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Abstract. The Ehrenfeucht-Fraissé method for first-order logic famther log-

ics relevant in descriptive complexity has been quite ss&foé However, for key
problems such as £ NP or NP# co-NP no progress has been achieved using it.
We show that for these problems we can not get the board faratresponding
Ehrenfeucht-Fraissé game in polynomial output timenéiee allow probabilis-

tic methods to obtain the board. In order to get this resuhiéprobabilistic case,
we need an additional hypothesis, namely that there is amitdq, the verifier,
verifying in a reasonable time that the two structures otibard satisfy the same
properties expressible in a suitable fragment of the Iobie (non)existence of
such a verifier is related to a logic version of the plantegugiconjecture.

1. Introduction

In finite model theory and in descriptive complexity theohg tEhrenfeucht-Fraissé
method for first-order logic FO is mainly used to obtmiexpressibility resultandhier-
archy resultsWhile Fraissé [9] introduced this method in more algahterms, Ehren-
feucht [6] phrased it in an appealing game-theoretic forond@rning generalizations,
games were developed for further logics, mainly for logasvant in descriptive com-
plexity theory such as least fixed-point logic LFP, (monaeiistential second-order
logic (monadic)-1, and finite variable logics.

An inexpressibility result for a logié, shows that a given property is not definable
(or expressible) irl.. A hierarchy result states that a certain increasing sexpien C
H, C ... of classes H, of sentences of a given logic is strict; that is, that for gverc
N there is a property of finite structures expressible by scengesce of H,., but by
no sentence of |. Often, to obtain such an inexpressibility result, Ehrecfe-Fraissé
games have been used. The finite variable hierarch{*(FQx is an example of a strict
hierarchy. Here FO consists of those FO-formulas which contain at mostariables.

Suppose we want to show, using the Ehrenfeucht-Fraisg#omhethat for (finite)
ordered graphs “eveness” of the cardinality of the vertéissgot expressible in FO, or
equivalently, that for everyn € N “eveness” is not expressible by an F&entence.
Here FQ, denotes the set of sentences of first-order logic of quanitiitk at mosin.
One chooses ordered grapfis, and H,, that are paths of length™2+ 1 and 2,
respectively, and shows th@t,, =r0,, H,,, thatis, that7,, andH,, satisfy the same
sentences of FQ. The latter property is shown by playing, more preciselyabglyzing
the Ehrenfeucht-Fraissé game (for first-order logichwibard GG,,., H,,,). Itis not hard
to show that the size of the boar@,(,, H.,,) must be exponential im.

Let us mention some further results obtained by the Ehrehfiebraissé method (or
by a probabilistic generalization of it):



— Reachability in directed graphs is not expressible in rdang} [1].

— For ordered graphs connectivity is not expressible in rdarig! [20].

— The finite variable hierarchy for FO on ordered structusestiict [18, 12].

— The arity hierarchy is strict for LFP [10].

— For everyk € N the hierarchy whoseith member consists of formulas with at
mostm nestedk-ary fixed-point operators is strict for LFP [15].

We know (see Theorem 1) that £ NP if and only if for everym there are a 3-
colorable ordered grapfi,,, and an ordered grapH,,,, which is not 3-colorable, such
that G,,, and H,,, are indistinguishable by sentences of LFP of “quantifiektaor
length at mostn; this last property, denoted b¥,,, =.rp,, H,,, would be shown
by the Ehrenfeucht-Fraissé game for LFP. Let us call sisgtgaence®,,,, H.,)men @
(3-CoL, LFP)-sequence. Furthermore, MR0o-NP if and only if there is a (3-QL, ©1)-
sequence, where a (3eC, >-})-sequence is defined in a similar way. In [8], the authors
remark:

It is known that>} # 11} if and only if such a separation can be proven vi-
a second-order Ehrenfeucht-Rsz games. Unfortunately, “playing” second-
order Ehrenfeucht-Fris games is very difficult, and the above promise is
still largely unfulfilled; for example, the equivalencelween theNP = co-NP
question and th&?1 = I} question has not so far led to any progress on either
of these questions.

And Kolaitis remarks in [7, page 56]:

Although ... Ehrenfeucht-Frag games yield a sound and complete method for
studying ESO-definability [that i$;1-definability] (and thus potentially lead-
ing to the separation oNP and co-NP), so far this approach has had rather
limited success. The reason is that formidable combinakdiifficulties arise

in implementing this method ...when dealing with ESO-féasin which at
least one of the existentially quantified second-orderakidas has an arity
bigger than 1.

Definitely the authors are right with their observation thpddying” second-order Ehren-
feucht-Fraissé games is very difficult. However, in ottdeterive the last two hierarchy
results mentioned above, the corresponding authors ssfatlgsapply games for logics
containing nonmonadic second-order quantifiers.

In the example of “eveness” we already observed that theo$iadoard G&,,,, H.,,)
of ordered graphs has to be exponentiahinOn the other hand, analyzing most of the
successful applications of the Ehrenfeucht-Fraisséoaebbtained so far, we realized
that the boards({..., H,»)men could be constructed in polynomial output time, that is,
intime (V(G)|+|V (H,,)|)°®. However, by a simple and standard diagonal argument
we show:

(A) No(3-CoL, LFP)}sequence can be generated in polynomial output time.

Even more, to the best of our knowledge, it is open whetherameget such a sequence
of boards by an algorithm more efficient than brute force.

