An Introduction to Functional Programming and Maude

Guoqiang Li

BASICS, Shanghai Jiao Tong University

October 26, 2009
Begin With . . .

- **λ calculus**

 \[M ::= x \mid \lambda x. M \mid MM \]

- **π calculus**

 \[\pi ::= a(b) \mid \overline{ab} \mid \tau \]

 \[\varphi ::= \top \mid \bot \mid x = y \mid x \neq y \mid \varphi \land \varphi \]

 \[P ::= \sum_{i \in I} \varphi_i \pi_i \cdot P_i \mid P|P \mid (x)P \mid !P \]
Implementation

- Traditional approaches
 - parser: Yacc.
 - represented by some data structure: list, tree, acyclic graph. etc.
 - search..
- What if a natural number 327
 - Naive, since we have type of int.
- What if we define a type of λ calculus and π calculus?
Implementation

- Traditional approaches
 - parser: Yacc.
 - represented by some data structure: list, tree, acyclic graph, etc.
 - search..
- What if a natural number 327
 - Naive, since we have type of int.
- What if we define a type of λ calculus and π calculus?
Implementation

- Traditional approaches
 - parser: Yacc.
 - represented by some data structure: list, tree, acyclic graph. etc.
 - search..

- What if a natural number 327
 - Naive, since we have type of int.

- What if we define a type of \(\lambda \) calculus and \(\pi \) calculus?
Implementation

- Traditional approaches
 - parser: *Yacc.*
 - represented by some data structure: list, tree, acyclic graph, etc.
 - search,

- What if a natural number 327
 - Naive, since we have type of `int`.

- What if we define a type of λ calculus and π calculus?
Type and Pattern Matching

```
datatype nat = Zero
              | s of nat ;

fun add (X, Zero) = X
                   | add (X, s(Y)) = s(add(X,Y)) ;

-- add(s(s(Zero)),s(s(s(Zero))));
val it = s (s (s (s (s #)))) : nat
```
Type and Pattern Matching

```
datatype nat = Zero
    | s of nat ;

fun add (X,Zero) = X
    | add (X, s(Y)) = s(add(X,Y)) ;

-- add(s(s(Zero)),s(s(s(Zero))));
val it = s (s (s (s (s #)))) : nat
```

How to define a set of variables?
Function

- **Mathematical view:** a function is a relation, where

\[x R y \land x R z \rightarrow y = z \]

- **Logical/Rewriting view:** confluence, describing that terms in this system can be rewritten in more than one way, to yield the same result.

- **Programming view:** a function is a program procedure that you can work out.
 - Such a function can be regarded as a term with only one redex.
Function

- **Mathematical view:** a function is a relation, where

 \[x R y \land x R z \rightarrow y = z \]

- **Logical/Rewriting view:** confluence, describing that terms in this system can be rewritten in more than one way, to yield the same result.

- **Programming view:** a function is a program procedure that you can work out.
 - Such a function can be regarded as a term with only one redex.
Function

▶ Mathematical view: a function is a relation, where

\[x R y \land x R z \rightarrow y = z \]

▶ Logical/Rewriting view: confluence, describing that terms in this system can be rewritten in more than one way, to yield the same result.

▶ Programming view: a function is a program procedure that you can work out.
 - Such a function can be regarded as a term with only one redex.
What Can Functional Programming Do

- Programming Language: SML, Haskel, OCaml, SML#, Visual SML, Erlang?, ...
- Theorem Proving: Isabelle/HOL, Coq, CafeOBJ, ...
- Model Checking: Maude
What Can Functional Programming Do

- Programming Language: SML, Haskel, OCaml, SML#, Visual SML, Erlang?, …
- Theorem Proving: Isabelle/HOL, Coq, CafeObJ, …
- Model Checking: Maude
What Can Functional Programming Do

- Programming Language: SML, Haskel, OCaml, SML#, Visual SML, Erlang?, ...
- Theorem Proving: Isabelle/HOL, Coq, CafeObJ, ...
- Model Checking: Maude
What Is Maude

