Advanced Algorithms (III)

Yijia Chen
Fudan University
Review
Partial k-Trees
Definition

Let $k \in \mathbb{N}$. Then the set of k-trees is defined as follows.

(K1) A complete graph K_{k+1} is a k-tree.

(K2) Let G be a graph and $v \in V$ such that

- $N^G[v]$ is isomorphic to K_{k+1}, where $N^G[v]$ is the induced subgraph of G on

$$N^G[v] := \{ u \in V(G) \mid \{u, v\} \in E(G) \} \cup \{v\}$$

- $G[V(G) \setminus \{v\}]$ is a k-tree.

Then G is a k-tree.

Definition

A graph is a **partial** k-tree if it is a subgraph of a k-tree.
Theorem
A graph G is a partial k-tree if and only if $\text{tw}(G) \leq k$.

Lemma
Let G be a subgraph of H, i.e., $V(G) \subseteq V(H)$ and $E(G) \subseteq E(H)$. Then $\text{tw}(G) \leq \text{tw}(H)$.

Theorem
1. Every graph of treewidth $\leq k$ is a partial k-tree.
2. Every k-tree has a tree decomposition of width $\leq k$.
Algebraic Construction
Definition
Let $k \in \mathbb{N}$. A k-terminal graph (G, v_1, \ldots, v_k) is a pair of a graph and a tuple of its k pairwise distinct vertices, called terminals.

Ordinary graphs are obtained as 0-terminal graphs.
The algebra \mathbf{B}

Definition

For every $k \in \mathbb{N}$, we use \mathbf{B}_k to denote a set of terms defined recursively as follows.

1. 0 is a term in \mathbf{B}_0.
2. e^2 is a term in \mathbf{B}_2.
3. If s_1 and s_2 are two \mathbf{B}_k-terms, then $s_1 \oplus_k s_2$ is also a \mathbf{B}_k-term.
4. Let $i < k$. If s is a \mathbf{B}_k-term, then $\sigma_i^k(s)$ is also a \mathbf{B}_k-term.
5. Let $i \leq k$. If s is a \mathbf{B}_{k-1}-term, then $\ell_i^k(s)$ is a \mathbf{B}_k-term.
6. If s is a \mathbf{B}_k-term, then $r_k(s)$ is a \mathbf{B}_{k-1}-term.

Let

$$\mathbf{B} := \bigcup_{k \geq 0} \mathbf{B}_k.$$
The mapping ψ

Definition

ψ maps every B_k-term to a k-terminal graph in the following way:

1. $\psi(e^2)$ is an edge with two terminals.
2. $\psi(0)$ is the empty graph.
3. $\psi(s_1 \oplus_k s_2)$ is a parallel composition, i.e., fuse each i-th terminal in $\psi(s_1)$ and $\psi(s_2)$ for every $i \in [k]$.
4. $\psi(\sigma^i_k(s))$ is a permutation, i.e., permute the i-th terminal and the $i+1$-th terminal in $\psi(s)$.
5. $\psi(\ell^i_k(s))$ is a lifting, i.e., insert a new isolated terminal (as a new vertex) to $\psi(s)$ at the i-th position in $k-1$ terminals.
6. $r_k(s)$ removes the last terminal from $\psi(s)$.
Definition

Let $k \geq 0$ and s be a B-term. We say that s is a hereditary $B_{\leq k}$-term, if every subterm of s (including s itself) is a $B_{k'}$-term for some $k' \leq k$.

Theorem (Ogawa, 2004)

Let $k \geq 0$. Then a graph G is isomorphic to the graph $\psi(s)$ for a hereditary $B_{\leq k+1}$-term (neglecting terminals) if and only if $tw(G) \leq k$.

Hereditary $B_{\leq k+1}$-terms and treewidth $\leq k$
Matchings in Bipartite Graphs
Two edges $e \neq f$ in a graph G are adjacent if they have a vertex in common. Otherwise, they are independent.

