Advanced Algorithms (XIII)

Yijia Chen
Fudan University
The PCP Theorem

Theorem

\[\text{NP} = \text{PCP}(\log n, 1). \]
Motivation
Approximate solutions

Definition (Approximation of MAX–3SAT)
For every 3CNF formula φ, the value of φ

$$\text{val}(\varphi) := \max_{\text{assignment } z} \frac{\# \text{ clauses in } \varphi \text{ satisfied by } z}{\# \text{ clauses in } \varphi}$$

Thus

$$\varphi \text{ is satisfiable } \iff \text{val}(\varphi) = 1.$$

For every $\rho \leq 1$, an algorithm A is a ρ-approximation algorithm for MAX–3SAT if for every 3CNF formula φ with m clauses, $A(\varphi)$ outputs an assignment satisfying at least

$$\rho \cdot \text{val}(\varphi) \cdot m$$

of φ’s clauses.
The algorithm assigns values to the variables one by one in a greedy fashion, whereby the ith variable is assigned the value that results in satisfying at least $1/2$ the clauses in which it appears.
The minimum vertex cover problem

MIN-VERTEX-COVER

Input: A graph $G = (V, E)$.

Solution: $S \subseteq V$ with $S \cap e \neq \emptyset$ for every $e \in E$.

Cost: $|S|$.

Goal: max.

For $\rho \leq 1$, a ρ-approximation algorithm for MIN-VERTEX-COVER is an algorithm that on input a graph G outputs a vertex cover whose size is at most $1/\rho$ times the size of the minimum vertex cover.
1/2-Approximation for MIN-VERTEX-COVER

1. Start with $S \leftarrow \emptyset$.
2. Pick any edge $e = \{u, v\}$.
3. $S \leftarrow S \cup \{u, v\}$.
4. Delete u, v, and all edges adjacent to them.
5. If the graph is not empty, then goto 2, else output S.
Two Views of the PCP Theorem
- New, extremely robust proof systems.
- Approximating combinatorial optimization problems.
Let \mathcal{A} be any one of the usual axiomatic systems of mathematics for which proofs can be verified by a deterministic TM in time that is polynomial in the length of the proof.

Then

$$L = \{ \langle \varphi, 1^n \rangle \mid \varphi \text{ has a proof in } \mathcal{A} \text{ of length } \leq n \}.$$

The PCP Theorem asserts that L has probabilistically checkable certificates: proofs are probabilistically checkable by examining only a constant number of bits in them.
A standard definition of NP

$L \in \text{NP}$ if there is a polynomial time Turing machine V that, given input x, checks certificates (or membership proofs) to the effect that $x \in L$:

$$x \in L \implies \exists \pi V^\pi(x) = 1$$
$$x \notin L \implies \forall \pi V^\pi(x) = 0,$$

where V^π denotes "a verifier with access to certificate π."
Definition

Let L be a language and $q, r : \mathbb{N} \rightarrow \mathbb{N}$. We say that L has an $(r(n), q(n))$-PCP verifier if there is a polynomial time probabilistic algorithm V satisfying:

1. **Efficiency:** On input $x \in \{0, 1\}^n$ and given random access to a string $\pi \in \{0, 1\}^*$ of length at most $q(n)2^{r(n)}$, V uses at most $r(n)$ random coins and makes at most $q(n)$ nonadaptive queries to locations of π.

2. **Completeness:** If $x \in L$, then there exists a proof $\pi \in \{0, 1\}^*$ with
 \[
 \Pr[V^\pi(x) = 1] = 1.
 \]

3. **Soundness:** If $x \notin L$ then for every proof $\pi \in \{0, 1\}^*$,
 \[
 \Pr[V^\pi(x) = 1] \leq 1/2.
 \]
Definition
$L \in \text{PCP}(r(n), q(n))$ if there are some constants $c, d > 0$ such that L has a $(c \cdot r(n), d \cdot q(n))$-PCP verifier.

Theorem

$\text{NP} = \text{PCP}(\log n, 1)$.
Remarks

1. By the soundness, if $x \notin L$ then the verifier has to reject every proof with probability at least $1/2$, the most difficult part of the proof.

2. Proofs checkable by an (r, q)-verifier are of length at most $q2^r$, since such a verifier can look on at most this number of locations.

3. $\text{PCP}(r(n), q(n)) \subseteq \text{NTIME}\left(2^{O(r(n))} q(n)\right)$.

4. For different NP languages the $(O(\log n), O(1))$-verifiers might use a different constant number of query bits. However, since every NP language is reducible to SAT, all these numbers can be upper bounded by the number of query bits required by a verifier for SAT.