- Maude is a **rewriting system**...
 - $f(x, y) \rightarrow g(x)$
 - $f(f(a, z), b) \leftrightarrow g(f(a, z))$
 - $f(f(a, z), b) \leftrightarrow f(g(a), b)$

- Maude encodes both **equational logic** and **rewriting logic**...
 - An equational logic theory: $(\Sigma, E \cup A)$
 - A rewriting Logic theory: $(\Sigma, E \cup A, \phi, R)$

- Maude is a (programmable) model checker...
 - Maude provides **search** and **LTL** engines, which can do model checking on an established system.

- Maude is a **functional programming language**.
Categories of Maude

- **Core Maude**: functional module + system module
- **Full Maude**: Core Maude + object-oriented module
- **Real-Time Maude**: Full Maude + timed module
- **Mobile Maude**
- ...

<table>
<thead>
<tr>
<th></th>
<th>functional module</th>
<th>system module</th>
</tr>
</thead>
<tbody>
<tr>
<td>syntax</td>
<td><code>fmod ... endfm</code></td>
<td><code>mod ... endm</code></td>
</tr>
<tr>
<td>rewriting</td>
<td>confluent & terminated</td>
<td>divergent & non-terminated</td>
</tr>
<tr>
<td>logic</td>
<td>equational logic</td>
<td>rewriting logic</td>
</tr>
<tr>
<td>programming lang.</td>
<td>sequential</td>
<td>concurrent</td>
</tr>
</tbody>
</table>
The First example

```maude
datatype nat = Zero
            | s of nat ;

fun add (X,Zero) = X
            | add (X, s(Y)) = s(add(X,Y)) ;

fmod Nat is

    sort Nat .
    op 0 : -> Nat [ctor] .
    op s : Nat -> Nat [ctor] .
    op add : Nat Nat -> Nat .
    vars X Y : Nat .
    eq add (X, 0) = X .
    eq add (X, s(Y)) = s(add [X,Y]) .

endfm

Maude> in Nat.maude
Advisory: defining module Nat.
--------------------------------------
  fmod Nat
Maude> reduce add (s(s(0)), s(s(s(0)))) .
--------------------------------------
reduce in Nat : add(s(s(0)), s(s(s(0)))) .
rewrites: 4 in 1520340230ms cpu (0ms real) (~ rewrites/second)
result Nat: s(s(s(s(s(0)))))
Maude>
```
A basic functional module mainly has four parts: sorts, operations, variables and equations. For example:

```plaintext
• fmod NAT is
  sort Nat .
  op 0 : -> Nat [ctor] .
  op s : Nat -> Nat [ctor] .
  op add : Nat Nat -> Nat .
  vars X Y : Nat .
  eq add (X, 0) = X .
  eq add (X, s(Y)) = s( add(X,Y) ) .
endfm
```
A basic functional module mainly has four parts: sorts, operations, variables and equations. For example:

• \texttt{fmod NAT is}
 \begin{verbatim}
 sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op add : Nat Nat -> Nat .
 vars X Y : Nat .
eq add (X, 0) = X .
eq add (X, s(Y)) = s (add (X, Y)) .
 \end{verbatim}
 endfm
A basic functional module mainly has four parts: sorts, operations, variables and equations. For example:

- `fmod NAT is`
 - `sort Nat .`
 - `op 0 : Nat [ctor] .`
 - `op add : Nat Nat -> Nat .`
 - `vars X Y : Nat .`
 - `eq add (X, 0) = X .`
 - `eq add (X, s(Y)) = s(add(X,Y)) .`

`endfm`
A basic functional module mainly has four parts: sorts, operations, variables and equations. For example:

```
• fmod NAT is
  sort Nat .
  op 0 : -> Nat [ctor] .
  op s : Nat -> Nat [ctor] .
  op add : Nat Nat -> Nat .
  vars X Y : Nat .
  eq add (X, 0) = X .
  eq add (X, s(Y)) = s( add(X,Y) ) .
endfm
```
A basic functional module mainly has four parts: sorts, operations, variables and equations. For example:

```
• fmod NAT is

  sort Nat .
  op 0 : -> Nat [ctor] .
  op s : Nat -> Nat [ctor] .
  op add : Nat Nat -> Nat .
  vars X Y : Nat .
  eq add (X, 0) = X .
  eq add (X, s(Y)) = s( add(X,Y) ) .

endfm
```
Maude can define a *sort* or several sorts each a time, with the key words *sort* or *sorts*.

