Foundations of Quantum Programming

Lecture 5: Analysis of Quantum Programs

Mingsheng Ying

University of Technology Sydney, Australia
Outline

Analysis of Quantum Loops
 Quantum while-Loops with Unitary Bodies
 General Quantum while-Loops
Outline

Analysis of Quantum Loops
 Quantum while-Loops with Unitary Bodies
 General Quantum while-Loops
Quantum while-Loops with Unitary Bodies

\[S \equiv \textbf{while } M[\bar{q}] = 1 \textbf{ do } \bar{q} := U[\bar{q}] \textbf{ od } \]

where:

» \(\bar{q} \) denotes quantum register \(q_1, \ldots, q_n \), its state Hilbert space:

\[\mathcal{H} = \bigotimes_{i=1}^{n} \mathcal{H}_{q_i} \]
Quantum while-Loops with Unitary Bodies

\[S \equiv \textbf{while} \ M[\overline{q}] = 1 \ \textbf{do} \ \overline{q} := U[\overline{q}] \ \textbf{od} \]

where:

- \(\overline{q} \) denotes quantum register \(q_1, \ldots, q_n \), its state Hilbert space:
 \[\mathcal{H} = \bigotimes_{i=1}^{n} \mathcal{H}_{q_i} \]

- the loop body is unitary transformation \(\overline{q} := U[\overline{q}] \) in \(\mathcal{H} \).
Quantum while-Loops with Unitary Bodies

\[S \equiv \textbf{while } M[\vec{q}] = 1 \textbf{ do } \vec{q} := U[\vec{q}] \textbf{ od } \]

where:

- \(\vec{q} \) denotes quantum register \(q_1, \ldots, q_n \), its state Hilbert space:
 \[\mathcal{H} = \bigotimes_{i=1}^{n} \mathcal{H}_{q_i} \]

- the loop body is unitary transformation \(\vec{q} := U[\vec{q}] \) in \(\mathcal{H} \);

- the yes-no measurement \(M = \{ M_0, M_1 \} \) in the loop guard is projective: \(M_0 = P_{X^\perp}, M_1 = P_X \) with \(X \) being a subspace of \(\mathcal{H} \), \(X^\perp \) being the orthocomplement of \(X \).
Execution of Quantum Loops

- Initial step: Performs measurement M on the input state ρ:

 $\rho(1)_{\text{out}} = P_{X}\rho P_{X\perp}$.

 The loop continues with probability $p(1)_{NT}(\rho) = 1 - p(1)_{T}(\rho) = \text{tr}(P_{X}\rho P_{X\perp})$.

 The program state after the measurement:

 $\rho(1)_{\text{mid}} = P_{X}\rho P_{X\perp} p(1)_{NT}(\rho)$.

 $\rho(1)_{\text{mid}}$ is fed to the unitary operation U:

 $\rho(2)_{\text{in}} = U\rho(1)_{\text{mid}} U^{\dagger}$ is returned.

 $\rho(2)_{\text{in}}$ will be used as the input state in the next step.
Execution of Quantum Loops

- **Initial step**: Performs measurement M on the input state ρ:
 - The loop terminates with probability $p_T^{(1)}(\rho) = tr(P_{X^\perp} \rho)$.
 - The output at this step:
 \[
 \rho_{\text{out}}^{(1)} = \frac{P_{X^\perp} \rho P_{X^\perp}}{p_T^{(1)}(\rho)}.
 \]
Execution of Quantum Loops

- **Initial step:** Performs measurement M on the input state ρ:
 - The loop terminates with probability $p_T^{(1)}(\rho) = tr(P_{X\perp}\rho)$. The output at this step:
 \[
 \rho_{out}^{(1)} = \frac{P_{X\perp}\rho P_{X\perp}}{p_T^{(1)}(\rho)}.
 \]
 - The loop continues with probability
 \[
 p_{NT}^{(1)}(\rho) = 1 - p_T^{(1)}(\rho) = tr(P_X\rho).
 \]
 The program state after the measurement:
 \[
 \rho_{mid}^{(1)} = \frac{P_X\rho P_X}{p_{NT}^{(1)}(\rho)}.
 \]

$\rho_{out}^{(1)}$ is fed to the unitary operation U:
\[
\rho_{in}^{(2)} = U \rho_{out}^{(1)} U^\dagger
\]
is returned. $\rho_{in}^{(2)}$ will be used as the input state in the next step.
Execution of Quantum Loops

- **Initial step**: Performs measurement M on the input state ρ:
 - The loop terminates with probability $p_T^{(1)}(\rho) = tr(P_X \perp \rho)$. The output at this step:
 \[\rho_{\text{out}}^{(1)} = \frac{P_X \perp \rho P_X \perp}{p_T^{(1)}(\rho)}. \]
 - The loop continues with probability $p_{NT}^{(1)}(\rho) = 1 - p_T^{(1)}(\rho) = tr(P_X \rho)$. The program state after the measurement:
 \[\rho_{\text{mid}}^{(1)} = \frac{P_X \rho P_X}{p_{NT}^{(1)}(\rho)}. \]
 - $\rho_{\text{mid}}^{(1)}$ is fed to the unitary operation U:
 \[\rho_{\text{in}}^{(2)} = U \rho_{\text{mid}}^{(1)} U^\dagger \]
 is returned. $\rho_{\text{in}}^{(2)}$ will be used as the input state in the next step.
> **Induction step:** Suppose the loop has run n steps, it did not terminate at the nth step: $p_{NT}^{(n)} > 0$. If $\rho_{in}^{(n+1)}$ is the program state at the end of the nth step, then in the $(n + 1)$th step:

The termination probability:

$$p_{NT}^{(n+1)} = \text{tr}(P_X \rho_{in}^{(n+1)})$$

The output at this step is

$$\rho_{out}^{(n+1)} = P_X \rho_{in}^{(n+1)}.$$
Induction step: Suppose the loop has run n steps, it did not terminate at the nth step: $p_{NT}^{(n)} > 0$. If $\rho_{in}^{(n+1)}$ is the program state at the end of the nth step, then in the $(n + 1)$th step:

