Advanced Algorithms (IV)

Yijia Chen
Fudan University
Luks’ Group-Theoretic Algorithm
The basic idea

Assume G_1 and G_2 are both connected. We let $G := G_1 \cup G_2$.

G_1 and G_2 are isomorphic if and only if there is an automorphism σ of G such that $\sigma(G_1) = G_2$.

If such automorphisms exist, then any set of generators of $\text{Aut}(G)$ contains at least one of them. Here $\text{Aut}(G)$ is the set of all automorphisms of G.
A group $K = (K, \cdot, 1)$ satisfies the following conditions.

1. **[associativity]** for all $x, y, z \in K$ we have $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

2. **[identity]** $x \cdot 1 = 1 \cdot x = x$ for all $x \in K$.

3. **[inverse]** For every $x \in K$ there exists a $y \in K$ with $x \cdot y = y \cdot x = 1$, i.e., $y = x^{-1}$.

Example
Let $n \in \mathbb{N}$. Then all the permutations on $[n]$ form a group with \cdot being the function composition and 1 the identity mapping. Denote this group by S_n.

Let $\text{Sym}(A)$ be the group of all permutations on the set A.
Let K be a group and $S \subseteq K$. We say that S is a set of generators for K if for every $a \in K$ there are $b_1, \ldots, b_m \in K$ with $m \geq 1$ such that

1. $a = b_1 \cdot b_2 \cdots b_m$, and

2. $b_i \in S$ or $b_i^{-1} \in S$ for all $i \in [m]$.

In notation, $K = \langle S \rangle$.
Groups of graph automorphisms

Let $G = (V, E)$ be a graph. A mapping $\delta : V \to V$ is an automorphism if δ is a graph isomorphism from G to itself.

Let $\text{Aut}(G)$ be the group $K = (K, \cdot, 1)$ where:

(A1) $K = \{ \delta \mid \delta$ is an automorphism of $G \}$.

(A2) \cdot is the composition of automorphisms.

(A3) 1 is the identity automorphism.

Similarly for $e \in E$ the group $\text{Aut}_e(G)$ is the subgroup of $\text{Aut}(G)$ whose elements are

$$\{ \delta \mid \delta$ is an automorphism of G with $\delta(e) = e \}.$$
The Color Automorphism Problem

Input: A colored set A and generators for a group $K \subseteq \text{Sym}(A)$.

Problem: Output a set of generators for the subgroup of k consisting of the color preserving mappings.

Computing generators of $\text{Aut}(G)$ for a graph $G = (V, E)$ is a special case.

1. $A = \{\{u, v\} \mid u, v \in V \text{ with } u \neq v\}$.
2. $\{u, v\}$ is colored black if $\{u, v\} \in E$, and white otherwise.
3. The group K is

$$\left\{ \{u, v\} \mapsto \{\delta(u), \delta(v)\} \right\}_{u \neq v}$$

δ is a permutation of V.
Theorem
GI on graphs of degree at most 3 can be reduced to the problem of determining generators for $\text{Aut}_e(G)$, where G is a connected graph of degree 3 and e an edge of G.
Let G_1 and G_2 be two connected graphs of degree 3. Fix an $e_1 \in E(G_1)$ and $e_2 \in E(G_2)$. We can test whether there is an isomorphism from G_1 to G_2 which maps e_1 to e_2 as follows.

1. Construct a new graph G:

 1.1 Take the disjoint union $G_1 \cup G_2$.
 1.2 Insert a new vertex v_1 in e_1 and v_2 in e_2.
 1.3 Add the edge $\{v_1, v_2\}$.

2. There is an isomorphism from G_1 to G_2 mapping e_1 to e_2 if and only if some element of $\text{Aut}_e(G)$ transposes v_1 and v_2.

3. If such automorphisms exit, any set of generators of $\text{Aut}_e(G)$ must contain one.
Polynomial-Time Algorithms for Permutation Groups
More group theory

Let K be a group. The order $|K|$ of K is the number of elements in K.

A subgroup $H \subseteq K$ is a group whose elements are all in K and have the same \cdot as K. We define

$$K/H := \{ a \cdot H \mid a \in K \},$$

i.e., the collection of left cosets of H in K. By Lagrange’s Theorem

$$|K| = |K/H| \times |H|,$$

where $|K/H|$ is the index of H in G.

