Advanced Algorithms (VIII)

Yijia Chen
Fudan University
Review
Definition
An n-variable algebraic circuit is a directed acyclic graph with the sources labeled by a variable name from the set x_1, \ldots, x_n, and each non-source node has in-degree two and is labeled by an operator from the set \{+,-,\times\}. There is a single sink in the graph, i.e., the output node.

Definition
\[
\text{ZEROP} = \{ C \mid \text{C an algebraic circuit that always outputs zero} \}.
\]
1. Choose n random numbers x_1,\ldots,x_n from 1 to $10 \cdot 2^m$.
2. Choose a random number $k \in [2^{2^m}]$ uniformly at random.
3. Evaluate the circuit C on x_1,\ldots,x_n modulo k to obtain an output $y \mod k$ where $y = C(x_1,\ldots,x_n)$.
4. Accept if $y \mod k = 0$, and reject otherwise.
Let $G = (V, E)$ be a graph. A cut of G is a partition (S, T) of the vertex set V, i.e., $V = S \cup T$. Then we set

$$E(S, T) := \{ \{u, v\} \in E \mid u \in A, v \in B\},$$

and $\text{size}(S, T) := |E(S, T)|$.

We consider the Max Cut problem:

Input: A graph G.

Output: A cut (S, T) with maximum size(S, T).

Theorem

The Max Cut problem is NP-hard.
1. For every vertex v in G flip a fair coin.

2. If it is a head, then we put v in to S else to T.

Theorem

The expected size of the cut produced by the algorithm is $|E|/2$.

In fact, we only need *pairwise independence* in the proof.
Let x_1, \ldots, x_n be random variables such that $x_i \in T$ for all $i \in [n]$ and $|T| = t$.

Definition

1. x_i’s are **independent** if for all $b_1, \ldots, b_n \in T$

 $$\Pr [x_1 = b_1 \land \ldots \land x_n = b_n] = \frac{1}{t^n}.$$

2. x_i’s are **pairwise independent** if for all $i_1, i_2 \in [n]$ with $i_1 \neq i_2$ and $b_1, b_2 \in T$

 $$\Pr [x_{i_1} = b_1 \land x_{i_2} = b_2] = \frac{1}{t^2}.$$

3. Let $k \in [n]$. Then x_i’s are **k-wise independent** if for all pairwise distinct $i_1, \ldots, i_k \in [n]$ and $b_1, \ldots, b_k \in T$

 $$\Pr [x_{i_1} = b_1 \land \ldots \land x_{i_k} = b_k] = \frac{1}{t^k}.$$
Examples

<table>
<thead>
<tr>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

completely independent

<table>
<thead>
<tr>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

pairwise independent

$r_3 := r_1 \oplus r_2$
Generating pairwise independent bits

Let x_1, \ldots, x_k be k completely random 0-1 variables. For every nonempty $S \subseteq [k]$ we let

$$X_S := \bigoplus_{i \in S} x_i.$$

Theorem

The $2^k - 1$ variables X_S’s are pairwise independent.
Let q be a prime number. We want to generate q pairwise independent numbers in $\mathbb{Z}_q = \{0, 1, \ldots, q - 1\}$.

1. Choose $a, b \in \mathbb{Z}_q$ independently and uniformly at random.
2. For every $i \in \mathbb{Z}_q$ output $r_i := a \cdot i + b \mod q$.

Lemma

r_0, \ldots, r_{q-1} are pairwise independent.
The Constant-Depth Complexity of k-Clique
Let S be a set and $s \in \mathbb{N}$. We use the notation

$$\binom{S}{s} := \{ A \mid A \subseteq S \text{ with } |A| = s \}.$$

Thus $|\binom{S}{s}| = \binom{|S|}{s}$. Moreover, for every ordered S, we fix a reasonable bijection

$$e_{s,S} : \left[\binom{|S|}{s} \right] \to \binom{S}{s}.$$
Let $n \in \mathbb{N}$ and G a graph with $V(G) = [n]$. Then $E(G) \subseteq \binom{[n]}{2}$. And G can be identified with a binary string of length $\ell := \binom{n}{2}$

$$b(G) := b_1, \ldots, b_\ell \in \{0, 1\}^{\binom{n}{2}}$$

such that for every $i \in [\ell]$

$$b_i = \begin{cases}
1 & \text{if } e_{[n],2}(i) \in E(G), \\
0 & \text{otherwise}.
\end{cases}$$

We use G_n to denote (the encoding of) all graphs G with $V(G) = [n]$, or formally

$$G_n = \{0, 1\}^{\binom{n}{2}}.$$
The k-clique problem

Let $k \in \mathbb{N}$ be a fixed constant.

k-CLIQUE

\begin{itemize}
 \item **Input:** A graph G.
 \item **Problem:** Decide whether there is a $K \in \binom{V(G)}{k}$ such that
 \begin{align*}
 \{u, v\} &\in E(G) \text{ for every distinct } u, v \in K.
 \end{align*}
\end{itemize}

k-CLIQUE can be understood as a sequence of functions

\[
\left(f_n^k \right)_{n \in \mathbb{N}}
\]

such that $f_n^k : \left\{0, 1\right\}^{\binom{n}{2}} \rightarrow \{0, 1\}$ for every $n \in \mathbb{N}$ and such that for every graph G with $V(G) = [n]$

\[
f_n^k \left(b(G) \right) = 1 \iff G \text{ contains a } k\text{-clique}.
\]
A trivial upper bound

k-CLIQUE can be computed by the following sequence of circuits (formulas)

\[f_n^k = \bigvee_{\mathcal{K} \in \binom{[n]}{k}} \bigwedge_{\{i,j\} \in \binom{\mathcal{K}}{2}} x_{\{i,j\}} , \]

which are of size \(n^{k+O(1)} \).