- The termination probability: $p_T^{(n+1)}(\rho) = tr(P_X \rho_{in}^{(n+1)})$. The output at this step is

$$
\rho_{out}^{(n+1)} = \frac{P_X \rho_{in}^{(n+1)} P_X}{p_T^{(n+1)}(\rho)}.
$$
Induction step: Suppose the loop has run \(n \) steps, it did not terminate at the \(n \)th step: \(p_{NT}^{(n)} > 0 \). If \(\rho_{in}^{(n+1)} \) is the program state at the end of the \(n \)th step, then in the \((n+1) \)th step:

- The termination probability: \(p_{T}^{(n+1)}(\rho) = tr(P_X\rho_{in}^{(n+1)}) \). The output at this step is

\[
\rho_{out}^{(n+1)} = \frac{P_X\rho_{in}^{(n+1)}P_X}{p_{T}^{(n+1)}(\rho)}.
\]

- The loop continues to perform the unitary operation \(U \) on the post-measurement state

\[
\rho_{mid}^{(n+1)} = \frac{P_X\rho_{in}^{(n+1)}P_X}{p_{T}^{(n+1)}(\rho)}
\]

with probability \(p_{NT}^{(n+1)}(\rho) = 1 - p_{T}^{(n+1)}(\rho) = tr(P_X\rho_{in}^{(n+1)}) \). The state \(\rho_{in}^{(n+2)} = U\rho_{mid}^{(n+1)}U^\dagger \) will be returned. It will be the input of the \((n+2) \)th step.
Termination

1. If probability $p_{NT}^{(n)}(\rho) = 0$ for some positive integer n, then the loop terminates from input ρ.

Terminating

A quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from all input $\rho \in D(H)$.

Termination

1. If probability $p_{NT}^{(n)}(\rho) = 0$ for some positive integer n, then the loop terminates from input ρ.

2. The nontermination probability of the loop from input ρ is

$$p_{NT}(\rho) = \lim_{n \to \infty} p_{NT}^{(\leq n)}(\rho)$$

where

$$p_{NT}^{(\leq n)}(\rho) = \prod_{i=1}^{n} p_{NT}^{(i)}(\rho)$$

is the probability that the loop does not terminate after n steps.

Terminating

A quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from all input $\rho \in D(\mathcal{H})$.
Termination

1. If probability $p_{NT}^{(n)}(\rho) = 0$ for some positive integer n, then the loop terminates from input ρ.
2. The nontermination probability of the loop from input ρ is

$$p_{NT}(\rho) = \lim_{n \to \infty} p_{NT}^{(\leq n)}(\rho)$$

where

$$p_{NT}^{(\leq n)}(\rho) = \prod_{i=1}^{n} p_{NT}^{(i)}(\rho)$$

is the probability that the loop does not terminate after n steps.
3. The loop almost surely terminates from input ρ whenever nontermination probability $p_{NT}(\rho) = 0$.

Terminating

A quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from all input $\rho \in D(\mathcal{H})$.
Computed Function

- The function $\mathcal{F} : \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$
\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p_{NT}^{(\leq n-1)}(\rho) \cdot p_{T}^{(n)}(\rho) \cdot \rho_{out}^{(n)}
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.
Computed Function

- The function $\mathcal{F} : \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$
\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p^{(\leq n-1)}_{NT}(\rho) \cdot p_{T}^{(n)}(\rho) \cdot \rho_{out}^{(n)}
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.

- For operator A in Hilbert space \mathcal{H}, subspace X of \mathcal{H}, the restriction of A in X:

$$
A_X = P_X A P_X
$$
Computed Function

- The function $\mathcal{F} : \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$
\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p_{NT}^{(\leq n-1)}(\rho) \cdot p_T^{(n)}(\rho) \cdot \rho_{out}^{(n)}
$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.

- For operator A in Hilbert space \mathcal{H}, subspace X of \mathcal{H}, the restriction of A in X:

$$
A_X = P_X A P_X
$$

-

$$
p_{NT}^{(\leq n)}(\rho) = tr(U_X^{n-1} \rho_X U_X^{+n-1})
$$
Computed Function

▶ The function $\mathcal{F} : \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H})$ computed by the loop:

$$\mathcal{F}(\rho) = \sum_{n=1}^{\infty} p_{NT}^{(\leq n-1)}(\rho) \cdot p_T^{(n)}(\rho) \cdot \rho_{out}$$

for each $\rho \in \mathcal{D}(\mathcal{H})$.

▶ For operator A in Hilbert space \mathcal{H}, subspace X of \mathcal{H}, the restriction of A in X:

$$A_X = P_X A P_X$$

▶

$$p_{NT}^{(\leq n)}(\rho) = tr(U_{n-1}^X \rho X U_X^{+n-1})$$

▶

$$\mathcal{F}(\rho) = P_{X \perp} \rho P_{X \perp} + P_{X \perp} U \left(\sum_{n=0}^{\infty} U_{X n}^X \rho X U_X^{+n} \right) U^{\dagger} P_{X \perp}$$
Termination Analysis

- Let $\rho = \sum_i p_i \rho_i$ with $p_i > 0$ for all i. Then the loop terminates from input ρ if and only if it terminates from input ρ_i for all i.

A quantum loop is terminating if and only if it terminates from all pure input states.
Termination Analysis

- Let $\rho = \sum_i p_i \rho_i$ with $p_i > 0$ for all i. Then the loop terminates from input ρ if and only if it terminates from input ρ_i for all i.
- A quantum loop is terminating if and only if it terminates from all pure input states.
Let \(\{ |m_1\rangle, \ldots, |m_l\rangle \} \) be an orthonormal basis of \(\mathcal{H} \) such that

\[
\sum_{i=1}^{k} |m_i\rangle\langle m_i| = P_X, \quad \sum_{i=k+1}^{l} |m_i\rangle\langle m_i| = P_{X^\perp}
\]
Let \(\{ |m_1\rangle, \ldots, |m_l\rangle \} \) be an orthonormal basis of \(\mathcal{H} \) such that

\[
\sum_{i=1}^{k} |m_i\rangle\langle m_i| = P_X, \quad \sum_{i=k+1}^{l} |m_i\rangle\langle m_i| = P_{X\perp}
\]

Write \(|\psi\rangle_X \) for (the vector representation of) projection \(P_X |\psi\rangle \).
Let \(\{|m_1\rangle, \ldots, |m_l\rangle\} \) be an orthonormal basis of \(\mathcal{H} \) such that

\[
\sum_{i=1}^{k} |m_i\rangle\langle m_i| = P_X, \quad \sum_{i=k+1}^{l} |m_i\rangle\langle m_i| = P_{X\perp}
\]

Write \(|\psi\rangle_X \) for (the vector representation of) projection \(P_X|\psi\rangle \).

