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Abstract

We give machine characterisations and logical descriptions of a number of parameterized complexity
classes. The focus of our attention is the class W[P], which we characterise as the class of all param-
eterized problems decidable by a nondeterministic fixed-parameter tractable algorithm whose use of
nondeterminism is bounded in terms of the parameter. We givesimilar characterisations for AW[P], the
“alternating version of W[P]”, and various other parameterized complexity classes.

We also give logical characterisations of the classes W[P] and AW[P] in terms of fragments of least
fixed-point logic, thereby putting these two classes into a uniform framework that we have developed in
earlier work.

Furthermore, we investigate the relation between alternation and space in parameterized complexity
theory. In this context, we prove that the COMPACT TURING MACHINE COMPUTATION problem, shown
to be hard for the class AW[SAT] in [1], is complete for the class uniform-XNL.

1. Introduction

Parameterized complexity theory provides a framework for afine-grain complexity analysis of algorithmic
problems that are intractable in general. It has been used toanalyse problems in various areas of computer
science, for example, database theory [16, 21], artificial intelligence [15], and computational biology [3,
22]. The theory is built on a weakened notion of tractabilitycalledfixed-parameter tractability, which
relaxes the classical notion of tractability, polynomial time computability, by admitting algorithms whose
running time is exponential, but only in terms of someparameterof the problem instance that can be
expected to be small in the typical applications.

A core structural parameterized complexity theory has beendeveloped over the last 10–15 years (see
[7]). Unfortunately, it has led to a bewildering variety of parameterized complexity classes, the most
important of which are displayed in Figure 1. As the reader will have guessed, none of the inclusions is
known to be strict. The smallest of the displayed classes, FPT, is the class of all fixed-parameter tractable
problems. Of course there is also a huge variety of classicalcomplexity classes, but their importance is
somewhat limited by the predominant role of the class NP. In parameterized complexity, the classification
of problems tends to be less clear cut. For example, for each of the classes W[1], W[2], W[P] there are
several natural complete problems which are parameterizations of classical NP-complete problems.

Not only is there a large number of (important) parameterized complexity classes, but unfortunately it
is also not easy to understand these classes. The main reasonfor this may be seen in the fact that all the
classes (except FPT) are defined in terms of complete problems, and no natural machine characterisations
are known. This makes it hard to get a grasp on the classes, andit also frequently leads to confusion
with respect to what notion of reduction is used to define the classes.1 In this paper, we continue earlier
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FPT⊆W[1] = A[1]⊆W[2]⊆W[3]⊆ · · · ⊆ W[SAT] ⊆ W[P]

⊆ ⊆ ⊆ ⊆

A[2] ⊆ A[3] ⊆ · · · ⊆AW[∗]⊆AW[SAT]⊆AW[P]

Figure 1. Parameterized complexity classes.

research [14] in which we try to remedy this situation by giving machine characterisations and logical
characterisations of the parameterized complexity classes.

The main focus of this paper is the class W[P] and its “alternating” variant AW[P], two classes we have
not considered in our earlier work. W[P] is defined to be the class of all parameterized problems that are
reducible to theweighted satisfiability problemfor Boolean circuits. This problem asks whether a given
circuit has a satisfying assignment ofweightk, that is, a satisfying assignment in which preciselyk in-
puts are set toTRUE. Herek is treated as theparameterof the problem. It is worth mentioning at this
point that all the other “W-classes” in Figure 1 are defined similarly in terms of the weighted satisfiability
problem, but for restricted classes of circuits. Thus in some sense, W[P] is one of the most natural param-
eterized complexity classes. W[P] has received some recent attention because of an important result due
to Alekhnovich and Razborov [2] showing that resolution is not automatizable unless FPT= W[P]. Our
first theorem is a simple machine characterisation of the class W[P]. Intuitively, it states that a problem
is in W[P] if, and only if, it is decidable by a nondeterministic fixed-parameter tractable algorithm whose
use of nondeterminism is bounded in terms of the parameter. Aprecise formulation of this result is that a
problem is in W[P] if, and only if, it is decided in timef(k) · p(n) by a nondeterministic Turing machine
that makes at mostf(k) · log n nondeterministic steps for some computable functionf and polynomial
p. Herek denotes the parameter andn the size of the input instance. While it has been noted before(see,
for example, Chapter 17 of [7]) that there is a relation between limited nondeterminism and parameterized
complexity theory, no such simple and precise equivalence was known. As a by-product of this result, we
get a somewhat surprising machine characterisation of the class W[1]: A problem is in W[1] if, and only
if, it is decidable by a nondeterministic fixed-parameter tractable algorithm that does its nondeterministic
steps only among the last steps of the computation. Here “last steps” means a number of steps that is
bounded in terms of the parameter.

The “A classes” and “AW classes” of Figure 1 are defined in terms of an alternating version of the
weighted satisfiability problem, which can also be seen as a parameterized version of the satisfiability
problem for quantified Boolean formulas. For AW[P], we obtain a similar characterisation as for W[P] in
terms of alternating algorithms. Moreover, we get characterisations for the classes A[t], for t ≥ 1, and the
class AW[∗] that generalise our characterisation of W[1]. A remarkable insight of structural complexity
theory is the tight connection between alternation and space [6]. By analogy, it has been suggested to
consider the alternating classes AW[∗], AW[SAT], and AW[P] as “PSPACE-analogues” [7] in the world
of parameterized complexity theory. We investigate this idea and obtain a number of results that suggest
that the relation between parameter-bounded space and alternation is more complicated than it has been
assumed before. Instead of going into further detail here, we refer the reader to the discussion in the
introduction of Section 4. The main technical result we prove in that section is that thecompact Turing
machine computationproblem, which was only known to be hard for the class AW[SAT] before (cf. [1]), is
complete for the class uniform-XNL under parameterized logspace reductions.

Descriptive complexity theory [11, 19] provides a machine independent way of understanding com-
plexity classes. The idea of this area is to characterise thecomputational complexity of problems in terms
of logical definability. Most standard complexity classes have natural descriptive characterisations (for
example, [12, 17, 18, 23]). In two earlier papers [13, 14], two of us gave descriptive characterisations of
the classes FPT, W[t], and A[t] for t ≥ 1, and AW[∗]. Here, we give such characterisations of the classes
W[P] and AW[P]. All these characterisations are based on fragments of least fixed point logic, which is the
logic that captures polynomial time in classical complexity theory [17, 23]. Our results enable us to place
all classes in Figure 1 except W[SAT] and AW[SAT] into a very uniform framework that neither depends
on a particular notion of reduction nor on a particular machine model.
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2. Parameterized Complexity Theory

We review the notions of parameterized complexity theory most relevant to this paper.

2.1. Fixed-Parameter Tractability. A parameterized problemis a setQ ⊆ Σ∗ × N, whereΣ is a finite
alphabet. If(x, k) ∈ Σ∗ × N is an instance of a parameterized problem, we refer tox as theinput and tok
as theparameter. We always denote the parameter byk and the length of the input stringx by n.

Definition 1. A parameterized problemQ ⊆ Σ∗ × N is fixed-parameter tractableif there is a computable
function f : N → N, a polynomialp, and an algorithm that, given a pair(x, k) ∈ Σ∗ × N, decides if
(x, k) ∈ Q in at mostf(k) · p(n) steps.

FPT denotes the complexity class consisting of all fixed-parameter tractable parameterized problems.

2.2. Parameterized Reductions. We shall consider two notions of reductions between parameterized
problems in this paper. The first is the standard notion of parameterized (many-one) reduction. We call
it FPT-reduction here; Downey and Fellows [7] have used the term strongly uniform parameterized m-
reduction. The second, more restrictive notion, called PL-reduction, has been introduced in [14] as a
parameterized version of logspace-reduction.

Definition 2. An FPT-reduction(PL-reduction) from the parameterized problemQ ⊆ Σ∗ × N to the
parameterized problemQ′ ⊆ (Σ′)∗ × N is a mappingR : Σ∗ × N → (Σ′)∗ × N such that:

(1) For all(x, k) ∈ Σ∗ × N: (x, k) ∈ Q ⇐⇒ R(x, k) ∈ Q′.

(2) There exists a computable functiong : N → N such that for all(x, k) ∈ Σ∗ × N, say withR(x, k) =
(x′, k′), we havek′ ≤ g(k).

(3) There exist a computable functionf : N → N and a constantc ∈ N such thatR is computable in
timef(k) · nc (computable in spacef(k) + c · log n, respectively).

We writeQ ≤FPT Q′ (Q ≤PL Q′) if there is an FPT-reduction (a PL-reduction, respectively) fromQ toQ′.
We let

[Q]FPT = {Q′ | Q′ ≤FPTQ} and [Q]PL = {Q′ | Q′ ≤PL Q}.

For a class C of parameterized problems, we let

[C]FPT =
⋃

Q∈C

[Q]FPT and [C]PL =
⋃

Q∈C

[Q]PL.

