Bounded Nondeterminism and Alternation in Parameterized @mplexity Theory

Yijia Chen Jorg Flum Martin Grohé

November 15, 2003

Abstract

We give machine characterisations and logical descriptifa number of parameterized complexity
classes. The focus of our attention is the clag®|Wwhich we characterise as the class of all param-
eterized problems decidable by a nondeterministic fixedspater tractable algorithm whose use of
nondeterminism is bounded in terms of the parameter. Wegjimgar characterisations for AW, the
“alternating version of {P]”, and various other parameterized complexity classes.

We also give logical characterisations of the class¢B]\&hd AWP] in terms of fragments of least
fixed-point logic, thereby putting these two classes intmifoum framework that we have developed in
earlier work.

Furthermore, we investigate the relation between altemnand space in parameterized complexity
theory. In this context, we prove that th@@pPACT TURING MACHINE COMPUTATION problem, shown
to be hard for the class AJ8AT] in [1], is complete for the class uniform-XNL.

1. Introduction

Parameterized complexity theory provides a framework fimexgrain complexity analysis of algorithmic
problems that are intractable in general. It has been usadaiyse problems in various areas of computer
science, for example, database theory [16, 21], artifici@ligence [15], and computational biology [3,
22]. The theory is built on a weakened notion of tractabitilled fixed-parameter tractabilitywhich
relaxes the classical notion of tractability, polynomiadé computability, by admitting algorithms whose
running time is exponential, but only in terms of sop&rameterof the problem instance that can be
expected to be small in the typical applications.

A core structural parameterized complexity theory has losmeloped over the last 10-15 years (see
[7]). Unfortunately, it has led to a bewildering variety onameterized complexity classes, the most
important of which are displayed in Figure 1. As the readérhdve guessed, none of the inclusions is
known to be strict. The smallest of the displayed classe$, BRhe class of all fixed-parameter tractable
problems. Of course there is also a huge variety of classmaplexity classes, but their importance is
somewhat limited by the predominant role of the class NPalameterized complexity, the classification
of problems tends to be less clear cut. For example, for ehtfecclasses W |, W[2], W[P] there are
several natural complete problems which are parameteniwadf classical NP-complete problems.

Not only is there a large number of (important) parameterzamplexity classes, but unfortunately it
is also not easy to understand these classes. The main rfeagbis may be seen in the fact that all the
classes (except FPT) are defined in terms of complete prebkema no natural machine characterisations
are known. This makes it hard to get a grasp on the classest atab frequently leads to confusion
with respect to what notion of reduction is used to define thsses. In this paper, we continue earlier

*Abteilung fur Mathematische Logik, Albert-Ludwigs-Umeitsitat Freiburg, Eckerstr. 1, 79104 Freiburg, Germany.
Email:chen@er nel o. mat hemat i k. uni -frei burg. de

t Abteilung fir Mathematische Logik, Albert-Ludwigs-Umisitat Freiburg, Eckerstr. 1, 79104 Freiburg, Germany.
Email: Joer g. Fl um@rat h. uni - f rei bur g. de.

*Laboratory for Foundations of Computer Science, UniversitEdinburgh, Edinburgh EH9 3JZ, Scotland, UK.
Email:gr ohe@ nf . ed. ac. uk

1Downey and Fellow’s monograph [7] distinguishes betweeaethypes of Turing reductions, which also have correspandi
notions of many-one reductions. In principle, there is asiger of each of the complexity classes for each of the six fooh
reduction.

FPTCWI[1] = A[1]CW[2]CW[3] C- - C W[SAT] € WI[P|
NN la N
A[2] CA[3] C--- CAW[x] C AW[SAT] C AW[P|

Figure 1. Parameterized complexity classes.

research [14] in which we try to remedy this situation by givimachine characterisations and logical
characterisations of the parameterized complexity ctasse