Mostly in successful applications of the Ehrenfeuchtiss@ method the main task
consisted in constructing boards such that one can find amremgt showing, via Ehren-
feucht-Fraissé games for the given logic, that the cpoeding structures are indistin-
guishable to a certain extent. As mentioned, for a proof gfNfP via the Ehrenfeucht-
Fraissé method, already the presumably easier step efyreanstructing the sequence



of boards (and forgetting about the concrete verificatiotheir indistinguishability) is
hard. This makes our “negative” result even stronger witdpeet to the existence of
positive applications of the Ehrenfeucht-Fraissé metioo sufficiently rich logics. It
is an interesting challenge, though: how can we use the Edueht-Fraissé method to
prove PZ NP if we must necessarily work with non-constructive ba&rd

What happens if we allow probabilistic algorithtn® yield the boards for the
Ehrenfeucht-Fraissé method? Such random construdtiaves been used for two of
the applications mentioned above, namely to show that edalitly in directed graphs
is not definable in monadic second-order logic and in thefgsbRBossman [18] that the
finite variable hierarchy for first-order logic on ordere@pghs is strict. It turns out that
in order to derive a probabilistic generalization of (A) béttype “No (3-®L, LFP)-
sequence can be generated by a probabilistic algorithmlympmial output time” we
need a further assumptidmamely that there is @erifier, that is, an algorithm that in a
reasonable time verifies that with high probability the lob@?,,,, H,,) satisfies

G, € 3-CoL, H,,, ¢ 3-CoL, andG,, =.rp,, Hy,.
So we get:

(B) Assume that there is a pseudorandom generato3NGoL, LFP)-sequence hav-
ing a verifier can be generated by a probabilistic algorithmpiolynomial output
time.

Is the assumption of the existence of a verifier necessarg?qiiestion is related to
the planted clique conjecturerhis conjecture claims that there is no polynomial time
algorithm that detects a clique of size lbg n, which has been planted uniformly at
random in a random graph with vertices and edge probability'2. In this article we
introduce a stronger conjecture, a logic version LPCC ofihaated clique conjecture.
It is not hard to show:

(C) If LPCCholds, then g3-CoL, LFP)sequence can be generated by a probabilistic
algorithm in polynomial output time.

As already the planted clique conjecture implieg RP, so does LPCC. Can we refute
LPCC? We show that this is the case for some strengthenin§6f.

The content of the different sections is the following. Affexing some notation
(in Section 2), we recall the Ehrenfeucht-Fraissé metha8ection 3. In Section 4,
first we study the minimum size of the boaid,, H,,) of a (3-CoL, LFP)-sequence
and then we prove statement (A). Section 5 is devoted to af pfabe probabilistic
generalization of this result, stated as (B) above. In $adi we introduce the logic
version LPCC of the planted clique conjecture and deriiestant (C) in Section 7. In
Section 8 we show that some strengthened versions of LPC@futable. Finally, in
the last section we mention extensions of our results ane orther results related to
the topic of this article. Moreover, we state some conjext@and open questions.

3 At least here we should mention that there exist succespfilications of the Ehrenfeucht-
Fraissé method, where the boards are not defined by a {plisbe) algorithny for example,
in [21] random graphs with edge probability © are considered, whereis the cardinality of
the vertex set and is irrational.

4 Besides the assumption of the existence of a pseudorandoenager.



2. Preliminaries

For a natural numbet we set p] := {1,...,n}. For a graphG we denote by/'(G)
and E(G) its vertex set and its edge set, respectively. We speak ofdered graplt+

if G comes with an ordering of its vertex set. As already mentipimethis article graph
always means finite graph. problem(or, property) @ of ordered graphs is a class of
ordered graphs closed under isomorphism.

We assume familiarity with basic notions of first-order D§O and of least fixed-
point logic LFP. Concerning LFP, till Section 8 essentialiy only need the Immerman-
Vardi Theorem, which we recall in the next section.

Let L be a logic. A propertyy of ordered graphs idefinable inL (or, expressible
in L) if there is a sentence df such that} is its class of models.

3. The Ehrenfeucht-Frais&-method

Let us denote by Ff) the set of sentences of first-order logic of quantifier rankngx-
imum number of nested quantifiers) at moesand by LFR, the set of LFP-sentences
of length|y| < m. Here|y| denotes the number symboldn ¢ (that is, the number of
connectives, quantifiers, LFP-operators, variables,however, two occurrences, say,
of the same variable ip count as two symbols).

Let L be one of the logics FO or LFP and denotelly the corresponding set FO
or LFP,,. The Ehrenfeucht-Fraissé method relies on the followasylt.

Theorem 1. For L € {FO, LFP} and a problent) of ordered graphs the following are
equivalent:
(i) For all m € N there are ordered graphs,,, and H,,, with

Gn€eQ, Hp,¢Q, and Gm =1, H. (1)

(i) @ is notdefinable in’.

So, in order to show that the probleghis not definable in the logié € {FO, LFP}, it
suffices to exhibit a@, L)-sequence in the sense of the following definition.

Definition 2. AssumeL € {FO,LFP} and let@ be a problem of ordered graphs. A
sequence®,,, H,)men Of ordered graphs is &), L)-sequencd for all m € N

Gm € Qa H,, ¢ Qv and G, =Lm Hy,.

In many concrete applications of Theorem 1, EhrenfeuchtsBé-games are applied
to show thatG,,, =1, H,,. We recall the Ehrenfeucht-Fraissé-game for FO (see [4,
10, 15] for the Ehrenfeucht-Fraissé-game for LFP andrakiensions of FO by fixed-
point operators). Letr andH be ordered graphs amd € N. The Ehrenfeucht-Fraissé-
game G, (G, H) (with boardsG and H) is played by two players called Spoiler and
Duplicator. The game consists of a sequencexabunds. In round of the game, first
Spoiler picks a graph (eithét or H) and a vertex of his choice in that graph. Duplicator
then replies by picking a vertex of his choice in the othepftd hus, aftern rounds,
verticesuy, . .., u,, in V(G) andwvy, ..., v, in V(H) have been selected,; andv;
being the vertices chosen in rounduplicatorwinsif the induced ordered subgraphs
Gl{u1,...,um}] and H[{vy, ..., v }] (induced byG on{us,...,u,} and byH on
{v1,...,vm}, respectively) are isomorphic via the mappif@:;) := v; for i € [m].

It should be clear what it means that Duplicator has a winsingtegy for the game
G..(G, H).



Theorem 3 (Ehrenfeucht-Frais&-Theorem). Let G and H be ordered graphs and
m € N. Then Duplicator has a winning strategy for the ga@g(G, H) if and only if
G =FO,, H.