Note that FPT⊆ [Q]FPT for every problemQ ⊆ Σ∗ × N with Q 6= ∅, Q 6= Σ∗ × N.

2.3. Propositional logic. Formulas of propositional logic and circuits are importantingredients in the
definitions of various complexity classes of intractable parameterized problems. We recall a few notions
and fix our notations: Formulas of propositional logic are built up from propositional variablesX1, X2, . . .

by taking conjunctions, disjunctions, and negations. The negation of a formulaα is denoted by¬α. We
distinguish betweensmall conjunctions, denoted by∧, which are just conjunctions of two formulas, and
big conjunctions, denoted by

∧

, which are conjunctions of arbitrary finite sets of formulas. Analogously,
we distinguish betweensmall disjunctions, denoted by∨, andbig disjunctions, denoted by

∨

. A formula
is small if it only contains small conjunctions and small disjunctions.

SMALL and PROP denote the class of all small and the class of all propositional formulas, respec-
tively. C1 denote the class of all (big) conjunctions of small formulas, C2 the class of all conjunctions of
disjunctions of small formulas, andCt for t ≥ 3 the class of all conjunctions of disjunctions of formulas in
Ct−2.

Thedepthof a formula is the maximum number of nested conjunctions anddisjunctions appearing in
this formula. For alld, t ≥ 1, Ct,d denotes the class of all formulas inCt whose small subformulas have
depth at mostd (equivalently, we may say that the whole formula has depth atmostd+ t).

We also have to considercircuits, defined in the standard way. To be a bit more specific, let us say that
our circuits consist ofinput gates, and gatesandor gatesof arbitrary finite arity, andnot gatesand they
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have one designated output node (that is, they only compute Boolean functions). To simplify our notation,
we always assume that we have assigned a propositional variable to each input gate of a circuit. CIRCUIT
denotes the class of all circuits. We view PROP as a subclass of CIRCUIT.

2.4. Parameterized complexity classes.Theweightof an assignment for the variables of a propositional
formula or circuit is the number of its variables set toTRUE by the assignment. For any classΘ of propo-
sitional formulas or circuits, theweighted satisfiability problem forΘ is the problem of deciding whether a
formula inΘ has a satisfying assignment of weightk, parameterized byk:

WSAT(Θ)
Input: α ∈ Θ.

Parameter: k ∈ N.
Problem: Doesα have a satisfying assignment of weightk?

Definition 3. (1) For t ≥ 1, W[t] is the class of all parameterized problems that are FPT-reducible to
WSAT(Ct,d) for somed ≥ 1, that is,

W[t] = [{WSAT(Ct,d) | d ≥ 1}]FPT.

(2) W[SAT] is the class of all parameterized problems that are FPT-reducible to WSAT(PROP), that is,

W[SAT] = [WSAT(PROP)]FPT.

(3) W[P] is the class of all parameterized problems that are FPT-reducible to WSAT(CIRCUIT), that is,

W[P] = [WSAT(CIRCUIT)]FPT.

For any classΘ of propositional formulas or circuits, thealternating weighted satisfiability problem forΘ
is the following problem:

AWSAT(Θ)
Input: α ∈ Θ, ℓ ∈ N, a partitionV1 ∪̇ . . . ∪̇Vℓ of the variables ofα.

Parameter: k, ℓ ∈ N.
Problem: Decide if there is a sizek subsetU1 of V1 such that for every

sizek subsetU2 of V2 there exists . . . such that the truth assign-
ment setting all variables inU1 ∪ . . . ∪ Uℓ to TRUE and all other
variables toFALSE satisfiesα.

Definition 4. (1) AW[SAT] is the class of all parameterized problems that are FPT-reducible to
AWSAT(PROP), that is,

AW[SAT] = [AWSAT(PROP)]FPT.

(2) AW[P] is the class of all parameterized problems that are FPT-reducible to AWSAT(CIRCUIT), that
is,

AW[P] = [AWSAT(CIRCUIT)]FPT.

Remark 5. Of course there are also classes AW[t] = [{AWSAT(Ct,d) | d ≥ 1}]FPT corresponding to the
W[t]. It turns out, however, that AW[t] = AW[1] for all t ≥ 1 (cf. [9]). For that reason, the class AW[1] is
usually denoted by AW[∗].

There is another hierarchy, the so called A-hierarchy, whose classes are obtained by fixing the number
of alternations (i.e. theℓ) in the definition of AW[∗]. We refer the reader to [13] for the precise definition.

4



3. Machine descriptions

In this section we derive machine-based characterisationsof W[P], AW[P], and of W[1] (= A[1]). The
latter one can easily be generalised to the classes of the A-hierarchy. In an informal way, we can describe
our results by the following equalities:

W[P] = parameter-bounded nondeterminism + FPT (Theorem 8);

W[1] = FPT + parameter-bounded nondeterminism (Theorem 15);

AW[P] = parameter-bounded alternating nondeterminism + FPT (Theorem 17(1));

AW[∗] = FPT + parameter-bounded alternating nondeterminism (Theorem 17(2));

A-hierarchy = FPT + parameter-bounded alternating nondeterminism

of bounded alternation depth (Theorem 17(3)).

Our machine model is based on the standard random access machines (RAMs) described in [20]. The
arithmetic operations are addition, subtraction, and division by two (rounded off), and we use a uniform
cost measure. For details, we refer the reader to Section 2.6of [20].

Our model is non-standard when it comes to nondeterminism. Instead of just allowing our machines to
nondeterministically choose one bit, or an instruction of the program to be executed next, we allow them
to nondeterministically choose a natural number. Of coursethis is problematic, because if the machine
can really “guess” arbitrary numbers, computations can no longer be described by finitely branching trees,
and nondeterministic machines can no longer be simulated bydeterministic ones. To avoid the kind of
problems resulting from this, we decided that a “bounded” version of this unlimited nondeterminism is
most appropriate for our purposes. Therefore, we define anondeterministic RAMto be a RAM with an
additional instruction “GUESSi j” whose semantics is: Guess a natural number less than or equal to the
number stored in registeri and store it in registerj. Acceptance of an input by a nondeterministic RAM
program is defined as usually for nondeterministic machines. Steps of a computation of a nondeterministic
RAM that execute a GUESS instruction are callednondeterministic steps.

While this form of nondeterminism may seem unnatural at firstsight, we would like to argue that it is
very natural in many typical “applications” of nondeterminism. For example, a nondeterministic algorithm
for finding a clique in a graph guesses a sequence of vertices of the graph and then verifies that these
vertices indeed form a clique. Such an algorithm is much easier described on a machine that can guess
the numbers representing the vertices of a graph at once, rather than guessing their bits. In any case, we
believe that our results justify our choice of model. For a further discussion of this issue we refer the reader
to Remark 12.

Definition 6. A nondeterministic RAM programP is aW -program, if there is a computable functionf
and a polynomialp such that for every input(x, k) with |x| = n the programP on every run

(1) performs at mostf(k) · p(n) steps;

(2) at mostf(k) steps are nondeterministic;

(3) at most the firstf(k) · p(n) registers are used;

(4) at every point of the computation the registers contain numbers≤ f(k) · p(n).

By standard arguments one gets:

Lemma 7. LetQ be a parameterized problem. The following are equivalent:

(1) There is aW -program decidingQ.

(2) There is a nondeterministic Turing machineM decidingQ such thatM on input(x, k) performs at
mostg(k) · q(n) steps and at mostg(k) · log n nondeterministic steps (for some computableg and
polynomialq).

(3) There is a nondeterministic Turing machineM acceptingQ. Moreover, for every(x, k) ∈ Q there is
an accepting run ofM of length at mostg(k) · q(n) such that the nondeterministic steps are the first
g(k) · log n ones (for some computableg and polynomialq).
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Theorem 8. LetQ be a parameterized problem. ThenQ ∈ W[P] if and only if there is aW -program
decidingQ.

Proof: Assume first thatQ ∈ W[P]. Then by the definition of W[P], Q ≤FPT WSAT[CIRCUIT]. Hence
there are computable functionsf andg, a polynomialp, and an algorithmA assigning to every(x, k), in
time≤ f(k) · p(n), a circuitCx,k and a natural numberk′ = k′(x, k) ≤ g(k) such that

Qxk ⇐⇒ Cx,k has a satisfying assignment of weightk′.

Thus, we can assume that the nodes of the circuitCx,k are (labelled by) natural numbers≤ f(k) · p(n).
The claimedW -programP on input(x, k) proceeds as follows:

1. It computesCx,k andk′;

2. It guesses thek′ (labels of) input nodes to be set toTRUE;

3. It evaluates the circuitCx,k and accepts(x, k) if the circuit outputsTRUE.

(When carrying out line 1,P simulates the algorithmA step by step and after each step increases a fixed
register, say registeri0 by “1”. Now, line 2 can be realized by invokingk′ times an instruction of the form
GUESSi0 j and storing the guesses appropriately.) Clearly, the number of steps thatP performs can be
bounded byh(k)·q(n) (for some computableh and some polynomialq) and the number of nondeterministic
steps isk′ (≤ g(k)).

