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Abstract. The Ehrenfeucht-Fraı̈ssé method for first-order logic andfurther log-
ics relevant in descriptive complexity has been quite successful. However, for key
problems such as P6= NP or NP6= co-NP no progress has been achieved using it.
We show that for these problems we can not get the board for thecorresponding
Ehrenfeucht-Fraı̈ssé game in polynomial output time, even if we allow probabilis-
tic methods to obtain the board. In order to get this result inthe probabilistic case,
we need an additional hypothesis, namely that there is an algorithm, the verifier,
verifying in a reasonable time that the two structures of theboard satisfy the same
properties expressible in a suitable fragment of the logic.The (non)existence of
such a verifier is related to a logic version of the planted clique conjecture.

1. Introduction

In finite model theory and in descriptive complexity theory the Ehrenfeucht-Fraı̈ssé
method for first-order logic FO is mainly used to obtaininexpressibility resultsandhier-
archy results. While Fraı̈ssé [9] introduced this method in more algebraic terms, Ehren-
feucht [6] phrased it in an appealing game-theoretic form. Concerning generalizations,
games were developed for further logics, mainly for logics relevant in descriptive com-
plexity theory such as least fixed-point logic LFP, (monadic) existential second-order
logic (monadic)Σ1

1, and finite variable logics.
An inexpressibility result for a logicL shows that a given property is not definable

(or expressible) inL. A hierarchy result states that a certain increasing sequence H1 ⊆
H2 ⊆ . . . of classes Hm of sentences of a given logic is strict; that is, that for every m ∈
N there is a property of finite structures expressible by some sentence of Hm+1 but by
no sentence of Hm. Often, to obtain such an inexpressibility result, Ehrenfeucht-Fraı̈ssé
games have been used. The finite variable hierarchy (FOm)m∈N is an example of a strict
hierarchy. Here FOm consists of those FO-formulas which contain at mostm variables.

Suppose we want to show, using the Ehrenfeucht-Fraı̈ssé method, that for (finite)
ordered graphs “eveness” of the cardinality of the vertex set is not expressible in FO, or
equivalently, that for everym ∈ N “eveness” is not expressible by an FOm-sentence.
Here FOm denotes the set of sentences of first-order logic of quantifier rank at mostm.
One chooses ordered graphsGm andHm that are paths of length 2m + 1 and 2m,
respectively, and shows thatGm ≡FOm

Hm, that is, thatGm andHm satisfy the same
sentences of FOm. The latter property is shown by playing, more precisely, byanalyzing
the Ehrenfeucht-Fraı̈ssé game (for first-order logic) with board (Gm, Hm). It is not hard
to show that the size of the board (Gm, Hm) must be exponential inm.

Let us mention some further results obtained by the Ehrenfeucht-Fraı̈ssé method (or
by a probabilistic generalization of it):



– Reachability in directed graphs is not expressible in monadicΣ1
1 [1].

– For ordered graphs connectivity is not expressible in monadicΣ1
1 [20].

– The finite variable hierarchy for FO on ordered structures is strict [18, 12].
– The arity hierarchy is strict for LFP [10].
– For everyk ∈ N the hierarchy whosemth member consists of formulas with at

mostm nestedk-ary fixed-point operators is strict for LFP [15].

We know (see Theorem 1) that P6= NP if and only if for everym there are a 3-
colorable ordered graphGm and an ordered graphHm, which is not 3-colorable, such
that Gm andHm are indistinguishable by sentences of LFP of “quantifier rank” or
length at mostm; this last property, denoted byGm ≡LFPm

Hm, would be shown
by the Ehrenfeucht-Fraı̈ssé game for LFP. Let us call such asequence (Gm, Hm)m∈N a
(3-COL, LFP)-sequence. Furthermore, NP6= co-NP if and only if there is a (3-COL,Σ1

1)-
sequence, where a (3-COL,Σ1

1)-sequence is defined in a similar way. In [8], the authors
remark:

It is known thatΣ1
1 6= Π

1
1 if and only if such a separation can be proven vi-

a second-order Ehrenfeucht-Fraı̈sśe games. Unfortunately, “playing” second-
order Ehrenfeucht-Fräısśe games is very difficult, and the above promise is
still largely unfulfilled; for example, the equivalence between theNP = co-NP
question and theΣ1

1 = Π
1
1 question has not so far led to any progress on either

of these questions.

And Kolaitis remarks in [7, page 56]:

Although . . . Ehrenfeucht-Fraı̈sśe games yield a sound and complete method for
studying ESO-definability [that is,Σ1

1-definability] (and thus potentially lead-
ing to the separation ofNP and co-NP), so far this approach has had rather
limited success. The reason is that formidable combinatorial difficulties arise
in implementing this method . . . when dealing with ESO-formulas in which at
least one of the existentially quantified second-order variables has an arity
bigger than 1.

Definitely the authors are right with their observation that“playing” second-order Ehren-
feucht-Fraı̈ssé games is very difficult. However, in orderto derive the last two hierarchy
results mentioned above, the corresponding authors successfully apply games for logics
containing nonmonadic second-order quantifiers.

In the example of “eveness” we already observed that the sizeof a board (Gm, Hm)
of ordered graphs has to be exponential inm. On the other hand, analyzing most of the
successful applications of the Ehrenfeucht-Fraı̈ssé method obtained so far, we realized
that the boards (Gm, Hm)m∈N could be constructed in polynomial output time, that is,
in time (|V (Gm)|+|V (Hm)|)O(1). However, by a simple and standard diagonal argument
we show:

(A) No (3-COL, LFP)-sequence can be generated in polynomial output time.

Even more, to the best of our knowledge, it is open whether we can get such a sequence
of boards by an algorithm more efficient than brute force.

Mostly in successful applications of the Ehrenfeucht-Fra¨ıssé method the main task
consisted in constructing boards such that one can find an argument showing, via Ehren-
feucht-Fraı̈ssé games for the given logic, that the corresponding structures are indistin-
guishable to a certain extent. As mentioned, for a proof of P6= NP via the Ehrenfeucht-
Fraı̈ssé method, already the presumably easier step of merely constructing the sequence
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of boards (and forgetting about the concrete verification oftheir indistinguishability) is
hard. This makes our “negative” result even stronger with respect to the existence of
positive applications of the Ehrenfeucht-Fraı̈ssé method for sufficiently rich logics. It
is an interesting challenge, though: how can we use the Ehrenfeucht-Fraı̈ssé method to
prove P6= NP if we must necessarily work with non-constructive boards?

What happens if we allow probabilistic algorithms3 to yield the boards for the
Ehrenfeucht-Fraı̈ssé method? Such random constructionshave been used for two of
the applications mentioned above, namely to show that reachability in directed graphs
is not definable in monadic second-order logic and in the proof of Rossman [18] that the
finite variable hierarchy for first-order logic on ordered graphs is strict. It turns out that
in order to derive a probabilistic generalization of (A) of the type “No (3-COL, LFP)-
sequence can be generated by a probabilistic algorithm in polynomial output time” we
need a further assumption,4 namely that there is averifier, that is, an algorithm that in a
reasonable time verifies that with high probability the board (Gm, Hm) satisfies

Gm ∈ 3-COL, Hm /∈ 3-COL, andGm ≡LFPm
Hm.