The following simple application of the Ehrenfeucht-Bs#i-game shows that the
class E/EN of ordered graphs with vertex set of even cardinality is refitrcible in FO:
Form € N let the ordered graphs,,, and H,,, be paths of length’2 + 1 and 27,
respectively. Then Duplicator has a winning strategy f& game G,(G,., H,,). In
fact, in theith round he picks his vertex, or v;, such that for allj € [i — 1],

dSm (ug, uz) = d"m (vg,v5) or (d9m (ug, ug) > 277 and dP (v, v)) > 270,

Here d“(u, u’) denotes the distance of the verticesind «’ in the graphG. Thus,
G =ro,, Hn and hence,@,,,, H,,)men is an (BVEN, FO)-sequence.

The graph<~,, andH,, just constructed have size exponentiakinWe can't do it
better: the sizes of the graphs of evefy, FO)-sequence for any problethof ordered
graphs must be exponential in. This follows from the following result, which can
easily been derived.

Proposition 4. Letm € N. If G and H are nonisomorphic ordered graphs, then
G =ro,,., H implies|V(G)|, |V (H)| > 2.

4. Alogical reformulation of P Z NP
Immerman and Vardi have proven that least fixed-point lodt® lcaptures the com-
plexity class P in the following sense.

Theorem 5 (Immerman-Vardi-Theorem). A problem of ordered graphs is decidable
in polynomial time if and only if it can be defined in least fibpadnt logic LFP.

As the problem 3-©L, the 3-colorability problem of ordered graphs, is NP-costg|
we get:

Corollary 6. P# NPif and only if 3-CoL is not definable in.FP.

We defined LFR, = {¢ | ¢ LFP,,-sentence withy| < m}. The previous corollary
together with Theorem 1 yield:

Corollary 7. P #Z NP if and only if there is &3-CoL, LFP)sequence, that is, a se-
quencdG.,,, H,,)men Of ordered graphs such that for ath,

G, € 3-CoL, H,, ¢ 3-CoL, and Gy, =iep,, Hn.

Assume PZ NP. What can we say about the minimum size of the graphs ofGdB LFP)-
sequence and what about the running time of an algorithmrgéng a (3-®L, LFP)-
sequence? We set

SI1zE(3-CoL)(m) := min{max{|V(G)|,|V(H)|} | G andH are ordered graphs with
G € 3-CoL, H ¢ 3-CoL, andG =rp, H}.

Recall that a probler has circuit size:, wherec : N — N, if for n € N, ¢(n) is the
leastd € N such there exists a (Boolean) circaitwith n input variables of size< d
such that for every: with |x| = n,

re€Q <= Cx)=1(.e.,C accept).
In [5] we derived the following lower and upper bound Brzg(3-CoL)(m).



Proposition 8. Assumé® Z NP. Then:
(&) There is are > 0 such that for allm € N we have2®™ < sizg(3-CoL)(m).
(b) If the circuit size of3-CoL is not in2°™, then for alle > 0 and infinitely manyn,

SIZE(3-CoL)(m) < o(1+e)-m-log m

Definition 9. An algorithm A generateshe sequence,,., H,,)men if A on input
m € N outputs G, Hn).

By systematically testing, fof = 1,2,..., all graphsG and H with vertex sets of
cardinality< ¢ whether they satisfy

G € 3-CoL, H ¢ 3-CoL, and G =.gp,, H,

we obtain from the previous result an upper bound for the tiseded to get the graphs
of a (3-CoL, LFP)-sequence, even of a sequence with boards of minimuen siz

Proposition 10 ([5]). If P #Z NP, then there is an algorithm that generate@aColL, LFP)-

sequence in tim@O(sZE@-CoNm’) The sequenclym, Hy)men generated by the al-
gorithm satisfiesize(3-CoL)(m) = max{|V(G)|, |V (H:wm)| }-

By Proposition 4, the boards of alf)( FO)-sequences for any problegh of or-
dered graphs must have size exponentiahirHowever we could construct the graphs
G,, and H,, of an (EVEN, FO)-sequence ipolynomial output timethat is, in time
V(G| + |V(H))PW. In fact, we realized that in most successful applicatidns o
the Ehrenfeucht-Fraissé method showing that a propentgtidefinable in a given logic,
the boards for the corresponding game can be constructealyngmial output time.
So we ask, is it possible to construct a (84CLFP)-sequence in polynomial output
time? By a standard diagonalization argument we show tleigimot possible:

Theorem 11. No(3-CoL, LFP)}sequence can be constructed in polynomial output time.

Proof. We sketch the main steps of a proof (for more details see fg3ume for a
contradiction that the algorithth generates a (3-QL, LFP)-sequenceX,,,, H,)men
in polynomial output time. By passing to a suitable subsaqgeécf. the proof of Lem-
ma 16), we can assume thét,(, H,,)ncn iS monotonethat is, that it satisfies

max{|V(Gm)|, [V(Hm)|} < min{|[V(Gpsa)|, [V (Hmea) |}

Furthermore, we can assume (again by passing to a suitdidecquence) thav (G,,)| >
|V (H,,)| forallm € Northat|V(G,,)| < |V(Hy,)| forallm € N. Then we can trans-
form A into an algorithniB running in polynomial time such that for alt € N,

B acceptss,, and B rejectsH,,.

By the Immerman-Vardi Theorem there is an LFP-sentengesaypy € LFP,,,, such
that for all ordered graphs,

G E pp < Baccepts’.
In particular, for allm € N,

Gm ': OB and Hm l?f ©YB-



Form > my, this equivalence contradiots,, =irp,, Hn,- O

The same proof works for every properdyof ordered graphs (instead of 3eC),
even more: By definition, an LFBequencés a sequenced,,,, H,,)men Of ordered
graphs#,, and H,,, with

Gm # H,, (G, andH,, are notisomorphic) ands,, =.rp,, Hpm.

Clearly every @, LFP)-sequence for any proper§y of ordered graphs is an LFP-
sequence. We state the following result, which can be desimilarly to Theorem 11.

Theorem 12 ([5]). No LFP-sequence can be generated in polynomial output time.