For the converse direction suppose thatQ is decided by aW -programP. By the previous lemma, there
are a computable functionf , a polynomialp and a nondeterministic Turing machineM acceptingQ such
that for every(x, k) ∈ Q there is a run ofM accepting(x, k) of length at mostf(k) · p(n) such that the
nondeterministic step are thef(k) · log n first ones. W.l.o.g. we may suppose that on every inputM first
carries out the nondeterministic steps and that they altogether consist in appending to the input(x, k) a 0–1
string.

The deterministic part of the computation ofM can be simulated by a circuitCx,k in the standard way
(e.g., compare the proof of Theorem 8.1 in [20]) such that

M accepts(x, k) ⇐⇒ Cx,k has a satisfying assignment. (1)

Cx,k has size≤ g(k) · q(n) for some computableg and polynomialq. It hasf(k) · log n input nodes
corresponding to the 0–1 string chosen in the nondeterministic part of the computation ofM (if more
bits are required by the deterministic part of the computation ofM , the circuitCx,k will not accept the
corresponding assignment).

We think of thef(k) · log n input nodes ofCx,k as being arranged inf(k) blocks of logn nodes. Let
us obtain the circuitDx,k by addingf(k) blocks ofn new input nodes toCx,k and by ensuring that at most
one input node of each block can be set toTRUE (in a satisfying assignment ofDx,k). Moreover, we wire
the new input nodes with the old input nodes (i.e., the input nodes ofCx,k) in such a way that if thejth
input node of theith block ofDx,k is set toTRUE then exactly those old input nodes of theith block, which
correspond to positions of the binary representation ofj carrying a 1, are set toTRUE. Then

Cx,k has a satisfying assignment⇐⇒ Dx,k has a satisfying assignment of weightf(k).

Altogether, we have shown thatQ ≤FPT WSAT[CIRCUIT], i.e.Q ∈ W[P]. 2

Remark 9. Some of the arguments in the second half of the previous proofhave been used by Downey and
Fellows [7] in a similar context. Specifically, the arguments leading to (1) and hence, to the equivalence

(x, k) ∈ Q ⇐⇒ Cx,k has a satisfying assignment

show thatQ ≤FPT SHORT CIRCUIT SATISFIABILITY (cf. [7]). The transition fromCx,k toDx,k duplicates
the proof of [7] showing that W[P] contains SHORT CIRCUIT SATISFIABILITY ; there, the method is called
the “k · log n trick”.
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Note that the reduction of the second part of the proof of the previous theorem is a PL-reduction
(parameterized logspace reduction); thus:

Corollary 10. WSAT [CIRCUIT] is W[P]-complete underPL-reductions.

Moreover, by Lemma 7 we obtain:

Corollary 11. LetQ be a parameterized problem. ThenQ ∈ W[P] if and only if there is a nondeterministic
Turing machineM decidingQ such thatM on input(x, k) performs at mostg(k) · q(n) steps and at most
g(k) · log n nondeterministic steps (for some computable functiong and polynomialq).

Remark 12. The previous corollary shows that if we define nondeterministic RAMs by allowing the ma-
chines to guess only one bit per nondeterministic step instead of an arbitrary number, then Theorem 8
remains true if we allow a W-program to performf(k) · log n nondeterministic steps (cf. clause (2) in
Definition 6).

The reason that we chose our non-standard definition of nondeterministic RAMs is that it also gives us
a nice machine description of the class W[1] (see Theorem 15).

As a further corollary we get a slight strengthening of a result of [5]:

Corollary 13. BOUNDED NONDETERMINISTIC MACHINE COMPUTATION (BNTMC) is W[P]-complete
underPL-reductions.

Here, (BNTMC) denotes the following problem:

BNTMC
Input: A nondeterministic Turing machineM andn ∈ N in unary.

Parameter: k ∈ N.
Problem: DoesM accept the empty string in at mostn steps and using at

mostk nondeterministic steps?

Proof: BNTMC is in W[P] by Corollary 11: Given a nondeterministic Turing machineM andn ∈ N in
unary, as input, andk ∈ N, as parameter, the nondeterministic Turing machine we aim at, guesses the
k · log n bits describing the (number and behaviour of the) nondeterministic steps ofM and then simulates
n steps ofM accordingly.

And BNTMC is W[P]-hard: We show that WSAT[CIRCUIT] ≤PL BNTMC. Given a circuitC of
sizen andk ∈ N design a nondeterministic Turing machineMC,k whose alphabet, among others, has a
letter for every input node of the circuitC and that first guessesk input nodes to be set toTRUE and then
deterministically evaluates the circuit. Hence, for some polynomialq, we have

C has a satisfying assignment of weightk ⇐⇒ ((MC,k, k + q(n)), k) ∈ BNTMC,

which gives the desired reduction. 2

We now turn to a machine characterisation of the class W[1]. Our proof uses the following result due
to Cai, Chen, Downey, and Fellows [4]:

Theorem 14 (Cai et al. [4]). The following parameterized problemSHORT TURING MACHINE ACCEP-
TANCE (STMA) is W[1]-complete underFPT-reductions:

STMA
Input: A nondeterministic Turing machineM .

Parameter: k ∈ N.
Problem: DoesM accept the empty string in at mostk steps?
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Theorem 15. LetQ be a parameterized problem. ThenQ ∈ W[1] if, and only if, there is a computable
functionh and a W-programP decidingQ such that for every run ofP all nondeterministic steps are among
the lasth(k) steps of the computation, wherek is the parameter.

Proof: First assume thatQ ∈ W[1]. ThenQ ≤FPT STMA. Hence, there are a computable function
f , a polynomialp, and an algorithm assigning to every instance(x, k) of Q, in time ≤ f(k) · p(n), a
nondeterministic Turing machineM = Mx,k and a natural numberk′ = k′(x, k) ≤ g(k) such that

Qxk ⇐⇒ M accepts the empty string in at mostk′ steps.

We can assume that the states and the symbols of the alphabet of M are natural numbers≤ f(k) · p(n).
The claimedW -program on(x, k) proceeds as follows:

1. It computesM andk′;

2. It guesses a sequence ofk′ configurations ofM ;

3. It verifies that the sequence of guessed configurations are anaccepting computation ofM .

Note that the number of steps needed by line 2 and line 3 is bounded byh(k) for a suitable computable
functionh; thus, the nondeterministic steps of this program are amongthe lasth(k).

Assume now that theW -programP decidesQ and that for some computable functionh, on every run
of P on input(x, k) the nondeterministic steps are among the lasth(k). Choose a computable functionf
and a polynomialp for P according to the definition ofW -program. We show thatQ ≤FPT STMA.

Fix an instance(x, k) for Q. The nondeterministic Turing machineM = Mx,k “incorporates in its
alphabet and in its transition function the status of theW -programP immediately beforeP carries out its
first nondeterministic step andM simulates the nondeterministic part ofP.” A little bit more in detail:

– The alphabet ofM contains as symbols the numbers0, 1, . . . , f(k) · p(n).

– M has a stateccont: If mj is the content of registerj immediately before the nondeterministic part of
P begins, thenM has an instruction

if M readsj in stateccont then it printsmj . . .

– For everyi ≤ f(k) · p(n),M has a statecadd,i and an instruction

if M readsj ≤ f(k) · p(n) in statecadd,i then it printsi+ j (in casei+ j ≤ f(k) · p(n))
. . .

– Let j ≤ h(k). If i1, . . . , iℓ are the registers whose content has been changed in the firstj steps of
the nondeterministic part ofP anda1, . . . , aℓ are their contents after thesej steps, then eventually a
work-tape ofM contains the tuples(i1, a1), . . . , (iℓ, aℓ) in any order.

It should be clear thatM = Mx,k needsg(h(k)) steps to simulate the nondeterministic part ofP and that
M can be obtained in timeO(f ′(k) · p′(n)) for some computablef ′ and polynomialp′. Altogether we
have an FPT-reduction ofQ to STMA. 2

3.1. Alternation. To characterise AW[P], AW[∗], and the classes of the A-hierarchy, we need alternating
machines. In addition to the “GUESSi j” instruction, analternating RAMalso has a “FORALLi j”
instruction. To emphasise the duality, we call the “GUESSi j” instruction “EXISTSi j” from now on.
The semantics is defined as usually for alternating machines. Steps of a computation of an alternating
RAM in which EXISTS or FORALL instructions are executed are called existential stepsor universal
steps, respectively. All other steps are calleddeterministic steps.