The following statements are equivalent:
Let \(\{ |m_1\rangle, \ldots, |m_l\rangle \} \) be an orthonormal basis of \(\mathcal{H} \) such that

\[
\sum_{i=1}^{k} |m_i\rangle \langle m_i| = P_X, \quad \sum_{i=k+1}^{l} |m_i\rangle \langle m_i| = P_{X\perp}
\]

Write \(|\psi\rangle_X \) for (the vector representation of) projection \(P_X |\psi\rangle \).

The following statements are equivalent:

1. The loop terminates from input \(\rho \in \mathcal{D}(\mathcal{H}) \);
Let \(\{ |m_1\rangle, \ldots, |m_l\rangle \} \) be an orthonormal basis of \(\mathcal{H} \) such that
\[
\sum_{i=1}^{k} |m_i\rangle \langle m_i| = P_X, \quad \sum_{i=k+1}^{l} |m_i\rangle \langle m_i| = P_{X\perp}
\]

Write \(|\psi\rangle_X \) for (the vector representation of) projection \(P_X |\psi\rangle \).

The following statements are equivalent:
1. The loop terminates from input \(\rho \in \mathcal{D}(\mathcal{H}) \);
2. \(U_X^n \rho_X U_X^{\dagger n} = 0_{k \times k} \) for some nonnegative integer \(n \), where \(0_{k \times k} \) is the \((k \times k)\)-zero matrix.
Let \(\{|m_1\rangle, \ldots, |m_l\rangle\} \) be an orthonormal basis of \(\mathcal{H} \) such that
\[
\sum_{i=1}^{k} |m_i\rangle\langle m_i| = P_X, \quad \sum_{i=k+1}^{l} |m_i\rangle\langle m_i| = P_{X^\perp}
\]

Write \(|\psi\rangle_X \) for (the vector representation of) projection \(P_X |\psi\rangle \).

The following statements are equivalent:
1. The loop terminates from input \(\rho \in \mathcal{D}(\mathcal{H}) \);
2. \(U_X^n \rho_X U_X^{+n} = 0_{k \times k} \) for some nonnegative integer \(n \), where \(0_{k \times k} \) is the \((k \times k)\)-zero matrix.

The loop terminates from pure input state \(|\psi\rangle \) if and only if \(U_X^n |\psi\rangle_X = 0 \) for some nonnegative integer \(n \), where \(0 \) is the \(k \)-dimensional zero vector.
From Quantum Loop to Classical Loop

- The condition $U^n_X |\psi\rangle_X = 0$ is a termination condition for the loop:

 $$\text{while } v \neq 0 \text{ do } v := U_X v \text{ od}$$

This loop must be understood as a classical computation in the field of complex numbers.
From Quantum Loop to Classical Loop

- The condition $U_X^n |\psi\rangle_X = 0$ is a termination condition for the loop:

 \[
 \text{while } v \neq 0 \text{ do } v := U_X v \text{ od}
 \]

 This loop must be understood as a classical computation in the field of complex numbers.

- Let S be a nonsingular $(k \times k)$-complex matrix. The following statements are equivalent:
From Quantum Loop to Classical Loop

- The condition $U^n_X|\psi\rangle_X = 0$ is a termination condition for the loop:

 $$\textbf{while } v \neq 0 \textbf{ do } v := U_Xv \textbf{ od}$$

 This loop must be understood as a classical computation in the field of complex numbers.

- Let S be a nonsingular $(k \times k)$-complex matrix. The following statements are equivalent:

 1. The above classical loop (with $v \in C^k$) terminates from input $v_0 \in C^k$.

From Quantum Loop to Classical Loop

- The condition $U^n_X|\psi\rangle_X = 0$ is a termination condition for the loop:

 while $v \neq 0$ do $v := U_X v$ od

 This loop must be understood as a classical computation in the field of complex numbers.

- Let S be a nonsingular $(k \times k)$-complex matrix. The following statements are equivalent:
 1. The above classical loop (with $v \in \mathbb{C}^k$) terminates from input $v_0 \in \mathbb{C}^k$.
 2. The classical loop:

 while $v \neq 0$ do $v := (SU_XS^{-1})v$ od

 (with $v \in \mathbb{C}^k$) terminates from input Sv_0.
Jordan Normal Form Theorem

For any \((k \times k)\)-complex matrix \(A\), there is a nonsingular \((k \times k)\)-complex matrix \(S\) such that

\[
A = S J(A) S^{-1}
\]

where

\[
J(A) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i)
\]

\[
= \text{diag}(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \ldots, J_{k_l}(\lambda_l))
\]

\[
= \begin{pmatrix}
J_{k_1}(\lambda_1) & & \\
& J_{k_2}(\lambda_2) & \\
& & \ddots \\
& & & J_{k_l}(\lambda_l)
\end{pmatrix}
\]

is the Jordan normal form of \(A\),
Jordan Normal Form Theorem (Continued)

\[\sum_{i=1}^{l} k_i = k, \]

\[J_{k_i}(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & & \\ & \lambda_i & 1 & \\ & & \ddots & \ddots \\ & & & \ddots & 1 \\ & & & & \lambda_i \end{pmatrix} \]

is a \((k_i \times k_i)\)-Jordan block for each \(1 \leq i \leq l\).
Technical Lemma

Let $J_r(\lambda)$ be a $(r \times r)$-Jordan block, \mathbf{v} an r-dimensional complex vector. Then

$$J_r(\lambda)^n \mathbf{v} = 0$$

for some nonnegative integer n if and only if $\lambda = 0$ or $\mathbf{v} = \mathbf{0}$.
Theorem

- The Jordan decomposition of U_X: $U_X = SJ(U_X)S^{-1}$, where

$$J(U_X) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = \text{diag}(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \ldots, J_{k_l}(\lambda_l)).$$
Theorem

- The Jordan decomposition of U_X: $U_X = SJ(U_X)S^{-1}$, where

$$J(U_X) = \bigoplus_{i=1}^{l} J_k(\lambda_i) = \text{diag}(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \ldots, J_{k_l}(\lambda_l)).$$

- Let $S^{-1}|\psi\rangle_X$ be divided into l sub-vectors v_1, v_2, \ldots, v_l such that the length of v_i is k_i.