So we get:

(B) Assume that there is a pseudorandom generator. No(3-COL, LFP)-sequence hav-
ing a verifier can be generated by a probabilistic algorithm in polynomial output
time.

Is the assumption of the existence of a verifier necessary? The question is related to
theplanted clique conjecture. This conjecture claims that there is no polynomial time
algorithm that detects a clique of size 4· log n, which has been planted uniformly at
random in a random graph withn vertices and edge probability 1/2. In this article we
introduce a stronger conjecture, a logic version LPCC of theplanted clique conjecture.
It is not hard to show:

(C) If LPCCholds, then a(3-COL, LFP)-sequence can be generated by a probabilistic
algorithm in polynomial output time.

As already the planted clique conjecture implies P6= NP, so does LPCC. Can we refute
LPCC? We show that this is the case for some strengthening of LPCC.

The content of the different sections is the following. After fixing some notation
(in Section 2), we recall the Ehrenfeucht-Fraı̈ssé methodin Section 3. In Section 4,
first we study the minimum size of the board (Gm, Hm) of a (3-COL, LFP)-sequence
and then we prove statement (A). Section 5 is devoted to a proof of the probabilistic
generalization of this result, stated as (B) above. In Section 6 we introduce the logic
version LPCC of the planted clique conjecture and derive statement (C) in Section 7. In
Section 8 we show that some strengthened versions of LPCC arerefutable. Finally, in
the last section we mention extensions of our results and some further results related to
the topic of this article. Moreover, we state some conjectures and open questions.

3 At least here we should mention that there exist successful applications of the Ehrenfeucht-
Fraı̈ssé method, where the boards are not defined by a (probabilistic) algorithm; for example,
in [21] random graphs with edge probabilityn−α are considered, wheren is the cardinality of
the vertex set andα is irrational.

4 Besides the assumption of the existence of a pseudorandom generator.
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2. Preliminaries

For a natural numbern we set [n] := {1, . . . , n}. For a graphG we denote byV (G)
andE(G) its vertex set and its edge set, respectively. We speak of anordered graphG
if G comes with an ordering of its vertex set. As already mentioned, in this article graph
always means finite graph. Aproblem(or, property) Q of ordered graphs is a class of
ordered graphs closed under isomorphism.

We assume familiarity with basic notions of first-order logic FO and of least fixed-
point logic LFP. Concerning LFP, till Section 8 essentiallywe only need the Immerman-
Vardi Theorem, which we recall in the next section.

Let L be a logic. A propertyQ of ordered graphs isdefinable inL (or, expressible
in L) if there is a sentence ofL such thatQ is its class of models.

3. The Ehrenfeucht-Fraı̈sśe-method

Let us denote by FOm the set of sentences of first-order logic of quantifier rank (=max-
imum number of nested quantifiers) at mostm and by LFPm the set of LFP-sentencesϕ
of length|ϕ| ≤ m. Here|ϕ| denotes the number ofsymbolsin ϕ (that is, the number of
connectives, quantifiers, LFP-operators, variables, . . . ;however, two occurrences, say,
of the same variable inϕ count as two symbols).

LetL be one of the logics FO or LFP and denote byLm the corresponding set FOm
or LFPm. The Ehrenfeucht-Fraı̈ssé method relies on the followingresult.

Theorem 1. For L ∈ {FO, LFP} and a problemQ of ordered graphs the following are
equivalent:
(i) For all m ∈ N there are ordered graphsGm andHm with

Gm ∈ Q, Hm /∈ Q, and Gm ≡Lm
Hm. (1)

(ii) Q is not definable inL.

So, in order to show that the problemQ is not definable in the logicL ∈ {FO, LFP}, it
suffices to exhibit a (Q,L)-sequence in the sense of the following definition.
Definition 2. AssumeL ∈ {FO, LFP} and letQ be a problem of ordered graphs. A
sequence (Gm, Hm)m∈N of ordered graphs is a (Q,L)-sequenceif for all m ∈ N

Gm ∈ Q, Hm /∈ Q, and Gm ≡Lm
Hm.

In many concrete applications of Theorem 1, Ehrenfeucht-Fraı̈ssé-games are applied
to show thatGm ≡Lm

Hm. We recall the Ehrenfeucht-Fraı̈ssé-game for FO (see [4,
10, 15] for the Ehrenfeucht-Fraı̈ssé-game for LFP and other extensions of FO by fixed-
point operators). LetG andH be ordered graphs andm ∈ N. The Ehrenfeucht-Fraı̈ssé-
game Gm(G,H) (with boardsG andH) is played by two players called Spoiler and
Duplicator. The game consists of a sequence ofm rounds. In roundi of the game, first
Spoiler picks a graph (eitherG orH) and a vertex of his choice in that graph. Duplicator
then replies by picking a vertex of his choice in the other graph. Thus, afterm rounds,
verticesu1, . . . , um in V (G) andv1, . . . , vm in V (H) have been selected,ui andvi
being the vertices chosen in roundi. Duplicatorwins if the induced ordered subgraphs
G[{u1, . . . , um}] andH [{v1, . . . , vm}] (induced byG on {u1, . . . , um} and byH on
{v1, . . . , vm}, respectively) are isomorphic via the mappingf (ui) := vi for i ∈ [m].
It should be clear what it means that Duplicator has a winningstrategy for the game
Gm(G,H).
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Theorem 3 (Ehrenfeucht-Fraı̈sśe-Theorem). Let G and H be ordered graphs and
m ∈ N. Then Duplicator has a winning strategy for the gameGm(G,H) if and only if
G ≡FOm

H .

The following simple application of the Ehrenfeucht-Fraı̈ssé-game shows that the
class EVEN of ordered graphs with vertex set of even cardinality is not definable in FO:
For m ∈ N let the ordered graphsGm andHm be paths of length 2m + 1 and 2m,
respectively. Then Duplicator has a winning strategy for the game Gm(Gm, Hm). In
fact, in theith round he picks his vertex,ui or vi, such that for allj ∈ [i− 1],

dGm(ui, uj) = dHm (vi, vj) or
(

dGm(ui, uj) > 2m−i and dHm (vi, vj) > 2m−i
)

.

Here dG(u, u′) denotes the distance of the verticesu andu′ in the graphG. Thus,
Gm ≡FOm

Hm and hence, (Gm, Hm)m∈N is an (EVEN,FO)-sequence.