Definition 16. An alternating RAM programP is anAW-program, if there is a computable functionf and
a polynomialp such that for every input(x, k) with |x| = n the programP on every run
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(1) performs at mostf(k) · p(n) steps;

(2) at mostf(k) steps are existential or universal;

(3) at most the firstf(k) · p(n) registers are used;

(4) at every point of the computation the registers contain numbers≤ f(k) · p(n).

Analogously to Theorem 8 and Theorem 15, but, instead of STMA, now using the corresponding halting
problem for alternating Turing machines (cf. [13]), we can prove the following:

Theorem 17. LetQ be a parameterized problem.

(1) Q is in AW[P] if, and only if,Q is decided by an AW-program.

(2) Q is in AW[∗] if, and only if, there is a computable functionh and an AW-programP decidingQ
such that for every run ofP all existential and universal steps are among the lasth(k) steps of the
computation, wherek the parameter.

(3) For all t ≥ 1, Q is in A[t] if, and only if, there is a computable functionh and an AW-programP

decidingQ such that for every run ofP

– all existential and universal steps are among the lasth(k) steps of the computation, wherek is
the parameter,

– there are at mostt− 1 alternations between existential and universal states, and the first nonde-
terministic state is existential.

4. Parametric Space vs Alternation

In a well-known paper, Chandra, Kozen, and Stockmeyer [6] established a precise connection between al-
ternating time classes and deterministic space classes. Inparticular, they proved that alternating polynomial
time is equivalent to polynomial space.

Wouldn’t it be nice if a similar connection held in the world of parameterized complexity theory? Un-
fortunately, the structure of parameterized complexity classes tends to be more unwieldy than the structure
of classical classes, and there is no direct translation between classical and parameterized classes. How-
ever, it can be argued that the classes of the W-hierarchy together with W[SAT] and W[P] correspond to
NP in classical complexity theory. One reason for this is that all these classes are defined in terms of the
NP-complete satisfiability problem. Furthermore, it has turned out that natural parameterizations of NP-
complete problems tend to be complete for one of these classes. The characterisations of W[1] and W[P] in
terms of nondeterministic machines given in the last section also support this point of view.

If we accept that the W-classes are the parameterized analogue of NP, then we may argue similarly that
the AW-classes, that is, weg, denn die A-Hierarchy entspricht in diesem Bild der polynomiellen Hierarchie
und nicht alternating PTIME.] AW[∗], AW[SAT], and AW[P], form a parameterized analogue of alternating
polynomial time.

It is now tempting to jump to the conclusion that, since alternating polynomial time is equivalent to
polynomial space, the AW-classes can be seen as a parameterized analogue of polynomial space.2 However,
as we want to argue, some care needs to be taken here. One way tosupport the view that AW corresponds
to polynomial space would be to show that the parameterized analogue of a “typical” PSPACE-complete
problem is complete for some AW-class. The most generic PSPACE-complete problem, of course, is
the space bounded halting problem for Turing machines (“Given a Turing machine and an integerk in
unary, doesM have an accepting computation that only uses spacek.”), and this problem has a natural
parameterization:

CTMC
Input: A deterministic Turing machineM and a stringx.

Parameter: k ∈ N.
Problem: Is there an accepting computation ofM on inputx that visits at

mostk work tape squares?

2Downey and Fellows must have had this in mind when they calledthe chapter of their book [7] that deals with the AW-classes
“Fixed-Parameter Analogs of PSPACE andk-Move Games”.
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The version of this problem for nondeterministic machines is denoted by CNTMC. Abrahamson,
Downey, and Fellows [1] (compare also Theorem 14.4 of [7]) claim that CNTMC is AW[P]-hard under
FPT-reductions. Unfortunately, the proof of this result does not seem to be correct.3 What the proof shows
is that CNTMC is hard for AW[SAT] under FPT-reductions. Indeed, as we shall see below, even the deter-
ministic version CTMC is hard for AW[SAT].

We do not know whether this hardness result extends to AW[P], not even for the nondeterministic
version, although we tend to believe that this is not the case. We also believe that neither CTMC nor
CNTMC are contained in AW[P], but again we have no real evidence to support this believe. Proposition 26
below may be viewed as giving some evidence that at least CTMCand CNTMC are not contained in W[P].

The main result of this section shows that CTMC and CNTMC are complete for a natural parameterized
space complexity class derived from the classical deterministic and nondeterministic logarithmic space
classes. To define these classes, we need a few more notions from parameterized complexity theory.

A classical problem(as opposed to a parameterized problem) is simply a languageR ⊆ Σ∗ over
some finite alphabetΣ. For a parameterized problemQ ⊆ Σ∗ × N andk ∈ N, thekth sliceQk is the
classical problemQk := {x | (x, k) ∈ Q} ⊆ Σ∗. If K is a classical complexity class, XK is the class of
parameterized problems all of whose slices are in K.Uniform-XK is the class of parameterized problems
Q all of whose slices are in K uniformly, that is, there is a computable function assigning to everyk ∈ N a
Turing machine witnessing thatQk ∈ K.

It is easy to see that all parameterized complexity classes we have considered so far in this paper are
contained in uniform-XP. Here, we are mainly interested in the classes uniform-XL and uniform-XNL
derived from the classical classes logarithmic space (denoted by L) and nondeterministic logarithmic space
(denoted by NL). It is easy to derive the following alternative characterisations of these classes:

Proposition 18. LetQ ⊆ Σ∗ × N be a parameterized problem. Then:

(1) Q is in uniform-XL if, and only if, there is a computable functionf : N → N and an algorithm that,
given a pair(x, k) ∈ Σ∗ × N, decides if(x, k) ∈ Q in space at mostf(k) · log (n).

(2) Q is in uniform-XNL if, and only if, there is a computable functionf : N → N and a nondeterministic
algorithm that, given a pair(x, k) ∈ Σ∗ × N, decides if(x, k) ∈ Q in space at mostf(k) · log (n).

Proof: The backward direction is trivial. For the forward direction, letM be a machine that on inputk
computes a machineMk deciding thekth sliceQk of Q in space at mostck · log n (for some constantck).
Mk is deterministic for (1) and nondeterministic for (2). The desired functionf is a computable function
such thatf(k) ≥ ck andf(k) is an upper bound for the space required byM on inputk. 2

The following remark is intended for the reader familiar with [14].

Remark 19. A standard diagonalization argument shows that para-NL( uniform-XNL. Therefore, by the
last proposition there are parameterized problems solvable by some Turing machine and some computable
function in spaceO(f(k) · log n) but not solvable in spaceO(g(k) + log n) for any computable function
g. This solves a problem stated in Remark 4 of [14].

Corollary 20. Bothuniform-XL anduniform-XNL are closed under PL-reductions.

It is worth noting that FPT6⊆ XNL unless PTIME= NL. To see this, take any PTIME-complete
(classical) problemR and consider the parameterized problemQ =

⋃

k∈N
R×{k}. It is in FPT, but unless

PTIME = NL it is not in XNL because the first sliceQ1 = R is not in NL.
Since the closure[P ]FPT of any nontrivial parameterized problemP contains FPT, this also shows that

FPT-reductions are not really appropriate when investigating the classes uniform-XL and uniform-XNL.
We use PL-reductions instead.4

3One strong argument showing this is that the reduction described in the proof is actually a PL-reduction. Thus if the reduction
would work, then CNTMC would be hard for AW[P] under PL-reductions. By Corollary 25, this would imply thatnondeterministic
logarithmic space is equivalent to polynomial time.

4One may argue that PL-reductions, that is, parameterizedlogspacereductions, are still too powerful when considering the class
uniform-XL and that a weaker form of reduction would be more appropriate here, but we do not want to blow up the formal machinery
even more, so we simply use PL-reductions.

10



Theorem 21. (1) CTMC is uniform-XL-complete underPL-reductions.

(2) CNTMC is uniform-XNL-complete underPL-reductions.

Before proving part (2) of this theorem (statement (1) can beproved analogously), we fix some notation.
A nondeterministic TuringM machine is a tuple(Σ, Q, q0, q+, q−, δ). By default,M has one input tape
and one work tape.Σ is thealphabetof M , in additionM uses theblank symbol⊔ and theend marker
�; we always assume that0, 1 ∈ Σ. Q is the set ofstates, q0, q+, q− ∈ Q are thestarting state, the
accepting state, and therejecting state, respectively. Finally,δ is thetransition relationconsisting of tuples
(q, a, b, q′, b′, h1, h2), written in the formqab → q′b′h1h2, whereq, q′ ∈ Q, a, b, b′ ∈ Σ ∪ {⊔,�}, and
h1, h2 ∈ {−1, 0, 1} with the obvious meaning.