Corollary

The quantum loop is terminating if and only if U_X has only zero eigenvalues.
Theorem

- The Jordan decomposition of U_X: $U_X = SJ(U_X)S^{-1}$, where

$$J(U_X) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = \text{diag}(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \ldots, J_{k_l}(\lambda_l)).$$

- Let $S^{-1}|\psi\rangle_X$ be divided into l sub-vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_l$ such that the length of \mathbf{v}_i is k_i.

- Then: the quantum loop terminates from input $|\psi\rangle$ if and only if for each $1 \leq i \leq l$, $\lambda_i = 0$ or $\mathbf{v}_i = \mathbf{0}$.

Corollary

The quantum loop is terminating if and only if U_X has only zero eigenvalues.
Almost sure termination

Let $\rho = \sum_i p_i \rho_i$ with $p_i > 0$ for all i. Then the quantum loop almost surely terminates from input ρ if and only if it almost surely terminates from input ρ_i for all i.

A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.

The quantum loop almost surely terminates from pure input state $|\psi\rangle$ if and only if $\lim_{n \to \infty} ||U^n X|\psi\rangle|| = 0$.

The quantum loop is almost surely terminating if and only if all the eigenvalues of U_X have norms less than 1.
Almost sure termination

- Let $\rho = \sum_i p_i \rho_i$ with $p_i > 0$ for all i. Then the quantum loop almost surely terminates from input ρ if and only if it almost surely terminates from input ρ_i for all i.
- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.
Almost sure termination

- Let $\rho = \sum_i p_i \rho_i$ with $p_i > 0$ for all i. Then the quantum loop almost surely terminates from input ρ if and only if it almost surely terminates from input ρ_i for all i.

- A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.

- The quantum loop almost surely terminates from pure input state $|\psi\rangle$ if and only if

$$\lim_{n \to \infty} ||U^n_x |\psi\rangle|| = 0.$$
Almost sure termination

Let $\rho = \sum_i p_i \rho_i$ with $p_i > 0$ for all i. Then the quantum loop almost surely terminates from input ρ if and only if it almost surely terminates from input ρ_i for all i.

A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.

The quantum loop almost surely terminates from pure input state $|\psi\rangle$ if and only if

$$\lim_{n \to \infty} \|U^n_X|\psi\rangle\| = 0.$$

The quantum loop almost surely terminates from input $|\psi\rangle$ if and only if for each $1 \leq i \leq l$, $|\lambda_i| < 1$ or $v_i = 0$.

Almost sure termination

Let $\rho = \sum_i p_i \rho_i$ with $p_i > 0$ for all i. Then the quantum loop almost surely terminates from input ρ if and only if it almost surely terminates from input ρ_i for all i.

A quantum loop is almost surely terminating if and only if it almost surely terminates from all pure input states.

The quantum loop almost surely terminates from pure input state $|\psi\rangle$ if and only if

$$\lim_{n \to \infty} ||U^n_X |\psi\rangle|| = 0.$$

The quantum loop almost surely terminates from input $|\psi\rangle$ if and only if for each $1 \leq i \leq l$, $|\lambda_i| < 1$ or $v_i = 0$.

The quantum loop is almost surely terminating if and only if all the eigenvalues of U_X have norms less than 1.
General Quantum while-Loops

\[
\text{while } M[\overline{q}] = 1 \text{ do } S \text{ od}
\]

where:

- \(M = \{M_0, M_1\} \) is a yes-no measurement;

\[
\text{while } M[\overline{q}] = 1 \text{ do } \overline{q} := \mathcal{E}[\overline{q}] \text{ od}.
\]
General Quantum while-Loops

\[
\textbf{while } M[\bar{q}] = 1 \textbf{ do } S \textbf{ od}
\]

where:

- \(M = \{M_0, M_1\} \) is a yes-no measurement;
- \(\bar{q} \) is a quantum register;

\[
\textbf{while } M[\bar{q}] = 1 \textbf{ do } \bar{q} := E[\bar{q}] \textbf{ od}.
\]

Notation
For \(i = 0, 1 \), define quantum operation \(E_i \):

\[
E_i(\sigma) = M_i \sigma M_i^\dagger
\]
General Quantum while-Loops

while $M[\bar{q}] = 1$ do S od

where:

- $M = \{M_0, M_1\}$ is a yes-no measurement;
- \bar{q} is a quantum register;
- the loop body S is a general quantum program.

while $M[\bar{q}] = 1$ do $\bar{q} := \mathcal{E}[\bar{q}]$ od.

Notation

For $i = 0, 1$, define quantum operation \mathcal{E}_i:

$$\mathcal{E}_i(\sigma) = M_i \sigma M_i^\dagger$$
Execution of Loops

Initial step: Perform the termination measurement \{M_0, M_1\} on the input state \(\rho\).

