
Quantum Algorithms via Linear Algebra

— Basics of quantum computations

Dao-Yun Xu

College of Computer Science and Technology, Guizhou University

Outline

4. Boolean Functions, Quantum Bits, and Feasibility

5. Special Matrices

6. Tricks

4. Boolean Functions, Quantum Bits, and Feasibility

A Boolean function f is a mapping from {0, 1}n to {0, 1}m, for

some numbers n and m:

f (x1, ..., xn) = (y1, ..., ym).

When m = 1, we can also think of f as a predicate: x satisfies

the predicate if and only if f (x) = 1.

Basic functions:

• NOT: the unary function.

• AND: f (x1, ..., xn) = 1 if and only if every argument is 1.

• OR: f (x1, ..., xn) = 1 if and only if the number of 1’s in x1, ..., xn

is non-zero.

• XOR: f (x1, ..., xn) = 1 if and only if the number of 1’s in

x1, ..., xn is odd.

Boolean inner product x • y = XOR(x1 ∧ y1, ..., xn ∧ yn).

The following two Boolean functions should be not regarded as

basic:

• PRIME: The function f (x1, ..., xn) defined as 1 if the Boolean

string x = x1, ..., xn represents a number that is a prime number.

• FACTOR: The function f (x1, ..., xn,w1, ...,wn) is regarded as

with integers x and w as arguments. Note that we can pad w as

well as x by leading 0’s.

It returns 1 if and only if x has no divisor greater than w , aside

from x itself.

Therefore, PRIME (x) = FACTOR(x , 1) for all x . This implies

that a circuit for FACTOR immediately gives one for solving the

predicate PRIME .

4.1. Feasible Boolean Functions

The number of gates is identified with the amount of

work expended by the circuit, and this in turn is regarded as

the sequential time for the circuit to execute.

The critical counting gates is that only basic operations can be

used, and that they can only apply to previously computed values.

The classical complexity for functions AND and XOR are

computable in a linear time O(n).

It is known circuits for PRIME take more than linearly many

steps, but the time is still polynomial (nO(1)).

But there are also Boolean functions that require time

exponential in n. Many people believe that FACTOR is one of

them, but nobody knows for sure.

Representing Boolean functions by their truth tables is always

possible, but is not always feasible. The tables will be large when

there are thirty inputs.

The technical concept we need is having not just a single

Boolean function but rather a family [fn] of Boolean functions,

each fn taking n inputs, that are conceptually related. That is, the

[fn] constitute a single function f on strings of all lengths, so, we

write f : {0, 1}∗ → {0, 1}∗.

DEFINITION 4.1. A Boolean function f = [fn] is feasible

provided the individual fn are computed by circuits of size nO(1).

4.2. An Example

Consider the Boolean function MAJ(x1, x2, x3, x4, x5), which

takes the majority of five Boolean inputs.

The first idea is to compute it using applications of OR and

AND as follows:

For every three-element subset S = {i , j , k} of {1, 2, 3, 4, 5}, we

compute yS = OR(xi , xj , xk).

Define y to be the AND of each of the ten subsets S . That is:

y = AND(yS1 , · · · , yS10).

Then y = 1⇔ no more than 2 bits of x1, ..., x5 are 0⇔
MAJ(x1, x2, x3, x4, x5) is true.

The complexity is counted as 11 operations and, importantly,

35 total arguments of those operations.

The second idea: we can find a program of slightly lower

complexity. Consider the Boolean circuit diagram in the following.

This program has 10 operations and only 24 applications to

arguments.

To see that it is correct, note that w4 is true if and only if

x1 = x2 = x3 = 1, and w5 is true if and only if x4 = x5 = 1 and one

of x1, x2, x3 is 1. Finally, t is true if and only if two of x1, x2, x3 and

one of x4, x5 are true, which handles the remaining six true cases.

Problem: Is MAJ feasible?

For a string x of length n, the function MAJ(x) returns 1 if

more than n/2 of the bits of x are 1.

We ask the important question: Is MAJ feasible?

The first idea is failure. Because when generalized from “5”

to “n”, it needs to take the AND of every r -sized subset of [n],

where r = bn/2c+ 1, and and feed that to an OR. However, there

are
(n
r

)
such subsets, which is exponential when r ∼ n/2.

The trouble shorter program with the second idea is its being

rather ad hoc for n = 5. The question whether or not there are

programs like it with only AND and OR gates that scale for all n is

a famous historical problem in complexity theory.

The answer is known to be yes, but no convenient recipe for

constructing the programs for each n is known, and their size

O(n5.3) is comparatively high.

4.3. Quantum Representation of Boolean Arguments

Let N = 2n. Every coordinate in N-dimensional Hilbert space

corresponds to a binary string of length n. The standard encoding

scheme assigns to each index j ∈ [0, ..., n − 1] the n-bit binary

string that denotes j in binary notation, with leading 0′s if

necessary.

This produces the standard lexicographic ordering on

strings. For instance, with n = 2 and N = 4, we show the indexing

applied to a permutation matrix:

00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0

= M

The matrix M defines a mapping f :

f (u1u2) = v1v2 ⇔ M[u1u2, v1v2] = 1.

f (00) = 00, f (01) = 01, f (10) = 11, f (11) = 10

and in general f (x1, x2) = (x1, x1 ⊕ x2).

The operator writes the XOR into the second bit while leaving

the first the same.

We can also say that it negates the second bit if-and-only-if

the first bit is 1. This negation itself is represented on one bit by

a matrix:

0 1

0 0 1

1 1 0

, X =

[
0 1

1 0

]

The negation is controlled by the first bit, the name

“Controlled-NOT” (CNOT) for the whole 4× 4 operation.