The graphsGm andHm just constructed have size exponential inm. We can’t do it
better: the sizes of the graphs of every (Q,FO)-sequence for any problemQ of ordered
graphs must be exponential inm. This follows from the following result, which can
easily been derived.
Proposition 4. Letm ∈ N. If G andH are nonisomorphic ordered graphs, then

G ≡FOm+3 H implies|V (G)|, |V (H)| > 2m.

4. A logical reformulation of P 6= NP

Immerman and Vardi have proven that least fixed-point logic LFP captures the com-
plexity class P in the following sense.

Theorem 5 (Immerman-Vardi-Theorem). A problem of ordered graphs is decidable
in polynomial time if and only if it can be defined in least fixed-point logicLFP.

As the problem 3-COL, the 3-colorability problem of ordered graphs, is NP-complete,
we get:
Corollary 6. P 6= NP if and only if 3-COL is not definable inLFP.
We defined LFPm = {ϕ | ϕ LFPm-sentence with|ϕ| ≤ m}. The previous corollary
together with Theorem 1 yield:
Corollary 7. P 6= NP if and only if there is a(3-COL, LFP)-sequence, that is, a se-
quence(Gm, Hm)m∈N of ordered graphs such that for allm,

Gm ∈ 3-COL, Hm /∈ 3-COL, and Gm ≡LFPm
Hm.

Assume P6= NP. What can we say about the minimum size of the graphs of a (3-COL, LFP)-
sequence and what about the running time of an algorithm generating a (3-COL, LFP)-
sequence? We set

SIZE(3-COL)(m) := min{max{|V (G)|,|V (H)|} | G andH are ordered graphs with

G ∈ 3-COL, H /∈ 3-COL, andG ≡LFPm
H}.

Recall that a problemQ has circuit sizec, wherec : N → N, if for n ∈ N, c(n) is the
leastd ∈ N such there exists a (Boolean) circuitC with n input variables of size≤ d
such that for everyx with |x| = n,

x ∈ Q ⇐⇒ C(x) = 1 (i.e.,C acceptsx).

In [5] we derived the following lower and upper bound forSIZE(3-COL)(m).
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Proposition 8. AssumeP 6= NP. Then:
(a) There is anε > 0 such that for allm ∈ N we have2ε·m ≤ SIZE(3-COL)(m).
(b) If the circuit size of3-COL is not in2o(n), then for allε > 0 and infinitely manym,

SIZE(3-COL)(m) ≤ 2(1+ε)·m·log m.

Definition 9. An algorithmA generatesthe sequence (Gm, Hm)m∈N if A on input
m ∈ N outputs (Gm, Hm).

By systematically testing, forℓ = 1, 2, . . ., all graphsG andH with vertex sets of
cardinality≤ ℓ whether they satisfy

G ∈ 3-COL, H /∈ 3-COL, and G ≡LFPm
H,

we obtain from the previous result an upper bound for the timeneeded to get the graphs
of a (3-COL, LFP)-sequence, even of a sequence with boards of minimum size:

Proposition 10 ([5]). If P 6= NP, then there is an algorithm that generates a(3-COL, LFP)-
sequence in time2O(SIZE(3-COL)(m)2). The sequence(Gm, Hm)m∈N generated by the al-
gorithm satisfiesSIZE(3-COL)(m) = max{|V (Gm)|, |V (Hm)|}.

By Proposition 4, the boards of all (Q,FO)-sequences for any problemQ of or-
dered graphs must have size exponential inm. However we could construct the graphs
Gm andHm of an (EVEN,FO)-sequence inpolynomial output time, that is, in time
(|V (Gm)| + |V (Hm)|)O(1). In fact, we realized that in most successful applications of
the Ehrenfeucht-Fraı̈ssé method showing that a property is not definable in a given logic,
the boards for the corresponding game can be constructed in polynomial output time.
So we ask, is it possible to construct a (3-COL, LFP)-sequence in polynomial output
time? By a standard diagonalization argument we show that this is not possible:
Theorem 11. No(3-COL, LFP)-sequence can be constructed in polynomial output time.

Proof. We sketch the main steps of a proof (for more details see [5]).Assume for a
contradiction that the algorithmA generates a (3-COL, LFP)-sequence (Gm, Hm)m∈N

in polynomial output time. By passing to a suitable subsequence (cf. the proof of Lem-
ma 16), we can assume that (Gm, Hm)m∈N is monotone, that is, that it satisfies

max{|V (Gm)|, |V (Hm)|} < min{|V (Gm+1)|, |V (Hm+1)|}.

Furthermore, we can assume (again by passing to a suitable subsequence) that|V (Gm)| ≥
|V (Hm)| for all m ∈ N or that|V (Gm)| ≤ |V (Hm)| for all m ∈ N. Then we can trans-
formA into an algorithmB running in polynomial time such that for allm ∈ N,

B acceptsGm and B rejectsHm.

By the Immerman-Vardi Theorem there is an LFP-sentenceϕB, sayϕB ∈ LFPm0, such
that for all ordered graphsG,

G |= ϕB ⇐⇒ B acceptsG.

In particular, for allm ∈ N,

Gm |= ϕB and Hm 6|= ϕB.
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Form ≥ m0, this equivalence contradictsGm ≡LFPm
Hm. 2

The same proof works for every propertyQ of ordered graphs (instead of 3-COL),
even more: By definition, an LFP-sequenceis a sequence (Gm, Hm)m∈N of ordered
graphsGm andHm with

Gm 6∼= Hm (Gm andHm are not isomorphic) andGm ≡LFPm
Hm.

Clearly every (Q, LFP)-sequence for any propertyQ of ordered graphs is an LFP-
sequence. We state the following result, which can be derived similarly to Theorem 11.

Theorem 12 ([5]). No LFP-sequence can be generated in polynomial output time.

We should mention that also for first-order logic there are problemsQ such that no
(Q,FO)-sequence can be generated in polynomial output time:
Example 13. LetB ⊆ {0, 1}∗ be a P-bi-immune set; that is, neitherB nor{0, 1}∗ \B
contains an infinite subset decidable in polynomial time. For x ∈ B, x = x1 . . . xs with
xi ∈ {0, 1}, let G(x) be the ordered graph with vertex set [s + 1], with the natural
ordering on [s + 1], and with edge set{{i, i + 1} | i ∈ [s] andxi = 1}. Let Q(B) be
the smallest class of ordered graphs containing allG(x) with x ∈ B and closed under
isomorphism. No (Q(B),FO)-sequence can be generated in polynomial output time.
For a contradiction assume that (Gm, Hm)m∈N is a (Q(B),FO)-sequence generated in
polynomial output time. As above we can assume that the sequence is monotone and
that|V (Gm)| ≥ |V (Hm)| for all m ∈ N or that|V (Gm)| ≤ |V (Hm)| for all m ∈ N. In
the first case,B contains an infinite subset in P and in the second case{0, 1}∗ \B.