5. The constant $1/2$ in the soundness is arbitrary, in the sense that changing it to any other positive constant smaller than 1 will not change the class of languages defined. A PCP verifier with soundness $1/2$ that uses r coins and makes q queries can be converted into a PCP verifier using cr coins and cq queries with soundness 2^{-c} by just repeating its execution c times.
The graph non-isomorphism problem is defined as

$$\text{GNI} = \{(G_0, G_1) \mid G_0 \text{ and } G_0 \text{ are two non-isomorphic graphs}\}.$$

- Assume G_0 and G_1 are both of n vertices.
- The proof π contains, for each graph H with n nodes, $\pi(H) \in \{0, 1\}$ corresponding to whether $H \equiv G_0$ or $H \equiv G_1$, otherwise, arbitrary.
- The verifier randomly picks $b \in \{0, 1\}$ and a permutation. She applies the permutation to G_b to obtain an isomorphic graph H. Then she accepts iff $\pi(H) = b$.
- If $G_0 \not\equiv G_1$, then the correct π makes the verifier accept with probability 1.
- If $G_1 \equiv G_2$, then the probability that any π makes the verifier accept is at most $1/2$.
Theorem

\[\text{NEXP} = \text{PCP}(\text{poly}(n), 1). \]
Theorem

PCP Theorem: Hardness of approximation view There exists $\rho < 1$ such that for every $L \in \text{NP}$ there is a polynomial time function f mapping strings to (representations of) 3CNF formulas such that

\[
x \in L \implies \text{val}(f(x)) = 1
\]
\[
x \notin L \implies \text{val}(f(x)) < \rho.
\]

Corollary

There exists some constant $\rho < 1$ such that if there is a polynomial time ρ-approximation algorithm for MAX-3SAT then $P = \text{NP}$.
Equivalence of the Two Views
Constraint satisfaction problems (CSP)

Definition
Let $q \in \mathbb{N}$. Then a qCSP instance φ is a collection of functions $\varphi_1, \ldots, \varphi_m$ (i.e., constraints) from $\{0, 1\}^n$ to $\{0, 1\}$ such that each function φ_i depends on at most q of its input locations: for every $i \in [m]$ there exist $j_1, \ldots, j_q \in [n]$ and $f : \{0, 1\}^q \to \{0, 1\}$ such that

$$\varphi_i(u) = f(u_{j_1}, \ldots, u_{j_q})$$

for every $u \in \{0, 1\}^n$.

An assignment $u \in \{0, 1\}^n$ satisfies φ_i if $\varphi_i(u) = 1$. Let

$$\text{val}(\varphi) = \max_u \frac{\sum_{i \in [m]} \varphi_i(u)}{m}.$$

φ is satisfiable if $\text{val}(\varphi) = 1$.

We call q the *arity* of φ.
Remarks

1. The size of a qCSP-instance is the number of constraints it has.

2. We can always assume $n \leq qm$.

3. A qCSP instance over n variables with m constraints can be described by a binary string of length $O(mq2^q \log n)$.

4. The simple greedy approximation algorithm for 3SAT can be generalized for the MAXqCSP problem of maximizing the number of satisfied constraints in a given qCSP instance. For any qCSP instance φ with m constraints, this algorithm will output an assignment satisfying $\text{val}(\varphi)m/2^q$ constraints.
Definition

Let \(q \in \mathbb{N} \) and \(\rho \leq 1 \). Then the \(\rho\text{-GAP}q\text{CSP} \) is the problem of determining for a given \(q\text{CSP} \)-instance \(\varphi \) whether:

1. \(\text{val}(\varphi) = 1 \) (\(\varphi \) is a YES instance of \(\rho\text{-GAP}q\text{CSP} \)), or
2. \(\text{val}(\varphi) < \rho \) (\(\varphi \) is a NO instance).

\(\rho\text{-GAP}q\text{CSP} \) is NP-hard if there is a polynomial time function \(f \) mapping strings to (representations of) \(q\text{CSP} \) instances satisfying:

1. Completeness: \(x \in L \implies \text{val}(f(x)) = 1 \).
2. Soundness: \(x \notin L \implies \text{val}(f(x)) \leq \rho \).

Theorem

There exist constants \(q \in \mathbb{N} \) and \(\rho \in \mathbb{R} \) with \(0 < \rho < 1 \) such that \(\rho\text{-GAP}q\text{CSP} \) is NP-hard.
Theorem

The following are equivalent.