To get a general Boolean function y = f (x1, ..., xn), we need

n + 1 Boolean coordinates, which entails 2N = 2n+1 matrix

coordinates.

What we really compute is the function

F (x1, ..., xn, z) = (x1, ..., xn, z ⊕ f (x1, ..., xn)).

Formally, F is a Boolean function with outputs in {0, 1}n+1

rather than just {0, 1}.
Its first virtue, which is necessary to the underlying quantum

physics, is that it is invertible. In fact, F is its own inverse:

F (F (x1, ..., xn, z)) = F (x1, ..., xn, z ⊕ y)

= (x1, ..., xn, (z ⊕ y)⊕ y)

= (x1, ..., xn, z).

Its second virtue is having a 2N × 2N permutation matrix Pf

that is easy to describe: the unique one “1” in each row

x1x2 · · · xnz is in column x1x2 · · · xnb, where b = z ⊕ f (x1, ..., xn).

If f is a Boolean function with m outputs (y1, ..., ym) rather

than a single bit, then we have the same idea with

F (x1, ..., xn, z1, ..., zm) = (x1, ..., xn, z1 ⊕ y1, ..., zm ⊕ ym)

The matrix Pf is still a permutation matrix, although of even

larger dimensions 2n+m × 2n+m.

Often left unsaid is what happens if we need h-many

“helper bits” to compute the original f .

The simple answer is that we can treat them all as extra

outputs of the function, allocating extra zj variables as dummy

inputs so that the ⊕ trick preserves invertibility. Because h is

generally polynomial in n, this does not upset feasibility.

In the above scheme, we gave for classical computation,

everything is laid out in n′ = n + m + h rows, with the input x laid

out in the first column.

Each row is said to represent a qubit. In order to distinguish

the row from the idea of a qubit as a physically observable

object, we often prefer to say qubit line for the row itself in

the circuit. The h-many helper rows even have their own fancy

name as ancilla qubits, or helper.

A big 2n
′ × 2n

′
matrix, just for a permutation, is of course not

feasible. This is a chief reason we prefer to think of operators Pf

as pieces of code.

The qubit lines are really coordinates of binary strings

that represent indices to these programs. These strings have

size n′, and their own indices 1, ..., n′ are what we call quantum

coordinates.

4.4. Quantum Feasibility

In the above scheme, we confine ourselves to linear algebra

operations that are efficiently expressible via these n′ quantum

indices, we can hope to keep things feasible.

A quantum algorithm applies a series of unitary matrices

to its start vector.

Can we apply any unitary matrix we wish? The answer is no.

Of course, if the quantum algorithms are to be efficient,

then there must be a restriction on the matrices allowed.

If we look at the matrices Pf in section 4.3, we see several

issues.

(1) The design of Pf seems to take no heed of the complexity

of the Boolean function f but merely creates a permutation out of

its exponential-sized truth table. Because infeasible (families

of) Boolean functions exist, there is no way this alone could

scale.

(2) Even for simple functions like AND(x1, x2, · · · , xn), the

matrix still has to be huge-even larger than 2n on the side.

How do we distinguish “basic feasible operations”?

(3) What do we use for variables? If we have a 2n-sized vector,

do we need exponentially many variables?

The answer is to note that if we keep the number k of

arguments for any operation to a (bounded) constant, then 2k

stays constant. We can therefore use 2k × 2k matrices that apply

to just a few arguments.

But what are the arguments? They are not the same as the

Hilbert space coordinates 0, ...,N − 1, which would involve us in

exponentially many.

The quantum coordinates start off being labeled x1, x2, ..., xn

as for Boolean input strings and extend to places for outputs and

for ancillae (helpers).

With these differences understood, the notion of feasible for

unitary matrices is the natural extension of the one for

Boolean circuits.

Any unitary matrix B of dimension 2k where k is constant, we

will have that k ≤ 3 is feasible.

Such a matrix is allowed to operate on any subset of k quantum

coordinates, provided it leaves the other n′ − k coordinates alone.

A tensor product of B with identity matrices on the other

quantum coordinates is a basic matrix. We could require that the

entires of B be simple in some way, but it will suffice to take B

from a small fixed finite family of gates.

Let U be any unitary matrix of dimension N, we will say

that it is feasible provided there is a way to construct it

easily out of basic matrices.

To show concreteness, one can express U via a quantum

circuit of basic gate matrices.

Quantum circuits

We will stay informal with quantum circuits as we did for

Boolean circuits while formalizing quantum computations in terms

of matrices.

The first n lines correspond to the inputs x1, ..., xn, while all

other qubit lines are conventionally initialized to 0. The only

“crossing wires” are parts of multi-ary gates, either running

invisibly inside boxes or shown explicitly for some gates like the

CNOT operation.

In above figure, the circuit is composed of one Hadamard gate

on qubit line 1, followed by a CNOT with its control on line 1 and

its target on line 2:

Underneath the Hadamard gate is an invisible identity gate,

expressing that in the first time step, the second qubit does not

change.

We could draw this into the circuit if we wish:

Whenever two gates can be placed vertically this way, a

tensor product is involved.

Thus, the matrix form of the computation is the composition

V2 · V1 of the 4× 4 matrices.

V2 = CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



V1 = H ⊗ I = 1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

.

U = V2 · V1 = 1√
2


1 0 1 0

0 1 0 1

1 0 0 −1

0 1 −1 0



U = V2 · V1 acts on the input vector x = [1, 0, 0, 0]T , we obtain

1√
2


1 0 1 0

0 1 0 1

1 0 0 −1

0 1 −1 0




1

0

0

0

 = 1√
2


1

0

0

1

.

