b). By

the definition of partition-preserving, we get (∆2, a, b) ∗ (∆′2a,∆
′
2b) with (∆1a, a) �b

∆′2a and (∆1b, b) �b ∆′2b. By barb-preserving we have ∆′2a ⇓a, which means ∆′2a ≡
(∆2a, a) for some ∆2a with a 6∈ ∆2a by induction on the reduction steps. It follows that

∆1a R ∆2a. Similarly, we can obtain ∆′2b ≡ (∆2b, b) for some ∆2b with ∆1b R ∆2b.

This suffices to show that R ⊆ �b, which concludes the proof.

Note that Lemma 3.9 is invalid if a is not fresh with respect to ∆1 and ∆2. For example,

we have

a �b (a(a, a) but (·) 6�b (a(a)

This will be easy to check when using the results in Section 4.5.

4. Labeled Transitions and the Simulation Preorder

We will now show that, for the restricted fragment of linear logic given in Section 3, the

logical preorder and the barbed preorder coincide. Observe that it is hard to directly use

the barbed preorder to show that one process actually imitates another. For example, in

order to check the compositionality of a relation, all possible surrounding contexts need

to be considered due to the presence of a universal quantifier. To overcome the problem,

the key idea here is to coinductively define a third preorder, which is a labeled simulation

relation based on labeled transition systems, so as to act as a stepping stone between the

logical and barbed preorders.

The overall structure of the relevant proofs up to and including this section is shown

in Figure 4. In Sections 4.1–4.3, we will present our stepping stones: a labeled transition

Y. Deng, R. J. Simmons and I. Cervesato 18

∆′ �s ∆

∆′ �l ∆

∆′ �c ∆

Barbed

Preorder

A �s ∆

Simulation Preorder

∆ ` A

Derivability

A �l ∆

Logical Preorder

Th. 4.16
Th. 4.14

Cut

(Th. 2.7)
Identity

(Th. 2.7)

Th. 4.18

(↑ by Th. 4.14)

(↓ by Th. 4.16)

Th. 4.12

Th. 4.13

Fig. 3. Visual Summary of Equivalence Proofs in Sections 3 and 4

system and the simulation preorder, and in Section 4.4 we will prove some properties of

this preorder. Then, in Section 4.5 we show that the simulation and barbed preorders

coincide, and in Section 4.6 we show that the simulation and logical preorders coincide;

it is an obvious corollary that the logical and barbed preorders coincide.

4.1. Labeled transitions

We will characterize the barbed preorder as a coinductively defined relation. For that

purpose, we give a labeled transition semantics for states. Labels, or actions, are defined

by the following grammar:

Non-receive actions α ::= τ | !a
Generic actions β ::= α | ?a

We distinguish “non-receive” labels, denoted α, as either the silent action τ or a label !a

representing a send action. Generic labels β extend them with receive actions ?a.

The labeled transition semantics for our states, written using the judgment ∆
β−→ ∆′,

is defined by the rules in Figure 4. Since > is a process that is stuck, it has no action

to perform. We write
τ

=⇒ for the reflexive transitive closure of
τ−→, and ∆

β
=⇒ ∆′ for

∆
τ

=⇒ β−→ τ
=⇒ ∆′, if β 6= τ . Note that τ transitions correspond to reductions, as expressed

by Lemma 4.1:

Lemma 4.1. ∆1
τ−→ ∆2 if and only if ∆1 ∆2, and ∆1

τ
=⇒ ∆2 if and only if

∆1 ∗ ∆2.

Proof. The proof of the first statement is by case analysis on the τ transition rules in

Relating Reasoning Methodologies in Linear Logic and Process Algebra 19

(∆, a)
!a−→ ∆

lts−atom
(∆, a(B)

?a−→ (∆, B)
lts(

(∆,1)
τ−→ ∆

lts1
(∆, A⊗B)

τ−→ (∆, A,B)
lts⊗

(∆, A&B)
τ−→ (∆, A)

lts&1
(∆, A&B)

τ−→ (∆, B)
lts&2

(No rule for >)
∆1

!a−→ ∆′
1 ∆2

?a−→ ∆′
2

(∆1,∆2)
τ−→ (∆′

1,∆
′
2)

lts−com

Fig. 4. Labeled Transition System

Figure 4 in one direction and by case analysis on the reduction rules in Figure 2 in the

other.

The second statement follows from the first by induction on the number of steps taken.

Now we can use the labeled transition system to define a simulation relation; simulation

is defined by coinduction and echoes the definition of the barbed preorder in many ways.

However, it critically lacks the compositionality requirement that appears in the definition

of the barbed preorder.

Definition 4.2 (Simulation). A relation R between two processes represented as ∆1

and ∆2 is a simulation if ∆1 R ∆2 implies

1 if ∆1 ≡ ·, then ∆2
τ

=⇒ ·.
2 if ∆1 ≡ (∆′1,∆

′′
1), then ∆2

τ
=⇒ (∆′2,∆

′′
2) for some ∆′2,∆

′′
2 such that ∆′1 R ∆′2 and

∆′′1 R ∆′′2 .

3 whenever ∆1
α−→ ∆′1, there exists ∆′2 such that ∆2

α
=⇒ ∆′2 and ∆′1 R ∆′2.

4 whenever ∆1
?a−→ ∆′1, there exists ∆′2 such that (∆2, a)

τ
=⇒ ∆′2 and ∆′1 R ∆′2.

We write ∆1 �s ∆2 if there is some simulation R such that ∆1 R ∆2.

The last clause in the above definition is inspired by relevant notions of bisimulation

for asynchronous process calculi e.g., Amadio et al. (1998). The “natural” answer for ∆2

to perform the action ?a is not compulsory. If ∆2
?a

=⇒ ∆′2, then we can also obtain ∆′2 by

the transition (∆2, a)
τ

=⇒ ∆′2. In the asynchronous setting, the sender of a message does

not know when the message will be consumed by a receiver because an asynchronous

observer cannot directly detect the receive actions of the observed process.

4.2. Examples

The barbed preorder was good at showing that one process was not imitated by another,

but the simulation preorder is useful for showing that a process state is simulated by

another. We will give a few examples, most of which implicitly utilize the following

property:

Y. Deng, R. J. Simmons and I. Cervesato 20

Remark 4.3. Given a formula A and a context ∆, to check if A �s ∆ holds, there is

no need to consider clause (2) in Definition 4.2 because it holds vacuously.

Proof. We are given that A ≡ (∆′1,∆
′′
1) and we have to pick a ∆′2 and a ∆′′2 such that

∆2
τ

=⇒ (∆′2,∆
′′
2), ∆′1 �s ∆′2, and ∆′′1 �s ∆′′2 . Without loss of generality we can say that

∆′1 ≡ A and ∆′′1 ≡ · — the other case, where ∆′1 ≡ · and ∆′′1 ≡ A, is symmetric. We pick

∆′2 to be ∆2, pick ∆′′2 to be ·, and we must show

— ∆2
τ

=⇒ (∆2, ·) — this is immediate from the reflexivity of
τ

=⇒ and the definition of

barbed equivalence.

— A �s ∆1 — this is what we initially set out to prove, so it follows immediately from

the coinduction hypothesis.

— · �s · — this follows from condition 1, none of the other conditions are applicable.

Given the remark above, we can show that > �s ∆ for any ∆, because > is nei-

ther empty nor able to perform any actions. Therefore, conditions 1, 3, and 4 are met

vacuously. However, 1 6�s >, because > cannot be reduced to · and 1 can (condition 1).

As another example, we have that (a (a) �s (·). Ignoring condition 2 as before,

the only possible transition for (a (a) is (a (a)
?a−→ a. We match this action,

according to condition 4, by letting a
τ

=⇒ a; we then must show a �s a, which again

follows by reflexivity (Lemma 4.8, which we will be proving momentarily). This example

is reminiscent of the law a.a = 0 in the asynchronous π-calculus Amadio et al. (1998). If

a process receives a message and then sends it out, it does not exhibit any visible action

to an observer who communicates asynchronously with the process. Here we also notice

that simulation is incomparable with trace inclusion relation, with the usual definition of

traces on labeled transition systems. On one hand, the process (a(a) has the trace ?a!a

while (·) does not. On the other hand, the process (a(1)⊗(b(1) is not simulated by

(a(b(1)&(b(a(1) but the traces of the former also appear in the latter.

Finally, we show that (a (b (A) �s (b (a (A). The only transition possible

for the (purportedly) simulated process state is (a(b(A)
?a−→ (b(A), which means

that we can proceed by showing that (b (a (A, a)
τ

=⇒ (b (a (A, a) (immediate

from the reflexivity of
τ

=⇒) and that (b (A) �s (b (a (A, a). To prove this, we

observe that the only transition possible for the (purportedly) simulated process is (b(

A)
?b−→ A, which means that we can proceed by showing that (b(a(A, a, b)

τ
=⇒ A

(which can be done in two steps) and that A �s A, which again follows from reflexivity

(Lemma 4.8 again).

Another way of looking at this last example is that, in the case where A is 1, we have

proved that the binary relation

{(a(b(1, b(a(1), (b(1, (b(a(1, a)), (1,1), (·, ·)}

is a simulation. The simulation also works in the other direction — (b (a (A) �s
(a(b(A). Again in the case where A is 1, this is the same as proving that the binary

Relating Reasoning Methodologies in Linear Logic and Process Algebra 21

relation

{(b(a(1, a(b(1), (a(1, (a(b(1, b)), (1,1), (·, ·)}

is a simulation.

