
ISDT 2009 Submission

On Mobility and Communication

Wenjie Du a, Yuxin Deng b

a Shanghai Normal University, China
wenjiedu@shnu.edu.cn

b Shanghai Jiao Tong University, China
yuxindeng@sjtu.edu.cn

Abstract

By imposing three semantic constraints on the π-calculus equipped with delayed
input, we obtain a variant of the π-calculus. We prove that Hennessy and Riely’s
distributed π-calculus can be encoded into this new model, satisfying a full abstrac-
tion theorem, which means that one-dimensional mobility can be characterized by
communication. We also discuss the difficulties of expressing two-dimensional mo-
bility, the mechanism used by ambient calculi.

Key words: mobility, communication, distributed π-calculus,
delayed input

1 Introduction

In the community of process algebra, there exist different kinds of strategies
for controlling resource access, which entail different models for describing
concurrency and mobility. For example, in the standard π-calculus [8], the
restriction operator can be considered as a tool of limiting names for local
use. In distributed π-calculus (Dπ) [6], location is introduced to realize this
function, since processes in different locations are not able to interact with
each other directly. In mobile ambients [4], every ambient has a boundary
which distinguishes interior processes from exterior ones.

But all those controlled resources are not isolated. To describe mobile
systems, i.e., systems with a dynamically changing linkage topology, each
model must provide a mechanism to allow resources to extrude their original
scope so as to be used by processes outside the scope. For instance, in the
π-calculus, the following reduction relation holds.

(νb)(āb.P |Q)|a(x).R −→ (νb)(P |Q|R{b/x})(1)

1 Deng would like to acknowledge the support of the National Natural Science Foundation
of China (Grant No. 60703033).

The private name b, which is previously shared by āb.P and Q, is transmitted
along a. As a consequence, the scope of b is extended to R{b/x}. Consider
the following example from Dπ:

l[go k.āb.P |Q]|k[a(x).R]−→ l[Q]|k[āb.P]|k[a(x).R](2)

−→ l[Q]|k[P |R{b/x}](3)

After the first step of reduction, the agent āb.P moves from one location to
another, say from l to k. Then it can communicate with a(x).R which stays
in location k. In mobile ambients, mobility paves the way for one ambient to
enter the range of another. A typical example is given below:

n[in m.〈b〉.P |Q]|m[open n.(x).R]−→m[n[〈b〉.P |Q]|open n.(x).R](4)

−→m[〈b〉.P |Q|(x).R](5)

−→m[P |Q|R{b/x}](6)

To send the name b to process R, ambient n has to enter the domain of m, be
opened and then communicate with (x).R.

In example (1), only communication happens. In the next two examples,
both mobility and communication take place. A careful observation reveals
that (2) and (4) use different sorts of mobility, which we call one-dimensional
mobility and two-dimensional mobility respectively. In (2), all locations are
always located on the same level, no location nesting being permitted, while
in (4), ambient n becomes a subambient of m after its movement.

In this paper, we will show that one-dimensional mobility can be char-
acterized by communication if we use the semantics of delayed input [10,7].
Such a delayed input prefix, written a(x) : P , allows the continuation P to
evolve underneath the input guard, except for observable actions related to x.
Hence, it allows more parallelism in processes. However, the sequentialization
forced by the ordinary prefix is useful for expressing the behaviors of many
concurrent systems. So in this paper, instead of replacing one with the other,
we keep both operators, with the requirement that the delayed input only
possesses a part of its functions under the ordinary meaning. First, we give a
restricted form of the π-calculus with delayed input (πDI), called πrdi. It is ob-
tained by allowing only a portion of the legal operations in ordinary semantics
of delayed input. In other words, if we use S1 and S2 to stand respectively for
all legal operations in πrdi and πDI , then S1 is actually a subset of S2. Then
we give an encoding of Dπ into πrdi. So the reductions in example (2) will be
simulated as follows:

l : l̄.k : āb.k̄.〈〈P 〉〉k|〈〈Q〉〉l|k : a(x).k̄.〈〈R〉〉k(7)
τ−→ k : āb.k̄.〈〈P 〉〉k|〈〈Q〉〉l|k : a(x).k̄.〈〈R〉〉k(8)
τ−→ k : k̄.〈〈P 〉〉k|〈〈Q〉〉l|k : k̄.〈〈R〉〉k{b/x}(9)
τ−→

2
〈〈P 〉〉k|〈〈Q〉〉l|〈〈R〉〉k{b/x}(10)

≡ 〈〈Q〉〉l|〈〈P |R{b/x}〉〉k(11)

where l and k̄ are abbreviations of l(y) and k̄(z) respectively, for some y and

2

z, since we are not concerned with the names transmitted. We prove that
our encoding meets the correctness criteria: operational correspondence and
full abstraction. At last, we give a brief discussion about the difficulties of
simulating two-dimensional mobility by communication.