The input vector denotes the input string 00, i.e. e00 or

x1 = 0, x2 = 0.

The output vector is not a basis vector. It is an equal-weighted

sum of the basis vector for 00 and 11.

This means we do not have a unique output string y in

quantum coordinates, although we have a simple output vector v

in the N = 22 = 4 Hilbert-space coordinates.

Much of the power of quantum algorithms will come from

such outputs v , from which we need further interaction in

the form of measurements, even repeatedly, to arrive at a

final Boolean output y .

DEFINITION 4.2. A quantum computation C on s qubits is

feasible provided

C = UtUt−1 · · ·U1

where each Ui is a feasible operation, and s and t are bounded by

a polynomial in the designated number n of input qubits.

(target qubit) y ⊕ y ⊕ x

(control qubit) x x

CNOT

(x , y)→ (x , x ⊕ y);

y ⊕ y ⊕ (x1 ∧ x2)

x2 x2

x1 x1

CCNOT

(x1, x2, y)→ (x1, x2, (x1 ∧ x2)⊕ y);

Controlled unitary matrices

CU :

Uy

x

If x then U else I ; U ′ =

[
I2k

U2k

]

If x = 1 then Uy else Iy ; CU
∣∣x〉∣∣y〉 =

∣∣x〉∣∣Uy〉;

Controlled unitary matrices

CCU = C 2U :

Uy

x1

x2

If (x = 1) ∧ (x2 = 1) then Uy else Iy ;

CU
∣∣x1x2〉∣∣y〉 =

∣∣x1x2〉∣∣Uy〉;

CCX = CCNOT = TOF : (Toffoli gate)

y y ⊕ (x1 ∧ x2)

x2 x2

x1 x1

X

CCNOT ex1x2y =

{
ex1x2y if x1 = x2 = 1

ex1x2(1⊕y) o.w .

Controlled unitary matrices

CCU = C (1,0)U :

Uy

x1

x2 X X

If (x = 1) ∧ (x2 = 0) then Uy else Iy ;

C (1,0)U
∣∣x1x2〉∣∣y〉 =

∣∣x1x2〉∣∣U(1,0)y
〉

⇔ if (x1 = 1) ∧ (x2 = 0) then
∣∣x1x2〉∣∣Uy〉 else

∣∣x1x2〉∣∣y〉.

Outline

4. Boolean Functions, Quantum Bits, and Feasibility

5. Special Matrices

6. Tricks

5. Special Matrices

Given our view that quantum algorithms are simply the result of

applying a unitary transformation to a unit vector.

There are just a few families of such matrices that are

used in most quantum algorithms.

Two of the families correspond to transforms that are well

studied through mathematics and computer science theory and

have many applications in many areas besides quantum algorithms.

(1) Hadamard Matrices; (2) Fourier Matrices

When is a transformation a transform? The latter term

connotes that the output is a new way of interpreting the input.

All quantum transformations are invertible :

y = Ux , x = U∗y

5.1. Hadamard Matrices

The first family of unitary transforms are the famous Hadamard

matrices. Note that because we mainly stay with the standard

basis of ek vectors, we will identify transforms with their matrices,

and this should cause no confusion. Here we lock in our

convention that N is always 2n for some n.

DEFINITION 5.1. The Hadamard matrix HN of order N is

recursively defined by H2 = H and for N ≥ 4:

HN = H ⊗ HN/2 = 1√
2

[
HN/2 HN/2

HN/2 −HN/2

]
We could also use H1 = [1] as the basis, and write H⊗n = H2n .

LEMMA 5.2. For any row r and column c,

HN [r , c] = (−1)r ·c ,

recalling that r · c is the inner product of r and c treated as

Boolean strings. An example:

00 01 10 11

00 1 1 1 1

01 1 −1 1 −1

10 1 1 −1 −1

11 1 −1 −1 1

For any vector a, the vector b = HNa is defined by

b(x) =
∑N−1

t=0 (−1)x ·ta(t).

where x , t are treated as Boolean strings.

This is the way that we will view the transform in the analysis

of most algorithms. In a quantum circuit with n qubit lines, HN is

shown as a column of n-many single-qubit Hadamard gates.

Hadamard matrix and Mean, Parallel,...

1√
8



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1





1

0

0

0

0

0

0

0


= 1√

8



1

1

1

1

1

1

1

1



5.2. Fourier Matrices

The second family of unitary transforms are Fourier Matrices.

DEFINITION 5.3. Let ω = e2πi/N be“N-th root of unity”. The

Fourier matrix FN of order N is:

1√
N



1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω(N−2)

1 ω3 ω6 ω9 · · · ωN−3)

...
...

. . .
...

1 ωN−1 ωN−2 ωN−3 · · · ω



Clearly, FN [i , j] = ωij(mod N).

It is well known that FN is a unitary matrix over the complex

Hilbert space.

For any vector a, the vector b = FNa is defined by

b(x) = 1√
N

∑N−1
t=0 ω

xt(mod N)a(t).

Note that:
∑N−1

t=0 ω
xt = 0 for x = 1, 2, · · · ,N − 1. (by ωN = 1)

Fourier Matrices and Period, Parallel,...

1√
N



1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω(N−2)

1 ω3 ω6 ω9 · · · ωN−3)

...
...

. . .
...

1 ωN−1 ωN−2 ωN−3 · · · ω


Period: r = 0 1 2 3 · · · N − 1

Shor’s Algorithm: (Finding a period of the function FN)

FN(a) = ya mod N (0 < y < N, gcd(y ,N) = 1)

5.3. Reversible Computation and Permutation Matrices

Every N × N permutation matrix is unitary. However, in terms

of n with N = 2n, not all of them can be feasible.