However, the two process states are not bisimilar according to the usual definition of

bisimilarity: there is no single relation that simultaneously establishes that b(a(1 is

simulated by a(b(1 and, if we flip the relation around, establishes that a(b(1

is simulated by b(a(1. To see why, consider the pair (b(1, (b(a(1, a)) in the

first of the two simulation relations above. The two process states in the pair are not

similar in both directions: b(1 �s (b(a(1, a) but (b(a(1, a) 6�s b(1, because

(b(a(1, a)
!a−→ b(a(1 while b(1 6 !a=⇒ (condition 3). Thus there is no way to

construct a bisimulation.

4.3. Properties of labeled transitions

Towards the ultimate end of proving that the largest simulation, �s, is actually a pre-

order, we will need a few facts about labeled transitions.

Lemma 4.4 (Compositionality of labeled transitions).

1 If ∆1
β−→ ∆2, then (∆,∆1)

β−→ (∆,∆2).

2 If ∆1
β

=⇒ ∆2, then (∆,∆1)
β

=⇒ (∆,∆2).

Proof. To prove the first statement, we proceed by induction on the derivation of

∆1
β−→ ∆2. There are 7 cases according to Figure 4. All of them are immediate, except the

case of lts−com, which we expand. Suppose ∆1 ≡ (∆′1,∆
′′
1), ∆2 ≡ (∆′2,∆

′′
2), ∆′1

!a−→ ∆′2

and ∆′′1
?a−→ ∆′′2 . By induction, we have (∆,∆′1)

!a−→ (∆,∆′2) for any ∆. Using rule

lts−com on this derivation and ∆′′1
?a−→ ∆′′2 , we obtain (∆,∆′1,∆

′′
1)

τ−→ (∆,∆′2,∆
′′
2), i.e.

(∆,∆1)
τ−→ (∆,∆2).

The second statement follows from the first by induction on the number of steps taken.

Lemma 4.5 (Partitioning). If (∆1,∆2)
β−→ ∆∗ then we must be in one of the following

four cases:

1 ∆1
β−→ ∆′1 and ∆∗ ≡ (∆′1,∆2);

2 ∆2
β−→ ∆′2 and ∆∗ ≡ (∆1,∆

′
2);

3 ∆1
?a−→ ∆′1 and ∆2

!a−→ ∆′2 for some a, such that β is τ and ∆∗ ≡ (∆′1,∆
′
2);

4 ∆1
!a−→ ∆′1 and ∆2

?a−→ ∆′2 for some a, such that β is τ and ∆∗ ≡ (∆′1,∆
′
2).

Proof. There are three possibilities, depending on the forms of β.

— β ≡ !a for some a. Then the last rule used to derive the transition (∆1,∆2)
β−→ ∆∗

must be lts−atom in Figure 4. So a is a member either in ∆1 or in ∆2. Correspondingly,

we are in case 1 or 2.

— β ≡ ?a for some a. Then the last rule used to derive the transition (∆1,∆2)
β−→ ∆∗

Y. Deng, R. J. Simmons and I. Cervesato 22

must be lts(. So a(B is a member either in ∆1 or in ∆2. Correspondingly, we are

in case 1 or 2.

— β ≡ τ . If the last rule used to derive the transition (∆1,∆2)
β−→ ∆∗ is not lts−com,

then the transition is given rise by a particular formula, and we are in case 1 or 2. If

lts−com is the last rule used, there is an input action and an output action happening

at the same time. Either both of them come from ∆1, or both of them come from

∆2, or one action from ∆1 and the other from ∆2. Consequently we are in one of the

four cases above.

In the next lemma, we write
τ⇐= for the reciprocal of

τ
=⇒.

Lemma 4.6.
τ⇐= is a simulation (and, consequently, ∆1

τ
=⇒ ∆2 implies ∆2 �s ∆1).

Proof. We will show that the four conditions in Definition 4.2 are satisfied by
τ⇐=,

which proves that the relation is a simulation; the corollary follows immediately by virtue

of �s being the largest simulation. Suppose ∆2
τ

=⇒ ∆1.

1 If ∆2 ≡ ·, then obviously ∆1
τ

=⇒ ∆2 ≡ ·.
2 If ∆2 ≡ ∆′2,∆

′′
2 , then ∆1

τ
=⇒ (∆′2,∆

′′
2). Taking zero steps we have ∆′2

τ⇐= ∆′2 and

∆′′2
τ⇐= ∆′′2 as required.

3 If ∆2
α−→ ∆′2, then ∆1

τ
=⇒ ∆2

α−→ ∆′2 and therefore ∆2
α

=⇒ ∆′2. Taking zero steps

we have ∆′2
τ⇐= ∆′2 as required.

4 Now suppose ∆2
?a−→ ∆′2. Then there are ∆′′2 and A such that ∆2 ≡ (∆′′2 , a(A) and

∆′2 ≡ (∆′′2 , A). From (∆1, a) we have the following matching transition:

(∆1, a)
τ

=⇒ (∆2, a) by compositionality (Lemma 4.4)

≡ (∆′′2 , a(A, a)
τ−→ (∆′′2 , A) by rule lts−com in Figure 4

≡ ∆′2

Taking zero steps, we have ∆′2
τ⇐= ∆′2 as required.

4.4. Properties of the simulation preorder

It was relatively simple to prove that the barbed preorder was, in fact, a preorder. It is a

bit more difficult to do so for the simulation preorder; our goal in this section is to prove

Theorem 4.11, that the simulation preorder �s is a proper preorder.

The structure of this section mirrors the structure of Section 3.2 (Properties of the

barbed preorder). First we will prove a technical lemma that lets us act as if simulation

was defined exclusively in terms of
β

=⇒ rather than
β−→, and then we prove that simulation

is reflexive (Lemma 4.8), compositional (Lemma 4.9), and transitive (Lemma 4.10), from

which Theorem 4.11 is an immediate result.

Lemma 4.7. If ∆1 �s ∆2 then

Relating Reasoning Methodologies in Linear Logic and Process Algebra 23

1 whenever ∆1
τ

=⇒ ·, then ∆2
τ

=⇒ ·;
2 whenever ∆1

τ
=⇒ (∆′1,∆

′′
1), there exist ∆′2 and ∆′′2 such that ∆2

τ
=⇒ (∆′2,∆

′′
2) and

∆′1 �s ∆′2 and furthermore ∆′′1 �s ∆′′2 ;

3 whenever ∆1
α

=⇒ ∆′1, there exists ∆′2 such that ∆2
α

=⇒ ∆′2 and ∆′1 �s ∆′2.

Proof. We first prove a particular case of the third statement:

If ∆1
τ

=⇒ ∆′1 then there exists some ∆′2 such that ∆2
τ

=⇒ ∆′2 and ∆′1 �s ∆′2. (1)

We proceed by induction on the length of the transition ∆1
τ

=⇒ ∆′1.

— If ∆1 ≡ ∆′1, then ∆2
τ

=⇒ ∆2 by the reflexivity of
τ

=⇒, and ∆1 �s ∆2 by assumption.

— Suppose ∆1
τ

=⇒ ∆′′1
τ−→ ∆′1 for some ∆′′1 . Since ∆1 �s ∆2, by the induction hy-

pothesis there exists ∆′′2 such that ∆2
τ

=⇒ ∆′′2 and ∆′′1 �s ∆′′2 . The latter implies the

existence of some ∆′2 such that ∆′′2
τ

=⇒ ∆′2 and ∆′1 �s ∆′2. The transitivity of
τ

=⇒
entails that ∆2

τ
=⇒ ∆′2.

We are now ready to prove the lemma.

1 Suppose ∆1 �s ∆2 and ∆1
τ

=⇒ ·. By (1), there exists ∆′2 such that ∆2
τ

=⇒ ∆′2 and

· �s ∆′2. By Definition 4.2, we have ∆′2
τ

=⇒ ·. The transitivity of
τ

=⇒ entails ∆2
τ

=⇒ ·.
2 Suppose ∆1 �s ∆2 and ∆1

τ
=⇒ (∆′1,∆

′′
1). By (1), there exists ∆′′′2 such that ∆2

τ
=⇒

∆′′′2 and (∆′1,∆
′′
1) �s ∆′′′2 . By Definition 4.2, there exist ∆′2 and ∆′′2 such that ∆′′′2

τ
=⇒

(∆′2,∆
′′
2), ∆′1 �s ∆′2 and ∆′′1 �s ∆′′2 . By the transitivity of

τ
=⇒, we have ∆2

τ
=⇒

(∆′2,∆
′′
2).

3 Suppose ∆1
α

=⇒ ∆′1 where α 6= τ . Then there are ∆11 and ∆12 with ∆1
τ

=⇒ ∆11
α−→

∆12
τ

=⇒ ∆′1. By (1), there is some ∆21 such that ∆2
τ

=⇒ ∆21 and ∆11 �s ∆21. By

Definition 4.2, there is ∆22 such that ∆21
α

=⇒ ∆22 and ∆12 �s ∆22. By (1) again,

there is ∆′2 with ∆22
τ

=⇒ ∆′2 with ∆′1 �s ∆′2. Note that we also have ∆2
α

=⇒ ∆′2.

Lemma 4.8 (Reflexivity of �s). For all contexts ∆, we have ∆ �s ∆.