Observe that the above circuits are of constant depth.
We fix a constant $d \in \mathbb{N}$ and for every $n \in \mathbb{N}$ define

$$\theta_d(n) := \{\text{size}(C) \mid C \text{ a circuit of depth } d \text{ which computes } f_n^k\}.$$

Theorem (Rossman, 2008)

$$\theta_d(n) = \omega(n^{k/4}).$$
Let f be a function whose domain is G_n. Consider a graph $G \in G_n$ and $A \subseteq [n]$. Let

$$
T^f,G(A) := \{ a \mid \text{there is a } B \subseteq A \text{ with } f(G \cup K_B) \neq f(G \cup K_B \setminus \{a\}) \}.
$$

A is fully clique-sensitive under f, if $T^f,G(A) = A$.

For every $s \in \mathbb{N}$ we set

$$
T^f,G_s(A) := \bigcup_{B \subseteq A, |B| \leq s} T^f,G(B).
$$

Clearly

$$
T^f,G_1(A) = \emptyset.
$$
Lemma

(i) \(T_s^f, G (A) \subseteq T^f, G (A) \subseteq A \).

(ii) If \(A \subseteq B \), then \(T^f, G (A) \subseteq T^f, G (B) \) and \(T_s^f, G (A) \subseteq T_s^f, G (B) \).

(iii) If \(f : G_n \to \{0, 1\}^m \) where \(f_1, \ldots, f_m : G_n \to \{0, 1\} \) are individual coordinate-functions of \(f \), then

\[
T^f, G (A) = \bigcup_{i \in [m]} T^f_{i_1}, G (A) \quad \text{and} \quad T_s^f, G (A) = \bigcup_{i \in [m]} T_s^{f_i}, G (A).
\]

(iv) If \(A \) and \(B \) are fully clique-sensitive under \(f \), then so is \(A \cup B \).
Lemma
Let \(T := T^f_s, G(A) \). Then for every \(T \subseteq B \subseteq A \) with \(|B| \leq s \) we have
\[
f(G \cup K_T) = f(G \cup K_B).
\]

Proof.
Let \(b_1, \ldots, b_m \) enumerate the set \(B \setminus T \). For every \(i \in [m] \) we have
\[
f\left(G \cup K_{T \cup \{b_1, \ldots, b_i\}} \right) = f\left(G \cup K_{T \cup \{b_1, \ldots, b_i-1\}} \right),
\]
otherwise \(b_i \in T^f_s, G(B) \subseteq T^f_s, G(A) = T \). \(\square \)
Lemma

\[T^f_G(A) = \bigcup \{ B \subseteq A \mid T^f_G(B) = B \text{ and } |B| \leq s \} \].

Proof.
\(\supseteq \) is trivial. Now consider an \(a \in T^f_G(A) \). So we have a \(B \subseteq A \) with

\[f(G \cup K_B) \neq f(G \cup K_B \{a\}) \].

Choose such a \(B \) with minimum size, and we claim \(B \) is fully clique-sensitive. Assume there is \(b \in B \setminus T^f_G(B) \), thus

\[f(G \cup K_B) = f(G \cup K_B \{b\}) \quad \text{and} \quad f(G \cup K_B \{a\}) = f(G \cup K_B \{a, b\}) \].

By the minimality of \(B \) (with respect to \(a \)) we conclude

\[f(G \cup K_B) = f(G \cup K_B \{b\}) = f(G \cup K_B \{a, b\}) = f(G \cup K_B \{a\}) \]. \(\square \)
Lemma

1. $\mathbb{T}_{s}^{f,G}(A) \neq \emptyset$ if and only if A has a fully clique-sensitive subset B with $2 \leq |B| \leq s$.

2. $|\mathbb{T}_{s}^{f,G}(A)| > s$ if and only if A has two fully clique-sensitive subsets B and C with $|B| \leq s$, $|C| \leq s$, and $|B \cup C| \geq s + 1$.

3. $|\mathbb{T}_{s}^{f,G}(A)| > s$ if and only if A has a fully clique-sensitive subset D with $s + 1 \leq |D| \leq 2 \cdot s$.
The implications from right to left are all trivial.

1. By the previous lemma, $\mathbb{T}_s^f, G(A)$ is the union of all clique-sensitive subsets of A of size at most s:
 \[B_1, \ldots, B_m. \]
 Clearly $2 \leq |B_i| \leq s$ for all $i \in [m]$.