- The probability that the program terminates (the measurement outcome is 0):
 \[p^{(1)}_T(\rho) = \text{tr}[\mathcal{E}_0(\rho)]. \]

The program state after termination:

\[\rho^{(1)}_{out} = \mathcal{E}_0(\rho) / p^{(1)}_T(\rho). \]

Encode probability \(p^{(1)}_T(\rho)\) and density operator \(\rho^{(1)}_{out}\) into a partial density operator

\[p^{(1)}_T(\rho)\rho^{(1)}_{out} = \mathcal{E}_0(\rho). \]

So, \(\mathcal{E}_0(\rho)\) is the partial output state at the first step.
Execution of Loops (Continued)

- The probability that the program does not terminate (the measurement outcome is 1):

\[p_{NT}^{(1)}(\rho) = tr[\mathcal{E}_1(\rho)] \]

The program state after the outcome 1 is obtained:

\[\rho_{mid}^{(1)} = \mathcal{E}_1(\rho) / p_{NT}^{(1)}(\rho). \]

It is transformed by the loop body \(\mathcal{E} \) to

\[\rho_{in}^{(2)} = (\mathcal{E} \circ \mathcal{E}_1)(\rho) / p_{NT}^{(1)}(\rho), \]

upon which the second step will be executed.

Combine \(p_{NT}^{(1)} \) and \(\rho_{in}^{(2)} \) into a partial density operator

\[p_{NT}^{(1)}(\rho)\rho_{in}^{(2)} = (\mathcal{E} \circ \mathcal{E}_1)(\rho). \]
Execution of Loops (Continued)

Induction step: Write \(p_{NT}^{(\leq n)} = \prod_{i=1}^{n} p_{NT}^{(i)} \) for the probability that the program does not terminate within \(n \) steps, where \(p_{NT}^{(i)} \) is the probability that the program does not terminate at the \(i \)th step for every \(1 \leq i \leq n \).

The program state after the \(n \)th measurement with outcome 1:

\[
\rho_{mid}^{(n)} = \frac{[\mathcal{E}_1 \circ (\mathcal{E} \circ \mathcal{E}_1)^{n-1}] (\rho)}{p_{NT}^{(\leq n)}}
\]

It is transformed by the loop body \(\mathcal{E} \) into

\[
\rho_{in}^{(n+1)} = \frac{(\mathcal{E} \circ \mathcal{E}_1)^n (\rho)}{p_{NT}^{(\leq n)}}.
\]

Combine \(p_{NT}^{(\leq n)} \) and \(\rho_{in}^{(n+1)} \) into a partial density operator

\[
p_{NT}^{(\leq n)} (\rho) \rho_{in}^{(n+1)} = (\mathcal{E} \circ \mathcal{E}_1)^n (\rho).
\]
Execution of Loops (Continued)

- The \((n + 1)\)st step is executed upon \(\rho_{in}^{(n+1)}\).
Execution of Loops (Continued)

- The \((n + 1)\)st step is executed upon \(\rho_{in}^{(n+1)}\).
 - The probability that the program terminates at the \((n + 1)\)st step:
 \[
p_T^{(n+1)}(\rho) = tr \left[\mathcal{E}_0 \left(\rho_{in}^{(n+1)} \right) \right].
 \]
Execution of Loops (Continued)

- The \((n+1)\)st step is executed upon \(\rho_{in}^{(n+1)}\).
 - The probability that the program terminates at the \((n+1)\)st step:
 \[
p_{T}^{(n+1)}(\rho) = tr \left[E_{0} \left(\rho_{in}^{(n+1)} \right) \right].
 \]
 - The probability that the program does not terminate within \(n\) steps but it terminates at the \((n+1)\)st step:
 \[
 q_{T}^{(n+1)}(\rho) = tr \left([E_{0} \circ (E \circ E_{1})^{n}] (\rho) \right).
 \]
Execution of Loops (Continued)

▶ The \((n + 1)\)st step is executed upon \(\rho_{in}^{(n+1)}\).
 ▶ The probability that the program terminates at the \((n + 1)\)st step:
 \[
p_T^{(n+1)}(\rho) = tr \left[E_0 \left(\rho_{in}^{(n+1)} \right) \right] .
 \]
 ▶ The probability that the program does not terminate within \(n\) steps but it terminates at the \((n + 1)\)st step:
 \[
 q_T^{(n+1)}(\rho) = tr \left([E_0 \circ (E \circ E_1)^n] (\rho) \right).
 \]
 ▶ The program state after the termination:
 \[
 \rho_{out}^{(n+1)} = [E_0 \circ (E \circ E_1)^n](\rho) / q_T^{(n+1)}(\rho).
 \]
Execution of Loops (Continued)

- The \((n + 1)\)st step is executed upon \(\rho_{in}^{(n+1)}\).
 - The probability that the program terminates at the \((n + 1)\)st step:
 \[
p_T^{(n+1)}(\rho) = tr \left[E_0 \left(\rho_{in}^{(n+1)} \right) \right].
 \]
 - The probability that the program does not terminate within \(n\) steps but it terminates at the \((n + 1)\)st step:
 \[
 q_T^{(n+1)}(\rho) = tr \left([E_0 \circ (E \circ E_1)^n] (\rho) \right).
 \]
 - The program state after the termination:
 \[
 \rho_{out}^{(n+1)} = [E_0 \circ (E \circ E_1)^n] (\rho) / q_T^{(n+1)}(\rho).
 \]
 - Combining \(q_T^{(n+1)}(\rho)\) and \(\rho_{out}^{(n+1)}\) yields the partial output state of the program at the \((n + 1)\)st step:
 \[
 q_T^{(n+1)}(\rho) \rho_{out}^{(n+1)} = [E_0 \circ (E \circ E_1)^n] (\rho).
 \]
Execution of Loops (Continued)

- The probability that the program does not terminate within $(n + 1)$ steps:

$$p_{NT}^{(\leq n+1)}(\rho) = tr([\mathcal{E}_1 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho)).$$
Execution of Loops (Continued)

- The probability that the program does not terminate within \((n + 1)\) steps:

\[
p_{NT}^{(\leq n+1)}(\rho) = tr([\mathcal{E}_1 \circ (\mathcal{E} \circ \mathcal{E}_1)^n](\rho)).
\]

Termination

1. The quantum loop terminates from input state \(\rho\) if probability \(p_{NT}^{(n)}(\rho) = 0\) for some positive integer \(n\).
Execution of Loops (Continued)

- The probability that the program does not terminate within \((n + 1)\) steps:

\[
p_{NT}^{(\leq n+1)}(\rho) = \text{tr}([E_1 \circ (E \circ E_1)^n](\rho)).
\]

Termination

1. The quantum loop terminates from input state \(\rho\) if probability \(p_{NT}^{(n)}(\rho) = 0\) for some positive integer \(n\).
2. The loop almost surely terminates from input state \(\rho\) if nontermination probability

\[
p_{NT}(\rho) = \lim_{n \to \infty} p_{NT}^{(\leq n)}(\rho) = 0
\]

where \(p_{NT}^{(\leq n)}\) is the probability that the program does not terminate within \(n\) steps.
Terminating

The quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from any input ρ.