Proof. Consider the identity relation Rid, which is the set of all pairs (∆,∆). It will

suffice to show that Rid ⊆ �s, because ∆ Rid ∆ always holds, which will in turn imply

∆ �s ∆. We can show that Rid meets the four criteria for simulation. Let us pick up

any pair (∆,∆) from Rid.
1 Assume that ∆ ≡ ·. Then, in particular, ∆

τ
=⇒ ·.

2 Assume that ∆ ≡ (∆′,∆′′). Then, in particular, ∆
τ

=⇒ (∆′,∆′′), and we also have

∆′ Rid ∆′ and ∆′′ Rid ∆′′.

3 Assume that ∆
α−→ ∆′. Then, in particular, ∆

α
=⇒ ∆′ and we have ∆′ Rid ∆′.

4 Assume that ∆
?a−→ ∆′, which entails that ∆ ≡ (a(B,∆′′) and ∆′ ≡ (B,∆′′). Be-

cause ∆′ Rid ∆′ (it is the identity relation!), it is sufficient to show that (∆, a)
τ

=⇒
∆′, i.e., that (a, a(B,∆′′)

τ
=⇒ (B,∆′′). However, we know that a

!a−→ · and

(a(B,∆′′)
?a−→ (B,∆′′) by the rules lts−atom and lts(in Figure 4, respectively.

We can now combine them using rule lts − com in the desired reduction to obtain

(a, a(B,∆′′)
τ−→ (B,∆′′).

Y. Deng, R. J. Simmons and I. Cervesato 24

Proposition 4.9 (Compositionality of �s). If ∆1 �s ∆2, then (∆,∆1) �s (∆,∆2).

Proof. Consider the relation

R := {((∆,∆1), (∆,∆2)) | ∆1 �s ∆2}.

It will suffice to show that R ⊆�s, because in that case, given ∆1 �s ∆2, we have that

(∆,∆1) R (∆,∆2) for any ∆, which will in turn imply (∆,∆1) �s (∆,∆2). We can show

that R meets the four criteria for simulation. Suppose (∆,∆1) R (∆,∆2), which means

that we also have ∆1 �s ∆2.

1 Let us show that if (∆,∆1) R (∆,∆2) with (∆,∆1) ≡ ·, then (∆,∆2)
τ

=⇒ ·.
If (∆,∆1) ≡ ·, then ∆ ≡ ·. Moreover, by definition of R, we have that · �s ∆2. Now,

because �s is a simulation, we have that ∆2
τ

=⇒ ·. Since (∆,∆2) ≡ ∆2, we conclude

that (∆,∆2)
τ

=⇒ ·, as desired.

2 Let us prove that if (∆,∆1) ≡ (∆′1,∆
′′
1), then (∆,∆2)

τ
=⇒ (∆′2,∆

′′
2) such that ∆′1 R

∆′2 and ∆′′1 R ∆′′2 .

If (∆,∆1) can be decomposed into (∆′1,∆
′′
1) for some ∆′1 and ∆′′1 , we need to find

some ∆′2 and ∆′′2 such that (∆,∆2)
τ

=⇒ (∆′2,∆
′′
2) with ∆′1 R ∆′2 and ∆′′1 R ∆′′2 .

Without loss of generality, assume that we have the decomposition of (∆,∆1) with

∆ = (∆a,∆b) and ∆1 = (∆a
1 ,∆

b
1) such that ∆′1 = (∆a,∆a

1) and ∆′′1 = (∆b,∆b
1).

Since ∆1 �s ∆2, there exists some transition ∆2
τ

=⇒ (∆a
2 ,∆

b
2) such that ∆a

1 �s ∆a
2

and ∆b
1 �s ∆b

2. It follows by compositionality (Lemma 4.4) that

(∆,∆2)
τ

=⇒ (∆a,∆b,∆a
2 ,∆

b
2) ≡ (∆a,∆a

2 ,∆
b,∆b

2)

Let ∆′2 = (∆a,∆a
2) and ∆′′2 = (∆b,∆b

2). We observe that ∆′1 R ∆′2 and ∆′′1 R ∆′′2 , as

required.

3 Let us show that if (∆,∆1)
α−→ ∆′1 then there is ∆′2 such that (∆,∆2)

α
=⇒ ∆′2 and

∆′1 R ∆′2, and if (∆,∆1)
?a−→ ∆′1 then there is ∆′2 such that (∆,∆2, a)

τ
=⇒ ∆′2 and

∆′1 R ∆′2. It is convenient to prove both these parts of Definition 4.2 together.

Assume that (∆,∆1)
β−→ ∆∗. There are four cases, according to Lemma 4.5.

(a) (∆,∆1)
β−→ (∆′,∆1) because of the transition ∆

β−→ ∆′. If β = α, then by

Lemma 4.4 (1) we also have (∆,∆2)
α−→ (∆′,∆2) and clearly (∆′,∆1) R (∆′,∆2).

If β =?a, then (∆, a)
τ−→ ∆′ and thus (∆,∆2, a)

τ−→ (∆′,∆2). Again, we have

(∆′,∆1) R (∆′,∆2).

(b) If (∆,∆1)
β−→ (∆,∆′1) because of the transition ∆1

β−→ ∆′1, since ∆1 �s ∆2 there

are two possibilities. If β = α , then there is a matching transition ∆2
α

=⇒ ∆′2 and

∆′1 �s ∆′2. It follows that (∆,∆′1)
α

=⇒ (∆,∆′2) by Lemma 4.4 (2) and (∆,∆′1) R
(∆,∆′2). If β =?a, then ∆2, a

τ
=⇒ ∆′2 for some ∆′2 with ∆′1 �s ∆′2. We also have

(∆,∆2, a)
τ

=⇒ (∆,∆′2) by Lemma 4.4 (2) and (∆,∆′1) R (∆,∆′2).

(c) If (∆,∆1)
τ−→ (∆′,∆′1) because of the transitions ∆

?a−→ ∆′ and ∆1
!a−→ ∆′1,

since ∆1 �s ∆2 there is a transition ∆2
!a

=⇒ ∆′2 with ∆′1 �s ∆′2. It follows that

(∆,∆2)
τ

=⇒ (∆′,∆′2) and we have (∆′,∆′1) R (∆′,∆′2).

(d) If (∆,∆1)
τ−→ (∆′,∆′1) because of the transitions ∆

!a−→ ∆′ and ∆1
?a−→ ∆′1, then

Relating Reasoning Methodologies in Linear Logic and Process Algebra 25

this can be simulated by a transition from (∆,∆2). The reason is as follows. In

order for ∆ to enable the transition ∆
!a−→ ∆′, it must be the case that ∆ ≡ ∆′, a.

Since ∆1 �s ∆2 we know that (∆2, a)
τ

=⇒ ∆′2 for some ∆′2 with ∆′1 �s ∆′2.

Therefore, we obtain that (∆,∆2) ≡ (∆′, a,∆2)
τ

=⇒ (∆′,∆′2) and (∆′,∆′1) R
(∆′,∆′2).

In summary, we have verified that R is a simulation.

Lemma 4.10 (Transitivity of �s). If ∆1 �s ∆2 and ∆2 �s ∆3, then ∆1 �s ∆3.

Proof. Consider the relation

R := {(∆1,∆3) | there exists ∆2 with ∆1 �s ∆2 and ∆2 �s ∆3}

It will suffice to show that R ⊆ �s, because in that case, given ∆1 �s ∆2 and ∆2 �s ∆3,

we will know that ∆1 R ∆3, which will in turn imply ∆1 �s ∆3. We can show that R
meets the four criteria for simulation. Suppose ∆1 R ∆3, that is ∆1 �s ∆2 and ∆2 �s ∆3

for some ∆2.

1 If ∆1 ≡ ·, then ∆2
τ

=⇒ ·. By Lemma 4.7, we have ∆3
τ

=⇒ ·.
2 If ∆1 ≡ (∆′1,∆

′′
1), then ∆2

τ
=⇒ (∆′2,∆

′′
2) for some ∆′2 and ∆′′2 such that ∆′1 �s ∆′2

and ∆′′1 �s ∆′′2 . By Lemma 4.7, there exist ∆′3 and ∆′′3 such that ∆3
τ

=⇒ (∆′3,∆
′′
3),

∆′2 �s ∆′3 and ∆′′2 �s ∆′′3 . Therefore, ∆′1 R ∆′3 and ∆′′1 R ∆′′3 .

3 If ∆1
α−→ ∆′1, there exists ∆′2 such that ∆2

α
=⇒ ∆′2 and ∆′1 �s ∆′2. By Lemma 4.7,

there exists ∆′3 such that ∆3
α

=⇒ ∆′3 and ∆′2 �s ∆′3, thus ∆′1 R ∆′3.

4 If ∆1
?a−→ ∆′1, there exists ∆′2 such that (∆2, a)

τ
=⇒ ∆′2 and ∆′1 �s ∆′2. By Proposi-

tion 4.9 we have (∆2, a) �s (∆3, a). By Lemma 4.7, there exists ∆′3 with (∆3, a)
τ

=⇒
∆′3 and ∆′2 �s ∆′3. It follows that ∆′1 R ∆′3.

Theorem 4.11. �s is a preorder.

Proof. �s is reflexive (Lemma 4.8) and transitive (Lemma 4.10).

4.5. Equivalence of the barbed and simulation preorders

We are now in a position to fill in the rightmost portion of the proof map (Figure 4)

from the beginning of this section. In this section, we show the equivalence of the largest

simulation �s and the barbed preorder. With the compositionality of �s (Lemma 4.9)

at hand, the soundness proof is straightforward. For the completeness proof, we crucially

rely on fresh atom removal (Lemma 3.9).