The problem is that which permutation matrices are feasible?

Recall the definition of the permutation matrix Pf from the

invertible extension F of a Boolean function f , where

F (x1, · · · , xn, z) = (x1, · · · , xn, z ⊕ f (x1, · · · , xn)).

THEOREM 5.4. All classically feasible Boolean functions f have

feasible quantum computations in the form of Pf .

The proof of this theorem stays entirely classical–that is, the

quantum circuits are the same as Boolean circuits that are

reversible, which in turn efficiently embed any given Boolean

circuit computing f .

We need only one new gate—Toffoli gate, TOF, which is the

8× 8 matrix of Pf where f is the binary AND function.

Toffoli gate

The Toffoli gate is the ternary Boolean function

TOF (x1, x2, x3) = (x1, x2, x3 ⊕ (x1 ∧ x2)).

The Toffoli gate induces the permutation in 8-dimensional

Hilbert space that swaps the last two entries, which correspond

to the strings 110 and 111, and leaves the rest the same.

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 0 0 0 1

111 0 0 0 0 0 0 1 0

x1 x2 x3 x ′3
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

This extends the idea of CNOT with x1, x2 as “controls” and x3

as the “target”. Clearly,

TOF = CCNOT = CCX .

That this simple swap is universal for Boolean computation is

conveyed by the following two facts for Boolean bit arguments

a, b: NOT (a) = TOF (1, 1, a); AND(a, b) = TOF (a, b, 0).

Transform a Boolean circuit into a quantum circuit:

NOT :

x (¬x)X

AND :
x1 x1

x2 x2

0 ⊕ (x1 ∧ x2)

OR :
x1 x1

x2 x2

0 ⊕ (x1 ∨ x2)

X X

X X

X

Proof of Theorem 5.4.

Because AND and NOT is a universal set of logic gates, we

may start with a Boolean circuit C computing f (x1, ..., xn) using

r -many NOT and s-many binary AND gates.

The NOT gates we can leave alone because we already have

the corresponding 2× 2 matrix X as a basic quantum operation.

Hence, we need only handle the s-many AND gates.

A simple idea is that we can simulate them by s-many Toffoli

gates each with an common ancilla line set to 0 for input, but

this is superseded by the issue of possibly needing multiple copies

of the result c of an AND gate on lines a, b–that is, one for each

wire out of the gate.

This is where the Toffoli gate shines. For each output wire w ,

we allocate a fresh ancilla z and put a Toffoli gate with target on

line z and controls on a and b. This automatically computes

z ⊕ (a ∧ b), which with z initialized to 0 is what we want. Multiple

Toffoli gates with the same controls do not affect each other.

Hence, the overhead is bounded by the number of wires in C ,

which is polynomial, and the only ancilla lines we need already

obey the convention of being initialized to 0. �

The “polynomial” property is good enough for our present

discussion of feasibility. Thus, a permutation matrix — which is a

deterministic quantum operation –is feasible if it is induced by a

classical feasible function on the quantum coordinates.

5.4. Feasible Diagonal Matrices

Any diagonal matrix whose entries have absolute value 1 is

unitary. Hence, it can be a quantum operation.

Similarly, which of these operations are feasible?

Of course, if the size of the matrix is a small fixed number, e.g.

2, we can call it basic and hence feasible.

But, even if we limit to entries 1 and −1, we have one such

matrix US for every subset S of [N], that is, S ⊂ {0, 1}n:

US [x , x] =

{
1 if x ∈ S ;

−1 otherwise.

Because there are doubly exponentially many S , there are

doubly exponentially many US , so most of them are not feasible.

Can we tell which are feasible?

We give a partial answer. When S is the set of arguments that

make a Boolean function f true, i.e.,

f (x1, · · · , xn) = 1⇔ (x1, · · · , xn) ∈ S

We write Uf in place of US .

The matrix Uf is called the Grover oracle for f .

y ⊕ y ⊕ f (x)

x x

? f (x)

Uf

Uf (
∣∣x〉∣∣y〉) =

∣∣x〉∣∣y ⊕ f (x)
〉

THEOREM 5.6. If f is a feasible Boolean function, then its

Grover oracle Uf is feasible.

We defer the proof until section 6.5 in the next chapter.

The question of whether any other families of functions f make

Uf meet our quantum definition of feasible is a deep one whose

answer is long unknown and is related to issues in chapter 16.

We can be satisfied for now that we have a rich vocabulary of

feasible operations, and the next chapter will give some tricks for

combining them. Here we give one more family of operations.

5.5. Reflections

Given any unit vector a, we can create the unitary operator

Refa, which reflects any other unit vector b around a.

Geometrically, this is done by dropping a line from the tip of b

that hits the body of a in a right angle and continuing the line the

same distance further to a point b′. Then b′ likewise lies on the

unit sphere of the Hilbert space.

b b′

a

a′

The operation mapping b to b′ preserves the unit sphere and is

its own inverse, so it is unitary.

In geometrical terms, the point on the body of a is the

projection of b onto a and is given by a′ = a
〈
a, b
〉

= a · cos(θ).

Thus,

b′ = b − 2(b − a′) = b − 2(b − a
〈
a, b
〉
) = (2Pa − I)b,

where Pa(= |a
〉〈
a|) is the operator doing the projection: for all b,

Pab = a′ = a
〈
a, b
〉

= a · cos(θ).

b b′

a

a′

θ

For example, let a be the unit vector with entries 1√
N

, which we

call j . Then the projector is the matrix whose entries are all 1
N ,

which we call J in our matrix font. Finally, the reflection operator

is

V = 2J − I =


2
N − 1 2

N
2
N · · · 2

N
2
N

2
N − 1 2

N · · · 2
N

...
...