We should mention that also for first-order logic there abfgms(@ such that no
(Q, FO)-sequence can be generated in polynomial output time:
Example 13. Let B C {0, 1}* be a P-bi-immune set; that is, neithi@mor {0, 1}*\ B
contains an infinite subset decidable in polynomial time.4~@ B, x = x1 ... x, with
x; € {0,1}, let G(z) be the ordered graph with vertex set{ 1], with the natural
ordering on § + 1], and with edge sef{i,i + 1} | i € [s]andz; = 1}. Let Q(B) be
the smallest class of ordered graphs containing-éil) with x € B and closed under
isomorphism. No Q(B), FO)-sequence can be generated in polynomial output time.
For a contradiction assume that,(,, H,,)n.cn IS a (Q(B), FO)-sequence generated in
polynomial output time. As above we can assume that the seglie monotone and
that|V(G..)| > |V (Hy,)| for allm € N orthat|V(G,,)| < |V(Hy,)| forallm € N. In
the first caseB contains an infinite subset in P and in the second ¢@sg}* \ B.

5. Onrandom (3-CoL, LFP)-sequences

We have seen that we cannot construct a (3-@ FP)-sequence in polynomial out-
put time. What happens if we consider random sequences® Hnersuccessful ap-
plications of the Ehrenfeucht-Fraissé-method wheregtlaghs of the corresponding
sequences are constructed randomly. For example, in thistwaas been shown that
reachability in directed graphs is not definable in monad@oad-order logic (see [1])
and that the finite variable hierarchy for first-order logit ardered graphs is strict
(see [18]).

We aim at a result showing limitations of the probabilisticrénfeucht-Fraissé-
method similar to Theorem 11. For this purpose we have to ittheconsideration a
further property of such sequencés(, H,,)n.cn Satisfied in most successful applica-
tions of the Ehrenfeucht-Fraissé-method obtained sd-&ar(3-CoL, LFP)-sequences
(Gm, Hn)men this property ensures that we can verify tiigt, € 3-CoL, H,, ¢
3-CoL, and that&,,, =.gp,, H,, in areasonable time. Condition (r2) of the following
definition of random (3-0OL, LFP)-sequence contains the precise formulation.

Definition 14. A probabilistic algorithn® generates a randoi3-CoL, LFP)sequence
(G, Hm)men if (r1) and (r2) are satisfied.

(rl) Foreverym € N the algorithmP, on inputm, first deterministicallycomputes the
vertex setd/(G,,) andV (H,,), and then it constructs the ordered graghs and
H.,,, probabilistically.

(r2) There is an algorithr¥, theverifier, such that (a)—(c) hold.

(a) For all ordered graphs andH and allm € N,
if Vaccepts@, H,m), thenG =gp,, H, G € 3-CoL, andH ¢ 3-CoL.



(b) For sufficiently largen € N and allm’ > m,
1
oM
(IVGo) |+ 1V (Hyur))

(c) The running time ofV on input G, H, m) is bounded byf(m) - (|[V(G)| +
|V (H)|)°® for some computable functigh: N — N.

In this section we show:

Theorem 15. Assume that there is 2¢/<I-pseudorandom generafofor some natu-
ral numberc > 1. Then there is no probabilistic algorithm that generatesaadom
(3-CoL, LFP)}sequencéG,,,, H,,)men in polynomial output time.

The following lemmas will finally yield a proof of Theorem 1%ag the following
lines: For a contradiction we assume that there exists agpitiftic algorithmP gener-
ating a random (3-0L, LFP)-sequence in polynomial output time. Essentially we us
the pseudorandom generator to derandomize the algofitimthis way we obtain a
deterministic algorithm which generates a (&HCLFP)-sequenceX,,,, H,,)men in
polynomial output time. This contradicts Theorem 11.

Pr[V accepts Gy, Hyp,m)| >

As in the deterministic case we say that a probabilisticrétigm P generates a ran-
dommonotong3-CoL, LFP)-sequenceif it generates a random (8t0_FP)-sequence
(G, Him)men, Which in addition to (r1) and (r2) satisfies (r3), where

(r3) forallm € N, max{|V(Gu)|, |V(Huy)} < min{|[V(Gp1)l, |V (Hm1)|}-
If furthermore (r4) and (r5) hold, where

(r4) [log (V(Gm)| +|[V(Hm)])] < [log (V(Gm+1)| + [V (Hm+1)])]
(r5) f(m) < max{|V(Gn)|, |V(Hm)|} (wheref is the computable function of (r2)(c)
used to bound the running time of the verifié,

then we speak of strongly monoton€3-CoL, LFP)sequence

For our proof of Theorem 15 we need to show that we can regitirtelves to
strongly monotone (3-GL, LFP)-sequences.

Lemma 16. If there is a probabilistic algorithm generating a randdi®-CoL, LFP)-
sequence in polynomial output time, then there is a prolstailalgorithm that gener-
ates a strongly monotone randdB+CoL, LFP)sequence in polynomial output time.

Proof. Similar to Proposition 4 one gets an increasing funcianN — N such that
s(m) is computable in spac@(log m) and such that for all ordered grapisand H
and allm € N,

|f G =LFP

's(m)

Assume that the (3-QL, LFP)-sequenceX.,., H,,)mcn IS generated by the probabilis-
tic algorithmIP in polynomial output time. Recall that the universe€ff andH,,, are
obtained deterministically. We define a function N — N inductively by

h(m) = s(0), if m=0,
| s(max{[V(Gron-w)|s [V (Him-)[}),  if m > 0.

H andG # H, then|V(G)|, |V (H)| > m.

5 We recall the notion of a pseudorandom generator in Defimitit.



AS Ghrim) =LFPy,y Him), thatis,Ghum) =Lre

Hh(m). we
s (max{‘v(ch(mfl))‘v‘V(Hh(m—l))‘})

have
V(G ren)ls [V (Hamy)| > max{ |V (Gren—1)l; |V (Hagn-1)!}-

As Gy =LFPy .y Hi(m), We haveGhny =irp,, Hnwm)- Therefore, it is routine to
show that the probabilistic algorithm, which on inputfirst computeg(m) and then
simulatesP on h(m), generates a random monotone (31CLFP)-sequence in poly-
nomial in output time.

