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Quantum Predicates

» What is a quantum predicate?

» A quantum predicate should be a physical observable!

» A quantum predicate in a Hilbert space H is a Hermitian operator
M in ‘H with all its eigenvalues lying within the unit interval
[0,1].

» The set of predicates in  is denoted P(#H).

Satisfaction of Quantum Predicates

» tr(Mp) may be interpreted as the degree to which quantum state
o satisfies quantum predicate M.
» Let M be a Hermitian operator in H. The following statements
are equivalent:
1. M € P(H) is a quantum predicate.
2. 0y EMELC Iy.
3. 0 < tr(Mp) <1 for all density operators p in H.
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Lemma
For any observables M, N, the following two statements are
equivalent:

1. MCEN;

2. for all density operators p, tr(Mp) < tr(Np).

Lemma
The set (P(H), C) of quantum predicates with the Léwner partial
order is a complete partial order (CPO).
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Quantum Preconditions

» Let M, N € P(H) be quantum predicates, £ € QO(H) a
quantum operation. Then M is a precondition of N with respect to
&, written {M}£E{N}, if

tr(Mp) < tr(NE(p))

for all density operators p in H.

» Intuition: a probabilistic version of the statement — if state p
satisfies predicate M, then the state after transformation £ from p
satisfies predicate N.
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Quantum Weakest Preconditions
Let M € P(H) be a quantum predicate, £ € QO(H) a quantum
operation. The weakest precondition of M with respect to £ is a
quantum predicate wp (&) (M) satisfying:
L {wp(E)(M)}E{M];
2. for all quantum predicates N, {N}£{M} implies N C wp(E)(M),
where C stands for the Lowner order.



Characterisation of Quantum Weakest Preconditions —
Kraus Operators

Let quantum operation £ € QO(H) be represented by the set {E;} of
operators:
E(p) = L EipE]
1
Then for each predicate M € P(H):

wp(E)(M) = ZEZTMEi.

1



Characterisation of Quantum Weakest Preconditions —
System-environment Model

If quantum operation £ is given by

£(p) = tri | PU(Jeo) {eol @ p)U'P|

then:
wp(E)(M) = (eo|UTP(M @ Ig)PUley)
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Schrodinger-Heisenberg Duality

» Denotational semantics £ of a quantum program is a forward
state transformer:

E:D(H) - D(H),
p — E(p) for each p € D(H)

» Weakest precondition defines a backward quantum predicate
transformer:

wp(€) : P(H) = P(H),
M — wp(E)(M) foreach M € P(M).
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Schrédinger-Heisenberg Duality (Continued)

» Let £ be a quantum operation mapping density operators to
themselves, £* an operator mapping Hermitian operators to
themselves. If for any density operator p, Hermitian operator M:

(Duality) tr[ME(p)] = tr[EF (M)p]

then £ and £* are (Schrodinger-Heisenberg) dual.

P E &M
£l 1 E*
Ep) E M

» Any quantum operation £ € QO(H) and its weakest
precondition wp (&) are dual to each other.
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Basic Properties of Quantum Weakest Preconditions

LetA > 0,&,F € QO(H), let {&€,} be an increasing sequence in
QO(H).

1. wp(AE) = Awp(E) provided AE € QO(H);

2. wp(E+ F) = wp(E) + wp(F) provided £ + F € QO(H);

3. wp(€ o F) = wp(F) owp(E);

4. wp (Un—o &) = Uneowp(Er), where | |52y wp(Ey) is defined by

(lj w;a(sn)) M) 2 | ] wp(En) (M)

n=0 n=0
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Correctness Formulas

» A correctness formula is a statement of the form:

{P}s{Q}

where:
» S is a quantum program;
» P,Q € P(Hgy) are quantum predicates in H,y;.
» Pis called the precondition, Q the postcondition.