- `sort Nat .`
- `sorts Nat Integer Real .`

Maude can also declare *subsorts*, which is defined as follows:

- `subsort Nat < Integer .`
- `subsorts Nat < Integer < Real .`

Maude can define *kinds* for handling subsorts.

Variables are declared with the key words *var* or *vars*.

- `var X : Nat .`
- `vars C1 C2 C3 : Integer .`
Operations

- There are two uses of operations: as the constructor of a sort, and as the declaration of a function.
- The latter needs to be implemented by some equations.
- \([\text{ctor}]\) is a key attribute to a constructor,
 - sort Nat .
 - op 0 : \(\rightarrow\) Nat [ctor] .
 - op s : Nat \(\rightarrow\) Nat [ctor] .
 - sort Color .
 - ops blue green red : \(\rightarrow\) Color [ctor] .
- As a declaration of a function. It can be represented in an mix-fix notation, and \(_\) is a specific place for a variable. For example,
 - op \(_+_\) : Nat Nat \(\rightarrow\) Nat .
 - oCheck : Message Message \(\rightarrow\) Bool .
Attributes for Operations

- **Equational Attribute**: assoc, comm, idem, id: <term>...
 - op _XOR_ : Term Term -> Term [assoc comm id: ZERO].
- **Memorized Attribute**: memo, which instructs Maude to memorize the result.
 - op fibo : Nat -> Nat [memo].
- **Frozen Attribute**: frozen, which forbids to apply rules to the proper subitems of a term.
- **Special Attribute**: special, which is associated with appropriate C++ code by hooks.
Equations

- A function can be implemented by a set of equations. The use of variables in equations do not carry actual values. Rather, they stand for any instance of a certain sort.

 \[\text{op } _+_: \text{Nat Nat } -> \text{Nat} . \]

 \[
 \text{vars } M \ N : \text{Nat} . \\
 \text{eq } 0 + N = N . \\
 \text{eq } s(M) + N = s(M + N). \\
 \]

- A conditional equation can be defined in two ways:

 \[\text{ceq isdifferent } (M, N) = \text{true if } M =\neq N . \]

 \[\text{eq isdifferent } (M, N) = \text{if } M == N \text{ then true else false fi} . \]

- A default equation is defined by a key attribute \[\text{owise}\]

 \[\text{eq oCheck } (M1, M2) = \text{false } [\text{owise}] . \]
Importation

- A module can be imported in another module by using key words protecting, extending or including. For example:
 - `fmod PARENT is
 ...
 endfm`
 - `fmod CHILD is
 protecting PARENT .
 ...
 endfm`

- `protecting` means that the imported module can not be modified in any way. `including` means one can change the definition of the imported module. `extending` falls somewhere between these two extremes.
The λ-calculus

\[M := x \mid \lambda x. M \mid MM \]

Full λ-calculus

1. \((\lambda x. M)N \rightarrow M\{N/x\} \) - β-rule

2. \(M \rightarrow M' \)
 \(MN \rightarrow M'N \) - structure rule

3. \(N \rightarrow N' \)
 \(MN \rightarrow MN' \) - eager evaluation

4. \(M \rightarrow M' \)
 \(\lambda x. M \rightarrow \lambda x. M' \) - partial evaluation

Lazy λ-calculus \(1 + 2 \)
Lambda Calculus in Maude

fmod LAMBDA is
 pr NAT .
 sorts Var Lambda .
 subsort Var < Lambda .
 op var : Nat -> Var [ctor] .
 op beta : Lambda Lambda -> Lambda .
 op sub : Lambda Var Lambda -> Lambda .
 op LazybetaRed : Lambda -> Lambda .

vars M N O : Lambda . vars V W : Var .

eq beta (\ V . M, N) = sub (M, V, N) .

eq sub (V, V, N) = N .

ceq sub (W, V, N) = W if W /= V .

eq sub (\ W . M, V, N) = \ W . (sub (M,V,N)) .

eq sub (M 0, V, N) = sub(M, V, N) sub (0, V, N) .