The main focus of this paper is the clas$P\and its “alternating” variant AWPJ, two classes we have
not considered in our earlier work. W is defined to be the class of all parameterized problems teat a
reducible to thewveighted satisfiability problerfor Boolean circuits. This problem asks whether a given
circuit has a satisfying assignmentweéight %, that is, a satisfying assignment in which preciselin-
puts are set taRUE. Herek is treated as thparameterof the problem. It is worth mentioning at this
point that all the other “W-classes” in Figure 1 are definaxdlisirly in terms of the weighted satisfiability
problem, but for restricted classes of circuits. Thus in ssense, P is one of the most natural param-
eterized complexity classes. [has received some recent attention because of an impoesuit due
to Alekhnovich and Razborov [2] showing that resolution @& automatizable unless FP¥ W[P]. Our
first theorem is a simple machine characterisation of thescWP]. Intuitively, it states that a problem
is in W[P] if, and only if, it is decidable by a nondeterministic fixedrpmeter tractable algorithm whose
use of nondeterminism is bounded in terms of the parametpregise formulation of this result is that a
problem is in WP] if, and only if, it is decided in timef (k) - p(n) by a nondeterministic Turing machine
that makes at mosf(k) - log n nondeterministic steps for some computable funcficend polynomial
p. Herek denotes the parameter andhe size of the input instance. While it has been noted b&&me,
for example, Chapter 17 of [7]) that there is a relation bemimited nondeterminism and parameterized
complexity theory, no such simple and precise equivaleracekmown. As a by-product of this result, we
get a somewhat surprising machine characterisation ofltfss &\[1]: A problem is in W1] if, and only
if, it is decidable by a nondeterministic fixed-parametactable algorithm that does its nondeterministic
steps only among the last steps of the computation. Heré staps” means a number of steps that is
bounded in terms of the parameter.

The “A classes” and “AW classes” of Figure 1 are defined in gohan alternating version of the
weighted satisfiability problem, which can also be seen aarameterized version of the satisfiability
problem for quantified Boolean formulas. For A¥, we obtain a similar characterisation as fofRMn
terms of alternating algorithms. Moreover, we get charésatons for the classes[#é, for¢ > 1, and the
class AWx| that generalise our characterisation of1\V A remarkable insight of structural complexity
theory is the tight connection between alternation andesf@c By analogy, it has been suggested to
consider the alternating classes Ml AW[SAT], and AWP] as “PSPACE-analogues” [7] in the world
of parameterized complexity theory. We investigate thesaidnd obtain a number of results that suggest
that the relation between parameter-bounded space amdadita is more complicated than it has been
assumed before. Instead of going into further detail heee refer the reader to the discussion in the
introduction of Section 4. The main technical result we grovthat section is that theompact Turing
machine computatioproblem, which was only known to be hard for the class[8AT] before (cf. [1]), is
complete for the class uniform-XNL under parameterizedpage reductions.

Descriptive complexity theory [11, 19] provides a machinddpendent way of understanding com-
plexity classes. The idea of this area is to characterisedhgutational complexity of problems in terms
of logical definability. Most standard complexity classesé natural descriptive characterisations (for
example, [12, 17, 18, 23]). In two earlier papers [13, 14} tf us gave descriptive characterisations of
the classes FPT, W, and At] for ¢t > 1, and AWx]. Here, we give such characterisations of the classes
WIP] and AWP]. All these characterisations are based on fragments dffigad point logic, which is the
logic that captures polynomial time in classical complgtiteory [17, 23]. Our results enable us to place
all classes in Figure 1 except[8AT] and AWSAT] into a very uniform framework that neither depends
on a particular notion of reduction nor on a particular maehmodel.

2. Parameterized Complexity Theory

We review the notions of parameterized complexity theorgtmelevant to this paper.

2.1. Fixed-Parameter Tractability. A parameterized problens a setQ C ¥* x N, whereX is a finite
alphabet. If(z, k) € £* x N is an instance of a parameterized problem, we referde theinputand tok
as theparameter We always denote the parameteribgnd the length of the input stringby n.

Definition 1. A parameterized proble) C ¥* x N is fixed-parameter tractabli there is a computable
function f : N — N, a polynomialp, and an algorithm that, given a pdir, k) € X* x N, decides if
(x,k) € Q inatmostf(k) - p(n) steps.

FPT denotes the complexity class consisting of all fixedapeater tractable parameterized problems.