So we may assume that the (3C LFP)-sequenced,,., H,,)men generated b
is monotone. We will get the sequence satisfying (r4) anjl §a subsequence of
(G, Hn)men, therefore it will be itself monotone. We may assume thatftimetion
f N — N mentioned in (r2) is time constructible. We defineN — N by

the leastn such thatf(0) < maxX{ |V (G)|, |V (Hm)|}, if k=0,
g(k) := < the leastn such thatf (k) < max{|V(G..)|, |V (Hm)|} and
[log (V(Gg@e—)| + |V (Hgw-))] < [log (V(Gm)| + [V(Hm)D], if k> 0.

Again it is routine to show that the probabilistic algorithwhich on inputm first com-
putesg(m) and then simulateB on g(m), generates a random and strongly monotone
(3-CoL, LFP)-sequence in polynomial output time. |

Before turning to the main step of the proof of Theorem 15 tierreader’s con-
venience we recall the definition of pseudorandom geneg&dowing [3, Defini-
tion 20.2]).

Definition 17. Let ¢ € N. An algorithmG is a 2*/¢I-pseudorandom generator if it
satisfies (g1) and (g2).
(g1) On every inputs € {0, 1}* the algorithmG computes a strings(s) € {0,1}*

with |G(s)| = 2[15I/¢T in time 25!,

(92) For every! € N and every circuiC of size at most®, wheret := 2[¢/¢1, we have

SE{Porl}z [C(G(S)) = 1} - rE{F;rl}t [C(’f‘) = 1} < 1/10

In the left term we consider the uniform probability space{on1}’, in the right
term the uniform probability space di9, 1}¢.

Lemma 18. Assume
— there is &2[*/¢I-pseudorandom generat6¥ for somec € N;
— there is a probabilistic algorithn® that generates a strongly monotone random
(3-CoL, LFP)sequencéG,,, H,,)men in polynomial output time.
Then there is aleterministicalgorithm A such that for everyn € N the algorithmA
on inputm computes a sequence of pairs

(GY HY), ..., (Gl HEm)

of ordered graphs, where alf®, haveV (G,,) as vertex set, and ali}, haveV (H,,) as
vertex set (recall thay' (G,,,) andV (H,,) are the vertex sets deterministically computed
by P on inputm). Moreover, the following conditions (al)—(a3) hold:



(al) The algorithmA runsin time(|V(G.,)|+|V (H,,|)°W; in particular, t,, = (|V(Gn)|+
|V (H )00
(a2) For sufficiently largen € N,

[tn] [Gm LFP., ‘Hm’ Gm € 3'COL anng’L ¢ ]
PE[tm 3 COL

B pe[tnl
whereV, the verifier, is the algorithm associated withand mentioned in condi-
tion (r2) of Definition 14. Note that the first inequality heldy this condition.

(a3) For everym € N we have
— max{|V(Gm)|, [V(Hm)[} < min{|V(G )|, [V (Hm+1)[}

— [log (V(Gm)| + [V(Hpm)[] < [log (V(Gumsa| + [V (Hms1)]) |3
— f(m) < maX{{|V(Gy)|,|V(H)|} (wheref is the function mentioned in (r2)(c)).
Proof. For the probabilistic algorithn? we choose the verifie¥V according to (r2).

By (r5) we know thatV on input .., H,,, m) runs in time polynomial in|{/ (G,,)| +
|V (H,,)|).- We can assume th&tsatisfies (r2)(h) instead of (r2)(b), where

(r2) () for sufficiently largem € N, Pr[V accepts Gy, H,, m)| > 4/5.

This is achieved by the standard amplification method. Maeeipely, by repeating
the algorithmP, on inputm, polynomial many times, that is, polynomial if{(G,,,)| +
|V (H,,)|) many times, and each time checking wheffiercceptsG,,., H,,, m), where
(Gm, Hy,) is the output ofP.

By the properties of?, we know that for somé € N with d > 10:

— The running time oP onm is bounded by |V (G.,.)| + |V (H,,)|)%.

— The running time of the algorithmi&on inputs &, H, m) with f(m) < max{|V(G)],
|V (H)|} is bounded by |V (G)| + |V (H)|)*.

We letA be the following deterministic algorithm:

Al m € Ninunary

1. simulate the (deterministic) part of the computatioriPof

2. on inputm yielding the universe¥ (G,,) andV (H,,)
3. 04 V(G| + |V (Hp)

4. L+ c-[d-logn]

5. for all s € {0,1} do

6 computeG(s)

7 simulatelP on inputm where in the simulation

8 the internal coin tosses @fare replaced according €&(s)

9 output G¢,, H3,), the output of this simulation df.

Then (al) holds as’2= (|V(G,,)|+|V (H,,)|)°Y. SincelP generates strongly monotone
sequences, also (a3) holds. It remains to establish (aa Eantradiction assume that

for infinitely manym € N: eI?tr [V acceptsG?,, H? ,m)| < 1/2. (2)
p

m]
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For everym € N we let
N = V(G| + [V (Hyp)l-

Clearly there is an algorithm that decides in ti@€:%*1) whether a givem € N is
equal ton,, for somem € N, and if so, outputsn (which is unique by (aC}) We
consider the following algorithrip:

D/ re{01}*

compute ann with |r| = 2[@1097m]
if no suchm existsthen reject
compute the outputy,,,, H,;,) of P on inputm if
the internal coin tosses @fare replaced according to
simulateV on (G,,,, H,,,, m)
if the simulation rejectthen reject
accept.