. . .
...

2
N

2
N · · · 2

N
2
N − 1


We claim that this matrix is feasible.

Of course this leads to the question: which reflection

operations are feasible?

a =?

An important case of reflection is when a is the characteristic

vector of a nonempty set S , that is:

a(x) =


1√
|S |

if x ∈ S ;

0 otherwise.

Suppose we apply Refa to vectors b with the foreknowledge

that all entries c = b(x) for x ∈ S are equal. Let k = |S |. Then

we have
〈
a, b
〉

= kc/
√
k = c

√
k , and taking the projection

a′ = Pab, we have

a′(x) =

{
c if x ∈ S ;

0 otherwise.

The reflection b′ = 2a′ − b thus satisfies

b′(x) =

{
b(x) if x ∈ S ;

−b(x) otherwise.

In the case x ∈ S , b′(x) = 2c − b(x) = 2c − c = c = b(x).

Thus the action is the same as multiplying by the diagonal

matrix that has −1 for the coordinates that are not in S , that is,

by the Grover oracle for the complement of S .

Because the negation of a feasible Boolean function is feasible,

this together with the case of V implies:

THEOREM 5.7. For all feasible Boolean functions f , provided we

restrict to the linear subspace of argument vectors whose entries

indexed by the “true set” Sf of f are equal, reflection about the

characteristic vector of Sf is a feasible quantum operation.

Happily, the set of such argument vectors forms a linear

subspace and always contains the vector j , which we will use as a

“start” vector.

Moreover, reflections by a and b, when applied to vectors

already in the linear subspace Span(a, b) spanned by a and b, stay

within that subspace.

We will use this when presenting Grover’s algorithm and search

by quantum random walks.

5.6. A application of reflections: Grover’s search algorithm

U = 2Pa − I = 2|a
〉〈
a| − I

b′ = (2Pa − I)b,

b b′

a

b1

θ θ

2θ

b1 = (2Pb − I)b′ = (2Pb − I)(2Pa − I)b.

The basic idea of Grover’s search algorithm

a

b

b0
θ

b′0

b1

2θ

bk∗

b1 = (2Pb0 − I)b′0 = (2Pb0 − I)(2Pa − I)b0 = Gb0.

bk+1 = (2Pb0 − I)bk = (2Pb0 − I)(2Pa − I)bk = G kb0.

Gb0 = cos(3θ)a + sin(3θ)b, θ0 = θ, θ1 = 3θ, θk = (2k + 1)θ.

Take k∗ = max{k : (2k ± 1)θ ≤ π
2 }.

Outline

4. Boolean Functions, Quantum Bits, and Feasibility

5. Special Matrices

6. Tricks

6. Tricks

6.1. Start Vectors

A quantum algorithm needs to start on a simple vector.

We usually restrict algorithms to start in a simple state. It may

assume that all memory locations are set to zero. The simplest

start state possible is e0 = [1, 0, 0, ..., 0]. But there are exceptions,

e.g. e1 = [0, 1, 0, 0]. This is also an elementary vector, it is

reasonable to allow this as the initial state.

To show how to move from e0 to e1 , the idea is that with

respect to the indexing scheme, 0 corresponds to the string 0n and

1 to 0n−11 (local changing). We can invert the last bit, which

entails swapping e0 and e1, is accomplished by I⊗(n−1) ⊗ X :

X =

[
0 1

1 0

]
.

It is just the linear algebraic way of applying a NOT gate to the

last string index.

We can do this on the r -th bit from the right, inducing

permutations of [N] that move indices up or down by 2r .

Note that we have not transposed only e0 and e1; we must be

aware of other effects on the Hilbert space.

Interchanging e1 and e2 involves a different operation. In string

indices, we need to swap ...01 with ...10. This is not totally local

as it involves two indices. We need to tensor the 4× 4 swap

matrix,

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


after I⊗(n−2), i.e. I⊗(n−2) ⊗ SWAP.

This can be regarded as a invertible function f (a, b) = (b, a).

SWAP :

00 01 10 11

00 1 0 0 0

01 0 0 1 0

10 0 1 0 0

11 0 0 0 1

x y

y x×

×

SWAP1,3 :

x

x

y y

z

z

×

×

SWAP1,3 =

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 0 0 0 1 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 0 0 0 1 0

100 0 1 0 0 0 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 1 0 0 0 0

111 0 0 0 0 0 0 0 1

SWAP1,3 = (SWAP ⊗ I2)(I2 ⊗ SWAP)(SWAP ⊗ I2)(
1 2 3

3 2 1

)
=

(
1 2 3

2 1 3

)(
1 2 3

1 3 2

)(
1 2 3

2 1 3

)

Another interesting start vector j is the sum of all the ek , which

must be divided by
√
N to keep it a unit vector.

jN = 1√
N

∑N−1
k=0 ek .

We can obtain this from e0 and the Hadamard matrix

HN = H⊗n

jN = HNe0.

Again by the tensor product feature, this operation is local to

each individual string index.

In terms of strings, it creates a weighted sum over all of {0, 1}n.

H4e0 = H4e00 = 1
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




1

0

0

0

 = 1
2


1

1

1

1



If we apply this to any other ek , then we get a vector with some

−1 entries in place of +1.

H4e2 = H4e10 = 1
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




0

0

1

0

 = 1
2


1

1

−1

−1



Finally, we may wish to extend our start vectors to

initialize helper bits.

Generally, this means extending the underlying binary string

with some number m of 0s. In that case, because we already

regard e0 as our generic start vector, we need do nothing.