Computed Function

The function $F : \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H})$ computed by the quantum loop:

$$F(\rho) = \infty \sum_{n=1}^{\infty} q(n) T(\rho) \rho(n)_{\text{out}}$$

for each $\rho \in \mathcal{D}(\mathcal{H})$, where $q(n) T = p(\leq n - 1) NT p(n) T$ is the probability that the program does not terminate within $n - 1$ steps but it terminates at the nth step.
Terminating

The quantum loop is terminating (resp. almost surely terminating) if it terminates (resp. almost surely terminates) from any input ρ.

Computed Function

The function $\mathcal{F} : \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H})$ computed by the quantum loop:

$$\mathcal{F}(\rho) = \sum_{n=1}^{\infty} q_T^{(n)}(\rho) \rho_{\text{out}}^{(n)} = \sum_{n=0}^{\infty} \left[\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^n \right] (\rho)$$

for each $\rho \in \mathcal{D}(\mathcal{H})$, where

$$q_T^{(n)} = p_T^{(\leq n-1)} p_T^{(n)}$$

is the probability that the program does not terminate within $n - 1$ steps but it terminate at the nth step.
Recursive Characterisation of Computed Function

The quantum operation \mathcal{F} computed by a loop satisfies the recursive equation:

$$\mathcal{F}(\rho) = \mathcal{E}_0(\rho) + \mathcal{F}[(\mathcal{E} \circ \mathcal{E}_1)(\rho)].$$
Recursive Characterisation of Computed Function

The quantum operation \mathcal{F} computed by a loop satisfies the recursive equation:

$$\mathcal{F}(\rho) = \mathcal{E}_0(\rho) + \mathcal{F}[(\mathcal{E} \circ \mathcal{E}_1)(\rho)].$$

Matrix Representation of Quantum Operations

Suppose quantum operation \mathcal{E} in a d-dimensional Hilbert space \mathcal{H} has the Kraus operator-sum representation:

$$\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger.$$

Then the matrix representation of \mathcal{E} is the $d^2 \times d^2$ matrix:

$$M = \sum_i E_i \otimes E_i^*,$$

where A^* stands for the conjugate of matrix A.
Lemma
Write $|\Phi\rangle = \sum_j |jj\rangle$ for the (unnormalized) maximally entangled state in $\mathcal{H} \otimes \mathcal{H}$, where $\{|j\rangle\}$ is an orthonormal basis of \mathcal{H}. Let M be the matrix representation of quantum operation \mathcal{E}. Then for any $d \times d$ matrix A:

$$(\mathcal{E}(A) \otimes I)|\Phi\rangle = M(A \otimes I)|\Phi\rangle.$$
Notations

Let the quantum operation \mathcal{E} in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger.$$

Then:

$$\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger.$$
Notations

Let the quantum operation \mathcal{E} in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_{i} E_i \rho E_i^\dagger.$$

Let \mathcal{E}_i ($i = 0, 1$) be the quantum operations defined by the measurement operations M_0, M_1 in the loop guard: $\mathcal{E}_i = M_i \circ M_i^\dagger$.

Then:
Notations

- Let the quantum operation \mathcal{E} in the loop body has the operator-sum representation:

\[\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger. \]

- Let $E_i (i = 0, 1)$ be the quantum operations defined by the measurement operations M_0, M_1 in the loop guard: $E_i = M_i \circ M_i^\dagger$.

- Write \mathcal{G} for the composition of \mathcal{E} and \mathcal{E}_1: $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$.

Then:
Notations

- Let the quantum operation \mathcal{E} in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger.$$

- Let $\mathcal{E}_i (i = 0, 1)$ be the quantum operations defined by the measurement operations M_0, M_1 in the loop guard: $\mathcal{E}_i = M_i \circ M_i^\dagger$.

- Write \mathcal{G} for the composition of \mathcal{E} and \mathcal{E}_1: $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$.

Then:

- \mathcal{G} has the operator-sum representation:

$$\mathcal{G}(\rho) = \sum_i (E_i M_1) \rho (M_1^\dagger E_i^\dagger).$$
Let the quantum operation \mathcal{E} in the loop body has the operator-sum representation:

$$\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger.$$

Let \mathcal{E}_i ($i = 0, 1$) be the quantum operations defined by the measurement operations M_0, M_1 in the loop guard: $\mathcal{E}_i = M_i \circ M_i^\dagger$.

Write \mathcal{G} for the composition of \mathcal{E} and \mathcal{E}_1: $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$.

Then:

\mathcal{G} has the operator-sum representation:

$$\mathcal{G}(\rho) = \sum_i (E_i M_1) \rho (M_i^\dagger E_i^\dagger).$$

The matrix representations of \mathcal{E}_0 and \mathcal{G} are:

$$N_0 = M_0 \otimes M_0^*,$$

$$R = \sum_i (E_i M_1) \otimes (E_i M_1)^*.$$
Lemma

- Suppose that the Jordan decomposition of R is

$$R = SJ(R)S^{-1}$$

where S is a nonsingular matrix, and $J(R)$ is the Jordan normal form of R:

$$J(R) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = \text{diag}(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \cdots, J_{k_l}(\lambda_l)).$$

Then:

1. $|\lambda_s| \leq 1$ for all $1 \leq s \leq l$.
2. If $|\lambda_s| = 1$ then the sth Jordan block is 1-dimensional; that is, $k_s = 1$.