Theencodingenc(M) of M , enc(M) ∈ {0, 1}∗, starts with the number|Σ| in unary, ended by a0,
followed by |Q| in unary and ended by another0. And then it indicates the initial, accepting and rejecting
states, each by log|Q| bits. Finally, it has a description ofδ, which begins with|δ| in unary ended by a
0, and then gives the sequence of tuples ofδ encoded in a natural way. For example, theith symbol of
Σ ∪ {⊔,�} is encoded by the binary representation ofi of length log(|Σ| + 2).

The encoding enc(x) of a stringx ∈ Σ∗ is the{0, 1} string consisting of the encoding of the symbols
of x and thus has length|x| · log (|Σ| + 2). In a more precise form, CNTMC is the problem:

CNTMC
Input: enc(M)enc(x),5 whereM is a nondeterministic Turing machine

andx a string over its alphabet.
Parameter: k ∈ N.

Problem: Is there an accepting computation ofM on inputx that visits at
mostk work tape squares?

By NTIME(f ) we denote the set of classical problems decided by a Turing machine in timec · f for some
c ∈ N. The class NSPACE(f ) is defined analogously.

By Proposition 18, the following lemma shows that CNTMC∈ uniform-XNL.

Lemma 22. CNTMC ⊆ NSPACE(k · log |enc(M)enc(x)|). Moreover,CNTMC(Σ) ⊆ NSPACE(k +
log |enc(M)enc(x)|), whereCTMC(Σ) denotes the problemCNTMC restricted to Turing machines with
alphabetΣ.

Proof: To simplify the presentation of the argument the desired machineM0 has 5 work tapes: On input
(enc(M)enc(x), k), M0 starts by writing on the first tape the numbers := (|Σ| + 2)k · |Q| · |x| · k in
binary, i.e., the number of possible configurations ofM which only usek squares. ThenM0 simulatesM
decreasing the value on the first tape by one after the simulation of a step ofM . Thereby, it uses the second
work tape to record the current state ofM , the third and fourth to record the head position ofM ’s input
tape and ofM ’s work tape, respectively, and the fifth one to store the actual contents ofM ’s work tape, a
string of length≤ k · log (|Σ| + 2). In particular, ifM0 has simulateds + 1 steps ofM or if the content
of its fourth work tape (head position ofM ’s work tape) is alreadyk andM tries to increase it, thenM0

rejects. The space complexity ofM0 is

O(log ((|Σ| + 2)k · |Q| · |x| · k)) + log |Q| + log |x| + log k + k · log (|Σ| + 2))

= O(k · log |enc(M)| + log |enc(x)|) = O(k · log |enc(M)enc(x)|).

For fixed alphabetΣ the first line of the displayed equality shows that the space complexity isO(k +
log |enc(M)enc(x)|). 2

Proof of Theorem 21:To prove (2), it remains to show that CNTMC is uniform-XNL-hard under PL-
reductions. LetQ ⊆ Σ∗ × N be a parameterized problem in uniform-XNL. We shall prove thatQ ≤PL

CNTMC.
5Due to our encoding we can pinpoint the end position of enc(M) in enc(M)enc(x) easily.
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By Proposition 18 (2) there are a computable functionf and a nondeterministic Turing machineM
that decidesQ in spacef(k) · log n. Note that the alphabet of this machine isΣ′ = Σ ∪ {(, ), , } (the last
comma is an element of the set, that is, a symbol ofΣ′). Then

(x, k) ∈ Q ⇐⇒ (enc(M)enc((x, k)), f(k) · log |x|) ∈ CNTMC,

and this equivalence suggests a reduction fromQ to CNTMC. Unfortunately, this reduction is not a param-
eterized reduction, because there is no computable function g with f(k) · log |x| ≤ g(k) as required in the
definition of PL-reduction. To overcome this problem, givenx we use the technique of tape compression
where each tape square holds a symbol (of a new alphabet) representing the contents of a string overΣ′ of
length log |x| and where the new machine by its instructions keeps track of which symbol ofΣ′, among
those represented by a new symbol, is actually scanned byM . The following data of tape compression are
relevant to us.

Let |x| = n. The new machineMn has alphabetΣn := (Σ′ ∪ {⊔,�})log n and set of statesQn :=
Q × {0, . . . , log n − 1} × {0, . . . , log n − 1}. Thus,|Σn| := (|Σ′| + 2)log n = nlog (|Σ′|+2) and|Qn| =
|Q| · (log n)2. Hence,|Mn| ≤ |M | · nc for some constantc not depending onn. Denote by com the
compression map, com: (Σ′)∗ → Σ∗

n. Then

(x, k) ∈ Q ⇐⇒ M accepts(x, k) using space≤ f(k) · log |x|

⇐⇒ M|x| accepts com((x, k)) using space≤ f(k)

⇐⇒ (enc(M|x|)enc(com((x, k))), f(k)) ∈ CNTMC.

Altogether this gives a PL-reduction ofQ to CNTMC. 2

Proposition 23. AWSAT(PROP) ∈ uniform-XL and thusAW[SAT] ⊆
[

uniform-XL
]FPT

.

Proof: It is easy to see (and well-known) that propositional formulas can be evaluated in logarithmic space.
More precisely, there is an algorithmA that, given a formulaα ∈ PROP and a truth value assignmentT

for the variables of this formula, decides in spaceO(log n) whetherT satisfiesα.
Recall that an instance of AWSAT(PROP) consists of a formulaα ∈ PROP, positive integersk, ℓ, and

a partitionI1, . . . , Iℓ of the set of variables ofα. Let v be the number of variables ofα, m the size ofα.
Storing an assignment to the variables ofα in which for everyi exactlyk of the variables inIi are set to
TRUE requires spacek · ℓ · log v. Using the algorithmA as a subroutine, it is easy to design an algorithm
solving AWSAT(PROP) in spaceO(k · ℓ · log v + logm). 2

Corollary 24. CTMC is hard forAW[SAT] underFPT-reductions.

Corollary 25. AssumeNL 6= PTIME. ThenCNTMC is notFPT-hard underPL-reductions.

Proof: Suppose for contradiction that CNTMC is FPT-hard under PL-reductions. Then by Theorem 21 (2),
FPT⊆ uniform-XNL. But we have already noted (on page 10) that FPT6⊆ XNL unless PTIME= NL. 2

The next result may be seen as giving some evidence that at least CTMC and CNTMC are not contained
in W[P].

Proposition 26. If CTMC ∈ W[P] then there is anr such thatL ⊆ NTIME(nr).
The analogous result holds forCNTMC with NL instead ofL.

Proof: Suppose that CTMC∈ W[P]. Then by Theorem 21, uniform-XL⊆ W[P]. We shall prove that
L ⊆ NTIME(nr) for somer ≥ 1.

Since for any alphabetΣ andR ⊆ Σ∗ with R ∈ L, we haveR{0,1} := {enc(x) | x ∈ R} ∈ L, it
suffices to consider Turing machines with alphabet{0, 1}. Let

(M0, c0), (M1, c1), . . .
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be a computable enumeration of the pairs(M, c), whereM is a deterministic Turing machine with alphabet
{0, 1} andc ∈ N. We set

L(k) := {x ∈ {0, 1}∗ |Mk acceptsx using space≤ ck · log |x|}

and

Q :=
⋃

k∈N

L(k) × {k}.

Clearly,Q ∈ uniform-XL and thus by our overall assumption,Q ∈ W[P]. Then by Corollary 11,Q ∈
NTIME(f(k) · nr) for some computable functionf and constantr. Thus for everyk, Qk ∈ NTIME(nr).
2

Remark 27. We state a stronger version of Proposition 26 showing that its converse also holds. Recall that
para-NP (cf. [14]) is the nondeterministic analogue of FPT,that is, a parameterized problemQ is in para-
NP if and only if there is a nondeterministic algorithm acceptingQ in timeg(k) ·p(n) for some computable
g and some polynomialp. Clearly, W[P] ⊆ para-NP (e.g., apply Corollary 11).

Then the following three statements are equivalent:

(1) CNTMC∈ para-NP.

(2) uniform-XNL⊆ para-NP.

(3) There is anr ∈ N such that NL⊆ NTIME(nr) and this inclusion holds in an effective way, i.e., there
is an algorithm that, given a Turing machineM andc ∈ N, yields a Turing machineM ′ andc′ ∈ N

such that

if M is c · log n space-bounded thenM ′ is c′ · nr time-bounded andM andM ′ accept the
same language.

To conclude this section, let us return to our original question of how alternation in parameterized complex-
ity relates to space. In particular, we were interested in whether the problem CTMC, which we have seen
to be hard for AW[SAT], is also contained in AW[SAT] or at least in AW[P]. By Theorem 21, the latter
would imply that uniform-XL⊆ AW[P]. We do not believe that this is the case. The intuitive reasonfor
this is that alternation in AW[P] is parameter-bounded, but that to simulate a space-bounded computation
of lengthm by an alternating machine one needs about logm quantifier alternations.

We can turn this argument around and show that if we have enough alternations, then we indeed get a
problem that is hard for uniform-XNL.