In Section 2, we review Hennessy and Riely’s Dπ and give a labelled tran-
sition system which is new because [6] only provides a reduction semantics. In
Section 3, we present the syntax and semantics of πrdi. In Section 4, we report
the encoding of Dπ into πrdi, which is fully abstract. In Section 5, we discuss
two-dimensional mobility. Finally in Section 6, we consider related work and
summarize our main achievements.

2 The distributed π-calculus

In this section, we review Dπ, with some notational changes from [6]. And
we do not consider type system since in this paper we are devoted to the
encoding, thus the syntax, semantics and bisimulation relations are enough to
achieve our aim.

2.1 syntax

Let N be a countable infinite set of names ranged over by the metavariable
x, y, z, · · ·. We will distinguish two subsets of names: channels and locations,
ranged over by a, b, c, · · · and k, l, · · · respectively. Let Net be the set of net-
works, ranged over by M,N, · · ·, built from processes, which in turn, are built
from names. Fig. 1 lists the production grammar. All the operators for net-
works and processes have the usual meanings [2]. The definition of free names
and bound names of a network N , written fn(N) and bn(N) respectively,
arise as expected; the names of N , written n(N), are given by fn(N)∪bn(N).
Substitutions, ranged over by σ, are functions from N to N ; for any name
e, eσ represents the name by applying σ to e; we write Pσ and Nσ for the
process and network obtained by applying σ to P and N respectively, with
renaming possibly involved to avoid capture of free names. Note that Fig. 1
only displays monadic input and output, but we can easily extend them to
allow a tuple of names a1, · · · , an be transmitted. In some examples we write
ã for the names occurring in polyadic input and output. The compound name
introduced in [6] can also be added to our syntax.

To get an overview of the features of the language, we present an exam-
ple borrowed from [2]. This example formalizes the mechanism of standard
remote procedure call. A client process Q, located at k, wants to call a ser-
vice located at l with arguments d̃, and waits for the results, to be processed
by a continuation process P . Using our syntax, the example is written as
N = k[Q]|l[R], where

Q= (νr)(go l.ā〈d̃, r, k〉|r(ṽ).P)(12)

R= !a(x̃, y, z).go z.ȳ〈f(x̃)〉(13)

3

e : : = names

a channel

| k location

P,Q,R · · · : : = processes

0 inaction

| P |Q composition

| (νe)P restriction

| go k.P movement

| āb.P output

| a(x).P input

| !P replication

| [a = b]P,Q matching

M,N · · · : : = networks

0 empty

| M |N composition

| (νe)N restriction

| k[P] agent

Fig. 1. Syntax of Dπ

2.2 Semantics

In [6] only reduction semantics is given. However we would like to use labelled
transition semantics to compare the operational correspondence between Dπ
and πrdi. Fig. 2 displays this semantics in the so-called early style [8]. It
is based on an auxiliary relation called structural congruence which abstract
away some irrelevant details from the static structure of terms. It is closed
under composition and restriction, satisfying the axioms listed below:

(i) M ≡ N if M α-convertible N

(ii) M |0 ≡M, M |N ≡ N |M, M |(N |O) ≡ (M |N)|O
(iii) k[(νe)P] ≡ (νe)k[P] if e 6= k

(iv) k[P |Q] ≡ k[P]|k[Q]