Definition
A set M of pairwise independent edges in a graph $G = (V, E)$ is a matching. M is a matching of $U \subseteq V$ if every vertex in U is incident with an edge in M. The vertices in U are then called matched (by M); vertices not incident with any edge of M are unmatched.
Definition
A matching M in a graph $G = (V, E)$ is perfect if every vertex is matched by M. Or equivalently, $|M| = |V|/2$.
Augmenting paths

We fix a bipartite graph $G = (V, E)$ with bipartition $A|B$. That is, $V = A \cup B$, $A \cap B = \emptyset$, and every edge in G has one vertex in A and one in B.

Let M be a matching in G. A path in G which starts in A at an unmatched vertex and then contains, alternately, edges from $E \setminus M$ and from M, is an alternating path with respect to M.

An alternating path that ends in an unmatched vertex of B is an augmenting path.

Lemma

Let M be a matching in a graph G. If there is an augmenting path with respect to M, then we have a matching M' in G with $|M'| > |M|$.
Definition

Let $G = (V, E)$ be a graph. Then a set $S \subseteq V$ a *vertex cover* of E if every edge of G is incident with a vertex in S.
König’s Theorem

Theorem (König, 1931)

The maximum cardinality of a matching in G is equal to the minimum cardinality of a vertex cover of its edges.

Proof.
Let M be a matching of maximum cardinality.

Define a set S in the following way: For every $\{a, b\} \in M$ with $a \in A$, if there is an alternating path ending in b, then $b \in S$; otherwise $a \in S$.

\square
Hall’s Theorem

Theorem (Hall, 1935)

Let $G = (V, E)$ be a bipartite graph with partition $A \mid B$. Then G contains a matching of A if and only if

$$|N^G(S)| \geq |S|$$

for all $S \subseteq A$, where

$$N^G(S) := \{ v \in B \mid \text{for some } u \in S \text{ we have } \{u, v\} \in E \}. $$
Induction on $|A|$.

Trivial for $|A| = 1$.

If $|N(S)| \geq |S| + 1$ for every non-empty set $S \subsetneq A$, we pick an edge $\{a, b\} \in E$ and apply induction hypothesis on the graph $G' := G - \{a, b\}$.

Assume A has a nonempty proper subset A' with $|B'| = |A'|$ for $B' := N(A)$. We apply the induction hypothesis on $G[A' \cup B']$ and $G - (A' \cup B')$. \qed
Let M be a matching that leaves a vertex in A unmatched. We will construct an augmenting path with respect to M.

Let $a_0, b_1, a_1, b_2, a_2, \ldots$ be a maximal sequence of distinct vertices $a_i \in A$ and $b_i \in B$ satisfying the following conditions for all $i \geq 1$:

1. a_0 is unmatched;
2. b_i is adjacent to some vertex $a_{f(i)} \in \{a_0, \ldots, a_{i-1}\}$;
3. $\{a_i, b_i\} \in M$.

The sequence will end in some vertex $b_k \in B$.

Consider

$$P := b_k a_{f(k)} b_{f(k)} a_{f^2(k)} b_{f^2(k)} a_{f^3(k)} \ldots, a_{f^r(k)}$$

with $f^r(k) = 0$ is an alternating path.

It is easy to see that P is an augmenting path. \qed
Graph Isomorphism Problems
Graph isomorphism

Definition

Let \mathcal{G} and \mathcal{H} be two graphs. A function $f : V(\mathcal{G}) \rightarrow V(\mathcal{H})$ is an isomorphism if

1. (GI1) f is a bijection;
2. (GI2) for every $u, v \in V(\mathcal{G})$ we have $\{u, v\} \in E(\mathcal{G})$ if and only if $\{f(u), f(v)\} \in E(\mathcal{H})$.