LAWSAT

Input: α ∈ PROP, ℓ, k ∈ N with ℓ ≤ k · log |α|, a partition
V1 ∪̇ . . . ∪̇Vℓ of the variables inα.

Parameter: k ∈ N.
Problem: Decide if there is a sizek subsetU1 of V1 such that for every size

k subsetU2 of V2 there exists . . . such that the truth assignment
setting all nodes inU1 ∪ . . . ∪ Uℓ to TRUE and all other input
nodes toFALSE satisfiesα.

Theorem 28. (1) LAWSAT is hard foruniform-XNL underPL-reductions.

(2) LAWSAT is contained inuniform-XDSPACE(log 2n).

Proof: Let an instance (i.e., an input and a parameter) of LAWSAT be given as in its definition. We use the
following terminology: If the instance is in LAWSAT we say that the quantified propositional formula

∃V1∀V2 . . . QVℓ α

13



(with Q = ∀ for evenℓ, andQ = ∃ for oddℓ) holds in thek-interpretation.
To prove (1), by Theorem 21 it suffices to show that there is a PL-reduction of CNTMC to LAWSAT.

For this purpose let((M,x), k) (more precisely((enc(M)enc(x)), k) be an instance of CNTMC and de-
note byn the length of enc(M)enc(x). Let c be the number ofk space-bounded configurations of the
nondeterministic Turing machineM (on inputs of lengthn). Thenc ≤ nd·k for some constantd.

To describe such a configuration we use propositional variablesX(i, a),HI(i),HW(i), andS(q) with
1 ≤ i ≤ n and wherea andq range over the alphabet and the set of states ofM , respectively. Their
intended meaning is:

X(i, a) : theith cell of the work tape contains the lettera;

HI(i) : the head of the input tape scans theith cell;

HW(i) : the head of the work tape scans theith cell;

S(q) : M is in stateq.

Let C be the set of these propositional variables. In the following, if we writeC′ or Cj (with j ∈ N) we
mean the set of the corresponding primed or indexed variables.

One easily writes down a propositional formulaβ(C) such that their satisfying assignments of weight
k + 3 correspond tok space-bounded configurations ofM in a natural way.

By induction onm, we define a quantified propositional formulaΓm(C,C′) expressing that there is
a computation of length≤ 2m leading from the configurationC to the configurationC′ (and where all
intermediate configurations arek space-bounded):

Γ0(C,C
′) is a propositional formula of the formβ(C) ∧ β(C′) ∧ γ(C,C′) and

of lengthO(k · n);

Γm+1(C,C
′) = “∃C1(Γm(C,C1) ∧ Γm(C1, C

′))′′

= ∃C1(∀C2∀C3((C2 = C ∧ C3 = C1) ∨ (C2 = C1 ∧C3 = C′)

→ Γm(C2, C3))).

The last line guarantees that|Γm(C,C′)| ∈ O(m · k · n). We set

Γ := ∃C∃C′(βinit(C) ∧ βaccept(C
′) ∧ Γd·k·log n(C,C

′)),

whereβinit(C) andβaccept(C) express thatC is the initial or an accepting configuration ofM , respectively.
Moving all quantifiers to the front of the formula and adding dummy variables where necessary, one

obtains an equivalent formulaΓ′ = Γ′
((enc(M)enc(x)),k) of the form

Γ′ = ∃C1∀C2∃C3 . . . QCℓ γ

whereℓ ∈ O(k · log n) and such that

((enc(M)enc(x)), k) ∈ CNTMC ⇐⇒ Γ′ holds in thek + 3 interpretation.

By the introductory remark this gives the desired reductionof CNTMC to LAWSAT (if necessary, we
can ensure thatℓ ≤ (k + 3) · |γ|, by adding, for some constante, up tone many trivial conjunctions to
Γ0(C,C

′)).
It is easy to check that this reduction indeed is a PL-reduction.

For (2) note that LAWSAT considered as a classical problem is in DSPACE(k2 · log 2n) and hence, the
parameterized problem LAWSAT is in uniform-XDSPACE(log 2n). 2

5. Descriptive Complexity

The main results of this section are logical descriptions ofthe classes W[P] and AW[P]. We need a few
preliminaries from logic. For more details on the notions which are briefly described in the next subsection
we refer the reader to [11].
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5.1. Structures and Logic.A vocabularyis a finite set of relation, function, and constant symbols. Each
relation and function symbol has anarity. τ always denotes a vocabulary. AstructureA of vocabulary
τ , or τ -structure, consists of a setA called the universe, and an interpretationTA of each symbolT ∈ τ :
Relation symbols and function symbols are interpreted by relations and functions onA of the appropriate
arity, and constant symbols are interpreted by elements ofA. We only consider structures whose universe
is finite.

Let τ ′ ⊆ τ be vocabularies. Theτ ′-reductof aτ -structureA is theτ ′-structure with the same universe
asA that coincides withA on all symbols inτ ′. A τ -expansionof a τ ′-structureA′ is a τ -structureA
such thatA′ is theτ ′-reduct ofA. If A is aτ -structure andB ⊆ Ak, we often write(A, B) to denote the
τ ∪ {R}-expansion ofA in whichR is interpreted byB. HereR is ak-ary relation symbol not contained
in τ that is understood from the context. Similarly, we write(A, a1, . . . , ak) or just (A, ā) to denote the
expansion ofA by a tuple of constants.

Example 29. (1) Directed graphsmay be viewed as structuresG = (G,EG) whose vocabulary consists
of one binary relation symbolE.

(2) Let τcirc = {E, I,G∧ , G∨ , G¬, out}, whereE is a binary relation symbol,I, G∧ , G∨ , G¬ are unary
relation symbols, and out is a constant symbol. Boolean circuits may be viewed asτcirc-structures

C = (C,EC , IC , GC
∧ , GC

∨ , GC
¬, outC),

where(C,EC) is the directed acyclic graph underlying the circuit,IC is the set of all input nodes,GC
∧ ,

GC
∨ ,GC

¬ are the sets of and-gates, or-gates, and negation-gates, respectively, and outC is the output node.

LetT be another unary relation symbol. IfC is a circuit andT C ⊆ IC , then we may interpret theτcirc ∪
{T }-expansion(C, T C) of C as a representation of the circuitC together with the truth value assignment
that sets precisely the input nodes inT C to TRUE.

For every vocabularyτ we letτord = τ ∪{≤, S,min,max}, where≤ is a binary relation symbol,S a unary
function symbol, and min and max are constant symbols. Anorderedτ -structureis aτord-structureA such
that≤A is a linear order ofA, minA and maxA are the minimum and maximum element of≤A, andSA is
the successor function associated with≤A, where we letSA(maxA) = maxA. By ORD[τ ] we denote the
class of all orderedτ -structures.

We distinguish between the size of the universeA of a τ -structureA, which we denote by|A|, and the
sizeof A, which is defined to be

‖A‖ := ‖τ‖ + |A| +
∑

R∈τ

|RA| · arity(R) · log |A|,

where‖τ‖ denotes the size (of a natural encoding) ofτ .

The formulas offirst-order logicof vocabularyτ are built up fromatomic formulasusing the Boolean
connectives¬, ∧, and∨, and existential and universal quantification (over the elements of the universe of a
structure). Remember that anatomic formulais a formula of the formt = u orRt1 . . . tr, whereR ∈ τ is
anr-ary relation symbol andt, u, t1, . . . , tr aretermsformed fromvariablesand constant symbols using
function symbols. FO denotes the class of formulas of first-order logic. A sentenceis a formulaϕ in
which every variable is bound by a quantifier. Ifϕ(x1, . . . , xk) is a formula with free variables among
x1, . . . , xk, A a structure of the same vocabulary, and(a1, . . . , ak) ∈ Ak a k-tuple of elements ofA,
we writeA |= ϕ(a1, . . . , ak) to denote thatA satisfiesϕ if the variablesx1, . . . , xk are interpreted by
a1, . . . , ak, respectively.

The results in this section are mainly concerned with an extension of first-order logic calledleast fixed-
point logic, or FO(LFP) for short. To introduce least fixed-point logic,we first observe that any formula
ϕ(x1, . . . , xk) of vocabularyτ ∪ {X}, whereX is ak-ary relation symbol not contained inτ , for every
τ -structureA defines an operatorFA

ϕ : Pow(Ak) → Pow(Ak) given by

FA
ϕ (B) =

{

(a1, . . . , ak) ∈ Ak
∣

∣ (A, B) |= ϕ(a1, . . . , ak)
}

15



for everyB ⊆ Ak.
If X only occurspositivelyin ϕ, that is, only in the scope of an even number of negation symbols, then

for every structureA the operatorFA
ϕ is monotoneand therefore has aleast fixed point, which we denote

by lfp(FA
ϕ ).