(v) (νe)0 ≡ 0, k[0] ≡ 0

4

in
k[a(x).P]

k,ab−→ k[P{b/x}]
out

k[āb.P]
k,āb−→ k[P]

go
k[go l.P]

k,τ−→ l[P]
res

N
k,α−→ N ′ b 6∈ n(α) ∪ {k}
(νb)N

k,α−→ (νb)N ′

open
N

k,āb−→ N ′ b 6∈ {k, a}
(νb)N

k,ā(b)−→ N ′
mat

k[P]
k,α−→ k[P ′]

k[[a = a]P,Q]
k,α−→ k[P ′]

mis
k[Q]

k,α−→ k[Q′] a 6= b

k[[a = b]P,Q]
k,α−→ k[Q′]

par
N

k,α−→ N ′ bn(α) ∩ fn(M) = ∅
N |M k,α−→ N ′|M

comm M
k,āb−→M ′ N

k,ab−→ N ′

M |N k,τ−→M ′|N ′
close M

k,ā(b)−→ M ′ N
k,ab−→ N ′

M |N k,τ−→ (νb)(M ′|N ′)

rep
k[P |!P]

k,α−→ N

k[!P]
k,α−→ N

str N ≡M M
k,α−→M ′ M ′ ≡ N ′

N
k,α−→ N ′

Fig. 2. Labelled transition system for Dπ

The rules com, close and par have a symmetric version which is omitted. Tran-

sitions are of the form N
k,α−→ N ′, where k represents the location where the

transition takes place and action α is the same as the action in standard π-
calculus [10]. The definitions of subj(α), fn(α), bn(α) and n(α) inherit their

meaning directly from the π-calculus. Relation (
k,τ−→)∗ is the reflexive and

transitive closure of
k,τ−→; moreover,

k,α
=⇒ stands for (

k,τ−→)∗
k,α−→ (

k,τ−→)∗, and
k,α̂

=⇒ for
k,α

=⇒ if α 6= τ , and for (
k,τ−→)∗ if α = τ .

Remark. We explain why, in this transition system, a label (k, α) consists
of two components, k and α. In rules comm and close, the prerequisite for the
communication between M and N is that they can perform complementary
actions in the same location. This kind of mechanism for communication is
different from those of π1l-calculus [1] and distributed join-calculus [5], where
communication is deterministic, static and point-to-point, and participants
for interaction need not be in the same location.

2.3 Bisimulation

We can now define a notion of (weak) bisimulation over the transition system
given in last section. It is simply the easy adaption of the bisimulation relation
in the π-calculus [8].

Definition 2.1 A symmetric relation S ⊆ Net × Net is a bisimulation if

5

MSN implies:

If M
k,α−→M ′ then there exists N ′ such that N

k,α̂
=⇒ N ′ and M ′SN ′.

Two networks M and N are bisimilar, written M ≈D N , if MSN for some
bisimulation S.

Another important notion in process calculi is expansion relation, since
it is sometimes useful to count the number of silent moves performed by a
process. Here we introduce this notion into Dπ and require that M expands
to N if M ≈D Nand N has at least as many silent moves as M .

Definition 2.2 A relation S ⊆ Net×Net is an expansion if MSN implies:

(1)If M
k,α−→ M ′ then there exists some N ′ such that N

k,α
=⇒ N ′ and M ′SN ′.

(2)If N
k,α−→ N ′ then there exists some M ′ such that M

k,α̂−→M ′ and M ′SN ′.
N expands M , written M �D N , if MSN for some expansion S.

Obviously, M �D N implies M ≈D N . It is easy to check that we also
have the following lemma.

Lemma 2.3 M ≈D N implies:
(1) M |O ≈D N |O (2) (νe)M ≈D (νe)N

3 πrdi

In this section we introduce πrdi, a restricted form of the π-calculus with
delayed input. Since the processes in πrdi is very similar to the processes
located in some locations in Dπ, we abuse some notation and do not dwell
much on the syntax and semantics of πrdi.

Let Pr be the set of processes in πrdi, also ranged over by P,Q, · · ·, built
from the operators of inaction, input prefix, output prefix, parallel composition,
restriction, replication, match and delayed input according to the following
grammar:

P,Q,R · · · ::= 0 | a(x).P | āb.P | P |Q | (νa)P |!P | [a = b]P,Q | a(x) : P

When the names transmitted are not important, we do not write them ex-
plicitly and abbreviate a(x).P, āb.P and a(x) : P as a.P, ā.P and a : P
respectively. The definitions of action α, subj(α), fn(α), bn(α), n(α) and
fn(P) remain unchanged. So the syntax of πrdi is the same as that of πDI .