NooakswbdhpE

By (r2)(), for sufficiently largem € N, and hence sufficiently large* := 24109 7m 1,

Pr [Daccepts | = Pr [Vaccepts@r,, H:,m)| > 4/5. (3)
re{0,1}n* PE[tm]

Furthermore note that by (2),

for infinitely manym and? :=c- [d - log n,,]: {Por1}e D(G(s)) = 1] <1/2. (4)
s€0,

Moreover, asf(m) < max{|V(Gn)|, |V(H,)|} (by the strong monotonicity of the
random (3-©L, LFP)-sequence computed ), we see that the running time &f
is bounded byO(|r|**¥?) < O(|r|*'). Using the Cook-Levin’s reduction, from the
algorithmD we can construct, for eveny, € N andn* := 2[¢097m1 g circuitC,,.
such that for every € {0,1}",

Cp+(r) =1 < D accepts (5)

and such that for the si2é€’,,-| of the circuitC,,~ we have
|Coe| = O((0)*2). (6)
By (3) and (5), for sufficiently large: € N, and hence sufficiently larges = 2[4109 1

Pr [Cn-(r)=1] = Pr [Vaccepts@®,, H:,m)| > 4/5.
re{0,1}n* PEltm]

By (4) and (5), we know that for infinitely many. € N and? := ¢ - [d - log n,,]| we
have forp* = 2[d10g nm]

P [Co-(G(s)) = 1] < 1/2.

Together with the previous inequality, for suchrarand the correspondingandn*,

Pr[Co()=1] - _ Pr [Co (G(s)) = 1] \ >4/5-1/2> 1/10,

ref{0,1}7* 3¢
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which, by (6), contradicts (g2) in Definition 17. o

Proof of Theorem 15Assume that there is a probabilistic algorithm that gemsrat
random ordered (3-QL, LFP)-sequence in polynomial output time. We show that there
is a deterministic algorithm which generates a (8tCLFP)-sequence in polynomial
output time. This contradicts Theorem 11.

By Lemma 16 and Lemma 18 there is an algorithrnwith the properties stated in
Lemma 18. We show that the following algorittfgenerates a (3-@QL, LFP)-sequence
(Gh,, H])men in polynomial output time.

S m €N
1. simulateA on inputm to compute GL , HL), ..., (G, HLm)
2. forallie[t,]do ‘
3. simulateV on (G%,, H,,m) . .
4, if the simulation acceptien output G?,,, H:,) as (G.,,, H],) and halt

By (a2) of Lemma 18, the algorithi§ will halt on inputm and yield the desired
(G, H!)). By (a3) of Lemma 18, the algorithri¥ is applied to inputs @, H, m)
with f(m) < maX{|V(G)|,|V(H)|}; on such inputs its running time is bounded by
(V(@)| + |V (H)[)°W. Together with (al), this shows th&truns in polynomial output
time. a

In contrast to deterministic algorithms generating “stdd (3-CoL, LFP)-sequences
we require of randomized (3@, LFP)-sequencesd,,, H..)men that the property

Gm =irp,, Hm, G € 3-CoL, andH,, ¢ 3-CoL

can be checked in a reasonable time (the existence of thievesee property (r2)
in Definition 14). What happens if we drop this requirementi2 Tollowing sections
address this problem.

6. The Planted Clique Conjecture

In the standard planted clique problem, we are given a gfaphose edges are gener-
ated by starting with a random graph with universg fhen “planting” (adding edges

to make) a random clique dnvertices; the problem asks for efficient algorithms find-
ing such a clique of sizé. The problem was addressed in [13, 16, 2], the authors of
the last paper mention that it was suggested by M. Saks. lpalgcations in cryptog-
raphy [14], algorithmic game theory [11, 17], and classmainplexity [19]. Here we
study some consequences for the Ehrenfeucht-Fraisseodef a “logic reformula-
tion” of the planted clique problem.

The Erd6s-Rényi probability space ER(/2) is obtained as follows. We start with
the set ] of vertices. Then we choose everye (7)) (:={X C[n]||X|=2}) as
an edge with probability A2, independently of the choices of other edges.

For G € ER(n,1/2) the expected size of a maximum clique is approximately
2 - log n. Clearly, the probability thaf € ER(n, 1/2) contains a clique of sizk is

bounded by
(Z) .2-(5).
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Fork = 4-log n we have
(Z) . 2—(’;) < pilogn 2—(’;) = pAlog 2n 92-log n—8log 2p < 9—2-log n _ p—2logn

Thus
Proposition 19. Prgcerem,1/2) [G contains a clique of sizé- log n| = —itr.
For any graphG with vertex set ] and A C [n] we denote byG + K(A) the graph
obtained fromG by adding edges such that the subgraph induced @na clique. For
n € Nandk € [n] we consider a second distribution ER(/2, k): pick a random
(ordered) grapliz € ER(n, 1/2) and a uniformly random subsadtof [n] of size k and
plant in a clique ond in G, thus gettingG + K (A). ® We view G andG + K(A) as
orderedgraphs equipped with the natural ordering @h [

The following decision version PC@) of the planted clique conjecture states that
no polynomial time algorithm distinguishes between thérihistions ER¢, 1/2) and
ER(n,1/2, 4-log n) more than(n).

Conjecture 20 (The planted clique conjecture PC@@)). Leto : N — R with 0 <
d(n) < 1foralln € N. For every polynomial time algorithih there is amgy € N such
that for alln > ng,

[A accepts?] — [A accepts’ + K(A)]| < 6(n).

Pr Pr
G€EERM,1/2) G+K(A)€ER(M,1/2, 4-log n)

Clearly, if 6(n) < 4&’(n) for all n € N, then PCC{) implies PCC{’). In [14] the
assumption PCC(% 1/q) for someq € N[X], that is, for some polynomia} with
natural numbers as coefficients, has been put to good use.

Proposition 21. For ¢ € N[ X], the statemer®CC(1— 1/q) impliesP # NP.
Proof. By Proposition 19 we know that for sufficiently large

Pr G contains a clique of size 40 1 . 7
GEER(n,l/Z)[ : Iqu ize-4og n| < 1/q(n) )

If P = NP, then there is a (deterministic) polynomial timealthm A deciding whether
a graph contains a clique of size lbg n. For such am\ we have by (7),

1
Pr [A acceptsi + K(4)|—  Pr  [Aacceptsd] > 1——.
G+K(A)EERM,1/2, 4-log n) GEER(n,1/2) q(n)
This contradicts to PCC(% 1/g). O

By the Immerman-Vardi Theorem, on ordered graphs polynbtiniee algorithms
correspond to LFP-sentences. Therefore, PEjOét says that for every LFP-sentence
and all sufficiently larges,

G E¢| -

% In the following the notatior + K (A) € ER(n, 1/2, k) should give the information that the
random graph wa&' and that the random subset af [of size k was A.