Permutation subgroups

Let $g_1 \ldots, g_k$ be permutations on $[n]$. Then the group

$$K := \langle g_1, \ldots, g_k \rangle$$

is the group of all permutations formed by products of the g_i's. Let I be the unique group generated by the identity permutation.
Permutation subgroups (cont’d)

There is a descending chain of subgroups

\[K = K_0 \supseteq K_1 \supseteq \cdots \supseteq K_{n-1} = I, \]

where

\[K_i := \{ \sigma \in K \mid \sigma(j) = j \text{ for all } j \leq i \}. \]
Coset representatives

Let $i \in \mathbb{N}$ with $0 \leq i \leq n - 2$ and then

$$K_i/K_{i+1} = \{a \cdot K_{i+1} \mid a \in K_i\}.$$

$C_i \subseteq K_i$ is a set of coset representatives of K_i/K_{i+1} if for every $a \in K_i$ we have

$$|C_i \cap (a \cdot K_{i+1})| = 1.$$

Lemma

$K_i = C_i \cdot K_{i-1}$ and $|K_i| = |C_i| \times |K_{i-1}|$.
Coset representatives (cont’d)

Then

\[K = K_0 = C_0 \cdot K_1 = \cdots = C_0 \cdot C_1 \cdots C_{n-2} \cdot K_{n-1}. \]

And,

\[|K| = |C_0| \times |C_1| \times \cdots \times |C_{n-2}|. \]

In other words, every \(a \in K \) can be uniquely written as

\[a = a_0 \cdot a_1 \cdots a_{n-2} \]

where \(a_i \in C_i \), i.e., its canonical representation.
Theorem

We can compute a set of coset representatives C_0, \ldots, C_{n-2}.

in polynomial time, in time $n^{O(1)}$.

The Filter routine

Let C_0, \ldots, C_{n-2} be (possibly partial) sets of coset representatives, and let $x \in K_0$.

FILTER(x)

1. for $i = 0$ to $n-2$ do
2. if $y^{-1} \cdot x \in K_{i+1}$ for some $y \in C_i$
3. then $x \leftarrow y^{-1} \cdot x$
4. else $C_i \leftarrow C_i \cup \{x\}$ and return
5. return

Observe that $x \in K_i$ and $y^{-1} \cdot x \in K_i$, thus $y^{-1} \cdot x \in K_{i+1}$ if and only if

$$y^{-1} \cdot x(j + 1) = j + 1.$$
The Filter routine (cont’d)

Lemma

After executing \texttt{FILTER(a)}, we have

1. \(a \in C_0 \cdot C_1 \cdots C_{n-2}, \) and

2. \(C_0, \ldots, C_{n-2} \) are still (possibly partial) sets of coset representatives.
Compute complete C_0, \ldots, C_{n-2}

1. for $i = 1$ to k do
2. \hspace{2em} \text{FILTER}(g_i)$
3. \hspace{2em} changed \leftarrow false
4. for all $i \geq j$ do
5. \hspace{4em} for all $a \in C_i \cdot C_j$ do
6. \hspace{6em} \text{FILTER}(a)$
7. \hspace{6em} if some C_k increases then changed \leftarrow true
8. \hspace{2em} if changed $=$ true then goto 3 else return
Proof

First for every generator g_i we have

$$g_i \in C_0 \cdot C_1 \cdots C_{n-2}.$$

For every $0 \leq i \leq n-2$, let $a_i, a'_i \in C_i$. We need to show

$$\prod_{i=0}^{n-2} a_i \cdot \prod_{i=0}^{n-2} a'_i \in C_1 \cdot C_2 \cdots C_{n-2}.$$

It is suffices to show that for every $i \geq j$

$$C_i \cdot C_j \subseteq C_j \cdot C_{j+1} \cdots C_i \cdot K_{i+1}.$$
Theorem
There is a polynomial time algorithm that on input a permutation σ decides whether $\sigma \in K$.

Proof.
$\sigma \in K$ if and only if $\text{FILTER}(\sigma)$ does not increase any C_i. \qed
Theorem
There is a polynomial time algorithm \(\mathcal{A} \) such that for every subgroup \(H \subseteq K \) such that

1. \(|K/H| \) is polynomial in terms of \(n \) and the number of generators of \(K \),
2. the membership of \(H \) is decidable in polynomial time,
\(\mathcal{A} \) computes a set of generators of \(H \).

Proof.
We look at the sequence

\[
I = H_{n-1} \subseteq H_{n-2} \subseteq \cdots \subseteq H_2 \subseteq H_1 \subseteq H \subseteq K.
\]

\qed