The labelled transition semantics for πrdi is displayed in Fig. 3, where u
ranges over the set N ∪ {ε}. The semantics of πrdi is obtained by applying
three semantic constraints on πDI . (1) a(x) : P can receive a name along a
only from one source: P , i.e., there is a subterm of P in the form of āb.Q.
The process a(x) : P |āb.R is not able to be reduced to P{b/x}|R since āb.R
is outside the scope of P . So we disallow the general rule for input:

a(x) : P
ab−→ P{b/x}
6

IN
a(x).P

ε,ab−→ P{b/x}
OUT

āb.P
ε,āb−→ P

ACT
P

ε,α−→ P ′ x 6∈ n(α) a 6∈ subj(α)
a(x) : P

a,α−→ a(x) : P ′
COM1 P

ε,āb−→ P ′

a(x) : P
a,τ−→ P ′{b/x}

CLS1 P
ε,ā(b)−→ P ′

a(x) : P
a,τ−→ (νb)(P ′{b/x})

COM2 P
u,āb−→ P ′ Q

u,ab−→ Q′

P |Q u,τ−→ P ′|Q′

CLS2
P

u,ā(b)−→ P ′ Q
u,ab−→ Q′ b 6∈ fn(Q)

P |Q u,τ−→ (νb)(P ′|Q′)
PAR

P
u,α−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q u,α−→ P ′|Q

RES
P

u,α−→ P ′ a 6∈ n(α) ∪ {u}
(νa)P

u,α−→ (νa)P ′
OPEN

P
u,āb−→ P ′ b 6∈ {u, a}
(νb)P

u,ā(b)−→ P ′

MAT P
u,α−→ P ′

[a = b]P,Q
u,α−→ P ′

MIS Q
u,α−→ Q′ a 6= b

[a = b]P,Q
u,α−→ Q′

REP
P |!P u,α−→ P ′

!P
u,α−→ P ′

STR P ≡ Q Q
u,α−→ Q′ Q′ ≡ P ′

P
u,α−→ P ′

Fig. 3. Labelled transition semantics for πrdi

and only reserve COM1 and CLS1. (2) Suppose P ≡ a(x) : P1, Q ≡ b(y) : Q1

and P1 has a complementary action of Q1, then P can communicate with Q
only if a = b. This reminds us of Remark 1. The encoding in Section 4 tells us
the necessity of this constraint given by rules COM2 and CLS2. (3) We do not
want two consecutively nesting delayed input to occur in a process expression.
This constraint can be lifted, but keeping it simplifies our proofs in Section 4.
Rule ACT implies this constraint.

The transition system rests on the following structural congruence relation.

(i) P ≡ Q if P α-convertible Q

(ii) P |0 ≡ P, P |Q ≡ Q|P, P |(Q|R) ≡ (P |Q)|R
(iii) (νa)0 ≡ 0, (νa)(νb)P ≡ (νb)(νa)P

The label of a transition P
u,α−→ P ′ has two components: u and α, where u

is used for bookkeeping so as to reflect the second constraint. In fact, all the
three constraints are imposed on the operator of delayed input. If we erase
delayed input from πrdi, u will always be ε. Moreover, in that case, when we
write P

ε,α−→ P ′ as P
α−→ P ′, the LTS of πrdi will become the LTS of standard

π-calculus. So we can consider π as a special instance of πrdi. Another point
worthy of mentioning is that πrdi is purely communication-based, involving
neither one-dimensional mobility nor two-dimensional mobility.

Bisimulation and expansion can be adapted from Definitions 2.1 and 2.2
by replacing Dπ networks with πrdi processes and extending the corresponding

7

〈〈0〉〉 = 0 〈〈0〉〉k = 0

〈〈M |N〉〉 = 〈〈M〉〉|〈〈N〉〉 〈〈P |Q〉〉k = 〈〈P 〉〉k|〈〈Q〉〉k

〈〈(νe)N〉〉 = (νe)〈〈N〉〉 〈〈(νe)P 〉〉k = (νe)〈〈P 〉〉k

〈〈k[P]〉〉 = 〈〈P 〉〉k 〈〈go l.P 〉〉k = k : k̄.〈〈P 〉〉l

〈〈āb.P 〉〉k = k : āb.k̄.〈〈P 〉〉k

〈〈a(x).P 〉〉k = k : a(x).k̄.〈〈P 〉〉k

〈〈!P 〉〉k = !〈〈P 〉〉k

〈〈[a = b]P,Q〉〉k = [a = b]〈〈P 〉〉k, 〈〈Q〉〉k

Fig. 4. Encoding Dπ into πrdi

definition of
u,â

=⇒.