If such an f exists, then \mathcal{G} and \mathcal{H} are isomorphic.
Graph Isomorphism (GI) problem

<table>
<thead>
<tr>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Two graphs (G) and (H).</td>
</tr>
<tr>
<td>Problem: Decides whether (G) and (H) are isomorphic.</td>
</tr>
</tbody>
</table>

Remark

1. GI is in \(\text{NP} \).
2. GI is not \(\text{NP} \)-complete, unless Polynomial Hierarchy collapses (which most people do not believe).
3. We don’t know whether GI is \(\text{P} \)-hard.
4. Some people believe GI is in \(\text{P} \), but we don’t even have a quantum polynomial time algorithm.
Graph isomorphism problems and treewidth
Theorem (Bodlaender, 1990)

Let $k \in \mathbb{N}$. Then there is a polynomial time algorithm which decides GI on graphs G with $\text{tw}(G) \leq k$.

I will present an algorithm deciding the problem

<table>
<thead>
<tr>
<th>Input:</th>
<th>Two graphs G and H and a smooth tree decomposition of G of width k.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem:</td>
<td>Decides whether G and H are isomorphic.</td>
</tr>
</tbody>
</table>

in time

$$O\left((|V(G)| + |V(H)|)^O(k)\right).$$
Let \mathcal{C}_G be the set of connected components of G and \mathcal{C}_H the set of connected components of H.

Then G and H are isomorphic if and only if there is a bijection $h : \mathcal{C}_G \rightarrow \mathcal{C}_H$ such that $G[C]$ and $H[h(C)]$ are isomorphic for every $C \in \mathcal{C}_G$.

This is equivalent to that there is a perfect matching in the following bipartite graph.

1. The left part is \mathcal{C}_G and the right part \mathcal{C}_H.
2. There is an edge between a $C \in \mathcal{C}_G$ and a $C' \in \mathcal{C}_H$ if $G[C]$ and $H[C']$ are isomorphic.
Let $S \subseteq V(\mathcal{G})$ and

$$\mathcal{G}\backslash S := \{C \mid C \text{ a connected component of } \mathcal{G}\backslash S\}.$$

Then \mathcal{G} and \mathcal{H} are isomorphic if and only if there is a set $S' \subseteq V(\mathcal{H})$, a function $h : \mathcal{G}\backslash S \to \mathcal{H}\backslash S'$ and functions $f_C : S \cup C \to S' \cup h(C)$ for all $C \in \mathcal{G}\backslash S$ such that

1. $|S| = |S'|$;
2. h is a bijection;
3. f_C is an isomorphism between $\mathcal{G}[S \cup C]$ and $\mathcal{H}[S' \cup h(C)]$ for every $C \in \mathcal{G}\backslash S$, and $f_C(S) = S'$;
4. $f_{C_1} \upharpoonright S = f_{C_2} \upharpoonright S$ for every $C_1, C_2 \in \mathcal{G}\backslash S$.

Let \((\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})\) be a smooth tree decomposition of width \(k\) for the graph \(G\). Again we choose an arbitrary root \(r\) in \(\mathcal{T}\).

For every \(t \in V(\mathcal{T})\) we define

\[\mathcal{C}_t := \{ C \mid C = \emptyset \text{ or } C \text{ a connected component of } G_{\leq t} \setminus B_t \}.\]
Lemma
Every nonempty $C \in \mathcal{C}_t$, i.e., a connected component in $G_{\leq t} \setminus B_t$, is a connected component of $G \setminus B_t$.

Proof.
Clearly there is a connected component C' in $G \setminus B_t$ with $C \subseteq C'$.

Assume that $C' \setminus C \neq \emptyset$. Then there is an edge $\{u, v\} \in E(G)$ with $u \in V(G_{\leq t}) \setminus B_t$ and $v \in V(G) \setminus V(G_{\leq t})$.