5. On random (3-COL , LFP)-sequences

We have seen that we cannot construct a (3-COL, LFP)-sequence in polynomial out-
put time. What happens if we consider random sequences? There are successful ap-
plications of the Ehrenfeucht-Fraı̈ssé-method where thegraphs of the corresponding
sequences are constructed randomly. For example, in this way it has been shown that
reachability in directed graphs is not definable in monadic second-order logic (see [1])
and that the finite variable hierarchy for first-order logic on ordered graphs is strict
(see [18]).

We aim at a result showing limitations of the probabilistic Ehrenfeucht-Fraı̈ssé-
method similar to Theorem 11. For this purpose we have to takeinto consideration a
further property of such sequences (Gm, Hm)m∈N satisfied in most successful applica-
tions of the Ehrenfeucht-Fraı̈ssé-method obtained so far. For (3-COL, LFP)-sequences
(Gm, Hm)m∈N this property ensures that we can verify thatGm ∈ 3-COL, Hm /∈
3-COL, and thatGm ≡LFPm

Hm in a reasonable time. Condition (r2) of the following
definition of random (3-COL, LFP)-sequence contains the precise formulation.

Definition 14. A probabilistic algorithmP generates a random(3-COL, LFP)-sequence
(Gm, Hm)m∈N if (r1) and (r2) are satisfied.
(r1) For everym ∈ N the algorithmP, on inputm, first deterministicallycomputes the

vertex setsV (Gm) andV (Hm), and then it constructs the ordered graphsGm and
Hm probabilistically.

(r2) There is an algorithmV, theverifier, such that (a)–(c) hold.
(a) For all ordered graphsG andH and allm ∈ N,

if V accepts (G,H,m), thenG ≡LFPm
H , G ∈ 3-COL, andH /∈ 3-COL.
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(b) For sufficiently largem ∈ N and allm′ ≥ m,

Pr
[

V accepts (Gm′ , Hm′ ,m)
]

≥ 1
(

|V (Gm′)| + |V (Hm′)|
)O(1) .

(c) The running time ofV on input (G,H,m) is bounded byf (m) · (|V (G)| +
|V (H)|)O(1) for some computable functionf : N→ N.

In this section we show:
Theorem 15. Assume that there is a2⌈ℓ/c⌉-pseudorandom generator5 for some natu-
ral numberc ≥ 1. Then there is no probabilistic algorithm that generates a random
(3-COL, LFP)-sequence(Gm, Hm)m∈N in polynomial output time.

The following lemmas will finally yield a proof of Theorem 15 along the following
lines: For a contradiction we assume that there exists a probabilistic algorithmP gener-
ating a random (3-COL, LFP)-sequence in polynomial output time. Essentially we use
the pseudorandom generator to derandomize the algorithmP. In this way we obtain a
deterministic algorithm which generates a (3-COL, LFP)-sequence (Gm, Hm)m∈N in
polynomial output time. This contradicts Theorem 11.

As in the deterministic case we say that a probabilistic algorithmP generates a ran-
dommonotone(3-COL, LFP)-sequence if it generates a random (3-COL, LFP)-sequence
(Gm, Hm)m∈N, which in addition to (r1) and (r2) satisfies (r3), where

(r3) for all m ∈ N, max{|V (Gm)|, |V (Hm)|} < min{|V (Gm+1)|, |V (Hm+1)|}.
If furthermore (r4) and (r5) hold, where

(r4) ⌈log (|V (Gm)| + |V (Hm)|)⌉ < ⌈log (|V (Gm+1)| + |V (Hm+1)|)⌉
(r5) f (m) ≤ max{|V (Gm)|, |V (Hm)|} (wheref is the computable function of (r2)(c)

used to bound the running time of the verifierV),

then we speak of astrongly monotone(3-COL, LFP)-sequence.

For our proof of Theorem 15 we need to show that we can restrictourselves to
strongly monotone (3-COL, LFP)-sequences.

Lemma 16. If there is a probabilistic algorithm generating a random(3-COL, LFP)-
sequence in polynomial output time, then there is a probabilistic algorithm that gener-
ates a strongly monotone random(3-COL, LFP)-sequence in polynomial output time.

Proof. Similar to Proposition 4 one gets an increasing functions : N → N such that
s(m) is computable in spaceO(log m) and such that for all ordered graphsG andH
and allm ∈ N,

if G ≡LFPs(m) H andG 6∼= H , then|V (G)|, |V (H)| > m.

Assume that the (3-COL, LFP)-sequence (Gm, Hm)m∈N is generated by the probabilis-
tic algorithmP in polynomial output time. Recall that the universes ofGm andHm are
obtained deterministically. We define a functionh : N→ N inductively by

h(m) :=

{

s(0), if m = 0,
s
(

max{|V (Gh(m−1))|, |V (Hh(m−1))|}
)

, if m > 0.

5 We recall the notion of a pseudorandom generator in Definition 17.
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As Gh(m) ≡LFPh(m) Hh(m), that is,Gh(m) ≡LFP
s

(

max{|V (Gh(m−1))|,|V (Hh(m−1))|}

) Hh(m), we

have
|V (Gh(m))|, |V (Hh(m))| > max{|V (Gh(m−1))|, |V (Hh(m−1))|}.

As Gh(m) ≡LFPh(m) Hh(m), we haveGh(m) ≡LFPm
Hh(m). Therefore, it is routine to

show that the probabilistic algorithm, which on inputm first computesh(m) and then
simulatesP on h(m), generates a random monotone (3-COL, LFP)-sequence in poly-
nomial in output time.

So we may assume that the (3-COL, LFP)-sequence (Gm, Hm)m∈N generated byP
is monotone. We will get the sequence satisfying (r4) and (r5) as a subsequence of
(Gm, Hm)m∈N, therefore it will be itself monotone. We may assume that thefunction
f : N→ N mentioned in (r2) is time constructible. We defineg : N→ N by

g(k) :=











the leastm such thatf (0)≤ max{|V (Gm)|, |V (Hm)|}, if k = 0,
the leastm such thatf (k) ≤ max{|V (Gm)|, |V (Hm)|} and
⌈log (|V (Gg(k−1))| + |V (Hg(k−1))|)⌉ < ⌈log (|V (Gm)| + |V (Hm)|)⌉, if k > 0.

Again it is routine to show that the probabilistic algorithm, which on inputm first com-
putesg(m) and then simulatesP on g(m), generates a random and strongly monotone
(3-COL, LFP)-sequence in polynomial output time. 2

Before turning to the main step of the proof of Theorem 15, forthe reader’s con-
venience we recall the definition of pseudorandom generator(following [3, Defini-
tion 20.2]).
Definition 17. Let c ∈ N. An algorithmG is a 2⌈ℓ/c⌉-pseudorandom generator if it
satisfies (g1) and (g2).
(g1) On every inputs ∈ {0, 1}∗ the algorithmG computes a stringG(s) ∈ {0, 1}∗

with |G(s)| = 2⌈|s|/c⌉ in time 2|s|.
(g2) For everyℓ ∈ N and every circuitC of size at mostt3, wheret := 2⌈ℓ/c⌉, we have

∣

∣

∣

∣

Pr
s∈{0,1}ℓ

[

C(G(s)) = 1
]

− Pr
r∈{0,1}t

[

C(r) = 1
]

∣

∣

∣

∣

< 1/10.