Theorem 4.12 (Soundness). If ∆1 �s ∆2, then ∆1 �b ∆2.

Proof. We show that all aspects of the definition of the barbed preorder are satisfied.

Barb-preserving We show that �s is barb-preserving. Suppose ∆1 �s ∆2 and ∆1 ↓a.

Then ∆1 ≡ (∆′1, a) for some ∆′1, thus ∆1
!a−→ ∆′1. Since ∆1 �s ∆2 there exists ∆′2

such that ∆2
!a

=⇒ ∆′2, i.e. ∆2
τ

=⇒ ∆′′2
!a−→ ∆′2. Note that ∆′′2 must be the form (∆′′′2 , a)

for some ∆′′′2 . It follows that ∆2 ⇓a.

Y. Deng, R. J. Simmons and I. Cervesato 26

Compositional By Lemma 4.9 �s is compositional.

Reduction-closed If ∆1 ∆′1, then ∆1
τ−→ ∆′1 by Lemma 4.1. By the third condition

of Definition 4.2 there exists ∆′2 such that ∆2
τ

=⇒ ∆′2 and ∆′1 �s ∆′2. By Lemma 4.1

again, we have ∆2 ∗ ∆′2.

Partition-preserving If ∆1 ≡ ·, by the first condition of Definition 4.2 we see that

∆2
τ

=⇒ ·. By Lemma 4.1 this means ∆2 ∗ ·.
If ∆1 ≡ (∆′1,∆

′′
1), by the second condition of Definition 4.2 there are ∆′2 and ∆′′2

with ∆2
τ

=⇒ (∆′2,∆
′′
2), ∆′1 �s ∆′2 and ∆′′1 �s ∆′′2 . By Lemma 4.1 this means ∆2 ∗

(∆′2,∆
′′
2).

Theorem 4.13 (Completeness). If ∆1 �b ∆2 then ∆1 �s ∆2.

Proof. We need to show that �b is a simulation. By Definition 4.2, this decomposes

into four parts.

1 Let us show that if ∆1 �b ∆2 and ∆1 ≡ · then ∆2
τ

=⇒ ·. Suppose ∆1 �b ∆2 and

∆1 ≡ ·, then ∆2 ∗ · as �b is reduction closed. By Lemma 4.1 we have ∆2
τ

=⇒ ·.
2 Let us show that if ∆1 �b ∆2 and ∆1 ≡ (∆′1,∆

′
2) then ∆2

τ
=⇒ (∆′2,∆

′′
2) for some ∆′2

and ∆′′2 such that ∆′1 �b ∆′2 and ∆′′1 �b ∆′′2 .

Suppose ∆1 �b ∆2 and ∆1 ≡ (∆′1,∆
′′
1), then ∆2 ∗ (∆′2,∆

′′
2) such that ∆′1 �b ∆′2

and ∆′′1 �b ∆′′2 as �b is reduction-closed. By Lemma 4.1 we have ∆2
τ

=⇒ (∆′2,∆
′′
2).

3 Let us show that if ∆1 �b ∆2 and ∆1
α−→ ∆′1 then there exists ∆′2 such that ∆2

α
=⇒

∆′2 and ∆′1 �b ∆′2. Suppose ∆1 �b ∆2 and ∆1
α−→ ∆′1.

— α ≡ τ . By Lemma 4.1 this means ∆1 ∆′1. Since �b is reduction-closed, there

exists ∆′2 such that ∆2 ∗ ∆′2 and ∆′1 �b ∆′2. By Lemma 4.1 again, we have

∆2
τ

=⇒ ∆′2.

— α ≡ !a for some a. Note that ∆1 must be in the form (∆′1, a). Since �b is partition-

preserving, there exist ∆′2 and ∆a such that

∆2
∗ (∆′2,∆a) (2)

with ∆′1 �b ∆′2 and a �b ∆a. Then (a(1, a) �b (a(1,∆a) by the composi-

tionality of �b. Since (a(1, a) ∗ ·, by Lemma 3.6 we have (a(1,∆a) ∗ ·.
Then there exists some ∆′a such that ∆a ∗ (∆′a, a) and ∆′a

∗ ·, thus

∆a
∗ a (3)

by transitivity. It follows from (2) and (3) that ∆2 ∗ (∆′2, a). By Lemma 4.1

this means ∆2
!a

=⇒ ∆′2, which is the desired transition.

4 Let us show that if ∆1 �b ∆2 and ∆1
?a−→ ∆′1 then there exists ∆′2 such that

(∆2, a)
τ

=⇒ ∆′2 and ∆′1 �b ∆′2.

Suppose ∆1 �b ∆2 and ∆1
?a−→ ∆′1. Then (∆1, a)

τ−→ ∆′1, and thus (∆1, a) ∆′1 by

Lemma 4.1. Since ∆1 �b ∆2 we know (∆1, a) �b (∆2, a) by the compositionality of

�b. So there exists some ∆′2 such that (∆2, a) ∗ ∆′2 and ∆′1 �b ∆′2. By Lemma 4.1

we also have (∆2, a)
τ

=⇒ ∆′2.

Relating Reasoning Methodologies in Linear Logic and Process Algebra 27

4.6. Equivalence of the logical and simulation preorders

We will now start to fill in the remaining portions of the proof map (Figure 4) from the

beginning of this section. First, we prove the soundness and completeness of derivability

relative to simulation, and then we use this to prove the soundness and completeness of

the barbed preorder relative to the logical preorder.

Theorem 4.14. If ∆ ` A, then A �s ∆.

Proof. We proceed by rule induction, where the rules are given in Figure 1.

— (rule >R) If ∆ ` > then we have > �s ∆ vacuously, as > is a nonempty process

state that can make no transitions.

— (rule 1R) If · ` 1 then it is trivial to see that 1 �s ·.
— (rule init) If a ` a then a �s a follows from the reflexivity of �s.
— (rule (R) Suppose ∆ ` a(A is derived from ∆, a ` A. By induction, we have

A �s (∆, a) (4)

The only transition from a(A is (a(A)
?a−→ A. It is matched by the trivial tran-

sition (∆, a)
τ

=⇒ (∆, a) in view of (4).

— (rule (L) Suppose (∆1,∆2, a(A) ` B is derived from ∆1 ` a and (∆2, A) ` B.

By induction, we have

a �s ∆1 and B �s (∆2, A) (5)

By the first part of (5) we know that there is some ∆′1 such that ∆1
!a

=⇒ ∆′1 and

· �s ∆′1. It is easy to see that ∆1
τ

=⇒ (∆′1, a) and ∆′1
τ

=⇒ ·. Then

(∆1,∆2, a(A)
τ

=⇒ (∆′1, a,∆2, a(A)
τ−→ (∆′1,∆2, A)
τ

=⇒ (∆2, A)

In other words, we have (∆1,∆2, a(A)
τ

=⇒ (∆2, A). By Lemma 4.6 it follows that

(∆2, A) �s (∆1,∆2, a(A). By transitivity (�s is a preorder, Theorem 4.11), we can

combine this with the second part of (5), yielding

B �s (∆1,∆2, a(A).

— (rule ⊗R) Suppose (∆1,∆2) ` A⊗B is derived from ∆1 ` A and ∆2 ` B. By

induction, we have

A �s ∆1 and B �s ∆2 (6)

Now the only transition from A⊗B is A⊗B τ−→ (A,B). It can be matched by the

trivial transition (∆1,∆2)
τ

=⇒ (∆1,∆2) because by compositionality of�s (Lemma 4.9

and (6) we know that

(A,B) �s (∆1, B) �s (∆1,∆2).

Y. Deng, R. J. Simmons and I. Cervesato 28

Now it is immediate that (A,B) �s (∆1,∆2) by transitivity (�s is a preorder, The-

orem 4.11).

— (rule ⊗L) Suppose (∆, A⊗B) ` C is derived from (∆, A,B) ` C. By induction we

have

C �s (∆, A,B) (7)

Since (∆, A⊗B)
τ−→ (∆, A,B), we apply Lemma 4.6 and obtain

(∆, A,B) �s (∆, A⊗B) (8)

By (7), (8) and the transitivity of �s, we have C �s (∆, A⊗B).

— (rules 1L, &L1 and &L2) Similar.

— (rule &R) Suppose ∆ ` (A&B) is derived from ∆ ` A and ∆ ` B. By induction

we have

A �s ∆ and B �s ∆ (9)

The only transitions from A&B are (A&B)
τ−→ A and (A&B)

τ−→ B. Both of

them can be matched by the trivial transition ∆
τ

=⇒ ∆ in view of (9).

Proposition 4.15. If ∆1
τ

=⇒ ∆2 and ∆2 ` A, then ∆1 ` A.

Proof. Immediate by Proposition 3.1 and Lemma 4.1.

Theorem 4.16. If A �s ∆, then ∆ ` A.

Proof. We proceed by induction on the structure of A.

— A ≡ >. By rule >R we have ∆ ` >.

— A ≡ 1. Then we also have A ≡ ·. Since A �s ∆, it must be the case that ∆
τ

=⇒ ·. By

rule 1R, we have · ` 1. By Proposition 4.15 it follows that ∆ ` 1.

— A ≡ a. Since A �s ∆ and A
!a−→ ·, there is ∆′ such that

∆
!a

=⇒ ∆′ and · �s ∆′. (10)

From the first part of (10), we obtain ∆
τ

=⇒ (∆′′, a) for some ∆′′ with ∆′′
τ

=⇒ ∆′.