Algebraically what we are doing is working in the product

Hilbert space HN ⊗ HM , with M = 2m, because e0 in the product

space is just the tensor product of the first basis vectors of the two

spaces.

If we want to change any state a to a⊗ e0, then we may

suppose the extra helper bits were there all along.

6.2. Controlling and Copying Base States

Can we change any state a to a⊗ a? (Copying a)

Algebraically, the latter means the state b such that indexing by

strings x , y ∈ {0, 1}n, we have

b(xy) = a(x)a(y).

No-cloning theorem: There is no 22n × 22n unitary operation U

such that for all a,

U(a⊗ e0) = a⊗ a.

However, a limited kind of copying is possible that can

replicate computations and help to amplify the success

probability of algorithms after taking measurements.

Proof of no-cloning theorem: Suppose that there is a unitary

matrix U such that for any vector a, U(a⊗ e0) = a⊗ a.

By taking a = e0 and a = e1 respectively, we have

U(e0 ⊗ e0) = e0 ⊗ e0,

U(e1 ⊗ e0) = e1 ⊗ e1

Let a = 1√
2

(e0 + e1) again. Then, by linearity of U

U(a⊗ e0) = 1√
2
U(e0 + e1)⊗ e0

= 1√
2

(U(e0 ⊗ e0) + U(e1 ⊗ e0))

= 1√
2

(e0 ⊗ e0 + e1 ⊗ e1)

.

But, by the copying property of U, we have

U(a⊗ e0) = 1
2(e0 + e1)⊗ (e0 + e1)

= 1
2(e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1)

6= 1√
2

(e0 ⊗ e0 + e1 ⊗ e1)

.

It is a contradiction. �

THEOREM 6.1. For any n ≥ 1, we can efficiently build a 22n ⊗ 22n

unitary operation Cn that converts any vector a′ into b such that

for all x , y ∈ {0, 1}n,

b(xy) = a′(x(x ⊕ y)).

In particular, if a′ = a⊗ e0n , then we get for all x ,

a(x) = a′(x0n) = b(xx),

so that measuring b yields xx with the same probability that

measuring a yields x .

Proof. Consider n = 1. The operator must make b(00) = a′(00),

b(01) = a′(01), b(10) = a′(11), and b(11) = a′(10).

This is done by the 4× 4 permutation matrix

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

For n = 2, the indices are length-4 strings y1y2z1z2, which are

permuted into y1y2(y1 ⊕ z1)(y2 ⊕ z2).

This is a composition of two CNOT operations, one on the first

and third indices (preserving the others), which we denote by C1,3

and the other on the second and fourth, written as C2,4.

x1 x1
x2 x2
z1 ⊕ (x1 ⊕ z1)
z2 ⊕ (x2 ⊕ z2)

For general n, the final operator is the composition

Cn = C1,n+1C2,n+2 · · ·Cn,2n.�

C1,3 = C ′1,3 ⊗ I2 :

C ′1,3 =

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 0 1 0 0

101 0 0 0 0 1 0 0 0

110 0 0 0 0 0 0 0 1

111 0 0 0 0 0 0 1 0

Similarly, we can define a 8× 8 matrix C ′2,4, and then get

C2,4 = I2 ⊗ C ′2,4.

Magically, what this does is clone every basis state at once. If

a = ex , then b is the same as a⊗ a after all.

An example of why this doesn’t violate the no-cloning theorem

is that when a is a non-basis state, such as 1√
2

(ex + ey), a⊗ a is

generally not the same as 1√
2

(exx + eyy).

We can now do various things.

We can run two operations Uf computing a function f (x) on x

side by side. Or we can do just one, applying I⊗n ⊗ Uf to exx to

get exf (x).

Essentially, we are using two Hilbert spaces that we put

together by a product. We can also arrive at this kind of state in

the manner shown next.

6.3. The Copy-Uncompute Trick

Suppose that we wish to compute f : {0, 1}n → {0, 1}m, where

m < n. Such function f is not invertible, so we cannot expect to

map an input state ex to a quantum state that uniquely

corresponds to y .

We have already seen the idea of replacing f by the function

F (x , v) = (x , v ⊕ f (x)).

Then F : {0, 1}n+m → {0, 1}n+m is a bijection, and the original

function f is recoverable via F (x , 0m) = (x , f (x)).

Now suppose we have any quantum operation U on the “x”

part, where f (x) might be embedded as a substring in m indexed

places in the first n indices.

We can automatically obtain the corresponding F (x , 0m) via

the computation:

(U∗ ⊗ Im)Cm(U ⊗ Im)(ex ⊗ e0m),

where the Cm is applied to those m index places in the first n

indices and to m ancilla places.

This effectively lifts out and copies f (x) into the last m fresh

places.

The final U∗ then inverts what U did in the first n places,

“cleaning up” and leaving x again.

Here is a diagram for n = 4 and m = 2, where the values

f (x) = y1y2 ∈ {0, 1}2 are computed on the second and third wires

and then copied to the ancillae:

This trick is called copy-uncompute or compute-uncompute.

It is important to note that it works only when the quantum

state after applying U and before Cm is a superposition of only

those basis states that have f (x) in the set of quantum

coordinates to which the controls are applied. If there is any

disagreement there in the superposition, then the results can

be different.

This again is why the trick does not violate the no-cloning

theorem.

For a simple concrete example, consider the following quantum

circuit, noting that the Hadamard matrix is its own inverse, i.e., is

self-adjoint:

On input e00, that is, x1 = x2 = 0, the first Hadamard gate

gives the control qubit a value that is a superposition. Hence, the

second Hadamard gate does not “uncompute” the first Hadamard

to restore z1 = 0.