In the left term we consider the uniform probability space on{0, 1}ℓ, in the right
term the uniform probability space on{0, 1}t.

Lemma 18. Assume
– there is a2⌈ℓ/c⌉-pseudorandom generatorG for somec ∈ N;
– there is a probabilistic algorithmP that generates a strongly monotone random

(3-COL, LFP)-sequence(Gm, Hm)m∈N in polynomial output time.
Then there is adeterministicalgorithmA such that for everym ∈ N the algorithmA

on inputm computes a sequence of pairs

(G1
m, H1

m), . . . , (Gtm
m , Htm

m )

of ordered graphs, where allGi
m haveV (Gm) as vertex set, and allHi

m haveV (Hm) as
vertex set (recall thatV (Gm) andV (Hm) are the vertex sets deterministically computed
byP on inputm). Moreover, the following conditions (a1)–(a3) hold:
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(a1) The algorithmA runs in time(|V (Gm)|+|V (Hm|)O(1); in particular, tm = (|V (Gm)|+
|V (Hm|)O(1).

(a2) For sufficiently largem ∈ N,

Pr
p∈[tm ]

[

Gp
m ≡LFPm

Hp
m, Gp

m ∈ 3-COL andHp
m /∈ 3-COL

]

≥ Pr
p∈[tm ]

[

V accepts(Gp
m, Hp

m,m)
]

> 1/2,

whereV, the verifier, is the algorithm associated withP and mentioned in condi-
tion (r2) of Definition 14. Note that the first inequality holds by this condition.

(a3) For everym ∈ N we have
– max{|V (Gm)|, |V (Hm)|} < min{|V (Gm+1)|, |V (Hm+1)|}
– ⌈log (|V (Gm)| + |V (Hm)|⌉ < ⌈log (|V (Gm+1| + |V (Hm+1)|)⌉;
– f (m) ≤ max{|V (Gm)|, |V (Hm)|} (wheref is the function mentioned in (r2)(c)).

Proof. For the probabilistic algorithmP we choose the verifierV according to (r2).
By (r5) we know thatV on input (Gm, Hm,m) runs in time polynomial in (|V (Gm)| +
|V (Hm)|). We can assume thatP satisfies (r2)(b′) instead of (r2)(b), where

(r2) (b′) for sufficiently largem ∈ N, Pr
[

V accepts (Gm, Hm,m)
]

≥ 4/5.

This is achieved by the standard amplification method. More precisely, by repeating
the algorithmP, on inputm, polynomial many times, that is, polynomial in (|V (Gm)|+
|V (Hm)|) many times, and each time checking whetherV accepts (Gm, Hm,m), where
(Gm, Hm) is the output ofP.

By the properties ofP, we know that for somed ∈ N with d ≥ 10:

– The running time ofP onm is bounded by (|V (Gm)| + |V (Hm)|)d.

– The running time of the algorithmsV on inputs (G,H,m) with f (m) ≤ max{|V (G)|,
|V (H)|} is bounded by (|V (G)| + |V (H)|)d.

We letA be the following deterministic algorithm:

A // m ∈ N in unary

1. simulate the (deterministic) part of the computation ofP

2. on inputm yielding the universesV (Gm) andV (Hm)
3. n← |V (Gm)| + |V (Hm)|
4. ℓ← c · ⌈d · log n⌉
5. for all s ∈ {0, 1}ℓ do
6. computeG(s)
7. simulateP on inputm where in the simulation
8. the internal coin tosses ofP are replaced according toG(s)
9. output (Gs

m, Hs
m), the output of this simulation ofP.

Then (a1) holds as 2ℓ = (|V (Gm)|+|V (Hm)|)O(1). SinceP generates strongly monotone
sequences, also (a3) holds. It remains to establish (a2). For a contradiction assume that

for infinitely manym ∈ N: Pr
p∈[tm]

[

V accepts (Gp
m, Hp

m,m)
]

≤ 1/2. (2)
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For everym ∈ N we let
nm := |V (Gm)| + |V (Hm)|.

Clearly there is an algorithm that decides in timeO(nd+1) whether a givenn ∈ N is
equal tonm for somem ∈ N, and if so, outputsm

(

which is unique by (a3)
)

. We
consider the following algorithmD:

D // r ∈ {0, 1}∗

1. compute anm with |r| = 2⌈d·log nm⌉

2. if no suchm existsthen reject
3. compute the output (Gm, Hm) of P on inputm if
4. the internal coin tosses ofP are replaced according tor
5. simulateV on (Gm, Hm,m)
6. if the simulation rejectsthen reject
7. accept.

By (r2)(b′), for sufficiently largem ∈ N, and hence sufficiently largen∗ := 2⌈d·log nm⌉,

Pr
r∈{0,1}n∗

[

D acceptsr
]

= Pr
p∈[tm]

[

V accepts (Gp
m, Hp

m,m)
]

≥ 4/5. (3)

Furthermore note that by (2),

for infinitely manym andℓ := c · ⌈d · log nm⌉: Pr
s∈{0,1}ℓ

[

D(G(s)) = 1
]

≤ 1/2. (4)

Moreover, asf (m) ≤ max{|V (Gm)|, |V (Hm)|} (by the strong monotonicity of the
random (3-COL, LFP)-sequence computed byP), we see that the running time ofD
is bounded byO(|r|1+1/d) ≤ O(|r|1.1). Using the Cook-Levin’s reduction, from the
algorithmD we can construct, for everym ∈ N andn∗ := 2⌈d·log nm⌉, a circuitCn∗

such that for everyr ∈ {0, 1}n∗

,

Cn∗ (r) = 1 ⇐⇒ D acceptsr (5)

and such that for the size|Cn∗ | of the circuitCn∗ we have

|Cn∗ | = O
(

(n∗)2.2
)

. (6)

By (3) and (5), for sufficiently largem ∈ N, and hence sufficiently largen∗ = 2⌈d·log nm⌉,

Pr
r∈{0,1}n∗

[

Cn∗ (r) = 1
]

= Pr
p∈[tm]

[

V accepts (Gp
m, Hp

m,m)
]

≥ 4/5.

By (4) and (5), we know that for infinitely manym ∈ N andℓ := c · ⌈d · log nm⌉ we
have forn∗ = 2⌈d·log nm⌉,

Pr
s∈{0,1}ℓ

[

Cn∗ (G(s)) = 1
]

≤ 1/2.