Now the formulas of FO(LFP) are formed by the same rules as theformulas of FO and the following
additional formula formation rule: IfX is a k-ary relation symbol not contained in the vocabularyτ ,
x̄ = (x1, . . . , xk) andȳ = (y1, . . . , yk) arek-tuples of variables, andϕ is a formula of vocabularyτ ∪{X}
such thatX only occurs positively inϕ, then

ψ(ȳ) = [LFPx̄,Xϕ](ȳ)

is a new formula of vocabularyτ . To define the semantics ofψ(ȳ), for any τ -structureA andk-tuple
b̄ ∈ Ak of elements ofA, we letA |= ψ(b̄) iff b̄ ∈ lfp(FA

ϕ ).
Although we suppress this in our notation to simplify matters, let us point out that the subformulaϕ

of [LFPx̄,Xϕ](ȳ) may have additional free variables besides those appearingin x̄; these are simply treated
as free variables of the whole formula. Moreover, the tupleȳ may contain arbitrary terms and not just
variables. For a more thorough introduction to least fixed point logic we refer the reader to [11].

‖ϕ‖ always denotes the size (of a natural encoding) of a first-order or least fixed-point formulaϕ.

Example 30. In this example, we show how to define themonotone circuit value problemin FO(LFP).
A monotone circuitis a circuit without negation gates. Recalling Example 29, we may view a monotone
circuit as a structure of vocabularyτmon-circ = τcirc \ {G¬}. As in this example, we viewτmon-circ∪ {T }-
expansions(C, T C) of circuitsC by setsT C ⊆ IC as circuits together with truth value assignments.

Let C be a monotone circuit andT C ⊆ IC . We observe that the set of all nodes ofC that evaluate to
TRUE under the truth value assignment that sets precisely the input nodes inT C to TRUE is the least set
TRUE of nodes such that:

– TRUE containsT C.

– If all children of an and-gatea ∈ GC
∧ are in TRUE thena is in TRUE. (Thechildrenof a are all

b ∈ C such that(a, b) ∈ EC .)

– If at least one child of an or-gatea ∈ GC
∨ is in TRUE thena is in TRUE.

A moment’s thought reveals that therefore TRUE is the least fixed-point of the operatorF (C,TC)
ϕ associated

with the formula

ϕ(x) = Tx∨
(

G∧x ∧ ∀y(Exy → Xy)
)

∨
(

G∨x ∧ ∃y(Exy ∧Xy)
)

.

Thus TRUE is the set of all nodesb such that

(C, T C) |= [LFPx,Xϕ](b).

This means that the circuitC evaluates toTRUE under the assignment represented byT C if, and only if,

(C, T C) |= [LFPx,Xϕ](out). (2)

This gives us the desired definition of the monotone circuit value problem in FO(LFP). Let us point out that
the circuit value problem for arbitrary circuits is also definable in FO(LFP). It requires a more complicated
formula, though.

5.2. Logical Descriptions of W[P] and AW[P]. In [13] and [14] descriptive characterisations of various
parameterized complexity classes were derived, includingthe classes of the W- and of the A-hierarchy.
Here we give similar characterisations of the classes W[P] and AW[P]. The importance of such descriptive
characterisations lies in the fact that they neither dependon a particular machine model nor on a particular
complete problem, the latter being particularly importantfor such parameterized complexity classes that
are defined in terms of complete problems. In addition, the logical descriptions allow it to translate open
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complexity-theoretic problems such as W[P]= W[1] into purely logical problems on the expressive power
of logics (compare Corollary 24 in [14]).

In descriptive complexity theory, algorithmic problems are considered as classes of ordered structures
of some vocabulary rather than languages over some alphabet. Consequently, parameterized problems are
considered as subsetsQ ⊆ ORD[τ ] × N for some vocabularyτ . It is required that for eachk ∈ N thekth
sliceQk := {A ∈ ORD[τ ] | (A, k) ∈ Q} of Q is closed under isomorphisms.

We recall some definitions from [14]. Let L be a logic. A parameterized problemQ ⊆ ORD[τ ] × N is
slicewiseL-definable, if there is a computable functionδ : N → L such that for allA ∈ ORD[τ ] andk ∈ N

we have

(A, k) ∈ P ⇐⇒ A |= δ(k).

A family (Ls)s∈N of logics capturesa parameterized complexity class C if for every vocabularyτ and
every parameterized problemQ ⊆ ORD[τ ] × N we have

Q ∈ C ⇐⇒ there is ans ≥ 1 such thatQ is slicewise Ls-definable.

If this is the case, we write
C =

⋃

s≥1

slicewise-Ls.

Fors ≥ 1, let LFP[s] consist of all formulas of least fixed-point logic of the form

[LFPx̄,Xϕ]z̄,

whereX is of arity≤ s andϕ ∈ FO[s], that is,ϕ is a first-order formula, and inϕ at mosts individual
variables are quantified (note that inϕ a variable may be quantified several times and that, besides the
quantified variables,ϕmay contain other variables; thus, FO[s] strictly contains the finite variable fragment
FOs consisting of the first-order formulas with at mosts variables at all). Finally,Σ1LFP[s] denotes the
class of all formulas of the form∃x1 . . . ∃xℓϕ, whereϕ ∈ LFP[s], andΠ LFP[s] the class of formulas
Q1x1 . . . Qℓxℓϕ, whereℓ ≥ 1,Q1, . . . , Qℓ ∈ {∀, ∃}, andϕ ∈ LFP[s].

The proof of the following theorem parallels that of Theorem7.1 in [13]. We use the following two
facts, the first implicit in [24] and the second in the proof ofthe Immerman-Vardi Theorem [17, 23] (also
see [11]). Fixs ≥ 1:

(∗) There is an algorithm that for every vocabularyτ , every formulaϕ(ȳ) ∈ LFP[s] of vocabularyτ ,
everyτ -structureA, and every tuplēa ∈ Alength(ȳ) decides ifA |= ϕ(ā) in timeO(‖ϕ‖·‖(A, ā)‖2s).

(∗∗) For every vocabularyτ there is at ∈ N and a computable function that associates with everyd ∈ N

and everyO(ns)-algorithm accepting a classC of structures(A, ā) with A ∈ ORD[τ ] andā ∈ Ad a
formulaϕ(ȳ) ∈ LFP[t] of vocabularyτ such that for everyτ -structureA and everȳa ∈ Ad we have
A |= ϕ(ā) if and only if (A, ā) ∈ C.

Theorem 31.
W[P] =

⋃

s≥1

slicewise-Σ1LFP[s].

Proof: First, suppose thatQ ⊆ ORD[τ ] × N is slicewiseΣ1LFP[s]-definable via the computable function
δ : N → Σ1LFP[s]. Let δ(k) := ∃ȳϕ(ȳ) andȳ = y1 . . . yd. Let Aϕ(ȳ) be the algorithm obtained by (∗) by
fixing the input formulaϕ(ȳ). Then,

(A, k) ∈ Q ⇐⇒ A |= ∃ȳϕ(ȳ)

⇐⇒ there area1, . . . , ad ∈ A with A |= ϕ(ā)

⇐⇒ there area1, . . . , ad ∈ A such thatAϕ(ȳ) accepts(A, ā).

Hence, a nondeterministic Turing machineM carrying out the Algorithm 1 acceptsQ. ThereforeQ ∈
W[P], sinceM is a machine satisfying the requirements in Corollary 11: The number of steps needed for
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1 computeδ(k) = ∃y1 . . . ∃ydϕ(ȳ) ∈ Σ1LFP[s]

2 computeAϕ(ȳ) (cf. (∗))
3 guess elementsa1, . . . , ad in A
4 simulateAϕ(ȳ) on input(A, ā)
5 if Aδ(k) accepts(A, ā)
6 then accept
7 elsereject.

Algorithm 1

lines 1 and 2 only depends onk; line 3 consists in guessingd· log |A| (≤ g(k)· log ‖A‖) bits; and (compare
line 4) Aϕ(ȳ), on input(A, ā) performsO(‖(A, ā)‖2s) = h(k) · O(‖A‖2s+1) steps for some computable
h.

For the other direction, suppose thatQ ⊆ ORD[τ ] × N is in W[P]. Choose a nondeterministic Turing
machineM acceptingQ according to Corollary 11 (or Lemma 7): For every(A, k) ∈ Q, there is a
run of M accepting(A, k) of length at mostg(k) · ns (for some computableg and s ≥ 1) such that
the nondeterministic steps are among the firstg(k) · log n ones and that they consist in choosing a 0–1
string of lengthg(k) · log n. Note that for somec depending onτ only, we have for any structureA,
(log n =) log ‖A‖ ≤ c · log |A|. Hence, for any instance(A, k) of Q, we can arrange such an 0–1 string
in f(k) (≤ c · g(k)) blocks of log|A| bits, each such block corresponding to the binary representation of a
number≤ |A| and hence, to an element ofA. Let a1, . . . , af(k) be the corresponding elements. Now, we
can view the deterministic part ofM as ag(k) · ns bounded algorithm applied to(A, ā). Then (∗∗) yields,
for everyk, an LFP[t]-formulaϕ(ȳ) such that for allA ∈ ORD[τ ]

A |= ∃ȳϕ(ȳ) ⇐⇒ M accepts(A, k)

⇐⇒ (A, k) ∈ Q.