The action can be worked out by the following matrix

multiplication (with an initial factor of 1
2):

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1



=


1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1


This maps e00 to 1

2 [1, 1, 1,−1]T , thus giving equal probability

to getting 0 or 1 on the first qubit line.

However, if U includes a preamble transforming e0 to ex and

then leaves a definite value y on the controlled lines before the rest

of the circuit does U∗, then the computation does end with the

first n places again zeroed out, i.e., in some state f ′ = e0n ⊗ ey .

This finally justifies why we can regard e0 as the only

input we need to consider.

It emphasizes the goal of efficiently preparing a state

from which a desired value f (x) can be recovered by

measurement.

As long as we are careful to represent the linear algebra

correctly, we will not be confused between these two eventualities.

Then we can do more tricks with superpositions and controls.

6.4. Superposition Tricks

Recall the vector jN and unitary matrix Cn, Cn(a⊗ e0) = a⊗ a.

For the case n = 2,N = 4 is 1
2 [1, 1, 1, 1]T , we feed it on the

first n of 2n quantum coordinates and following it with controls

y gives the following state:

(Cn(jN ⊗ e0))(xy) =

{
1√
N

if y = x

0 o.w .

Furthermore, these ideas show that we can construct a vector b

such that

b(xy) =

{
1√
N

if y = f (x)

0 o.w .

Here xy is just the concatenation of the strings x and y .

Moreover, by the last section, we can obtain a version of b even

when y is just a single bit. In either case, we can also write

b = 1√
N

∑
x∈{0,1}n(ex ⊗ ef (x)).

The Dirac notation for this state is b = 1√
N

∑
x∈{0,1}n

∣∣x〉∣∣f (x)
〉
.

DEFINITION 6.2. Given f : {0, 1}n → {0, 1}m, the state

sf = 1√
2n

∑
x∈{0,1}n

∣∣x〉∣∣f (x)
〉

(= H2n
∣∣0n〉∣∣f (x)

〉
)

is called the functional superposition of f .

Note: sf ∈ {0, 1}n+m.

We can also extend the conditional idea of Cn directly to any

given quantum operation U. Define CU by

((CU)a)(0x) = a(x); ((CU)a)(1x) = (Ua)(x).

We have used extra parentheses to make clear that CU is a

name, not the composition of matrices called C and U, and it is

read “Control-U”.

Our CNOT operation did this to our matrix X of the unitary

NOT operation, which explains the name. We can also iterate

this, for instance, to do CCNOT . This yields our friend the Toffoli

gate again.

6.5. Flipping a Switch

A classical problem is that how many X -es does it take to

change a light bulb?

In quantum computation, everything is reversible, and that

applies to such jokes as well: If you change a light bulb, how

many X -es can you affect?

The answer is: as many as you like.

Our light bulb can be the (n + 1)st qubit, call it y . Suppose we

multiply it by a unit complex number a, such as −1. It may seem

that we are only flipping the sign of the last qubit, and we might

even wrongly picture the (n + 1)× (n + 1) matrix that is the

identity except for a in the bottom right corner.

The unitary matrices that are really involved, however, are

2n+1 × 2n+1 acting on the Hilbert space, and by linearity, the

scalar multiplication applies to all coordinates.

Put another way, if we start with a product state z ⊗ ey and

change the latter part ey to aey , then the resulting tensor product

is mathematically the same as (az)⊗ ey , here a is a scalar.

With a = −1, we can interpret this as z being flipped instead.

This feels strange, but both come out the same in the index-based

calculations.

This becomes a great trick if we can arrange for a itself to

depend on the basis elements ex .

Given a Boolean function f with one output bit, let us return to

the computation of the reversible function

F (x , y) = (x , (y ⊗ f (x))).

Our quantum circuits for f have thus far initialized y to 0.

Let us instead arrange y = 1 and then apply a single-qubit

Hadamard gate. Thus, instead of starting up with ex ⊗ e0, we have

ex ⊗ d , where d is the “difference state”:

d = (1√
2
, −1√

2
) = 1√

2
(e0 − e1)

Now apply the circuit computing F . By linearity we get:

F (x , d) = 1√
2

(F (x0)− F (x1))

= 1√
2

(ex ⊗ e0⊕f (x) − ex ⊗ e1⊕f (x))

= 1√
2

(ex ⊗ (e0⊕f (x) − e1⊕f (x)))

= ex ⊗ d ′

where

d ′ =

{
1√
2

(e0 − e1) if f (x) = 0
1√
2

(e1 − e0) if f (x) = 1

= (−1)f (x)d .

Thus, we have flipped the last quantum coordinate by the value

ax = (−1)f (x).

Well actually no–by the above reasoning, what we have equally

well done is that when presented with a basis vector ex as

input, we have multiplied it by the x-dependent value ax .

We have involved the (n + 1)st coordinate, but because we

have obtained axex ⊗ d , we can regard it as unchanged.

In fact, we can finish with another Hadamard and NOT gate on

the last coordinate to restore it to 0. On the first n qubits, over

their basis vectors ex , what we have obtained is the action:

ex → (−1)f (x)ex .

This is the action of the Grover oracle.

We have thus proved theorem 5.6 in chapter 5. We can

summarize this and the conclusion of section 6.4 in one theorem

statement:

THEOREM 6.3. For all classically feasible (families of) functions

f : {0, 1}n → {0, 1}m

both the mapping from ex0m to the functional superposition sf ,

ex0m → sf , and the Grover oracle of f , ex → (−1)f (x)ex , are

feasible quantum operations.

6.6. Measurement Tricks

There are also several tricks involving measurement.