Partial Correctness, Total Correctness

» Two interpretations of Hoare logical formula {P}S{Q}:
» Partial correctness: If an input to program S satisfies the
precondition P, then either S does not terminate, or it terminates in
a state satisfying the postcondition Q.
» Total correctness: If an input to program S satisfies the precondition
P, then S must terminate and it terminates in a state satisfying the
postcondition Q.
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correctness, written
ot {P}S{Q},
if:
tr(Pp) < tr(QISI(0))
for all p € D(H,y), where [S] is the semantic function of S.



Partial Correctness, Total Correctness (Continued)

» The correctness formula {P}S{Q} is true in the sense of total

correctness, written
ot {P}S{Q}
if:
tr(Pp) < tr(QISI(0))
for all p € D(H,y), where [S] is the semantic function of S.

» The correctness formula {P}S{Q} is true in the sense of partial
correctness, written
F=par {P}S{Q},

if:
tr(Pp) < tr(QISN(p)) + [tr(p) — tr(LS1(p))]
forall p € D(Hy).
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Basic Properties of Correctness

1. If =40t {P}S{Q}, then |=pr {P}S{Q}.
2. For any quantum program S, and for any P, Q € P(H,y):

Ftot 107, }5{Q}, Fpar {P}S{I3,,}-

3. (Linearity) For any Py, Py, Q1, Q2 € P(Hyy) and Aq, Ap > 0 with
MP1 4 A2P2, M Q1 + A2Q2 € P(Han), if

Fror {Pi}S{Qi} (i=1,2),

then
Ftor {AM1P1 + A2P2}5{A1Q1 + A2Q2}.

» The same conclusion holds for partial correctness if A; + A, = 1.
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Weakest (Liberal) Preconditions of Quantum Programs

» Let S be a quantum while-program, P € P(H,;) a quantum
predicate in H.
1. The weakest precondition of S with respect to P is the quantum
predicate wp.S.P € P(H,yy) satisfying:
> F=tor {wp.S.PYS{P};
> if quantum predicate Q € P (H,y) satisfies =1 {Q}S{P} then
QLC wp.S.P.
2. The weakest liberal precondition of S with respect to P is the
quantum predicate wip.S.P € P(H,y) satisfying:
> ‘:W' {wlp.S.P}S{P};
> if quantum predicate Q € P (M) satisfies |=po {Q}S{P} then
QL wip.S.P.

» Equivalence of semantic and syntactic definitions:

wp.S.P = wp([S])(P).
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Structural Representation of Weakest Preconditions

—_

wp.skip.P = P.
2.
» If type(q) = Boolean, then
wp-4 := |0).P = [0)4{0[P|0){0[ + [1)4(0[P[0)q (1.

» If type(q) = integer, then

wp.q := |0).P Z [1)4{0IP|0)q (.
wp.q := U[g].P = UTPU.
wp.S1; Sp.P = wp.S1.(wp.Sy.P).
wp.if (om - M[q] = m — Sy) fi.P = ¥, M}, (wp.Sp.P)My,
wp.while M[g] = 1do S od.P = | |}, Py, where

SRS N

Py = OHmI’
P41 = M{PMy + M (wp.S.Py)M; for alln > 0.
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2.
» If type(q) = Boolean, then
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Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.
2.

» If type(q) = Boolean, then

wlp.q == |0).P = |0)4(0|P|0)4(0[ + |1)4(0|P|0),4(1].
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Structural Representation of Weakest Liberal
Preconditions

1. wlp.skip.P = P.

2.

» If type(q) = Boolean, then

wlp.q == |0).P = |0)4(0|P|0)4(0[ + |1)4(0|P|0),4(1].
» If type(q) = integer, then
wlp.q := |0).P Z |11)4(0[P|0)q (.
n=—o0

3. wlp.g := U[g).P = UTPU.
4. wlp.S1; Sp.P = wlp.Sq.(wlp.S,.P).
5. wip.if (om - M[q] := m — Sy) fi.P = ¥, M}, (wlp.Sy.P) My,
6. wlp.while M[g] =1do S od.P = [, P,;, where

Po = I,
Pyy1 = M}PMy + M (wlp.S.P,,)M; for all n > 0.



