Lecture 4. Types, the simply typed λ-calculus

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Fall, 2016
Outline

Typed arithmetic expressions
 Typing relation
 Safety = Progress + Preservation

Simply typed λ-calculus
 Function types
Q: Why bother doing proofs about programming languages? They are almost always boring if the definitions are right.

A: The definitions are almost always wrong.
Arithmetic expressions

\[
t ::= \quad \text{terms}
\]
\[
\begin{align*}
 \text{true} & \quad \text{constant true} \\
 \text{false} & \quad \text{constant false} \\
 \text{if } t \text{ then } t \text{ else } t & \quad \text{conditional} \\
 0 & \quad \text{constant zero} \\
 \text{succ } t & \quad \text{successor} \\
 \text{pred } t & \quad \text{predecessor} \\
 \text{iszero } t & \quad \text{zero test}
\end{align*}
\]

\[
v ::= \quad \text{values}
\]
\[
\begin{align*}
 \text{true} & \quad \text{true value} \\
 \text{false} & \quad \text{false value} \\
 \text{nv} & \quad \text{numeric value}
\end{align*}
\]

\[
nv ::= \quad \text{numeric values}
\]
\[
\begin{align*}
 0 & \quad \text{zero value} \\
 \text{succ } \text{nv} & \quad \text{successor value}
\end{align*}
\]
Types

- Recall that evaluating a term can either result in a value or else get stuck at some stage, by reaching a term like `pred false`.
- In fact, we can tell stuck terms without actually evaluating it.
- Coming soon: If a term is well typed, i.e., it has some type T, then it never get stuck (never goes wrong).
Typing relation

The typing relation for arithmetic expressions, written \(t : T \), is defined by a set of inference rules assigning types to terms.

\[
T ::= \text{types} \\
\text{Bool} \quad \text{type of booleans} \\
\text{Nat} \quad \text{type of natural numbers}
\]

Typing rules:

\[
\begin{align*}
T-\text{True} & \quad \text{true} : \text{Bool} \\
T-\text{False} & \quad \text{false} : \text{Bool} \\
T-\text{Zero} & \quad 0 : \text{Nat} \\
T-\text{Succ} & \quad \text{succ} \ t_1 : \text{Nat} \\
T-\text{Pred} & \quad \text{pred} \ t_1 : \text{Nat} \\
T-\text{If} & \quad t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T \\
& \quad \text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 : T \\
T-\text{IsZero} & \quad t_1 : \text{Nat} \\
& \quad \text{iszero} \ t_1 : \text{Bool}
\end{align*}
\]
Uniqueness of types

When reasoning about the typing relation, we will often inverse the typing relation.

Lemma 8.2.2:

1. If true : R or false : R, then R = Bool;
2. If if t₁ then t₂ else t₃ : R, then t₁ : Bool, t₂ : R, and t₃ : R.
3. If 0 : R, or succ t₁ : R, or pred t₁ : R, then R = Nat and t₁ : Nat.
4. If iszero t₁ : R, then R = Bool and t₁ : Nat.

Theorem 8.2.4 [Uniqueness of types]: Each term t has at most one type.
Above theorem does not hold for languages with subtyping rules.
The most basic property of type system

\[\text{Safety} = \text{Progress} + \text{Preservation} \]

- **Progress**: A well-typed term is not stuck (either it is a value or it can take a step according to the evaluation rules).
- **Preservation**: If a well-typed term takes a step of evaluation, then the resulting term is also well typed.
Lemma 8.3.1 [Canonical forms]:
- If \(v \) is a value of type \(\text{Bool} \), then \(v \) is either \text{true} or \text{false}.
- If \(v \) is a value of type \(\text{Nat} \), then \(v \) is a numeric value according to the grammar.

Theorem 8.3.2 [Progress]: Suppose \(t \) is a well-typed term (that is, \(t : T \) for some \(T \)). Then either \(t \) is a value or else there is some \(t' \) with \(t \rightarrow t' \).

Proof. By induction on a derivation of \(t : T \).
Theorem 8.3.3 [Preservation]: If $t : T$ and $t \rightarrow t'$, then $t' : T$.

Proof. Either by induction on a derivation of $t : T$, or by induction on a derivation of $t \rightarrow t'$.
Outline

Typed arithmetic expressions
 Typing relation
 Safety = Progress + Preservation

Simply typed λ-calculus
 Function types
Add types to λ-calculus

Coming soon: A typing relation for variables, abstractions, and applications that

▶ maintain type safety: satisfy the type progress and preservation;

▶ are not to conservative: they should assign types to most of the programs we actually care about writing.