Suppose that the final state of some quantum algorithm is a.

We now plan to take a measurement that will return y with

probability |a(y)|2.

In some cases, we can compute this in closed form,

whereas in other cases, we can approximate it well.

In other algorithms, we use the following idea: “Everybody

has to be somewhere”.

Let S be a subset of the possible indices y , and suppose that

we can prove ∑
y∈S |a(y)|2 ≥ c > 0

for some constant c . Then we can assert that with probability at

least c a measurement will yield a good y from the set S .

The power of this trick is that we do not have to understand

the values of a2(z) for z not in the set S .

We need only understand those in the set S . This is used in

chapter 11 when we study Shor’s factoring algorithm.

When the set S is the set of all indices having a “1” in a

particular place, this is called measuring one qubit.

Note that S includes exactly half of the indices, as does its

complement, which equally well defines a one-qubit measurement.

The idea can be continued to define r -qubit measurements,

each of which “targets” a particular outcome string w ∈ {0, 1}r

and involves the particular set Sr of N/2r indices that have w in

the respective places.

Principle of deferred measurement:

Theoretically, after a one-place measurement, the

quantum computation can continue on the smaller Hilbert

space of the remaining places. But, all algorithms we cover do

their measurements at the end of quantum routines.

We cover the principle of deferred measurement, which

often removes the need to worry about this possibility because it

illustrates the above controlled-U trick.

THEOREM 6.4. If the result b of a one-place measurement is used

only as the test in one or more operations of the form “if b then

U”, then exactly the same outputs are obtained upon replacing U

by the quantum controlled operation CU with control index the

same as the index place being measured and measuring that place

later without using the output for control.

Proof. As before, we visualize the control index being the first

index, but it can be anywhere.

Suppose in the new circuit the result of the measurement is 0.

Then the CU acted as the identity, so on the first index, the same

measurement in the old circuit would yield 0, thus failing the test

to apply U and so yielding the identity action on the remainder as

well.

If the new circuit measures 1, then because CU does not affect

the index, the old circuit measured 1 as well, and in both cases the

action of U is applied on the remainder. �

6.7. Partial Transforms

Another trick is applying an operator to “part” of the space.

Suppose that U is a unitary transform defined on vectors a in

some Hilbert space. Then by definition there is a function u(x , k)

so that

(Ua)(x) =
∑

k u(x , k)a(k).

Suppose that we want to extend U to apply to the vector b(xy).

The natural idea is to imagine that b is really many different

vectors, each of the form b(xy0) for a different fixed value of y0.

If we want the result of applying U to one of these, it should be∑
k u(x , k)b(xy0).

Therefore, the result of applying U to the vector b is:

c(xy) =
∑

k u(x , k)b(k , y).

As an example, let a(xy) be a vector. We can apply the

Hadamard transform just to the first “x” part as follows.

The result is

b(xy) = 1√
N

∑
t(−1)x ·ta(ty).

This is what is meant by applying the Hadamard only to the

“x” coordinates.

Some important operations

(1) Hadamard operations: b = H2n ⊗ I2ma

b(xy) = 1√
N

∑
t∈{0,1}n(−1)x ·ta(ty)

where y ∈ {0, 1}m.

(2) Controlled operations: C xU

(where x ∈ {0, 1}n, order(U) = 2m)

C xU ezy =

{
ez ⊗ Uey if z = x

ezy = ez ⊗ ey o.w .

where y ∈ {0, 1}m.

(3) Spiltting sensor product to product of matrices:

U ⊗ V = (U ⊗ I2m)(I2n ⊗ V)

(U ⊗ V)(a⊗ b) = (Ua)⊗ (Vb)

(where order(U) = order(a) = 2n, order(V) = order(b) = 2m)

Some basic operations:

(1) Hadamard operations H:

He0 = 1√
2

(e0 + e1), He1 = 1√
2

(e0 − e1)

H ⊗ H = (H ⊗ I)(I ⊗ H)

(H ⊗ H)e10 = He1 ⊗ He0

= 1√
2

(e0 − e1)⊗ 1√
2

(e0 + e1)

= 1
2(e00 + e01 − e10 − e11)

(H ⊗ I)e10 = (He1)⊗ Ie0 = (He1)⊗ e0

= 1√
2

(e0 − e1)⊗ e0 = 1√
2

(e00 − e10)

(I ⊗ H) 1√
2

(e00 − e10) = 1√
2

((I ⊗ H)e00 − (I ⊗ H)e10)

= 1
2((e00 + e01)− (e10 + e11))

Some basic operations:

(2) Not operations X : Xe0 = e1, Xe1 = e0)

CXe00 = e00, CXe01 = e01,CXe10 = e11, CXe11 = e10.

CCNOTe000 = e000, · · · ,CCNOTe101 = e101,

CCNOTe110 = e111, CCNOTe111 = e110

C 101Xe0000 = e0000, C
101Xe1010 = e1011,C

101Xe1011 = e1010.

(3) Z -operation: Ze0 = e0, Ze1 = −e1

Z =

(
1 0

0 −1

)
CZe00 = e00, CZe01 = e01,CZe10 = e10, CZe11 = −e11.

(3) SWAP-operation:

SWAPexx = exx , SWAPe10 = e01, SWAPe01 = e10

CSWAPe0xy = e0xy ,CSWAPe1xx = e1xx

CSWAPe110 = e101,CSWAPe101 = e110

Similarly, we can give operations for other basic matrices:

S =

(
1 0

0 i

)
T =

(
1 0

0 eπi/4

)
Y =

(
0 −i
i 0

)

	4. Boolean Functions, Quantum Bits, and Feasibility
	5. Special Matrices
	6. Tricks