Definition 3.1 A symmetric relation S ⊆ Pr× Pr is a bisimulation if PSQ
implies:

If P
u,α−→ P ′ then there exists Q′ such that Q

u,α̂
=⇒ Q′ and P ′SQ′

P is bisimilar to Q, written P ≈r Q, if PSQ for some S.

Definition 3.2 A relation S ⊆ Pr × Pr is an expansion if PSQ implies:
(1) If P

u,α−→ P ′ then there exists some Q′ such that Q
u,α
=⇒ Q′ and P ′SQ′.

(2) If Q
u,α−→ Q′ then there exists some P ′ such that P

u,α̂−→ P ′ and P ′SQ′.
Q expands P , written P �r Q, if PSQ for some expansion S.

All the properties of ≈D and �D hold for ≈r and �r.

4 Encoding Dπ into πrdi

The translation from Dπ to πrdi is displayed in Fig. 4, where the translation of
networks relies on an auxiliary translation of processes which is parametric in
a location name. The name represents the location where the process is run-
ning. Every location is translated into a delayed input and an output within
its continuation process, and we are not concerned with what is transmitted
between them. The pair of delayed input and the continuing output performs
as an entity, either appear or disappear at the same time. That’s why we
impose constraints (1) and (2) on πDI so as to reduce it to πrdi.

Let’s consider the network N defined in Section 2.1. It can be translated
as 〈〈N〉〉 = 〈〈Q〉〉k|〈〈R〉〉l, where

〈〈Q〉〉k = (νr)(k : k̄.l : ā〈d̃, r, k〉.l̄|k : r(ṽ).k̄.〈〈P 〉〉k)(14)

8

〈〈R〉〉l = !l : a(x̃, y, z).l̄.l : l̄.z : ȳ〈f(x̃)〉.z̄(15)

For the translation 〈〈N〉〉, we neither add any new names to nor delete any
existing names from N , so the free names of N are preserved and remain free
in 〈〈N〉〉.

Lemma 4.1 fn(〈〈M〉〉) = fn(M)

Lemma 4.2 For any substitution σ, the following properties hold:
(1) (〈〈P 〉〉k)σ = 〈〈Pσ〉〉kσ
(2) 〈〈Mσ〉〉 = 〈〈M〉〉σ

Proof. By induction on the structures of processes and networks. The proof
of clause (2) makes use of (1) when analyzing the case of M ≡ k[P]. 2

Lemma 4.3 (1) If M ≡ N then 〈〈M〉〉 ≡ 〈〈N〉〉.
(2) If 〈〈M〉〉 ≡ P then there exists some N such that P ≡ 〈〈N〉〉 and M ≡ N .

Proof. By induction on the structural congruence of Net and Pr respectively.
Details are omitted. 2

Now we are prepared to prove that the encoding 〈〈·〉〉 enjoys an operational
correspondence up to �r.

Lemma 4.4 (Operational correspondence) Let M be a network in Dπ.

(1) Suppose that M
k,α−→M ′, then we have:

(a) if α ∈ {ab, āb, ā(b)} then 〈〈M〉〉 k,α−→ k,τ−→ 〈〈M ′〉〉;
(b) if α = τ then 〈〈M〉〉(k,τ−→)t〈〈M ′〉〉 and t = 1 or t = 3.

(2) Suppose that 〈〈M〉〉 u,α−→ P , then there exists M ′ ∈ Net such that M
u,α−→M ′

and 〈〈M ′〉〉 �r P .

Proof. By transition induction. The proof relies on the last three lemmas.
Details can be found in the Appendix. 2

Theorem 4.5 (Full abstraction) Let M and N be two networks in Dπ,
then

M ≈D N iff 〈〈M〉〉 ≈r 〈〈N〉〉

Proof. (⇒) We can construct a relation

R = {(〈〈M〉〉, 〈〈N〉〉) |M ≈D N}∪ ≈r

and prove that it is a bisimulation in πrdi.
(⇐) Similarly we can prove that the relation

S = {(M,N) | 〈〈M〉〉 ≈r 〈〈N〉〉}

is a bisimulation in Dπ.