*** eq sub (M , V, N) = M [owise] .

eq LazybetaRed (\ W . M 0) = beta (\ W . M, 0) .

eq LazybetaRed (M) = M [owise] .

endfm
Function modules VS. System modules

- Anything such as equations defined in a function module can be a system module. Besides that, it can define a transition system by a set of rewrite laws.
 - A set of equations in a function module defines a structure. These equations need to be confluent and terminating.
 - Rewrite laws define transitions between structures. They may be nonterminating.

```plaintext
mod CIGARETTES is
  sort State .
  op cig : -> State [ctor] .
  op box : -> State [ctor] .

  rl [smoke] : cig => box .
  rl [makenew] : box box box box box => cig .
endm
```
A transition system can be implemented by a set of rewrite laws. We often give each law a unique name in a bracket (optional), for example, [makenew].

- \texttt{rl [smoke]} : \texttt{cig => box} .
- \texttt{rl [makenew]} : \texttt{box box box box => cig} .

A conditional rewrite law can also be defined.

- \texttt{crl [equation]} : \texttt{a(X) => b(X-1) if X > 0} .
- \texttt{crl [rewrite]} : \texttt{b(X) => c(X*2) if a(X)=>b(Y)} .

Usually, we can define an initial state to begin the rewriting

- \texttt{op init} : \texttt{-> State} .

 \texttt{eq init = cig cig cig cig cig cig cig cig} .
Common commands

- For a function module, a common command is `reduce`, which can reduce the normal form of a term.
 - `reduce in NAT : s(s(0)) + s(s(s(0))) .
 result Nat : s(s(s(s(s(0)))))`

- For a system module,
 - A common command is `rewrite` (may not terminate),
 - `rewrite in CIGARETTE : init .
 result State: box`
 - `search` begins with a given state, and finds out a given number of states that satisfies the property.
 - `search [2] in CIGARETTE : init =>* ST
 such that (number(cig,ST) == 1) .
 solution 1 (state 8)
 init -> cig box box box box box box box
 solution 2 (state 12)
 init -> cig box box box box`
What can Maude do?

- Maude itself is a versatile tool supporting:
 - Formal specification;
 - Execution of the specification.
- **Model checking**: Reachability problem can be performed by Maude itself. Maude also offers a LTL model checker for system modules.
- **Theorem proving**: It can be performed by a theorem prover ITP implemented by Maude, based on membership equational logic.
Q: Can Maude encode Maude itself?
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...

What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...
What Can We Do

- Research
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- Paper
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - ...
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
What Can We Do

- **Research**
 - Aspect-Oriented Maude
 - Timed Automata Checker
 - Pushdown Automata Checker
 - Pi Calculus Theorem Prover

- **Paper**
 - Translate lambda calculus to pi calculus
 - System Simulator
 - Synthesis
 - …
An Example: Schedulability Analysis

bool variable: \(\text{TASK3}_k = \begin{cases}
0 &: \text{not execute} \\
1 &: \text{execute}
\end{cases} \)

Task 1
Period 6 msec
WCET 2 msec
Priority High

Task 2
Period 9 msec
WCET 4 msec
Priority Low
Clock Slot

fmod SLOT is
 pr NAT .
 sort Slot .
 op init : -> Slot [ctor] .
 op time : Nat -> Slot [ctor] .

 op Timeplus : Slot -> Slot .
 op getTime : Slot -> Nat .

 var N : Nat .

 eq Timeplus (init) = time(0) .
 eq Timeplus (time(N)) = time (N + 1) .