This gives the desired slicewise definition ofQ in Σ1LFP[t] . 2

Essentially the same proof also gives a characterisation ofAW[P]:

Theorem 32.
AW[P] =

⋃

s≥1

slicewise-Π LFP[s].

Besides the various weighted satisfiability problems that are used to define the W and AW classes, there
is another generic family of problems that are complete for these classes: model-checking problems. The
parameterized model-checking problemfor a logic L is the following problem:

p-MC(L)
Input: A structureA and an L-sentenceϕ.

Parameter: ‖ϕ‖.
Problem: Decide ifA |= ϕ.

The parameterized model-checking problem for first-order logic is complete for the class AW[∗] under
FPT-reductions [10]. For each of the classes of the W-hierarchy and the A-hierarchy there is a fragment
of first-order logic whose parameterized model checking problem is complete for the class [8, 13]. Using
Theorems 31 and 32 we get the following:

Theorem 33. (1) For all s ≥ 1 the parameterized model-checking problem forΣ1LFP[s] is complete for
W[P] under FPT-reductions.
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(2) For all s ≥ 1 the parameterized model-checking problem forΠ LFP[s] is complete forAW[P] under
FPT-reductions.

Proof: (1) Note that the algorithm existing according to (∗) works for all vocabulariesτ ; hence, similarly
as in the first part of the preceding proof, we get p-MC(Σ1LFP[s]) ∈ W[P] for all s ≥ 1. By Theorem
31, the W[P]-complete (ordered) problem p-CIRCUIT is slicewise-Σ1LFP[s0] for somes0 ≥ 1. Thus,
p-MC(Σ1LFP[s]) is W[P]-hard fors ≥ s0. We shall see in the proof of Theorem 35 that we can choose
s0 = 1.

The proof of (2) is similar. 2

Remark 34. The only standard parameterized complexity classes for which we have not been able to give
a descriptive characterisation in the spirit of Theorems 31and 32 are W[SAT] and AW[SAT]. We neither
know complete parameterized model-checking problems for these logics.

However, Papadimitriou and Yannakakis [21] showed that differently parameterized model-checking
problems are complete for these classes. Instead of parameterizing the model-checking by the length of the
input formula, they parameterized it by the number of variables:

p-MC(L, var)
Input: A structureA and an L-sentenceϕ.

Parameter: Number of variables inϕ.
Problem: Decide ifA |= ϕ.

Essentially, they proved that p-MC(FO, var) is complete for AW[SAT] and p-MC(Σ1, var) is complete for
W[SAT], whereΣ1 is the set of all existential first-order formulas in prenex normal form. (We give the
precise statement for W[SAT]: Let r ≥ 1 and denote byΣ1[r] the set ofΣ1-formulas without function
symbols and where all relation symbols are of arity≤ r. Then p-MC(Σ1[r], var) is complete for W[SAT].)

5.3. Fagin Definability. Besides the model-checking problems there is another classof natural parame-
terized problems derived from logic, which has been dubbed Fagin-definable problems in [13].

Letψ be a formula of vocabularyτ ∪ {Z}, whereZ is anr-ary relation symbol not contained inτ . It
Fagin-definesa parameterized problem p-FDψ(Z):

p-FDψ(Z)

Input: A τ -structureA.
Parameter: k ∈ N.

Problem: Is thereB ⊆ Ar with |B| = k and(A, B) |= ψ?

For a logic L, we let FD(L) denote the class of all problems that are Fagin defined by a formula in L. Recall
that for a class C of parameterized problems,[C]FPT denotes the closure of this class under FPT-reductions.
Downey, Fellows, and Regan [8] proved that for eacht ≥ 1

[

FD(Πt)
]FPT

= W[t],

whereΠt is the set of all first-order formulas of the form

∀x11 . . . ∀x1k1∃x21 . . .∃x2k2 . . . Qxt1 . . . Qxtkt
ψ,

whereψ is quantifier-free andQ = ∃ if t is even andQ = ∀ if t is odd.
We give a characterisation of the class W[P] in terms of Fagindefinability:

Theorem 35.
[

FD
(

FO(LFP)
)

]FPT
= W[P],

More precisely, there is anFO(LFP)-formula ψ such thatp-FDψ(Z) is complete forW[P] under FPT-
reductions, and for eachFO(LFP)-formulaϕ the problemp-FDϕ(Z) is contained inW[P].
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Proof: We first prove that there is an FO(LFP)-formulaψ such that p-FDψ(Z) is hard for W[P] under
FPT-reductions.

Recall Example 30, where it was shown how to define the monotone circuit value problem in FO(LFP).
We can easily extend this to the circuit value problem for circuits innegation normal form, that is, circuits
in which negations gates only appear directly above input gates. To do this, we simply have to add a clause
to the formulaϕ(x) of Example 30 which says that ifx is a negation gate then it evaluates toTRUE if it has
a child not contained in the setT C of input nodes set toTRUE. We get a formula

ϕ′(x) = Tx ∨
(

G¬x ∧ ∃y(Exy ∧ ¬Ty)
)

∨
(

G∧x ∧ ∀y(Exy → Xy)
)

∨
(

G∨x ∧ ∃y(Exy ∧Xy)
)

,

and letψ′ = [LFPx,Xϕ′](out). Then a circuitC in negation normal form evaluates toTRUE under the
assignment that sets precisely the input nodes inT C ⊆ IC to true if, and only if,

(C, T C) |= ψ′.

Thus a circuitC in negation normal form has a satisfying assignment of weight k if, and only if, there exists
a k-element setT C ⊆ IC such that(C, T C) |= ψ′. Lettingψ = ψ′ ∧ ∀x(Tx → Ix), we see that, on the
class of circuits in negation normal form, p-FDψ(T ) is precisely the weighted satisfiability problem.

Since every circuit can be transferred to an equivalent circuit in negation normal form in polynomial
time, this yields an FPT-reduction from WSAT(CIRCUIT) to p-FDψ(T ) and thus shows that p-FDψ(T ) is
W[P]-hard under FPT-reductions.

It remains to prove that p-FDψ(Z) is in W[P] for everyψ ∈ FO(LFP). By using a well-known normal
form for least fixed-point logic [17] (also see [11]) we can assume thatψ has the form

∃y[LFPx̄,Xχ(x̄, y)](y . . . y),

whereχ is a first-order formula of vocabularyτ ∪ {X,Z} and neitherX norZ are contained inτ . For
notational simplicity, we assume thatX is unary. Lets be the number of variables quantified inχ. We show
that p-FDψ(X) is slicewiseΣ1LFP[s]-definable. Given a parameterk, set (with new variablesz1, . . . , zk)

ϕk := ∃z1 . . . ∃zk∃y[LFPx,X(
∧

1≤i<j≤k

zi 6= zj ∧ χ
k)](y . . . y),

whereχk is obtained fromχ by replacing each atomic formula of the formZt by (t = z1 ∨ . . . ∨ t = zk).
Thenϕk ∈ Σ1LFP[s] and for every structureA,

(A, k) ∈ p-FDψ(Z) ⇐⇒ A |= ϕk.

This shows that p-FDψ(Z) is slicewiseΣ1LFP[s]-definable and thus in W[P] by Theorem 31. 2

6. Conclusions

By giving machine characterisations and logical descriptions of the classes W[P] and AW[P] we feel that
we have gained a much clearer understanding of these classes. The logical descriptions place the classes
into a uniform framework that we had started to develop in earlier work, so that now we have a fairly
comprehensive picture of the logical side of parameterizedcomplexity classes. The only important classes
not yet integrated into this picture are the classes W[SAT] and AW[SAT].

The machine characterisation of W[P] is very simple and natural and provides a precise connection
between parameterized complexity theory and limited nondeterminism. Moreover, as far as we know it
is the first machine characterisation for any of the standardintractable parameterized complexity classes;
only characterisations via complete problems were known before. We gave similar characterisations for
the classes W[1], A[t] for t ≥ 1, AW[∗], and AW[t]. Curiously, we werenot able to give such charac-
terisations for the classes W[t] for t ≥ 2. It remains an interesting open problem to find natural machine
characterisations for these classes.

Another open problem is the relation between the classes AW[P] and[uniform-XNL]FPT, the closure of
uniform-XNL under FPT-reductions. This is equivalent to the questions of whether the problem CNTMC
is contained in AW[P] and whether it is hard for AW[P]. We conjecture that the answer to both of these
questions is negative.

Appendix A provides an overview over all classes studied in this paper and a few more.
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