(G +K(4) E g] | < o).

Pr Pr
GEERM,1/2) G+K(A)EER(n,1/2, 4-log n)
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This holds if

+ >1- .
G+K(A)€ERZI:1/2, 4.log n) [G ': v G K(A) ': QO] 21 6(n) (8)

For our intended application to the Ehrenfeucht-Fraisséhod we need an even stronger
assumption, namely that for every € N and all sufficiently large,

: + >1-
G+K(A)€ERIZ£1/27 +logm) [forall o € LFP,,: (G E¢ <= G+K(A) F¢)| > 1-4(n),

or more succinctly,

= + >1- .
G+K(A)€ERE:LI:1/2, 4-log n) [G LFp, & K(A))] > 1-0(n)

We shall need an effective bound for the rate of convergeBoewe introduce the
following logic version LPCCY) of the planted clique conjecture.

Conjecture 22 (LPCC(¢)). Lete : N — R with 0 < e(n) < 1foralln € N. There is
a computable functiorfi : N — N such that for everyn € N and alln > f(m),

Pr [G =irp, G+ K(A)] > e(n).
G+K(A)€ERn,1/2, 4-log n)
The previous remarks show:
Proposition 23. Lete : N — R with 0 < ¢(n) < 1forall n € N. ThenLPCCg)
impliesPCC(1— ¢).
By this proposition and Proposition 21, we get
Corollary 24. For g € N[X], LPCC(1/q) impliesP % NP.

Assume that LPCG] holds. By taking a natural numbet such that LFR, contains a
sentence expressing that the number of edges is even, weatden, <y e(n) < 1/2.
In Proposition 26 we generalize this and show that lim, (n) must be 0.

7. The planted clique conjecture and3-CoL, LFP)-sequences

The following result shows that, assuming LPCG()l there is a probabilistic algorithm
yielding a random sequenc€'(,, H,,)ncn Such that

Gm =trp,, Hyn, G € 3-CoL, and H,, ¢ 3-CoL 9)

holds with high probability. By Theorem 15 we cannot haverifiee for this algorithm,
that is an efficient algorithm that verifies the propertiesgted in (9) (assuming the
existence of a pseudorandom generator).

Theorem 25. Assume thatPCC(1/¢) holds for some polynomial € N[X]. Then
there is a probabilistic algorithn® which on inputn € N generates a pai(G,,, H,,)
of ordered graphs in tim@V (G,,)| + |V (H,,,)|)°® such that

1
(IV (G| + [V(H,)) Y

Pr(Gm =irp,, Hm, Gm € 3-CoL, and H,, ¢ 3-CoL| >

Moreover,P on inputm € N first deterministically computes the vertex sets of the
graphsG,, and H,,,.

14



Proof. Consider the problem

CLIQUE(4 - log)
Instance:An n € N and an ordered gragh with |V (G)| = n.
Problem:DoesG have a clique of size 4log n?

The proof relies on the following two facts (we leave the deta the reader):

— “LPCC(1/q) for someq € N[X]” essentially states that there is a probabilistic
algorithmP which generates @CLlQUE(4- log ), LFP) -sequence®,,, Hy,)men
of ordered graphs in polynomial output time such that

Pr[Gm =iep,, Hm, Gm € CLIQUE(4-log), and H,, ¢ CLIQUE(4- log )]
1

> .
(IV (G| * |V () )

— As CLIQUE(4 - log ) is in NP and 3-OL is NP-complete and has a padding func-
tion, we can transform théCLIQUE(4- log), LFP) -sequence into a (3-@., LFP)-
sequence. a

8. Some remarks on the logic version of the planted clique cgecture

In this section we show (see Lemma 27) that with positive gepiic probability we
can distinguish the LFR-theory of the graphg&’ andG + K(A) by modulo count-
ing their edges (see Lemma 27 for the precise statement)gUkis fact, we refute
LPCCE) unless lim,eny e(n) = 0.

Proposition 26. Lete : N — R*. If LPCC) holds, thedim,,cye(n) =0
Proof. It suffices to show that for every positivec R there is ann € N such that

lim Pr [G =LFpP,, G+ K(A)] <.
n—o00 G+K(A)€EER(n,1/2, 4-log n)

This is an immediate consequence of the following lemma eethre LFP-sentences
expressing in an ordered graph that the number of edges ggwamt; modulo? (for
¢eNandi € {0,...,0—1}). O

Lemma 27.Let¢ € Nand: € {0,...,¢ — 1}. Then for every nondecreasing and
unbounded functioh : N — N,

i + - =1 =
nlgnoo G+K(A)€ERP(L " h(n»[|E(G K(A))| - |E(G)| =i mod/]

S|

Proof. Letn € N andk € [n]. Then, for every graplt with vertex set §], every
subsetA of [n] of sizek, and everyi € {0,1,...,¢ — 1}, we have

|E(G+K(A))|— | E(G)| = i modl < |E(G)NE(K(A))| = (’;) —i mod?. (10)
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Here, E(K (A)) denotes the set of edges of the cligueAan\e sets(k) = (’;) Then
|E(K(A))| = s(k). Foreveryr € {0,1,...,¢—1}, we leta,.(k) be the number of those
subsets o/ (K (A)), whose cardinality is equivalent tomodulo/; thus

j=r mod¥¢
RCEED S
0<j<s

Note thata,.(k) does not depend om (and in particular, not on the chosen subdet
of [n] of size k). By (10), we get for alln > £, all subsetsA of [n] of size k, and all
i€{0,1,...,£—1},

_ — - Qs(k)—i
e [ B+ K ()|~ |£(G)| =i mode] = . (11)

Claim 1.Letr € {0,1,...,¢ — 1}. Then (hereu (k) := ao(k)),

i 12 = a, ()]

Jm 0

Proof of Claim 1:First we show that there is a positivecs R such for all sufficiently
small positive € R and alln € N with (1/2—6) -n € N,

n B 2(1—L62)-n
(02 5.0) =0 (T) | 42

In fact, using Stirling’s formula

o (2) e (2

e
we getforn € Nande € Rwithe - n € N,
. 9H(e)n
< n >§ e-2 ' (13)
e-n 2r-Je-(1—¢)-n

HereH : (0,1) — R denotes théinary entropyfunction defined by

H(E)=—¢e-loge —(1—¢)-log (1—¢).