 eq getTime (init) = 0 .
 eq getTime (time(N)) = N .

endfm
CPU

fmod CPU is
 pr SLOT .
 pr STRING .

 sort Cpu .
 sort CpuStatus .

 op idle : -> CpuStatus [ctor] .
 op init : -> CpuStatus [ctor] .
 op exec : String -> CpuStatus [ctor] .
 op CPU : CpuStatus Slot -> Cpu [ctor] .
endfm
Task and Task Status

fmod TASK is
 pr NAT .
 pr STRING .
 sort Task .
 sorts Period Wcet Pri .
 op pri : Nat -> Pri [ctor] .
 op task : String Period Wcet Pri -> Task [ctor] .
endfm

fmod TASKSTATUS is
 pr NAT . pr STRING .
 sort TaskStatus .
 sorts Cp Tr .
 op tr : Nat -> Tr [ctor] .
 op TaskExecutable : TaskStatus -> Bool .
endfm
Scheduling System

mod SCHEDULINGSYSTEM is
 pr CPU . pr TASKSTATUS .
 pr TASK .
sorts State SchedulingStatus .
op Init : -> State .
op exec : -> SchedulingStatus [ctor] .
op error : -> SchedulingStatus [ctor] .
 op [_,_,[_,_,],_,_] : Cpu Task TaskStatus Task TaskStatus
 SchedulingStatus -> State [ctor] .
op getExecutedTask : Task TaskStatus Task TaskStatus Slot
 -> CpuStatus [memo] .
op getTaskStatus : Task TaskStatus Slot CpuStatus ->
 TaskStatus [memo] .
op getSchedulingStatus : Task TaskStatus Task TaskStatus Slot CpuStatus -> SchedulingStatus .
endm
Scheduling System (cont.)

eq \text{Init} = \left[\text{CPU}(\text{init}, \text{init}), \right.
\begin{align*}
\text{task} &\left(\text{"TASK1"}, \ p(6), \ \text{wcet}(2), \ \text{pri}(2) \right) \\
&\quad \left[\left(\text{"TASK1"}, \ \text{cp}(0), \ \text{tr}(2), \ \text{true} \right) \right], \\
\text{task} &\left(\text{"TASK2"}, \ p(9), \ \text{wcet}(4), \ \text{pri}(1) \right) \\
&\quad \left[\left(\text{"TASK2"}, \ \text{cp}(0), \ \text{tr}(4), \ \text{true} \right) \right], \\
\text{exec} &\left] \ . \right.
\end{align*}
\right.

\text{rl} \ [\text{ex}] : \left[\text{CPU}(\text{CS}, \text{SL}), \ T1[\text{TS1}], \ T2[\text{TS2}], \ \text{exec} \right] \Rightarrow
\left[\text{CPU}(\text{getExecutedTask}(T1, T1, T2, T2, \text{Timeplus}(\text{SL})), \text{Timeplus}(\text{SL})), \right.
\begin{align*}
T1[&\text{getTaskStatus}(T1, T1, \text{Timeplus}(\text{SL}), \\
&\text{getExecutedTask}(T1, T1, T2, T2, \text{Timeplus}(\text{SL})))], \\
T2[&\text{getTaskStatus}(T2, T2, \text{Timeplus}(\text{SL}), \\
&\text{getExecutedTask}(T1, T1, T2, T2, \text{Timeplus}(\text{SL})))], \\
\text{getSchedulingStatus}(T1, T1, T2, T2, \text{Timeplus}(\text{SL}), \\
&\text{getExecutedTask}(T1, T1, T2, T2, \text{Timeplus}(\text{SL})))] \ .
\end{align*}
What we have done?

- We have encoded a specification for scheduling algorithm.
- We can run the specification due to different commands (reduce, rewrite,...).
- We can perform schedulability analysis on the specification.

search [1] in SCHEDULINGSYSTEM : Init =>* [CPU(CS, time(N1)), T1[TS1], T2[TS2], exec]

 such that (N1 == 18) .