But then, $\{u, v\}$ is not contained in any bag of the tree decomposition.
Lemma

Let t_1 be a child of t. Then for every nonempty $C_1 \in \mathcal{C}_{t_1}$ there is a unique $C \in \mathcal{C}_t$ with $C_1 \subseteq C$, and $C_1 \cap C' = \emptyset$ for all other $C' \in \mathcal{C}_t$.

Proof.

Let C_1 be a connected component of $\mathcal{G}_{\leq t_1} \setminus B_{t_1}$.

Observe that

$$\mathcal{G}_{\leq t_1} \setminus B_{t_1} \subseteq \mathcal{G}_{\leq t} \setminus B_t,$$

so C_1 is connected in $\mathcal{G}_{\leq t} \setminus B_t$, and the result follows.
Lemma

Let t be a node in T with children t_1, \ldots, t_n. And let $C \in \mathcal{C}_t$ be nonempty. Then, there is a unique $i \in [m]$ such that

$$C \subseteq \bigcup \mathcal{C}_{t_i} \cup \{v\} \quad \text{where} \quad \{v\} = B_{t_i} \setminus B_t.$$

Intuitively, C is shattered, i.e., broken into several smaller connected components, by the bag of exactly one child of t.
Lemma

Let t_1, t_2 be two distinct children of t. For every $i \in [2]$, let v_i be the vertex in G with $\{v_i\} = B_{t_i} \setminus B_t$; and $C_i \in \mathcal{C}_{t_i}$. Then for every $C \in \mathcal{C}_t$:

$$(C_1 \cup \{v_1\}) \cap C = \emptyset \quad \text{or} \quad (C_2 \cup \{v_2\}) \cap C = \emptyset.$$
Proof.
It is easy to see
\[(C_1 \cup \{v_1\}) \cap (C_2 \cup \{v_2\}) = \emptyset.\]
Assume \((C_1 \cup \{v_1\}) \cap C \neq \emptyset \neq (C_2 \cup \{v_2\}) \cap C\). Then there is a path \(P\) from \(C_1 \cup \{v_1\}\) to \(C_2 \cup \{v_2\}\) in \(C\). Without loss of generality, we can assume that all vertices on \(P\) are in
\[(C_1 \cup \{v_1\}) \cup (C_2 \cup \{v_2\}).\]
Then there is an edge between \(C_1 \cup \{v_1\}\) and \(C_2 \cup \{v_2\}\), which cannot be contained in any bag of the tree decomposition. \(\square\)
Let \mathcal{H} be a second graph for which we want to decide whether \mathcal{G} and \mathcal{H} are isomorphic.

We define (the set of pairs of separators and connected components)

$$\mathcal{SC}(\mathcal{H}) := \{(S, C) \mid S \subseteq V(\mathcal{H}) \text{ with } |S| = k + 1$$

$$\text{and } (C = \emptyset \text{ or } C \text{ a connected component of } \mathcal{H} \setminus S)\}$$
Definition
Let \(t \in V(T) \), \(S_1 := B_t \), and \(C_1 \in \mathcal{C}_t \). Moreover, let \((S_2, C_2) \in \mathcal{IE}(H) \). We say \((S_1, C_1)\) and \((S_2, C_2)\) are \(f\)-isomorphic for a function \(f : S_1 \to S_2 \), denoted by \((S_1, C_1) \equiv^f (S_2, C_2)\), if there is a function \(F : S_1 \cup C_1 \to S_2 \cup C_2 \) such that

1. \(F \upharpoonright S_1 = f \);
2. for every \(u, v \in S_1 \cup C_1 \) we have \(\{u, v\} \in E(G) \) if and only if \(\{F(u), F(v)\} \in E(H) \).