The two parts of proof rely on Lemma 4.4. Refer to the Appendix for more
details. 2

9

5 Discussion

We take mobile ambients [4] as a typical example of process calculus with
two-dimensional mobility. It has two characteristics: (1) it has hierarchical
structure, i.e., an ambient may contain several subambients; (2) a process
may be influenced by the operations of its sibling processes without noticing
the effect. For example, the following reduction rules are the cornerstones for
ambient calculus.

n[in m.P |Q]|m[R] −→ m[n[P |Q]|R](16)

m[n[out m.P |Q]|R] −→ n[P |Q]|m[R](17)

In (16) and (17), the environments of Q are both changed by P . There is not
any symptom for Q to know when and how its environment will be changed.
This kind of phenomenon is hard to be simulated in communication-based
models, since in these models a process cannot have any influence to a sib-
ling process if no communication happens between them. So one may think
of treating a pair of sibling processes, say in m.P and Q in (16) as a whole
entity in the translation (if it exists), and either process can perform some
actions to influence the entity, which also means to influence itself and its
sibling process. There are two reasons against this strategy. (1) A good trans-
lation should be homomorphic with respect to parallel composition, namely
〈〈P |Q〉〉 = 〈〈P 〉〉|〈〈Q〉〉 [9]. This condition requires us to encode in m.P and Q
separately. (2) In (17), the behavior of ambient n has no effect to the sibling
process R. Therefore, it should be better to take ambient n and R as two
different entities in the translation. Now we are trapped in a dilemma: there
are arguments to support two opposite opinions.

To translate two-dimensional mobility, we have to consider the problem of
how to represent hierarchical structure in a flat space. (In the π-calculus
and its variants, all processes stand on the same level.) It is difficult to
use only prefix operators to describe nesting ambients. The techniques of
polyadic synchronization [3] can be thought of communication over channels
with structured address. But it is of little help for the translation of ambient.
For example, one may conceive of a translation of m in (17) like this: m · n :
C[〈〈out m.P |Q〉〉]|m : D[〈〈R〉〉], where C and D are some contexts of the target
language. It says that C and D lie on different levels. But it does not solve
the problem. If R has the operator of open n, one may want C to be lifted
to a higher level, directly underneath m. However, the semantics of polyadic
synchronization [3] forbids any communication between two processes sharing
different channels, say m · n and n in this example.

Therefore, we leave the proof or disproof of the possibility of directly en-
coding two-dimensional mobility into communication-based models as an open
problem.

10

6 Conclusions and related work

We have presented a variant of the π-calculus (πrdi) by imposing three seman-
tic constraints on the π-calculus with delayed input. The model we obtained
is purely based on communication, involving nothing about mobility. By en-
coding Hennessy and Riely’s distributed π-calculus (Dπ) into πrdi, we show
the possibility of characterizing one-dimensional mobility using only commu-
nication. To compare the operational correspondence between Dπ and πrdi,
we enrich the original Dπ with labelled transition semantics and bisimulation.
It is shown that the encoding is fully abstract. We have also discussed the
difficulties of dealing with two-dimensional mobility which is one of the main
features of mobile ambients.

In [1], Amadio has presented an asynchronous model (π1l) of locality, fail-
ure and process mobility. It is shown that π1l can be encoded into π1, a typed
version of the asynchronous π-calculus. But π1l requires that every channel
name is associated with a unique process which serves messages addressed
to that name. Therefore, location does not have a strong efficacy to limit
resource access, since the communication is point-to-point and the processes
of sending and receiving message can stay in different locations. In contrast,
the communication in Dπ is local and there is no direct message exchange
between two different locations. In fact, the main role location plays in π1l is
to describe failure. In the absence of failure, the distribution of processes is
transparent and enjoys the property: r ≈a erl(r), where erl is the function of
location erasure [1]. In [5], location nesting shows the hierarchical structure
of location tree. But message transmission is also deterministic and point-
to-point as every name is defined in at most one solution. Hence it is not
surprising that there exists an encoding of distributed join-calculus into the
join-calculus. In [2], a subcalculus of Dπ, the receptive distributed π-calculus
is studied. It is shown to be expressive enough to contain the π1-calculus
proposed in [1].