From the second part, we have ∆′
τ

=⇒ ·. Combining them together yields ∆
τ

=⇒ a.

By rule init we can infer a ` a. Then it follows from Proposition 4.15 that ∆ ` a.

— A ≡ a(A′. Since A �s ∆ and A
?a−→ A′, there is ∆′ such that (∆, a)

τ
=⇒ ∆′ and

A′ �s ∆′. By induction, we know that ∆′ ` A′. By Proposition 4.15 it follows that

(∆, a) ` A′. Now use rule (R we obtain ∆ ` (a(A′).

— A ≡ A1 &A2. Since A �s ∆ and A
τ−→ A1, there is ∆1 such that ∆

τ
=⇒ ∆1 and

A1 �s ∆1. By induction, we have ∆1 ` A1. By Proposition 4.15 it follows that

∆ ` A1. By a similar argument, we see that ∆ ` A2. Hence, it follows from rule &R

that ∆ ` (A1 &A2).

— A ≡ A1⊗A2. Since A �s ∆ and A
τ−→ (A1, A2), we apply Lemma 4.7 and derive

some transition ∆
τ

=⇒ (∆1,∆2) such that A1 �s ∆1 and A2 �s ∆2. By induction,

we obtain ∆1 ` A1 and ∆2 ` A2. It follows from rule ⊗R that ∆1,∆2 ` A1⊗A2,

that is ∆ ` A.

Relating Reasoning Methodologies in Linear Logic and Process Algebra 29

Remark 4.17. Note that Theorem 4.16 would fail if we used the standard barbed pre-

order on processes, without adding the condition partition-preservation in Definition 3.2.

In that case the process state (a(1)⊗(b(1) would be related to a(b(1 by barbed

preorder but

a(b(1 6` (a(1)⊗(b(1).

The next property is obtained mostly by applying Theorems 4.14 and 4.16.

Theorem 4.18. ∆1 �l ∆2 if and only if ∆1 �s ∆2.

Proof.

(⇒) Suppose ∆1 �l ∆2. It is trivial to see that ∆1 `
⊗

∆1. By the definition of logical

preorder, it follows that ∆2 `
⊗

∆1. By Theorem 4.14 we have⊗
∆1 �s ∆2. (11)

Considering the formula
⊗

∆1 as a context, we have
⊗

∆1
τ

=⇒ ∆1 according to our

reduction semantics. By Lemma 4.6, it follows that

∆1 �s
⊗

∆1. (12)

By combining (11) and (12), we obtain that ∆1 �s ∆2 because �s is transitive by

Theorem 4.11.

(⇐) Suppose that ∆1 �s ∆2. For any ∆ and A, assume that (∆,∆1) ` A. By Theo-

rem 4.14 we have

A �s (∆,∆1). (13)

Since ∆1 �s ∆2 and �s is compositional (Lemma 4.9), we obtain

(∆,∆1) �s (∆,∆2). (14)

By (13), (14) and the transitivity of �s, we see that A �s (∆,∆2). Then Theorem 4.16

yields (∆,∆2) ` A. Therefore, we have shown that ∆1 �l ∆2.

This concludes the proof of this result.

Finally, we arrive at the main result of the section.

Corollary 4.19 (Soundness and completeness). ∆1 �l ∆2 if and only if ∆1 �b ∆2.

Proof. By Theorems 4.12 and 4.13 we know that �b coincides with �s. Theorem 4.18

tells us that �s coincides with �l. Hence, the required result follows.

5. Exponentials

In this section, we extend the investigation by adding the exponential modality “!” from

intuitionistic linear logic, which will closely correspond to the replication operator of the

Y. Deng, R. J. Simmons and I. Cervesato 30

π-calculus. Our extension refers to the propositional linear language seen in Sections 3–4.

Specifically, the language we will be working on is:

Formulas A,B,C ::= a | 1 | A⊗B | a(B | > | A&B | !A

Observe that this language still limits the antecedent of linear implications to be an

atomic proposition — this is a common restriction when investigating fragments of lin-

ear logic that correspond to CCS-like process algebras Cervesato et al. (2000, 2002),

Cervesato and Scedrov (2009)

The structure of this section is similar to our development for the language without

exponentials: we first present the extended language and a notion of states in our process

interpretation in Section 5.1, then we connect barbed preorder with logical preorder by

making use of simulation in Section 5.2.

5.1. Process interpretation and barbed preorder

The π-calculus reading of the language with exponentials is extended by interpreting the

exponential ! as the replication operator !.

· · · · · ·
!A any number of copies of process A

The structural equivalences seen in Section 3 are updated by adding an inert unre-

stricted context Γ and the following rules:

(Γ, ·; ∆) ≡ (Γ; ∆)

(Γ1,Γ2; ∆) ≡ (Γ2,Γ1; ∆)

(Γ1, (Γ2,Γ3); ∆) ≡ ((Γ1,Γ2),Γ3; ∆)

(Γ, A,A; ∆) ≡ (Γ, A; ∆)

These rule entail that the unrestricted context behaves like a set.

The reductions in Figure 2 are upgraded with an inert context Γ, and the following

two reductions are added:

(Γ, A; ∆) (Γ, A; ∆, A) (clone)

(Γ; ∆, !A) (Γ, A; ∆) (!)

The two rules are intended to reflect the derivations entailed by rules clone and !L in

Figure 1. Instead of introducing the two reduction rules, we could turn them into two

equations and add to the structural equivalence ≡ defined above. But we prefer to mimic

one step of derivation in linear logic by one step of reduction in our process interpretation

of the logic.

The composition of two states (Γ1; ∆1) and (Γ2; ∆2), written ((Γ1; ∆1), (Γ2; ∆2)), is

defined as the state ((Γ1,Γ2); (∆1,∆2)). Recall that unrestricted contexts are set so that

Γ1,Γ2 may collapse identical formulas occurring in both Γ1 and Γ2 (while linear contexts

can contain duplicates).

A partition of a state (Γ; ∆) is any pair of states (Γ1; ∆1) and (Γ2; ∆2) such that

(Γ; ∆) = ((Γ1; ∆1), (Γ2; ∆2)).

Relating Reasoning Methodologies in Linear Logic and Process Algebra 31

We write (Γ; ∆) ↓a whenever a ∈ ∆, and ∆⇓a whenever (Γ; ∆) ∗ (Γ′; ∆′) for some

(Γ′; ∆′) with (Γ′; ∆′) ↓a. The definition of barbed preorder given in Definition 3.3 now

takes the following form.

Definition 5.1 (Barbed preorder). Let R be a binary relation over states. We say

that R is

— barb-preserving if, whenever (Γ1; ∆1) R (Γ2; ∆2) and (Γ1; ∆1) ↓a, we have that (Γ2; ∆2)⇓a
for any a.

— reduction-closed if (Γ1; ∆1) R (Γ2; ∆2) and (Γ1; ∆1) (Γ′1; ∆′1) implies (Γ2; ∆2) ∗

(Γ′2; ∆′2) and (Γ′1; ∆′1) R (Γ′2; ∆′2) for some (Γ′2; ∆′2).

— compositional if (Γ1; ∆1) R (Γ2; ∆2) implies ((Γ1; ∆1), (Γ; ∆)) R ((Γ2; ∆2), (Γ; ∆))

for all (Γ; ∆).

— partition-preserving if (Γ1; ∆1) R (Γ2; ∆2) implies that

1 if ∆1 = ·, then (Γ2; ∆2) ∗ (Γ′2; ·) and (Γ1; ·) R (Γ′2; ·),
2 for all (Γ′1; ∆′1) and (Γ′′1 ; ∆′′1), if (Γ1; ∆1) = ((Γ′1; ∆′1), (Γ′′1 ; ∆′′1)) then there exists

(Γ′2; ∆′2) and (Γ′′2 ; ∆′′2) such that (Γ2; ∆2) ∗ ((Γ′2; ∆′2), (Γ′′2 ; ∆′′2)) and furthermore

(Γ′1; ∆′1) R (Γ′2; ∆′2) and (Γ′′1 ; ∆′′1) R (Γ′′2 ; ∆′′2),

The barbed preorder, denoted by �b, is the largest relation over processes which is

barb-preserving, reduction-closed, compositional and partition-preserving.

Observe that this definition is structurally identical to our original notion of barbed

preorder (Definitions 3.2–3.3). Indeed, we have simply expressed the notions of composing

and partitioning states as explicit operations while our original definition relied on context

composition, which is what these notion specialize to when we only have linear contexts.

The present definition appears to be quite robust and we have used it in extensions of

this work to larger languages.

5.2. Logical preorder and barbed preorder

The labeled transition semantics for our language with replicated formulas is given in

Figure 5. The following is an updated version of Lemma 4.1.

Lemma 5.2. (Γ1,∆1)
τ

=⇒ (Γ2,∆2) if and only if (Γ1,∆1) ∗ (Γ2,∆2).

In the new semantics our definition of simulation is in the following form.

Definition 5.3 (Simulation). A relation R between two processes represented as

(Γ1; ∆1) and (Γ2; ∆2) is a simulation if (Γ1; ∆1) R (Γ2; ∆2) implies

1 if (Γ1; ∆1) ≡ (Γ′1; ·) then (Γ2; ∆2)
τ

=⇒ (Γ′2; ·) and (Γ′1; ·) R (Γ′2; ·).
2 if (Γ1; ∆1) ≡ ((Γ′1; ∆′1), (Γ′′1 ; ∆′′1)) then (Γ2; ∆2)

τ
=⇒ ((Γ′2; ∆′2), (Γ′′2 ; ∆′′2)) for some

(Γ′2; ∆′2) and (Γ′′2 ; ∆′′2) such that (Γ′1; ∆′1) R (Γ′2; ∆′2) and (Γ′′1 ; ∆′′1) R (Γ′′2 ; ∆′′2).