Together with the previous inequality, for such anm and the correspondingℓ andn∗,
∣

∣

∣
Pr

r∈{0,1}n∗

[

Cn∗ (r) = 1
]

− Pr
s∈{0,1}ℓ

[

Cn∗ (G(s)) = 1
]

∣

∣

∣
≥ 4/5− 1/2 > 1/10,
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which, by (6), contradicts (g2) in Definition 17. 2

Proof of Theorem 15:Assume that there is a probabilistic algorithm that generates a
random ordered (3-COL, LFP)-sequence in polynomial output time. We show that there
is a deterministic algorithm which generates a (3-COL, LFP)-sequence in polynomial
output time. This contradicts Theorem 11.

By Lemma 16 and Lemma 18 there is an algorithmA with the properties stated in
Lemma 18. We show that the following algorithmS generates a (3-COL, LFP)-sequence
(G′

m, H ′
m)m∈N in polynomial output time.

S // m ∈ N

1. simulateA on inputm to compute (G1
m, H1

m), . . . , (Gtm
m , Htm

m )
2. for all i ∈ [tm] do
3. simulateV on (Gi

m, Hi
m,m)

4. if the simulation acceptsthen output (Gi
m, Hi

m) as (G′
m, H ′

m) and halt

By (a2) of Lemma 18, the algorithmS will halt on input m and yield the desired
(G′

m, H ′
m). By (a3) of Lemma 18, the algorithmV is applied to inputs (G,H,m)

with f (m) ≤ max{|V (G)|, |V (H)|}; on such inputs its running time is bounded by
(|V (G)| + |V (H)|)O(1). Together with (a1), this shows thatS runs in polynomial output
time. 2

In contrast to deterministic algorithms generating “standard” (3-COL, LFP)-sequences
we require of randomized (3-COL, LFP)-sequences (Gm, Hm)m∈N that the property

Gm ≡LFPm
Hm, Gm ∈ 3-COL, andHm /∈ 3-COL

can be checked in a reasonable time (the existence of the verifier, see property (r2)
in Definition 14). What happens if we drop this requirement? The following sections
address this problem.

6. The Planted Clique Conjecture

In the standard planted clique problem, we are given a graphG whose edges are gener-
ated by starting with a random graph with universe [n], then “planting” (adding edges
to make) a random clique onk vertices; the problem asks for efficient algorithms find-
ing such a clique of sizek. The problem was addressed in [13, 16, 2], the authors of
the last paper mention that it was suggested by M. Saks. It hasapplications in cryptog-
raphy [14], algorithmic game theory [11, 17], and classicalcomplexity [19]. Here we
study some consequences for the Ehrenfeucht-Fraı̈ssé method of a “logic reformula-
tion” of the planted clique problem.

The Erdős-Rényi probability space ER(n, 1/2) is obtained as follows. We start with
the set [n] of vertices. Then we choose everye ∈

([n]
2

) (

:= {X ⊆ [n] | |X | = 2}
)

as
an edge with probability 1/2, independently of the choices of other edges.

For G ∈ ER(n, 1/2) the expected size of a maximum clique is approximately
2 · log n. Clearly, the probability thatG ∈ ER(n, 1/2) contains a clique of sizek is
bounded by

(

n

k

)

· 2−(k2).
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Fork = 4 · log n we have
(

n

k

)

· 2−(k2) ≤ n4·log n · 2−(k2) = 24·log 2n · 22·log n−8·log 2n ≤ 2−2·log 2n = n−2·log n.

Thus
Proposition 19. PrG∈ER(n,1/2)

[

G contains a clique of size4 · log n
]

= 1
nΩ(log n) .

For any graphG with vertex set [n] andA ⊆ [n] we denote byG + K(A) the graph
obtained fromG by adding edges such that the subgraph induced onA is a clique. For
n ∈ N andk ∈ [n] we consider a second distribution ER(n, 1/2, k): pick a random
(ordered) graphG ∈ ER(n, 1/2) and a uniformly random subsetA of [n] of sizek and
plant in a clique onA in G, thus gettingG + K(A). 6 We viewG andG + K(A) as
orderedgraphs equipped with the natural ordering on [n].

The following decision version PCC(δ) of the planted clique conjecture states that
no polynomial time algorithm distinguishes between the distributions ER(n, 1/2) and
ER(n, 1/2, 4 · log n) more thanδ(n).

Conjecture 20 (The planted clique conjecture PCC(δ)). Let δ : N → R with 0 <
δ(n) < 1 for all n ∈ N. For every polynomial time algorithmA there is ann0 ∈ N such
that for alln ≥ n0,
∣

∣

∣

∣

Pr
G∈ER(n,1/2)

[

A acceptsG
]

− Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

A acceptsG + K(A)
]

∣

∣

∣

∣

≤ δ(n).

Clearly, if δ(n) ≤ δ′(n) for all n ∈ N, then PCC(δ) implies PCC(δ′). In [14] the
assumption PCC(1− 1/q) for someq ∈ N[X ], that is, for some polynomialq with
natural numbers as coefficients, has been put to good use.
Proposition 21. For q ∈ N[X ], the statementPCC(1− 1/q) impliesP 6= NP.

Proof. By Proposition 19 we know that for sufficiently largen,

Pr
G∈ER(n,1/2)

[

G contains a clique of size 4· log n
]

< 1/q(n). (7)

If P = NP, then there is a (deterministic) polynomial time algorithmA deciding whether
a graph contains a clique of size 4· log n. For such anA we have by (7),

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

A acceptsG + K(A)
]

− Pr
G∈ER(n,1/2)

[

A acceptsG
]

> 1− 1
q(n)

.

This contradicts to PCC(1− 1/q). 2

By the Immerman-Vardi Theorem, on ordered graphs polynomial time algorithms
correspond to LFP-sentences. Therefore, PCC(δ) just says that for every LFP-sentenceϕ
and all sufficiently largen,

∣

∣

∣

∣

Pr
G∈ER(n,1/2)

[

G |= ϕ
]

− Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

G + K(A) |= ϕ
]

∣

∣

∣

∣

≤ δ(n).

6 In the following the notationG + K(A) ∈ ER(n, 1/2, k) should give the information that the
random graph wasG and that the random subset of [n] of sizek wasA.
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This holds if

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

G |= ϕ ⇐⇒ G + K(A) |= ϕ
]

≥ 1− δ(n). (8)

For our intended application to the Ehrenfeucht-Fraı̈ssé-method we need an even stronger
assumption, namely that for everym ∈ N and all sufficiently largen,

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

for all ϕ ∈ LFPm:
(

G |= ϕ ⇐⇒ G+K(A) |= ϕ
)]

≥ 1−δ(n),

or more succinctly,

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

G ≡LFPm
G + K(A)

)]

≥ 1− δ(n).

We shall need an effective bound for the rate of convergence.So we introduce the
following logic version LPCC(ε) of the planted clique conjecture.
Conjecture 22 (LPCC(ε)). Let ε : N → R with 0 < ε(n) < 1 for all n ∈ N. There is
a computable functionf : N→ N such that for everym ∈ N and alln ≥ f (m),

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

G ≡LFPm
G + K(A)

]

≥ ε(n).