References

[1] R. M. Amadio. An asynchronous model of locality, failure, and process mobility.
In D. Garlan and D. Le Metayer, editors, Proceedings of COORDINATION
’97, volume 1282 of LNCS. Springer, 1997. Extended version as Rapport de
Recherche RR-3109, INRIA Sophia-Antipolis, 1997.

[2] R. M. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed
pi-calculus (extended abstract). In C. Pandu Rangan, V. Raman, and
R. Ramanujam, editors, Proceedings of FSTTCS ’99, volume 1738 of LNCS,
pages 304–315. Springer, Dec. 1999.

[3] M. Carbone. On the expressive power of polyadic synchronisation in π-calculus.
Electronic Notes in Theoretical Computer Science, 68(2), 2002.

11

[4] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000. An extended abstract appeared in Proceedings
of FoSSaCS ’98 : 140–155.

[5] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus
of mobile agents. In U. Montanari and V. Sassone, editors, Proceedings of
CONCUR ’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.

[6] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98, volume
16.3 of ENTCS, pages 3–17. Elsevier Science Publishers, 1998. Full version as
CogSci Report 2/98, University of Sussex, Brighton.

[7] M. Merro. Locality in the π-calculus and applications to distributed objects.
PhD thesis, Ecole des Mines, France, October 2000.

[8] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1–77, Sept. 1992.

[9] C. Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous π-calculus. In Proceedings of POPL ’97, pages 256–265. ACM,
Jan. 1997.

[10] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

A Delayed Proofs

Proof of Lemma 4.4

Proof. The proof proceeds by transition induction. We prove part 1. The
proof of part 2 is similar.

(i) Suppose that M
k,α−→ M ′ and α = ab. When α = āb or ā(b), similar

analysis can be applied.

(a) When the last rule applied to get M
k,ab−→ M ′ is in, then we have

〈〈M〉〉 ≡ k : a(x).k̄.〈〈P 〉〉k k,ab−→ k : k̄.〈〈P 〉〉k{b/x} k,τ−→ 〈〈P 〉〉k{b/x}. By
Lemma 4.2, 〈〈P 〉〉k{b/x} = 〈〈P{b/x}〉〉k ≡ 〈〈M ′〉〉.

(b) When res is the rule used last, then M ≡ (νe)N,M ′ ≡ (νe)N ′, e 6∈
{a, b} and N

k,ab−→ N ′. By induction hypothesis, 〈〈N〉〉 k,ab−→ Q
k,τ−→

〈〈N ′〉〉, it follows that (νe)〈〈N〉〉 k,ab−→ (νe)Q
k,τ−→ (νe)〈〈N ′〉〉 ≡ 〈〈M ′〉〉.

(c) When the last rule used is mat, then M ≡ k[[c = c]P,Q], M ′ ≡ k[P ′]

and k[P]
k,ab−→ k[P ′] for some c, P and Q. By induction hypothesis,

we can obtain 〈〈P 〉〉k k,ab−→ R
k,τ−→ 〈〈P ′〉〉k, then it follows that 〈〈M〉〉 ≡

[c = c]〈〈P 〉〉k, 〈〈Q〉〉k k,ab−→ R
k,τ−→ 〈〈P ′〉〉k ≡ 〈〈M ′〉〉 by rule MAT.

(d) The case for mis is similar to the last case.

12

(e) When par is used last to derive the transition of M , then M ≡
N1|N2, M

′ ≡ N ′1|N2 and N1
k,ab−→ N ′1, for some N1 and N2. By in-

duction hypothesis, 〈〈N1〉〉
k,ab−→ R

k,τ−→ 〈〈N ′1〉〉. It follows that 〈〈M〉〉 ≡
〈〈N1〉〉|〈〈N2〉〉

k,ab−→ R|〈〈N2〉〉
k,τ−→ 〈〈N ′1〉〉|〈〈N2〉〉 ≡ 〈〈M ′〉〉 by rule PAR.

(f) When the last rule applied is rep, then M ≡ k[!P] and k[P |!P]
k,ab−→

M ′. By induction hypothesis, 〈〈P 〉〉k|!〈〈P 〉〉k k,ab−→ R
k,τ−→ 〈〈M ′〉〉. By

rule REP, we have that 〈〈M〉〉 ≡ 〈〈P 〉〉k k,ab−→ R
k,τ−→ 〈〈M ′〉〉.