3 whenever (Γ1; ∆1)
α−→ (Γ′1; ∆′1), there exists (Γ′2; ∆′2) such that (Γ2; ∆2)

α
=⇒ (Γ′2; ∆′2)

and (Γ′1; ∆′1) R (Γ′2; ∆′2).

4 whenever (Γ1; ∆1)
?a−→ (Γ′1; ∆′1), there exists (Γ′2; ∆′2) such that (Γ2; ∆2, a)

τ
=⇒

(Γ′2; ∆′2) and (Γ′1; ∆′1) R (Γ′2; ∆′2).

Y. Deng, R. J. Simmons and I. Cervesato 32

(Γ; ∆, a)
!a−→ (Γ; ∆)

lts−atom
(Γ; ∆, a(B)

?a−→ (Γ; ∆, B)
lts(

(Γ; ∆,1)
τ−→ (Γ; ∆)

lts1
(Γ; ∆, A⊗B)

τ−→ (Γ; ∆, A,B)
lts⊗

(Γ; ∆, A&B)
τ−→ (Γ; ∆, A)

lts&1
(Γ; ∆, A&B)

τ−→ (Γ; ∆, B)
lts&2

(Γ; ∆, !A)
τ−→ (Γ, A; ∆)

lts!A (No rule for >)

(Γ, A; ∆)
τ−→ (Γ, A; ∆, A)

ltsClone

(Γ1; ∆1)
!a−→ (Γ′

1; ∆′
1) (Γ2; ∆2)

?a−→ (Γ′
2; ∆′

2)

(Γ1,Γ2; ∆1,∆2)
τ−→ (Γ′

1,Γ
′
2; ∆′

1,∆
′
2)

lts−com

Fig. 5. Labeled Transition System with Exponentials

We write (Γ1; ∆1) �s (Γ2; ∆2) if there is some simulation R with (Γ1; ∆1) R (Γ2; ∆2).

Example 5.4. We have mentioned before that !A intuitively represents any number of

copies of A. Then it is natural to identify !!A and !A, as in some presentations of the

π-calculus. For instance, we have that

(·; !!a) �s (·; !a) and (·; !a) �s (·; !!a). (15)

To prove the first inequality, consider the two sets

S1 = {(·; !!a)} ∪ {(!a; (!a)n) | n ≥ 0} ∪ {(!a, a; (!a)n, am) | n ≥ 0, m ≥ 0}
S2 = {(·; !a)} ∪ {a; an) | n ≥ 0}

where we write A0 for “·” and An for n copies of A where n > 0. Let R be S1 × S2, the

Cartesian product of S1 and S2. It can be checked that R is a simulation relation. In

the same way, one can see that S2 × S1 is also a simulation relation, which implies the

second inequality in (15).

By adapting the proof of Proposition 4.9 to the case with exponentials, we have the

compositionality of �s.

Proposition 5.5. If (Γ1; ∆1) �s (Γ2,∆2) then (Γ1,Γ; ∆1,∆) �s (Γ2,Γ; ∆2,∆) for any

process state (Γ,∆).

Similar to Theorems 4.12 and 4.13, it can be shown that the following coincidence

result holds.

Theorem 5.6. (Γ1; ∆1) �b (Γ2; ∆2) if and only if (Γ1; ∆1) �s (Γ2; ∆2).

Relating Reasoning Methodologies in Linear Logic and Process Algebra 33

The rest of this subsection is devoted to showing the coincidence of �l and �s, by

following the schema in Section 4.6. We first need two technical lemmas whose proofs are

simple and thus omitted.

Lemma 5.7 (Weakening). (Γ; ∆) �s ((Γ,Γ′); ∆) for any Γ′.

Lemma 5.8. If (Γ1; ∆1)
τ

=⇒ (Γ2; ∆2) then (Γ2; ∆2) �s (Γ1; ∆1).

We are now in a position to connect simulation with provability. First, we state a

result akin to Theorem 4.14. If Γ; ∆ ` A, then the process (Γ;A) can be simulated by

the process (Γ; ∆). Note that the same Γ is used in both processes, which makes it easy

to verify the soundness of the rule !R with respect to simulation relation.

Theorem 5.9. If Γ; ∆ ` A then (Γ;A) �s (Γ; ∆).

Proof. As in Theorem 4.14, we proceed by rule induction. Here we consider the three

new rules.

— (rule clone) Suppose Γ, B; ∆ ` A is derived from Γ, B; ∆, B ` A. By induction, we

have

(Γ, B; A) �s (Γ, B; ∆, B). (16)

From (Γ, B; ∆) we have the transition (Γ, B; ∆)
τ−→ (Γ, B; ∆, B). By Lemma 5.8, we

know that

(Γ, B; ∆, B) �s (Γ, B; ∆). (17)

Combining (16), (17), and the transitivity of similarity, we obtain (Γ, B; A) �s
(Γ, B; ∆).

— (rule !L) Suppose Γ; ∆, !B ` A is derived from Γ, B; ∆ ` A. By induction, we have

(Γ, B; A) �s (Γ, B; ∆). (18)

From (Γ; ∆, !B) we have the transition (Γ; ∆, !B)
τ−→ (Γ, B; ∆). By Lemma 5.8, we

know that

(Γ, B; ∆) �s (Γ; ∆, !B). (19)

By Lemma 5.7 we have

(Γ; A) �s (Γ, B; A). (20)

Combining (18) - (20), and the transitivity of similarity, we obtain (Γ;A) �s (Γ; ∆, !B).

— (rule !R) Suppose Γ; · ` !A is derived from Γ; · ` A. By induction we have

(Γ;A) �s (Γ; ·). (21)

We now construct a relation R based on (21).

R = {((Γ; ∆, !A), (Γ; ∆)) | for any ∆}
∪{((Γ, A; ∆), (Γ′; ∆′)) | for any ∆,∆′ and Γ′with (Γ; ∆) �s (Γ′; ∆′)}
∪ �s

The relation is composed of three sets. The pairs in the first set come directly from

(21) extended by some linear contexts ∆. After performing some matching transitions,

Y. Deng, R. J. Simmons and I. Cervesato 34

the pairs in the first set may evolve into those in the second or the third set. So the

last two sets are included to make R a closed set with respect to simulation relation.

Below we show that R is indeed a simulation, thus R⊆�s. Since (Γ; !A) R (Γ; ·), it

follows that (Γ; !A) �s (Γ; ·).
Let us pick any pair of states from R. It suffices to consider the elements from the

first two subsets of R:

– The two states are (Γ; ∆, !A) and (Γ; ∆) respectively. Let us consider any transition

from the first state.

• The transition is (Γ; ∆, !A)
τ−→ (Γ, A; ∆). This is matched by the triv-

ial transition (Γ; ∆)
τ

=⇒ (Γ; ∆) because (Γ; ∆) �s (Γ; ∆) and thus we have

(Γ, A; ∆) R (Γ; ∆).

• The transition is (Γ; ∆, !A)
α−→ (Γ′; ∆′, !A) because of (Γ; ∆)

α−→ (Γ′; ∆′).

Then the latter transition can match the former because (Γ′; ∆′, !A) R (Γ′; ∆′).

• The transition is (Γ; ∆, !A)
?a−→ (Γ; ∆′, !A) because of (Γ; ∆)

?a−→ (Γ; ∆′). Then

we have (Γ; ∆, a)
τ−→ (Γ; ∆′), which is a matching transition because we have

(Γ; ∆′, !A) R (Γ; ∆′).

• If (Γ; ∆, !A) can be split as ((Γ1; ∆1), (Γ2; ∆2)), then !A occurs in either ∆1

or ∆2. Without loss of generality, we assume that !A occurs in ∆1. That is,

there is some ∆′1 such that ∆1 ≡ ∆′1, !A. Then (Γ; ∆) ≡ ((Γ1; ∆′1), (Γ2; ∆2)).

It is easy to see that (Γ1; ∆1) R (Γ1; ∆′1) and (Γ2; ∆2) R (Γ2; ∆2).

– The two states are (Γ, A; ∆) and (Γ′; ∆′) respectively with

(Γ; ∆) �s (Γ′; ∆′). (22)

Let us consider any transition from the first state.

• If ∆ ≡ ·, then (Γ; ·) �s (Γ′; ∆′). So there exists some Γ′′ such that (Γ′; ∆′)
τ

=⇒
(Γ′′; ·) and (Γ; ·) �s (Γ′′; ·). It follows that (Γ, A; ·) R (Γ′′; ·) as required.

• The transition is (Γ, A; ∆)
τ−→ (Γ, A; ∆, A). We argue that it is matched by

the trivial transition (Γ′; ∆′)
τ

=⇒ (Γ′; ∆′). By (21) and the compositionality of

�s, we obtain

(Γ; ∆, A) �s (Γ; ∆). (23)

By (22) and (23), together with the transitivity of similarity, it can be seen

that (Γ; ∆, A) �s (Γ′; ∆′), which implies (Γ, A; ∆, A) R (Γ′; ∆′).