1. $\text{NP} = \text{PCP}(\log n, 1)$.

2. There exist constants $q \in \mathbb{N}$ and $\rho \in \mathbb{R}$ with $0 < \rho < 1$ such that ρ-GAPqCSP is NP-hard.
From $\text{NP} \subseteq \text{PCP}(\log n, 1)$ we show $1/2$-GAPqCSP is NP-hard for some $q \in \mathbb{N}$.

- 3SAT has a verifier V which makes q queries and uses $c \log n$ random coins.
- Let $x \in \{0, 1\}^n$ and $r \in \{0, 1\}^{c \log n}$. Then $V_{x,r}$ is the function that on input π outputs 1 if V accepts π on input x and coins r.
- $V_{x,r}$ depends on at most q locations. Thus for every $x \in \{0, 1\}^n$

$$\varphi = \{ V_{x,r} \}_{r \in \{0,1\}^{c \log n}}$$

is a polynomial-sized qCSP instance.
- Since V runs in polynomial time, $x \mapsto \varphi$ is computable in polynomial time.
- By the completeness, if $x \in \text{3SAT}$, then $\text{val}(\varphi) = 1$.
- By the soundness, if $x \notin \text{3SAT}$, then $\text{val}(\varphi) \leq 1/2$.
Assume ρ-GAP_qCSP is NP-hard for some $\rho < 1$ and $q \in \mathbb{N}$. Then this easily translates into a PCP with q queries, ρ soundness, and logarithmic randomness for any language $L \in \text{NP}$:

- Given an input x, the verifier V will run the reduction $f(x)$ to obtain a $q\text{CSP}$ instance $\varphi = \{\varphi_i\}_{i \in [m]}$.
- V expects π to be an assignment to the variables of φ, which it will verify by choosing a random $i \in [m]$ and checking that φ_i is satisfied (by making q queries).
- If $x \in L$, then the verifier will accept with probability 1.
- If $x \notin L$, it will accept with probability at most ρ.
NP ⊆ PCP(poly(n), 1)
The **Walsh-Hadamard code** encode bit strings of length n by linear functions in n variables over $\text{GF}(2)$. Let $u \in \{0, 1\}^n$. Then

$$\text{WH}(u) = x \mapsto u \odot x = \sum_{i \in [n]} u_i x_i \pmod{2}.$$
Random Subsum Principle

Theorem

Let \(u \neq v \). Then

\[
\Pr_x \left[u \odot x \neq v \odot x \right] = 1/2.
\]
Definition
Let $\rho \in \mathbb{R}$ with $0 \leq \rho \leq 1$. Two functions $f, g : \{0, 1\}^n \to \{0, 1\}$ are ρ-close if
\[
\Pr_x [f(x) = g(x)] \geq \rho.
\]

f is ρ-close to a linear function if there exists a linear function g such that f and g are ρ-close.

Theorem
Let $f : \{0, 1\}^n \to \{0, 1\}$ be such that
\[
\Pr_{x, y} [f(x + y) = f(x) + f(y)] \geq \rho
\]
for some $\rho > 1/2$. Then f is ρ-close to a linear function.
Local decoding of Walsh-Hadamard code

Let $\delta < 1/4$ and $f : \{0, 1\}^n \to \{0, 1\}$ be $(1 - \delta)$-close to some linear function \tilde{f}. Then \tilde{f} is uniquely determined.

Suppose we are given $x \in \{0, 1\}^n$ and random access to f. Can we obtain the value $\tilde{f}(x)$ using only a constant number of queries?

1. Choose $x' \in_R \{0, 1\}^n$.
2. $x'' \leftarrow x + x'$.
3. $y' \leftarrow f(x')$ and $y'' \leftarrow f(x'')$.
4. Output $y' + y''$.

Lemma
\[\Pr[\tilde{f}(x) = y' + y''] \geq 1 - 2\delta. \]
Example
The all one assignment satisfies

\[u_1 u_2 + u_3 u_4 + u_1 u_5 = 1 \]
\[u_2 u_3 + u_1 u_4 = 0 \]
\[u_1 u_4 + u_3 u_5 + u_3 u_4 = 1. \]

QUADEQ is the problem, given \(m \times n^2 \) matrix \(A \) and an \(m \)-dimensional vector \(b \), of finding an \(n^2 \)-dimensional vector \(U \) satisfying

1. \(AU = b \),
2. \(U \) is the tensor product \(u \otimes u \) of some \(n \)-dimensional vector \(u \)

Lemma

QUADEQ is NP-complete.