Turing completeness of λ-calculus implies that there is no hope of giving an exact type analysis for these primitives. For example:

\[
\text{if } \langle\text{long and tricky computation}\rangle \text{ then true else } (\lambda x.x)\]
Arrow type

For a function,

1. we care about the types of both arguments and results:

 arrow type $T \rightarrow T$

 Note the difference between $T \rightarrow T \rightarrow T$ and $(T \rightarrow T) \rightarrow T$

2. the type of an abstraction relies on the type of argument, e.g.

 \[
 \lambda x.x : \text{Bool} \rightarrow \text{Bool} \text{ or } \lambda x.x : \text{Nat} \rightarrow \text{Nat}
 \]

3. Hence, the typing relation on abstractions should be written as

 \[
 \lambda x : T_1.t_2 : T_1 \rightarrow T_2
 \]

 But how do we derive T_2? We assume $x : T_1$!! So we need an environment (context) for our typing relation:

 \[
 \Gamma \vdash t : T
 \]
Pure simply typed λ-calculus ($\lambda\rightarrow$)

Terms
$$t ::= x \mid \lambda x : T . t \mid t \, t$$

Values
$$v ::= \lambda x : T . t$$

Types
$$T ::= T \rightarrow T$$

Contexts
$$\Gamma ::= \emptyset \mid \Gamma, x : T$$

Typing

- **T-VAR**
 $$\frac{x : T \in \Gamma}{\Gamma \vdash x : T}$$

- **T-ABS**
 $$\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2}$$

- **T-APP**
 $$\frac{\Gamma \vdash t_1 : T_1 \rightarrow T_2 \quad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 \, t_2 : T_2}$$

Quiz:
1. Please draw the type derivation tree of the term
 $$(\lambda x : \text{Bool} \rightarrow \text{Nat}.x \, \text{true})(\lambda x : \text{Bool}.\text{if } x \text{ then } 0 \text{ else } (\text{succ } 0)).$$
2. What about this term $\lambda x : \text{Bool}.x \, x$?
Properties of typing

Lemma 9.3.1 [Inversion of the Typing Relation]:

1. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
2. If $\Gamma \vdash \lambda x : T_1.t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
3. If $\Gamma \vdash t_1 t_2 : R$, then there is some type T_1 such that $t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
4. for booleans \ldots

Theorem 9.3.3 [Uniqueness of types]: In a given typing context Γ, a term t (with free variables all in the domain of Γ) has at most one type.
Lemma 9.3.4 [Canonical forms]:

- If v is a value of type Bool, then v is either true or false.
- If v is a value of type $T_1 \rightarrow T_2$, then $v = \lambda x : T_1. t_2$.

Theorem 9.3.5 [Progress]: Suppose t is a closed, well-typed term (that is, $\emptyset \vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.
Preservation

Theorem 9.3.9 [Preservation]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Quiz. Please try to prove above theorem and figure out what lemmas we need.

Lemma 9.3.6 [Permutation]: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$. Moreover, the latter derivation has the same depth as the former.

Theorem 9.3.7 [Weakening]: If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$. Moreover, the latter derivation has the same depth as the former.

Theorem 9.3.8 [Preservation of types under substitution]: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.
Erasure and Typability

Type annotations are be used during type checking, and will be erased before evaluation.

Definition 9.5.1 [Erasure]: The erasure of a simply typed term t is defined as follows:

$$
erase(x) = x$$
$$
erase(\lambda x : T_1.t_2) = \lambda x.\ erase(t_2)$$
$$
erase(t_1 t_2) = erase(t_1)erase(t_2)$$

Definition 9.5.3 [Typability]: A term m in the untyped λ-calculus is said to be typable in $\lambda\rightarrow$ if there are some simply typed term t, type T, and context Γ such that $erase(t) = m$ and $\Gamma \vdash t : T$.
Conclusion

- Typing system $\Gamma \vdash t : T$ can remove some terms before they run into \textit{stuck} states.
- However, it also removes well-behaved terms.
- Type safety $=$ progress $+$ preservation
- For proving safety, some other properties such as \textit{canonical forms}, \textit{uniqueness of type} are needed.
- Simply typed λ-calculus is non-Turing-complete.
Homework

- 8.3.4, 8.3.6, 8.3.7, 9.2.2, 9.2.3, 9.3.2