(g) When str is applied as the last rule, then M ≡ N, N
k,ab−→ N ′ and

N ′ ≡ M ′. From induction hypothesis, we have 〈〈N〉〉 k,ab−→ k,τ−→ 〈〈N ′〉〉.
Lemma 4.3 shows that 〈〈M〉〉 ≡ 〈〈N〉〉, 〈〈N ′〉〉 ≡ 〈〈M ′〉〉. By using rule

STR, we conclude that 〈〈M〉〉 k,ab−→ k,τ−→ 〈〈M ′〉〉.
(ii) α = τ

(a) When the rule used to derive the transition of M is go, then M ≡
k[go l.P], N ≡ l[P] for some l and P . So we have 〈〈M〉〉 = k :

k̄.〈〈P 〉〉l k,τ−→ 〈〈P 〉〉l ≡ 〈〈N〉〉.
(b) When com is applied last, then M ≡ N1|N2, M

′ ≡ N ′1|N ′2, N1
k,āb−→ N ′1

and N2
k,ab−→ N ′2 for some N1, N

′
1, N2 and N ′2. By induction hypothesis,

〈〈N1〉〉
k,āb−→ R1

k,τ−→ 〈〈N ′1〉〉, 〈〈N2〉〉
k,ab−→ R2

k,τ−→ 〈〈N ′2〉〉. So 〈〈M〉〉 ≡
〈〈N1〉〉|〈〈N2〉〉(

k,τ−→)3〈〈N ′1〉〉|〈〈N ′2〉〉 ≡ 〈〈M ′
2〉〉 by rule COM2, PAR.

(c) When the rule close is applied in the last step of derivation, then M ≡
N1|N2, M

′ ≡ (νb)(N ′1|N ′2), N1
k,ā(b)−→ N ′1 and N2

k,ab−→ N ′2, for some

N1, N
′
1, N2 and N ′2. By induction hypothesis 〈〈N1〉〉

k,ā(b)−→ R1
k,τ−→ 〈〈N ′1〉〉

and 〈〈N2〉〉
k,ab−→ R2

k,τ−→ 〈〈N ′2〉〉. So we have 〈〈M〉〉 ≡ 〈〈N1〉〉|〈〈N2〉〉(
k,τ−→

)3(νb)(〈〈N ′1〉〉|〈〈N ′2〉〉) ≡ 〈〈M ′〉〉 by rule CLS2, PAR and RES.
(d) The other cases are similar to 1.

2

Proof of Theorem 4.5

Proof. (⇒) We can construct a relation

R = {(〈〈M〉〉, 〈〈N〉〉) |M ≈D N}

and prove that it is a bisimulation up to ≈r in πrdi. Suppose that 〈〈M〉〉 k,α−→
P, α ∈ {ab, āb, ā(b), τ}. By operational correspondence, we have M

k,α−→ M ′

for some M ′ such that 〈〈M ′〉〉 �r P , i.e., 〈〈M ′〉〉 ≈r P . Since M ≈D N , we

know that N
k,α̂

=⇒ N ′ and M ′ ≈D N ′. By Lemma 4.4, 〈〈N〉〉 k,α̂
=⇒ 〈〈N ′〉〉 ≡ Q.

So we have P ≈r RQ. Similarly, by using the ”up-to” techniques of [10], we
can prove that the relation R∪ ≈r is a bisimulation in πrdi.

13

(⇐) Similarly we can prove that the relation

S = {(M,N) | 〈〈M〉〉 ≈r 〈〈N〉〉}

is a bisimulation in Dπ. Suppose M
k,α−→ M ′. By operational correspondence

we have 〈〈M〉〉 k,α
=⇒ 〈〈M ′〉〉. Since 〈〈M〉〉 ≈r 〈〈N〉〉, we know that 〈〈N〉〉 k,α̂

=⇒
P ≈r 〈〈M ′〉〉. From Lemma 4.4, it follows that there exists some N ′, such that

N
k,α̂

=⇒ N ′ and 〈〈N ′〉〉 �r P . So we have that 〈〈N ′〉〉 ≈r P ≈r 〈〈M ′〉〉. Therefore
(M ′, N ′) ∈ S, which means that S is a bisimulation in Dπ.

2

14

	Introduction
	The distributed -calculus
	syntax
	Semantics
	Bisimulation

	rdi
	Encoding D into rdi
	Discussion
	Conclusions and related work
	References
	Delayed Proofs