The previous remarks show:

Proposition 23. Let ε : N → R with 0 < ε(n) < 1 for all n ∈ N. ThenLPCC(ε)
impliesPCC(1− ε).

By this proposition and Proposition 21, we get
Corollary 24. For q ∈ N[X ], LPCC(1/q) impliesP 6= NP.
Assume that LPCC(ε) holds. By taking a natural numberm such that LFPm contains a
sentence expressing that the number of edges is even, we see that limn∈N ε(n) ≤ 1/2.
In Proposition 26 we generalize this and show that limn→∞ ε(n) must be 0.

7. The planted clique conjecture and(3-COL , LFP)-sequences

The following result shows that, assuming LPCC(1/q), there is a probabilistic algorithm
yielding a random sequence (Gm, Hm)m∈N such that

Gm ≡LFPm
Hm, Gm ∈ 3-COL, and Hm /∈ 3-COL (9)

holds with high probability. By Theorem 15 we cannot have a verifier for this algorithm,
that is an efficient algorithm that verifies the properties stated in (9) (assuming the
existence of a pseudorandom generator).

Theorem 25. Assume thatLPCC(1/q) holds for some polynomialq ∈ N[X ]. Then
there is a probabilistic algorithmP which on inputm ∈ N generates a pair(Gm, Hm)
of ordered graphs in time(|V (Gm)| + |V (Hm)|)O(1) such that

Pr
[

Gm ≡LFPm
Hm, Gm ∈ 3-COL, and Hm /∈ 3-COL

]

≥ 1
(

|V (Gm)| + |V (Hm)|
)O(1) .

Moreover,P on inputm ∈ N first deterministically computes the vertex sets of the
graphsGm andHm.
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Proof. Consider the problem

CLIQUE(4 · log )
Instance:An n ∈ N and an ordered graphG with |V (G)| = n.
Problem:DoesG have a clique of size 4· log n?

The proof relies on the following two facts (we leave the details to the reader):

– “LPCC(1/q) for someq ∈ N[X ]” essentially states that there is a probabilistic
algorithmP which generates a

(

CLIQUE(4 · log ), LFP
)

-sequence (Gm, Hm)m∈N

of ordered graphs in polynomial output time such that

Pr
[

Gm ≡LFPm
Hm, Gm ∈ CLIQUE(4 · log ), and Hm /∈ CLIQUE(4 · log )

]

≥ 1
(

|V (Gm)| + |V (Hm)|
)O(1) .

– As CLIQUE(4 · log ) is in NP and 3-COL is NP-complete and has a padding func-
tion, we can transform the

(

CLIQUE(4 · log ), LFP
)

-sequence into a (3-COL, LFP)-
sequence. 2

8. Some remarks on the logic version of the planted clique conjecture

In this section we show (see Lemma 27) that with positive asymptotic probability we
can distinguish the LFPm-theory of the graphsG andG + K(A) by modulo count-
ing their edges (see Lemma 27 for the precise statement). Using this fact, we refute
LPCC(ε) unless limn∈N ε(n) = 0.

Proposition 26. Let ε : N→ R+. If LPCC(ε) holds, thenlimn∈N ε(n) = 0

Proof. It suffices to show that for every positiveδ ∈ R there is anm ∈ N such that

lim
n→∞

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

G ≡LFPm
G + K(A)

]

≤ δ.

This is an immediate consequence of the following lemma as there are LFP-sentences
expressing in an ordered graph that the number of edges is congruenti moduloℓ (for
ℓ ∈ N andi ∈ {0, . . . , ℓ− 1}). 2

Lemma 27. Let ℓ ∈ N and i ∈ {0, . . . , ℓ − 1}. Then for every nondecreasing and
unbounded functionh : N→ N,

lim
n→∞

Pr
G+K(A)∈ER(n,1/2, h(n))

[

|E(G + K(A))| − |E(G)| ≡ i modℓ
]

=
1
ℓ
.

Proof. Let n ∈ N andk ∈ [n]. Then, for every graphG with vertex set [n], every
subsetA of [n] of sizek, and everyi ∈ {0, 1, . . . , ℓ− 1}, we have

|E(G+K(A))|−|E(G)| ≡ i modℓ⇐⇒ |E(G)∩E(K(A))| ≡
(

k

2

)

− i modℓ. (10)
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Here,E(K(A)) denotes the set of edges of the clique onA. We sets(k) :=
(

k
2

)

. Then
|E(K(A))| = s(k). For everyr ∈ {0, 1, . . . , ℓ− 1}, we letar(k) be the number of those
subsets ofE(K(A)), whose cardinality is equivalent tor moduloℓ; thus

ar(k) =
j≡r mod ℓ
∑

0≤j≤s

(

s(k)
j

)

.

Note thatar(k) does not depend onn (and in particular, not on the chosen subsetA
of [n] of sizek). By (10), we get for alln ≥ k, all subsetsA of [n] of sizek, and all
i ∈ {0, 1, . . . , ℓ− 1},

Pr
G∈ER(n,1/2)

[

|E(G + K(A))| − |E(G)| ≡ i modℓ
]

=
as(k)−i

2s(k)
. (11)

Claim 1.Let r ∈ {0, 1, . . . , ℓ− 1}. Then (hereaℓ(k) := a0(k)),

lim
k→∞

|ar+1(k)− ar(k)|
2s(k)

= 0.

Proof of Claim 1:First we show that there is a positiveι ∈ R such for all sufficiently
small positiveδ ∈ R and alln ∈ N with (1/2− δ) · n ∈ N,

(

n

(1/2− δ) · n

)

= O

(

2(1−ιδ2)·n
√
n

)

. (12)

In fact, using Stirling’s formula

√
2πn ·

(n

e

)n

≤ n! ≤ e ·
√
n ·
(n

e

)n

,

we get forn ∈ N andε ∈ R with ε · n ∈ N,

(

n

ε · n

)

≤ e · 2H(ε)·n

2π ·
√
ε · (1− ε) · n. (13)

HereH : (0, 1)→ R denotes thebinary entropyfunction defined by

H(ε) = −ε · log ε− (1− ε) · log (1− ε).

Recall thatH attains 1, its maximum value, atε = 1/2. We want to bound the values
of H in the neighborhood of 1/2. Letδ ∈ R with 0≤ δ < 1/2. Then

H(1/2− δ) = −(1/2− δ) · log (1/2− δ)− (1/2 + δ) · log (1/2 + δ).