Trace-Preserving Property

For any quantum while-program S, for any quantum predicate
P € P(H,y), and for any partial density operator p € D(H,y):

tr((wp.S.P)p) = tr(PLS1(p)).
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Trace-Preserving Property

For any quantum while-program S, for any quantum predicate
P € P(H,y), and for any partial density operator p € D(H,y):

tr((wp.S.P)p) = tr(PLS1(p)).
tr((wlp.S.P)p) = tr(PI[S1(p)) + [tr(p) — tr([S1(p)].

Fixed Point Characterisation
Write while for quantum loop “while M[g] = 1 do S od”. Then for
any P € P(Hqy):

1. wp.while.P = M}PM, + MI (wp.S.(wp.while.P))M;.

2. wip.while.P = M{PM, + M (wlp.S.(wlp.while.P))M;.



Proof System for Partial Correctness

(Ax — Sk) {P}Skip{P}
(Ax — In) If type(q) = Boolean, then

{10)4(0[P|0)q (0] +[1)4{0[P[0)4 (1| }g := |0){P}

If type(q) = integer, then

{ 2 [m)q(0IP[0)g¢n I}q:— 0){P}

(Ax —UT) {utpu}g := Ug{P}



Proof System for Partial Correctness (Continued)

(R—SC) {P}Sl{Q} {Q}SZ{R}

{P}Sl,‘ Sz{R}
_ {Pm}sm{Q} for all m
(k=10 (¥ M3, PyuM,, } if (om - M[g] = m — S,,) fi{Q}
(R—LP) {Q}S {M{PMy + M{QM, }
{M{PM, + MIQM; }while M[j] = 1 do S od{P}
(R - Or) PP {P}S{Q} Q'CQ

{Pys{Q}
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Soundness Theorem
For any quantum while-program S and quantum predicates

P,Q € P(Han):
Fepp {P}S{Q} implies [=par {P}S{Q}.

(Relative) Completeness Theorem

For any quantum while-program S and quantum predicates

P,Q € P(Han):
):p,” {P}S{Q} implies 9 5) {P}S{Q}.
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Bound (Ranking) Functions

» Let P € P(H,y) be a quantum predicate, real number € > 0.

» A function
t:D(Hauy) = w

is a (P, €)-bound function of quantum loop
while M[g] =1do S od

ifforall p € D(Hqy):

L £ (IS1 (MipM])) < t(p);
2. tr(Pp) > e implies

t (11 (MipM?) ) < (o)



Characterisation of Bound Functions

The following two statements are equivalent:

1. for any € > 0, there exists a (P, €)-bound function f¢ of the
while-loop “while M[g] = 1do S od”;



Characterisation of Bound Functions

The following two statements are equivalent:

1. for any € > 0, there exists a (P, €)-bound function f¢ of the
while-loop “while M[g] = 1do S od”;
2. limy o tr (P([ST 0 £1)"(p)) = 0 forall p € D(Hap)-



Proof System for Total Correctness

o {Q}S{MIPMy+MIQM;}
o foranye >0, tcisa (M{QMl,e) — bound function
of loop while M[g] = 1do S od

R—LT
( ) {MEPMy + MIQM; }while M[g] = 1 do S od{P}




Soundness Theorem
For any quantum program S and quantum predicates P, Q € P(H,y):

Fqrp {P}S{Q} implies |=r {P}S{Q}.



Soundness Theorem
For any quantum program S and quantum predicates P, Q € P(H,y):

Fqrp {P}S{Q} implies |=r {P}S{Q}.

(Relative) Completeness Theorem
For any quantum program S and quantum predicates P, Q € P (H,y):

ot {P}S{Q} implies F,rp {P}S{Q}.
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