That is, \(F \) is an isomorphism between \(G[S_1 \cup C_1] \) and \(H[S_2 \cup C_2] \) which extends \(f \).
Our goal is to compute for each $t \in V(T)$ the set

$\mathcal{F}_t := \{(f, B_t, C_1, S_2, C_2) \mid (B_t, C_1) \equiv^f (S_2, C_2) \}

where $C_1 \in \mathcal{C}_t$ and $(S_2, C_2) \in \mathcal{H}(\mathcal{H})$.

using dynamic programming.
Leaves

Let \(t \) be a leaf of \(\mathcal{T} \).
Then \(\mathcal{C}_t = \{ \emptyset \} \). Hence,
\[
\mathcal{F}_t := \{ (f, B_t, \emptyset, S_2, \emptyset) \mid (B_t, \emptyset) \equiv^f (S, \emptyset) \\
\text{ where } S_2 \subseteq V(\mathcal{H}) \text{ with } |S_2| = k + 1 \}.
\]
This can be computed in time
\[
(k + 1)! \cdot |V(\mathcal{H})|^{O(k)}.
\]
Non-leaves (1)

Let t be a node in T with children t_1, \ldots, t_m for some $m \geq 1$.

Now let $C_1 \in C_t$ be nonempty. By Lemma 3, there is a unique $i \in [m]$ such that

$$C_1 \subseteq \bigcup C_{t_i} \cup \{v\} \quad \text{where} \quad \{v\} = B_{t_i} \setminus B_t.$$

For every $(S_2, C_2) \in \mathcal{L}(\mathcal{H})$ and every $f : B_t \to S_2$ with $(B_t, \emptyset) \equiv^f (S_2, \emptyset)$ we want to check whether $(B_t, C_1) \equiv^f (S_2, C_2)$.
(\(B_t, C_1\)) \equiv^f (S_2, C_2) \text{ if and only if some for } v' \in V(\mathcal{H}) \setminus S_2, u \in S_2, \text{ and }

- S'_2 := S_2 \cup \{v'\} \setminus \{u\},
- C^*_1 := \{C^* \mid C^* \text{ a connected component of } G \setminus B_{t_i} \text{ with } C^* \subseteq C_1\} \text{ and } \quad C^*_2 := \{C^* \mid C^* \text{ a connected component of } \mathcal{H} \setminus S'_2 \text{ with } C^* \subseteq C_2\},
- f' : B_{t_i} \rightarrow S'_2 \text{ defined by }

\[
f'(w) = \begin{cases}
 v' & \text{if } w = v \\
 f(w) & \text{otherwise},
\end{cases}
\]

we have

(N1) every connected component of \(\mathcal{H} \setminus S'_2\) is either contained in or disjoint with \(C_2\);
(N2) \(C_2 \subseteq \bigcup C^*_2 \cup \{v'\}\);
(N3) there is a bijection \(h : C^*_1 \rightarrow C^*_2\) such that for every \(C^* \in C^*_1\)

\[
(\mathcal{B}_{t_i}, C^*) \equiv^f (S'_2, h(C^*)).
\]
(N1) and (N2) can be checked in polynomial time.

To verify (N3) we create a bipartite graph \mathcal{B}:

1. the left part is \mathcal{C}_1^* and the right part \mathcal{C}_2^*;
2. there is an edge between $C_1^* \in \mathcal{C}_1^*$ and $C_2^* \in \mathcal{C}_2^*$ if $(B_{t_i}, C_1^*) \equiv f'(S_2', C_2^*)$.

Then (N3) holds if and only if there is a perfect matching in \mathcal{B}, which can be decided in polynomial time.
The final step

G and H are isomorphic if and only if for some $S_2 \subseteq V(H)$ with $|S_2| = k + 1$ and $f : B_r \rightarrow S_2$ there is a perfect matching in the following bipartite graph.

1. The left part is C_r and the right part $C^* := \{ C_2 \mid (S_2, C_2) \in \mathcal{L}(H) \}$.
2. There is an edge between a $C_1 \in C_r$ and a $C_2 \in C^*$ if $(B_r, C_1) \equiv^f (S_2, C^*)$.