Then:
Lemma

Suppose that the Jordan decomposition of R is

$$R = S J(R) S^{-1}$$

where S is a nonsingular matrix, and $J(R)$ is the Jordan normal form of R:

$$J(R) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = \text{diag}(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \cdots, J_{k_l}(\lambda_l)).$$

Then:

1. $|\lambda_s| \leq 1$ for all $1 \leq s \leq l$.
Lemma

- Suppose that the Jordan decomposition of R is

$$R = SJ(R)S^{-1}$$

where S is a nonsingular matrix, and $J(R)$ is the Jordan normal form of R:

$$J(R) = \bigoplus_{i=1}^{l} J_{k_i}(\lambda_i) = \text{diag}(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \cdots, J_{k_l}(\lambda_l)).$$

Then:

1. $|\lambda_s| \leq 1$ for all $1 \leq s \leq l$.
2. If $|\lambda_s| = 1$ then the sth Jordan block is 1-dimensional; that is, $k_s = 1$.
Lemma

1. Quantum loop terminates from input ρ if and only if

$$R^n(\rho \otimes I)|\Phi\rangle = 0$$

for some integer $n \geq 0$;
Lemma

1. Quantum loop terminates from input ρ if and only if

$$R^n(\rho \otimes I)\Phi = 0$$

for some integer $n \geq 0$;

2. Quantum loop almost surely terminates from input ρ if and only if

$$\lim_{n \to \infty} R^n(\rho \otimes I)\Phi = 0.$$

Theorem: Terminating and Almost Sure Terminating
Lemma

1. Quantum loop terminates from input ρ if and only if

$$R^n(\rho \otimes I)|\Phi\rangle = 0$$

for some integer $n \geq 0$;

2. Quantum loop almost surely terminates from input ρ if and only if

$$\lim_{n \to \infty} R^n(\rho \otimes I)|\Phi\rangle = 0.$$

Theorem: Terminating and Almost Sure Terminating

1. If $R^k|\Phi\rangle = 0$ for some integer $k \geq 0$, then quantum loop is terminating. Conversely, if loop is terminating, then $R^k|\Phi\rangle = 0$ for all integer $k \geq k_0$, where k_0 is the maximal size of Jordan blocks of R corresponding to eigenvalue 0.
Lemma

1. Quantum loop terminates from input ρ if and only if

$$R^n(\rho \otimes I)|\Phi\rangle = 0$$

for some integer $n \geq 0$;

2. Quantum loop almost surely terminates from input ρ if and only if

$$\lim_{n \to \infty} R^n(\rho \otimes I)|\Phi\rangle = 0.$$

Theorem: Terminating and Almost Sure Terminating

1. If $R^k|\Phi\rangle = 0$ for some integer $k \geq 0$, then quantum loop is terminating. Conversely, if loop is terminating, then $R^k|\Phi\rangle = 0$ for all integer $k \geq k_0$, where k_0 is the maximal size of Jordan blocks of R corresponding to eigenvalue 0.

2. Quantum loop is almost surely terminating if and only if $|\Phi\rangle$ is orthogonal to all eigenvectors of R^\dagger corresponding to eigenvalues λ with $|\lambda| = 1.$
Expectation of Observables at the Outputs

- The expectation $tr(P\mathcal{F}(\rho))$ of observable P in the output state $\mathcal{F}(\rho)$.
Expectation of Observables at the Outputs

- The expectation $tr(P\mathcal{F}(\rho))$ of observable P in the output state $\mathcal{F}(\rho)$.
- Its computation depends on the convergence of power series

$$\sum_n R^n$$

where R is the matrix representation of $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$.
Expectation of Observables at the Outputs

- The expectation $tr(P\mathcal{F}(\rho))$ of observable P in the output state $\mathcal{F}(\rho)$.
- Its computation depends on the convergence of power series

$$\sum_n R^n$$

where R is the matrix representation of $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$.
- This series may not converge when some eigenvalues of R has module 1.
Expectation of Observables at the Outputs

- The expectation $\text{tr}(P\mathcal{F}(\rho))$ of observable P in the output state $\mathcal{F}(\rho)$.
- Its computation depends on the convergence of power series

$$\sum_n R^n$$

where R is the matrix representation of $\mathcal{G} = \mathcal{E} \circ \mathcal{E}_1$.
- This series may not converge when some eigenvalues of R has module 1.
- Idea to overcome this objection: modify the Jordan normal form $J(R)$ of R by vanishing the Jordan blocks corresponding to those eigenvalues with module 1: $N = SJ(N)S^{-1}$

$$J(N) = \text{diag}(J'_1, J'_2, \cdots, J'_3),$$

$$J'_s = \begin{cases}
0 & \text{if } |\lambda_s| = 1, \\
J_{k_s}(\lambda_s) & \text{otherwise.}
\end{cases}$$
Lemma
For any integer $n \geq 0$:

$$N_0 R^n = N_0 N^n,$$

where $N_0 = M_0 \otimes M_0^*$ is the matrix representation of E_0.

Theorem
The expectation of observable P in the output state $F(\rho)$ of quantum loop with input state ρ:

$$\text{tr}(P F(\rho)) = \langle \Phi | (P \otimes I) N_0 (I \otimes I - N) - 1 \rangle (\rho \otimes I) | \Phi \rangle.$$
Lemma
For any integer $n \geq 0$:
\[N_0 R^n = N_0 N^n, \]
where $N_0 = M_0 \otimes M_0^*$ is the matrix representation of \mathcal{E}_0.

Theorem
The expectation of observable P in the output state $\mathcal{F}(\rho)$ of quantum loop with input state ρ:
\[
\text{tr}(P \mathcal{F}(\rho)) = \langle \Phi | (P \otimes I)N_0(I \otimes I - N)^{-1}(\rho \otimes I) | \Phi \rangle.
\]
Average Running Time

- The average running time loop with input state ρ:

$$\sum_{n=1}^{\infty} np_T^{(n)}$$

where for each $n \geq 1$,

$$p_T^{(n)} = tr \left[\left(\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^{n-1} \right) (\rho) \right] = tr \left[\left(\mathcal{E}_0 \circ \mathcal{G}^{n-1} \right) (\rho) \right]$$

is the probability that the loop terminates at the nth step.
Average Running Time

- The average running time loop with input state ρ:

$$\sum_{n=1}^{\infty} np_T^{(n)}$$

where for each $n \geq 1$,

$$p_T^{(n)} = tr \left[\left(\mathcal{E}_0 \circ (\mathcal{E} \circ \mathcal{E}_1)^{n-1} \right) (\rho) \right] = tr \left[\left(\mathcal{E}_0 \circ G^{n-1} \right) (\rho) \right]$$

is the probability that the loop terminates at the nth step.