Using the Taylor series for logx, we get from this equality that there is anι ∈ R with
ι > 0 such that for sufficiently smallδ ∈ R with δ ≥ 0,

H(1/2− δ) ≤ 1− ι · δ2. (14)
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Hence, assuming in addition thatδ < 1/
√

8 and (1/2− δ) · n ∈ N,
(

n

(1/2− δ) · n

)

≤ e · 2(1−ι·δ2)·n

2π ·
√

(1/4− δ2) · n
(by (13) and (14)

= O

(

2(1−ι·δ2)·n
√
n

)

(asδ2 < 1/8),

which is the desired equality.
Now let j, s ∈ N satisfy 0≤ j < s. Note that

(

s

j + 1

)

−
(

s

j

)

=
s− 2j − 1

j + 1
·
(

s

j

)

. (15)

We distinguish two cases.

Casej ≤ s/2− 3
√
s2: Thenj ≤ (1/2−δ) ·s for δ ∈ (s−2/3, s−1/3). If (1/2−δ) ·s ∈ N,

we get by (12)
(

s

j + 1

)

−
(

s

j

)

≤ s ·
(

s

(1/2− δ) · s

)

≤ s · O
(

2(1−ι·δ2)·s
√
s

)

(by (15) and (12))

= O

(

s · 2s√
s · 2ι· 3√s

)

= O

(√
s · 2s

2ι· 3√s

)

.

Cases/2− 3
√
s2 < j < s/2: Then

(

s

j + 1

)

−
(

s

j

)

≤ 2 3
√
s2

s/2− 3
√
s2 + 1

·
(

s

s/2

)

(by (15)

= O

(

2s

s−2/3+3/3+1/2

)

= O

(

2s

s5/6

)

.

Putting all together we get the statement of Claim 1 as follows

ar+1(k)− ar(k) =
j≡r+1 modℓ
∑

0≤j≤s(k)

(

s(k)
j

)

−
j≡r mod ℓ
∑

0≤j≤s(k)

(

s(k)
j

)

≤
j≡r mod ℓ
∑

0≤j<s(k)/2

((

s(k)
j + 1

)

−
(

s(k)
j

))

=
j≡r mod ℓ
∑

0≤j≤s(k)/2− 3
√

s(k)2

((

s(k)
j + 1

)

−
(

s(k)
j

))

+
j≡r mod ℓ
∑

s(k)/2− 3
√

s(k)2<j<s(k)/2

((

s(k)
j + 1

)

−
(

s(k)
j

))

= O

(

s(k) · √s · 2s(k)

2ι·
3√s(k)

)

+ O

(

s(k)2/3 · 2s(k)

s(k)5/6

)

(by the equalities derived above)

= o(2s(k))
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Similarly we can showar(k)− ar+1(k) = o(2s(k)). ⊣
Claim 2.Let δ > 0. If k is sufficiently large, then for alln ≥ k, all subsetsA of [n] of
sizek, and alli ∈ {0, 1, . . . , ℓ− 1}, we have

1
ℓ
− δ ≤ Pr

G∈ER(n,1/2)

[

|E(G + K(A))| − |E(G)| ≡ i modℓ
]

≤ 1
ℓ

+ δ.

Proof of Claim 2:For everyi ∈ {0, 1, . . . , ℓ− 1} let

pi(k) :=
as(k)−i(k)

2s(k)
.

Claim 1 implies that for everyι > 0 and all sufficiently largek,

|pi+1(k)− pi(k)| ≤ ι.

Thus,
p0(k)− i · ι ≤ pi(k) ≤ p0(k) + i · ι. (16)

As
∑ℓ−1

j=0 j = ℓ · (ℓ− 1)/2, we obtain

ℓ · p0(k)− ℓ · (ℓ− 1)
2

· ι ≤
ℓ−1
∑

j=0

pj(k) = 1≤ ℓ · p0(k) +
ℓ · (ℓ− 1)

2
· ι

Hence,
1
ℓ
− (ℓ− 1)

2
· ι ≤ p0(k) ≤ 1

ℓ
+

(ℓ− 1)
2
· ι. (17)

Choosingι small enough, (16) and (17) imply for all sufficiently largek and every
i ∈ {0, 1, . . . , ℓ− 1},

1
ℓ
− δ ≤ pi(k) ≤ 1

ℓ
+ δ.

As for all n ≥ k, all subsetsA of [n] of sizek, and alli ∈ {0, 1, . . . , ℓ − 1}, we have
(compare (11))

pi(k) =
as(k)−i

2s(k)
= Pr

G∈ER(n,1/2)

[

|E(G + K(A))| − |E(G)| ≡ i modℓ
]

,

this yields our claim. ⊣
Clearly, Claim 2 immediately implies the statement of Lemma27. 2

9. Further results and open questions

In Section 4 we have seen that for no problemQ of ordered graphs there exists a
(Q, LFP)-sequence, which can be generated in polynomial outputtime. Recall that LFP
captures polynomial time on ordered graphs. More generally, letL be a logic capturing
one of the complexity classes LOGSPACE, P, or PSPACE on (ordered) graphs: Then,
for no problemQ of (ordered) graphs we can generate a (Q,L)-sequence (Gm, Hm) by
an algorithm which satisfies the resource bound in|V (Gm)| + |V (Hm)| characteristic
for the corresponding complexity class, e.g., not in spaceO(log (|V (Gm)| + |V (Hm)|))
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for LOGSPACE. Furthermore there are extensions of these results to “nondeterministic
classes” such as NLOGSPACE and NP and extensions for so-called Ajtai-Fagin games
adequate for (monadic)Σ1

1 (see [5] for most of these results).
We are far from understanding when an efficiently computable(Q,L)-sequence

exists. Even for first-order logic we have no simple and informative characterization
of the problemsQ with a (Q,FO)-sequence computable in polynomial output time.
Besides the “negative” Example 13, we have a positive result: If Q is NP-hard under FO-
reductions (a property shared by many natural NP-complete problems), then a (Q,FO)-
sequence can be generated in polynomial output time.

In Section 5 we have mentioned that in most applications of the Ehrenfeucht-Fraı̈ssé-
method the verification thatGm andHm satisfy the same sentences of the correspond-
ing logic of “quantifier rank” or length≤ m was done by an algorithm running in time
f (m)·(|V (Gm)|+|V (Hm)|)O(1) for some computable functionf . In the Appendix of [5],
we have shown this explicitly for two (nontrivial) applications of the method. However,
this is not always the case; for example, not for the highly nontrivial application of the
Ehrenfeucht-Fraı̈ssé-method in [21].

We have seen in Section 6 that LPCC(1/q) for someq ∈ N[X ] implies P 6= NP. Can
one refute the statement “there is aq ∈ N[X ] with LPCC(1/q)?” or are there results or
insights which make the statement plausible?

Furthermore, we ask: Is it true that for every single LFP-sentenceϕ we have

lim
n→∞

Pr
G+K(A)∈ER(n,1/2, 4·log n)

[

G |= ϕ ⇐⇒ G + K(A) |= ϕ
]

≥ 1/2.

We have shown that every algorithm realizable by AC0 circuits almost surely can not
distinguishG andG + K(A) for G + K(A) ∈ ER(n, 1/2, 4 · log n).
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