• The transition is (Γ, A; ∆)
α−→ (Γ, A; ∆′′) because of (Γ; ∆)

α−→ (Γ; ∆′′). By

(22) there exist some Γ′′′,∆′′′ such that (Γ′; ∆′)
α

=⇒ (Γ′′′; ∆′′′) and (Γ; ∆′′) �s
(Γ′′′; ∆′′′). Therefore, (Γ, A; ∆′′) R (Γ′′′; ∆′′′) and we have found the matching

transition from (Γ′; ∆′).

• The transition is (Γ, A; ∆)
?a−→ (Γ, A; ∆′′) because of (Γ; ∆)

?a−→ (Γ; ∆′′).

By (22) there exist some Γ′′′,∆′′′ such that (Γ′; ∆′, a)
α

=⇒ (Γ′′′; ∆′′′) and

(Γ; ∆′′) �s (Γ′′′; ∆′′′). Therefore, (Γ, A; ∆′′) R (Γ′′′; ∆′′′) and we have found

the matching transition from (Γ′; ∆′, a).

• If (Γ, A; ∆) can be split as ((Γ1; ∆1), (Γ2; ∆2)), then A occurs in either Γ1 or

Relating Reasoning Methodologies in Linear Logic and Process Algebra 35

Γ2. Without loss of generality, we assume that A occurs in Γ1. That is, there

is some Γ′1 such that Γ1 ≡ Γ′1, A. Then (Γ; ∆) ≡ ((Γ′1; ∆1), (Γ2; ∆2)). By (22)

we have the transition (Γ′; ∆′)
τ

=⇒ ((Γ3; ∆3), (Γ4; ∆4)) for some (Γ3; ∆3) and

(Γ4; ∆4) such that (Γ′1; ∆1) �s (Γ3; ∆3) and (Γ2; ∆2) �s (Γ4; ∆4). It follows

that (Γ1; ∆1) R (Γ3; ∆3) and (Γ2; ∆2) R (Γ4; ∆4).

Corollary 5.10. If Γ; ∆ ` A, then (·;A) �s (Γ; ∆).

Proof. By Lemma 5.7, Theorem 5.9, and the transitivity of �s.

Proposition 5.11. If (Γ1; ∆1)
τ

=⇒ (Γ2; ∆2) and Γ2; ∆2 ` A then Γ1; ∆1 ` A.

Proof. Similar to the proof of Proposition 4.15. We now have two more cases:

— (rule lts!A) Suppose (Γ; ∆, !A)
τ−→ (Γ, A; ∆) and Γ, A; ∆ ` B. By rule !L, we infer

that Γ; ∆, !A ` B.

— (rule ltsClone) Suppose (Γ, A; ∆)
τ−→ (Γ, A; ∆, A) and Γ, A; ∆, A ` B. By rule clone,

we infer that Γ, A; ∆ ` B.

Our next goal is to prove Theorem 5.16, the coincidence of logical preorder with sim-

ulation. For that purpose, a series of intermediate results are in order.

Theorem 5.12. If (Γ1;A) �s (Γ2; ∆) then Γ2; ∆ ` A.

Proof. As in Theorem 4.16, the proof is by induction on the structure of A. We now

have one more case.

— A ≡ !A′. By rule lts!A we have the transition (Γ1;A)
τ−→ (Γ1, A

′; ·). Since (Γ1;A) �s
(Γ2; ∆) there is some Γ′2 such that (Γ2; ∆)

τ
=⇒ (Γ′2; ·) and

(Γ1, A
′; ·) �s (Γ′2; ·). (24)

From (Γ1, A
′; ·) we have the transition (Γ1, A

′; ·) τ−→ (Γ1, A
′;A′) by rule ltsClone. By

Lemma 5.8 we have

(Γ1, A
′;A′) �s (Γ1, A

′; ·) (25)

It follows from (24), (25), and the transitivity of similarity that

(Γ1, A
′;A′) �s (Γ′2; ·). (26)

Now by induction hypothesis, we obtain Γ′2; · ` A′ because A′ has a smaller structure

than A. By rule !R we infer that Γ′2; · ` A. Using Proposition 5.11 we conclude that

Γ2; ∆ ` A.

We now have the counterpart of Theorem 4.18.

Theorem 5.13. (Γ; ∆1) �l (Γ; ∆2) if and only if (Γ; ∆1) �s (Γ; ∆2).

Proof.

Y. Deng, R. J. Simmons and I. Cervesato 36

(⇒) Suppose (Γ; ∆1) �l (Γ; ∆2). It is trivial to see that Γ; ∆1 `
⊗

∆1. By the definition

of logical preorder, it follows that Γ; ∆2 `
⊗

∆1. By Theorem 5.9 we have

(Γ;
⊗

∆1) �s (Γ; ∆2). (27)

According to our reduction semantics, we have (Γ;
⊗

∆1)
τ

=⇒ (Γ; ∆1). By Lemma 5.8,

it follows that

(Γ; ∆1) �s (Γ;
⊗

∆1). (28)

By combining (27) and (28), we obtain that (Γ; ∆1) �s (Γ; ∆2) because �s is transi-

tive.

(⇐) Suppose that (Γ; ∆1) �s (Γ; ∆2). If (Γ′,Γ; ∆,∆1) ` A for some Γ′, ∆ and A, then

by Theorem 5.9 we have

(Γ′,Γ;A) �s (Γ′,Γ; ∆,∆1). (29)

Since (Γ; ∆1) �s (Γ; ∆2) and �s is compositional, we obtain

(Γ′,Γ; ∆,∆1) �s (Γ′,Γ; ∆,∆2). (30)

By (29), (30) and the transitivity of �s, we see that (Γ′,Γ;A) �s (Γ′,Γ; ∆,∆2). Then

Theorem 5.12 yields Γ′,Γ; ∆,∆2 ` A. Therefore, we have shown that (Γ; ∆1) �l
(Γ; ∆2).

In Theorem 5.13 we compare two states with exactly the same unrestricted resource

Γ. The theorem can be relaxed so that the two states can have different unrestricted

resources. In order to prove that result, we first need two lemmas.

Lemma 5.14. (Γ; ∆) �l (·; !Γ,∆) and (·; !Γ; ∆) �l (Γ; ∆).

Proof. For any Γ′ and ∆′, if Γ′,Γ; ∆′,∆ ` A then Γ′; ∆′, !Γ,∆ ` A, for any formula A,

by using rule !L. In other words, (Γ; ∆) �l (·; !Γ,∆).

Suppose Γ′; ∆′, !Γ,∆ ` A for any Γ′,∆′ and A. By rule induction on the derivation of

Γ′; ∆′, !Γ,∆ ` A it can be shown that Γ′,Γ; ∆′,∆ ` A, thus (·; !Γ,∆) �l (Γ; ∆).

Lemma 5.15. (Γ; ∆) �s (·; !Γ,∆) and (·; !Γ,∆) �s (Γ; ∆).

Proof. Since (·; !Γ,∆)
τ

=⇒ (Γ; ∆), we apply Lemma 5.8 and conclude that (Γ,∆) �s
(·; !Γ,∆).

To show that (·; !Γ,∆) �s (Γ; ∆), we let R be the relation that relates any state

(Γ; !A1, ..., !An,∆) with the state (Γ, A1, ..., An; ∆). The relation R is a simulation. Con-

sider any transition from (Γ; !A1, ..., !An,∆).

— If (Γ; !A1, ..., !An,∆)
α−→ (Γ′; !A1, ..., !An,∆

′) because of (Γ; ∆)
α−→ (Γ′; ∆′), the tran-

sition can be matched by (Γ, A1, ..., An; ∆)
α−→ (Γ′, A1, ..., An; ∆′).

— If (Γ; !A1, ..., !An; ∆)
τ−→ (Γ, A1; !A2, ..., !An,∆) then the transition can be matched

by the trivial transition (Γ, A1, ..., An; ∆)
τ

=⇒ (Γ, A1, ..., An; ∆).

— If (Γ; !A1, ..., !An,∆) performs an input action, it must be given by an input action

from ∆. Obviously, this can be mimicked by (Γ, A1, ..., An; ∆).

Relating Reasoning Methodologies in Linear Logic and Process Algebra 37

— It is easy to see that for any splitting of (Γ; !A1, ..., !An,∆) there is a corresponding

splitting of (Γ, A1, ..., An; ∆).

We have shown thatR is a simulation. Therefore, (Γ; !A1, ..., !An,∆) �s (Γ, A1, ..., An; ∆),

and as a special case (·; !Γ,∆) �s (Γ; ∆).

Theorem 5.16. (Γ1; ∆1) �l (Γ2; ∆2) if and only if (Γ1; ∆1) �s (Γ2; ∆2).

Proof. Suppose (Γ1; ∆1) �l (Γ2; ∆2). By Lemma 5.14 we infer that

(·; !Γ1,∆1) �l (Γ1; ∆1) �l (Γ2; ∆2) �l (·; !Γ2,∆2).

Since �l is a preorder, its transitivity gives (·; !Γ1,∆1) �l (·; !Γ2,∆2). By Theorem 5.13,

we have (·; !Γ1,∆1) �s (·; !Γ2,∆2). Then by Lemma 5.15 we infer that

(Γ1; ∆1) �s (·; !Γ1,∆1) �s (·; !Γ2,∆2) �s (Γ2; ∆2).

By the transitivity of �s, we obtain that (Γ1; ∆1) �s (Γ2; ∆2).

In a similar manner, we can show that (Γ1; ∆1) �s (Γ2; ∆2) implies (Γ1; ∆1) �l
(Γ2; ∆2).