Theorem

The average running time of quantum loop with input state ρ:

$$\langle \Phi | N_0 (I \otimes I - N)^{-2} (\rho \otimes I) | \Phi \rangle.$$
Example: Quantum Walk on a Circle

- Let \mathcal{H}_d be the direction space — a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.
Example: Quantum Walk on a Circle

- Let \mathcal{H}_d be the direction space — a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.

- The n different positions on the n-circle are labelled by numbers 0, 1, ..., $n - 1$. Let \mathcal{H}_p be an n-dimensional Hilbert space with orthonormal basis states $|0\rangle, |1\rangle, ..., |n - 1\rangle$.

Example: Quantum Walk on a Circle

- Let \mathcal{H}_d be the direction space — a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.
- The n different positions on the n-circle are labelled by numbers $0, 1, ..., n - 1$. Let \mathcal{H}_p be an n-dimensional Hilbert space with orthonormal basis states $|0\rangle, |1\rangle, ..., |n - 1\rangle$.
- The state space of the quantum walk: $\mathcal{H} = \mathcal{H}_d \otimes \mathcal{H}_p$.
Example: Quantum Walk on a Circle

- Let \mathcal{H}_d be the direction space — a 2-dimensional Hilbert space with orthonormal basis state $|L\rangle$ and $|R\rangle$, indicating directions Left and Right.
- The n different positions on the n-circle are labelled by numbers $0, 1, ..., n - 1$. Let \mathcal{H}_p be an n-dimensional Hilbert space with orthonormal basis states $|0\rangle, |1\rangle, ..., |n - 1\rangle$.
- The state space of the quantum walk: $\mathcal{H} = \mathcal{H}_d \otimes \mathcal{H}_p$.
- The initial state: $|L\rangle|0\rangle$.

Example: Quantum Walk on a Circle

- Let \(\mathcal{H}_d \) be the direction space — a 2-dimensional Hilbert space with orthonormal basis state \(|L\rangle\) and \(|R\rangle\), indicating directions Left and Right.
- The \(n \) different positions on the \(n \)-circle are labelled by numbers \(0, 1, ..., n - 1 \). Let \(\mathcal{H}_p \) be an \(n \)-dimensional Hilbert space with orthonormal basis states \(|0\rangle, |1\rangle, ..., |n - 1\rangle\).
- The state space of the quantum walk: \(\mathcal{H} = \mathcal{H}_d \otimes \mathcal{H}_p \).
- The initial state: \(|L\rangle|0\rangle\).
- This walk has an absorbing boundary at position 1.
Example: Quantum Walk on a Circle, Continued

Each step of the walk consists of:

1. Measure the position of the system to see whether the current position is 1. If the outcome is “yes”, then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

\[M = \{M_{yes} = I_d \otimes |1\rangle\langle 1|, M_{no} = I - M_{yes}\}. \]
Example: Quantum Walk on a Circle, Continued

Each step of the walk consists of:

1. Measure the position of the system to see whether the current position is 1. If the outcome is “yes”, then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

 \[M = \{ M_{yes} = I_d \otimes |1\rangle\langle1|, M_{no} = I - M_{yes} \}. \]

2. A “coin-tossing” operator

 \[H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \]

 is applied in the direction space \(\mathcal{H}_d \).
Example: Quantum Walk on a Circle, Continued

Each step of the walk consists of:

1. Measure the position of the system to see whether the current position is 1. If the outcome is “yes”, then the walk terminates; otherwise, it continues. This measurement models the absorbing boundary:

 \[M = \{ M_{\text{yes}} = I_d \otimes |1\rangle\langle 1|, M_{\text{no}} = I - M_{\text{yes}} \}. \]

2. A “coin-tossing” operator

 \[H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \]

 is applied in the direction space \(\mathcal{H}_d \).

3. A shift operator

 \[S = \sum_{i=0}^{n-1} |L\rangle\langle L| \otimes |i \ominus 1\rangle\langle i| + \sum_{i=0}^{n-1} |R\rangle\langle R| \otimes |i \oplus 1\rangle\langle i| \]

 is performed in the space \(\mathcal{H} \).
Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

  ```
  while $M[d, p] = yes$ do $d, p := W[d, p]$ od
  ```

 where:
Example: Quantum Walk on a Circle, Continued

- Quantum **while**-loop:

 \[
 \text{while } M[d,p] = yes \text{ do } d, p := W[d,p] \text{ od}
 \]

 where:
 - quantum variables \(d, p\) denotes direction and position, respectively;
Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

```latex
\textbf{while} M[d, p] = yes \textbf{do} d, p := W[d, p] \textbf{od}
```

where:
- quantum variables d, p denotes direction and position, respectively;
- the single-step walk operator: $W = S(H \otimes I_p)$.

A MATLAB program shows that average running time is n for $n < 30$.

Question: The average running time is n for all $n \geq 30$?
Example: Quantum Walk on a Circle, Continued

- Quantum while-loop:

\[
\text{while } M[d, p] = \text{yes} \text{ do } d, p := W[d, p] \text{ od}
\]

where:
- quantum variables \(d, p\) denotes direction and position, respectively;
- the single-step walk operator: \(W = S(H \otimes I_p)\).

- A MATLAB program shows that average running time is \(n\) for \(n < 30\).
Example: Quantum Walk on a Circle, Continued

- Quantum **while**-loop:

 \[
 \textbf{while } M[d, p] = \text{yes } \textbf{do } d, p := W[d, p] \textbf{ od}
 \]

 where:
 - quantum variables \(d, p\) denotes direction and position, respectively;
 - the single-step walk operator: \(W = S(H \otimes I_p)\).

- A MATLAB program shows that *average running time* is \(n\) for \(n < 30\).

- **Question**: The average running time is \(n\) for all \(n \geq 30\)?