Recall thatH attains 1, its maximum value, at= 1/2. We want to bound the values
of H in the neighborhood of 2. Let§ € R with0 < § < 1/2. Then

H(1/2-6)=—(1/2—6)-log (1/2—0) — (1/2+6) - log (1/2 +).

Using the Taylor series for log, we get from this equality that there is ae R with
¢ > 0 such that for sufficiently smadl € R with 6 > 0,

H(1/2-6)<1-1.-6% (14)
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Hence, assuming in addition thét 1/4/8 and (¥2 —6) - n € N,

n e . 20=v8%)m
<(1/2 —9)- n) = 2r /(@402 n (by (13) and (14)
=0 (%) (asd? < 1/8),

which is the desired equality.
Now letj, s € N satisfy 0< j < s. Note that

() - )=530) @

We distinguish two cases.

Casej < s/2—V/s2: Thenj < (1/2—6)-sford € (s~%/3,5s1/3).1f(1/2—0)-s € N,
we get by (12)

(1) ()= (g 2o (5) ovesmoen
Cases/2 — V/s2 < j < s/2: Then
()0 e () o
_ 23 e
=0 (eamn) =0 (i55):

Putting all together we get the statement of Claim 1 as fadlow

a5 () - e ()

o<i<sk) N 7 0<j<s(k)

()

0<j<s(k)/2

e (R

0<5<s(k)/2—~/ 5(k)2

R (GAR e Y)

s(k)/2— < s(k)2<j<s(k)/2

o (s V52 (k)2 - 220 iies der
=0 (W +0 T (by the equalities derived above)

=o(2°™)
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Similarly we can showt,.(k) — a,+1(k) = o(25®). 4

Claim 2.Leto > 0. If k is sufficiently large, then for alt > k, all subsetsA of [n] of
sizek,and alli € {0,1,...,¢— 1}, we have

1 1
- —06< + — =1 < —+4.
PR . [ |E(G + K(A)| - |E(G)] =i modé] <540
Proof of Claim 2:For everyi € {0,1,...,¢ — 1} let
oy As—i(R)
pi(k) = s
Claim 1 implies that for every > 0 and all sufficiently largé,
Ipiva(k) — pi(R)[ < ¢
Thus,
po(k) =i < pi(k) < po(k) +i-¢. (16)
As Y2y j =L (£ —1)/2,we obtain
0-(—1) = (-0 —1)
£ polk) = — 51 < jzzojpj(m:lsz-po(kwT-b
Hence, -1 -1
1 -1 1 -1
T < <+ - L.
7 5 t=pok) < 7 5t 17)

Choosing: small enough, (16) and (17) imply for all sufficiently largeand every
i€{0,1,...,£—1},

1 1
5 <pi(k) < S+
7 5_pz(/€)_£ 0

As for alln > k, all subsetsA of [n] of sizek, and alli € {0,1,...,¢ — 1}, we have
(compare (11))

_ Qs(k)—i _ .
(k) = = P E(G+ K(A)| — |EG)| = de|,
pilh) =55t =  Pr [ IBG+ K(A)] — (@) = i mode]
this yields our claim. -
Clearly, Claim 2 immediately implies the statement of Lenftiia o

9. Further results and open questions

In Section 4 we have seen that for no problémof ordered graphs there exists a
(®, LFP)-sequence, which can be generated in polynomial otitpat Recall that LFP
captures polynomial time on ordered graphs. More genetatly. be a logic capturing
one of the complexity classes LOGSPACE, P, or PSPACE on (eddigraphs: Then,
for no problem of (ordered) graphs we can generatéal))-sequencef,,, H,,) by

an algorithm which satisfies the resource bountVi(G,,,)| + |V (H,,)| characteristic
for the corresponding complexity class, e.g., notin sgageg |V (G)| + |V (H)])
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for LOGSPACE. Furthermore there are extensions of thesdtsds “nondeterministic
classes” such as NLOGSPACE and NP and extensions for ssdegtai-Fagin games
adequate for (monadi®)} (see [5] for most of these results).

We are far from understanding when an efficiently computé@lel)-sequence
exists. Even for first-order logic we have no simple and imfative characterization
of the problems) with a (@, FO)-sequence computable in polynomial output time.
Besides the “negative” Example 13, we have a positive rd$ltis NP-hard under FO-
reductions (a property shared by many natural NP-completggms), then ag, FO)-
sequence can be generated in polynomial output time.

In Section 5 we have mentioned that in most applicationseEttirenfeucht-Fraissé-
method the verification that,,, and H,,, satisfy the same sentences of the correspond-
ing logic of “quantifier rank” or length< m was done by an algorithm running in time
Fm)-(IV(G)|+|V (H,») )M for some computable functigh In the Appendix of [5],
we have shown this explicitly for two (nontrivial) appligans of the method. However,
this is not always the case; for example, not for the highlgtrieial application of the
Ehrenfeucht-Fraissé-method in [21].

We have seen in Section 6 that LPCZ{}for someg € N[X]implies P# NP. Can
one refute the statement “there ig & N[ X] with LPCC(1/¢)?" or are there results or
insights which make the statement plausible?

Furthermore, we ask: Is it true that for every single LFPtseoe, we have

i + > .
nlﬂ;noo G+K(A)€ERIer,1/2, 4-log n) [G ’: L G K(A) ’: SD} - 1/2

We have shown that every algorithm realizable by’?A@cuits almost surely can not
distinguishG andG + K(A) for G + K(A) € ER(n,1/2, 4-log n).
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