With Theorem 5.16 we can slightly generalize Theorem 5.12.

Corollary 5.17. If (Γ1;A) �s (Γ2; ∆) then Γ2; ∆ ` A⊗
⊗

!Γ1.

Proof. Suppose (Γ1;A) �s (Γ2; ∆). By Theorem 5.16 this means that

(Γ1;A) �l (Γ2; ∆) (31)

By Theorem 2.8, we have that Γ1;A ` A⊗
⊗

!Γ1. Now, by applying the definition of

logical equivalence, (31) yields Γ2; ∆ ` A⊗
⊗

!Γ1.

From Theorems 5.6 and 5.16, we obtain the main result of this subsection.

Corollary 5.18. (Γ1; ∆1) �l (Γ2; ∆2) if and only if (Γ1; ∆1) �b (Γ2; ∆2).

6. Concluding remarks

In this paper, we have shown that the proof-theoretic notion of logical preorder coin-

cides with an extensional behavioral relation adapted from the process-theoretic notion

of barbed preorder Deng and Hennessy (2011). The former is defined exclusively in terms

of traditional derivability, and the latter is defined in terms of a CCS-like process alge-

bra inspired by the formula-as-process interpretation of a fragment of linear logic. In

order to establish the connection, a key ingredient is to introduce a coinductively defined

simulation as a stepping stone. It is interesting to see that coinduction, a central proof

technique in process algebras, is playing an important role in this study of linear logic.

This topic definitely deserves further investigation so that useful ideas developed in one

field can benefit the other, and vice versa.

In the current work, we have interpreted a fragment of linear logic into asynchronous

CCS. It is not fully clear how to satisfactorily represent synchronous process algebras in

linear logic. In addition, while the & connective can be naturally translated into internal

Y. Deng, R. J. Simmons and I. Cervesato 38

choice in process algebra, the ⊕ connective does not seem to match external choice very

well. We hope to tackle these problems in future work.

We have started expanding the results in this paper by examining general implication

(i.e., formulas of the form A(B rather than a(B) and the usual quantifiers. While

special cases are naturally interpreted into constructs found in the join calculus Fournet

and Gonthier (2000) and the π-calculus Milner (1989), Sangiorgi and Walker (2001), the

resulting language appears to extend well beyond them. If successful, this effort may

lead to more expressive process algebras. We are also interested in understanding better

the interplay of the proof techniques used in the present work. This may develop into

an approach to employ coinduction effectively in logical frameworks so as to facilitate

formal reasoning and verification of concurrent systems.

Acknowledgment

We thank the anonymous referees for their insightful comments which helped us to im-

prove the current work. Support for this research was provided by the Qatar National

Research Fund under NPRP grant 09-1107-1-168, by the Fundação para a Ciência e a

Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie

Mellon Portugal Program under Grant NGN-44, and by an X10 Innovation Award from

IBM. Yuxin Deng would also like to acknowledge the support of the Natural Science

Foundation of China (61173033, 61033002, 61261130589) and ANR 12IS02001 “PACE”.

The statements made herein are solely the responsibility of the authors.

References

Abramsky, S. (1994). Proofs as processes. Theoretical Computer Science, 135:5–9.

Amadio, R., Castellani, I., and Sangiorgi, D. (1998). On bisimulation for the asyn-

chronous pi-calculus. Theoretical Computer Science, 195(2):291–324.

Barber, A. (1996). Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,

Laboratory for Foundations of Computer Sciences, University if Edinburgh.

Caires, L. and Cardelli, L. (2003). A spatial logic for concurrency (part I). Information

and Computation, 186(2):194–235.

Caires, L. and Pfenning, F. (2010). Session types as intuitionistic linear propositions.

In Proceedings of the 21th International Conference on Concurrency Theory, volume

6269 of Lecture Notes in Computer Science, pages 222–236. Springer.

Caires, L., Pfenning, F., and Toninho, B. (2012). Towards concurrent type theory. In

Proceedings of the Seventh ACM SIGPLAN Workshop on Types in Languages Design

and Implementation, pages 1–12. ACM.

Cervesato, I., Durgin, N., Kanovich, M. I., and Scedrov, A. (2000). Interpreting Strands

in Linear Logic. In Veith, H., Heintze, N., and Clark, E., editors, 2000 Workshop on

Formal Methods and Computer Security — FMCS’00, Chicago, IL.

Cervesato, I., Pfenning, F., Walker, D., and Watkins, K. (2002). A concurrent logi-

cal framework II: Examples and applications. Technical Report CMU-CS-2002-002,

Department of Computer Science, Carnegie Mellon University. Revised May 2003.

Relating Reasoning Methodologies in Linear Logic and Process Algebra 39

Cervesato, I. and Scedrov, A. (2009). Relating state-based and process-based concurrency

through linear logic. Information and Computation, 207:1044–1077.
Dam, M. (1994). Process-algebraic interpretations of positive linear and relevant logics.

Journal of Logic and Computation, 4(6):939–973.
Deng, Y. and Du, W. (2011). Logical, metric, and algorithmic characterisations of prob-

abilistic bisimulation. Technical Report CMU-CS-11-110, Carnegie Mellon University.
Deng, Y. and Hennessy, M. (2011). On the semantics of markov automata. In Pro-

ceedings of the 38th International Colloquium on Automata, Languages and Program-

ming (ICALP’11), volume 6756 of Lecture Notes in Computer Science, pages 307–318.

Springer.
Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C., and Zhang, C. (2007). Char-

acterising testing preorders for finite probabilistic processes. In Proceedings of the

22nd Annual IEEE Symposium on Logic in Computer Science, pages 313–325. IEEE

Computer Society.
Ehrhard, T. and Laurent, O. (2010). Interpreting a finitary pi-calculus in differential

interaction nets. Information and Computation, 208(6):606–633.
Fournet, C. and Gonthier, G. (2000). The join calculus: a language for distributed mobile

programming. Applied Semantics Summer School — APPSEM’00, Caminha. Available

from http://research.microsoft.com/~fournet.
Fournet, C. and Gonthier, G. (2005). A hierarchy of equivalences for asynchronous calculi.

Journal of Logic and Algebraic Programming, 63(1):131–173.
Gentzen, G. (1935). Untersuchungen über das logische schließen. I. Mathematische

Zeitschrift, 39(1):176–210.
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50:1–102.
Girard, J.-Y., Taylor, P., and Lafont, Y. (1989). Proofs and types. Cambridge University

Press.
Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and concurrency.

Journal of the ACM, 32(1):137–161.
Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall.
Honda, K. and Tokoro, M. (1992). On asynchronous communication semantics. In M.

Tokoro, O. Nierstrasz, P. W., editor, Proceedings of the ECOOP ’91 Workshop on

Object-Based Concurrent Computing, volume 612 of LNCS 612. Springer-Verlag.
Lincoln, P. and Saraswat, V. (1991). Proofs as concurrent processes: A logical inter-

pretation for concurrent constraint programming. Technical report, Systems Sciences

Laboratory, Xerox PARC.
Martin-Löf, P. (1996). On the meanings of the logical constants and the justifications of

the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60.
McDowell, R., Miller, D., and Palamidessi, C. (2003). Encoding transition systems in

sequent calculus. Theoretical Computer Science, 294(3):411–437.
Miller, D. (1992). The π-calculus as a theory in linear logic: Preliminary results. In

Lamma, E. and P.Mello, editors, Proceedings of the Workshop on Extensions to Logic

Programming — ELP’92, pages 242–265. Springer-Verlag LNCS 660.
Milner, R. (1989). Communication and Concurrency. Prentice Hall.
Pfenning, F. (2000). Structural cut elimination I. intuitionistic and classical logic. In-

formation and Computation, 157(1/2):84–141.

http://research.microsoft.com/~fournet

Y. Deng, R. J. Simmons and I. Cervesato 40

Pfenning, F. and Davies, R. (2001). A judgmental reconstruction of modal logic. Mathe-

matical Structures in Computer Science, 11(4):511–540. Notes to an invited talk at the

Workshop on Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy,

July 1999.

Rathke, J. and Sobocinski, P. (2008). Deriving structural labelled transitions for mobile

ambients. In Proceedings of the 19th International Conference on Concurrency Theory,

volume 5201 of Lecture Notes in Computer Science, pages 462–476. Springer.

Sangiorgi, D. and Walker, D. (2001). The π-calculus: a Theory of Mobile Processes.

Cambridge University Press.

Tiu, A. and Miller, D. (2004). A proof search specification of the π-calculus. In 3rd

Workshop on the Foundations of Global Ubiquitous Computing, volume 138 of Elec-

tronic Notes in Theoretical Computer Science, pages 79–101.

Wadler, P. (2012). Propositions as sessions. In Proceedings of the 17th ACM SIGPLAN

International Conference on Functional Programming, pages 273–286. ACM.

	Introduction
	First-Order Intuitionistic Linear Logic
	Metatheory of linear logic
	The logical preorder
	Relating cut, identity, and the logical preorder
	Re-characterizing the logical preorder

	Process Interpretation and the Barbed Preorder
	The barbed preorder
	Properties of the barbed preorder

	Labeled Transitions and the Simulation Preorder
	Labeled transitions
	Examples
	Properties of labeled transitions
	Properties of the simulation preorder
	Equivalence of the barbed and simulation preorders
	Equivalence of the logical and simulation preorders

	Exponentials
	Process interpretation and barbed preorder
	Logical preorder and barbed preorder

	Concluding remarks
	References