2. Let $i \in [m - 1]$ be the maximum index with
 \[\left| \bigcup_{j \in [i]} B_j \right| \leq s. \]
 Then we can take the desired $B := \bigcup_{j \in [i]} B_j$ and $C := B_{i+1}$.

3. Let $D := B \cup C$. \qed
Let C be a single-output circuit with $\binom{n}{2}$ inputs. For every node ν in C

(i) C_ν – the subcircuit of C with single output ν,

(ii) C^\bullet_μ – the same subcircuit but with outputs including ν and all its children.
Lemma

Let $G \in G_n$, $A \subseteq [n]$, and $s \geq 2$. If

$$T_s^{C,G}(A) = \emptyset \quad \text{and} \quad |T_s^{C\cup A,G}(A)| \leq s$$

for all nodes ν in C, then

$$C(G) = C(G \cup K_A).$$
Proof (1)

For every node ν in C we let

$$T(\nu) := T^C_s \cdot G(A) \quad \text{and} \quad T^\bullet(\nu) := T^C_s \cdot G(A).$$

We note

$$T^\bullet(\nu) = T(\nu) \cup \bigcup_{\text{children } \mu \text{ of } \nu} T(\mu),$$

and

$$|T^\bullet(\nu)| \leq s.$$
We first prove for all nodes ν in C by induction on the depth of ν that

$$C_{\nu}(G \cup K_{T^\bullet(\nu)}) = C_{\nu}(G \cup K_A).$$

Let ν be an input node corresponding to some $e \in (\binom{n}{2})$.

- If $e \subseteq A$, then
 $$T^\bullet(\nu) = T(\nu) = \mathbb{T}_s^{C_{\nu},G}(A) = \begin{cases} \emptyset & \text{if } e \in E(G), \\ e & \text{otherwise.} \end{cases}$$
 Hence, always $C_{\nu}(G \cup K_{T^\bullet(\nu)}) = C_{\nu}(G \cup K_A) = 1$.

- If $e \not\subseteq A$, then
 $$T^\bullet(\nu) = T(\nu) = \mathbb{T}_s^{C_{\nu},G}(A) = \emptyset.$$
 Then, $C_{\nu}(G \cup K_{T^\bullet(\nu)}) = C_{\nu}(G \cup K_A) = 1$ if $e \in E(G)$, and 0 otherwise.
Let ν be a node with depth at least 2 and μ one of its children. Recall $T(\mu) \subseteq T^\bullet(\mu) \subseteq A$ and $|T^\bullet(\mu)| \leq s$, thus

$$C_\mu(G \cup K_{T(\mu)}) = C_\mu(G \cup K_{T^\bullet(\mu)}).$$

Similarly, as $T(\mu) \subseteq T^\bullet(\nu) \subseteq A$ and $|T^\bullet(\nu)| \leq s$,

$$C_\mu(G \cup K_{T(\mu)}) = C_\mu(G \cup K_{T^\bullet(\nu)}).$$

Therefore,

$$C_\mu(G \cup K_{T^\bullet(\nu)}) = C_\mu(G \cup K_{T^\bullet(\mu)}) = C_\mu(G \cup K_A)$$

by induction hypothesis.

Since μ is an arbitrary child of ν, we conclude

$$C_\nu(G \cup K_{T^\bullet(\nu)}) = C_\nu(G \cup K_A).$$
Proof (4)

Let μ_{out} be the output node of C, thus $C_{\mu_{\text{out}}} = C$. It follows that

$$C(G \cup K_{T \bullet(\mu_{\text{out}})}) = C_{\mu_{\text{out}}} (G \cup K_{T \bullet(\mu_{\text{out}})}) = C_{\mu_{\text{out}}} (G \cup K_A) = C(G \cup K_A).$$

Again by $T(\mu_{\text{out}}) \subseteq T^\bullet(\mu_{\text{out}}) \subseteq A$ and $|T^\bullet(\mu_{\text{out}})| \leq s$ we have

$$C_{\mu_{\text{out}}} (G \cup K_{T(\mu_{\text{out}})}) = C_{\mu_{\text{out}}} (G \cup K_{T \bullet(\mu_{\text{out}})}),$$

that is,

$$C(G \cup K_{T(\mu_{\text{out}})}) = C(G \cup K_{T \bullet(\mu_{\text{out}})}).$$

Recall

$$T(\mu_{\text{out}}) = T_{s,C,G}^A = \emptyset.$$

Putting all the pieces together

$$C(G) = C(G \cup K_{T(\mu_{\text{out}})}) = C(G \cup K_A).$$
Definition
Let $n \in \mathbb{N}$ and $p \in \mathbb{R}$ with $0 \leq p \leq 1$. Then $G \in \text{ER}(n, p)$ is the Erdős-Rényi random graph on vertex set $[n]$ constructed by adding every edge $e \in \binom{[n]}{2}$ independently with probability p.
Let $k \in \mathbb{N}$. Then the expected number of k-cliques in $G \in \text{ER}(n, p)$ is

$$E_k = \binom{n}{k} \cdot p^k.$$

Thus, if

$$p \ll n^{-2/(k-1)},$$

then with high probability, G contains no k-clique.