2.2. Parameterized Reductions. We shall consider two notions of reductions between pararnzed
problems in this paper. The first is the standard notion cpaterized (many-one) reduction. We call
it FPT-reduction here; Downey and Fellows [7] have used émmtstrongly uniform parameterized m-
reduction. The second, more restrictive notion, calledr&duction, has been introduced in [14] as a
parameterized version obspace-reduction.

Definition 2. An FPT-reduction (PL-reductior) from the parameterized proble@ C >* x N to the
parameterized proble’ C (¥/)* x Nis a mapping? : ¥* x N — (X')* x N such that:

(1) Forall(z,k) € ¥* x N: (z,k) € Q < R(x,k) € Q.

(2) There exists a computable functign N — N such that for al{z, k) € ¥* x N, say withR(z, k) =
(', k"), we havek’ < g(k).

(3) There exist a computable functigh: N — N and a constant € N such thatR is computable in
time f (k) - n° (computable in spacé(k) + c - log n, respectively).

We write@Q <PT @’ (Q <P* Q") if there is an FPT-reduction (a PL-reduction, respecjivebm Q to Q’.
We let

[Q]FPT: Q' Q <FPT Q} and [Q]PL ={Q'1Q <Pt Q}.

For a class C of parameterized problems, we let

[C]FPT — U [Q]FPT and [C]PL — U [Q]PL-

QeC QecC
Note that FPTC [Q]FPT for every problenQ C ¥* x Nwith Q # (), Q # X* x N.

2.3. Propositional logic. Formulas of propositional logic and circuits are importagredients in the
definitions of various complexity classes of intractablespaeterized problems. We recall a few notions
and fix our notations: Formulas of propositional logic ar#étlwp from propositional variablesX, X5, . ..

by taking conjunctions, disjunctions, and negations. Tégation of a formulay is denoted by-«. We
distinguish betweesmall conjunctionsdenoted byA, which are just conjunctions of two formulas, and
big conjunctionsdenoted by, which are conjunctions of arbitrary finite sets of formulAsalogously,
we distinguish betweesmall disjunctionsdenoted byv, andbig disjunctionsdenoted by/. A formula

is smallif it only contains small conjunctions and small disjunaiso

SMALL and PROP denote the class of all small and the classl gfrapositional formulas, respec-
tively. C; denote the class of all (big) conjunctions of small formutésthe class of all conjunctions of
disjunctions of small formulas, ar@, for ¢ > 3 the class of all conjunctions of disjunctions of formulas in
Ct_g.

Thedepthof a formula is the maximum number of nested conjunctionsdisidnctions appearing in
this formula. For alk,t > 1, C; 4 denotes the class of all formulasd whose small subformulas have
depth at most (equivalently, we may say that the whole formula has depthastd + t).

We also have to consideircuits, defined in the standard way. To be a bit more specific, let ythsd
our circuits consist olnput gatesand gatesandor gatesof arbitrary finite arity, anchot gatesand they

have one designated output node (that is, they only compatéeBn functions). To simplify our notation,
we always assume that we have assigned a propositionabletiaeach input gate of a circuit. CIRCUIT
denotes the class of all circuits. We view PROP as a subcfaBHReCUIT.

2.4. Parameterized complexity classesTheweightof an assignment for the variables of a propositional
formula or circuit is the number of its variables setrRUE by the assignment. For any cla®sof propo-
sitional formulas or circuits, theveighted satisfiability problem f@ is the problem of deciding whether a
formula in® has a satisfying assignment of weighiparameterized by:

WSAT(O)
Input: « € 0©.
Parameter: k€ N.
Problem: Doesa have a satisfying assignment of weigf®

Definition 3. (1) Fort > 1, W[¢t] is the class of all parameterized problems that are FPTeiekduto
WSAT (C, 4) for somed > 1, that is,

W[t] = [{WSAT(Cyq) | d > 11T
(2) WI[SAT] is the class of all parameterized problems that are FPTerblduto WSAT (PROB, that is,
W([SAT] = [WSaT (PROP)]T.
(3) WIP] is the class of all parameterized problems that are FPTeilelduto WSt (CIRCUIT), that is,
WIP| = [WSAT(CIRCUIT)]™T.

For any clas® of propositional formulas or circuits, theternating weighted satisfiability problem fér
is the following problem:

AWSAT(O)
Input: «a € O,/ ¢c N, apartitionV; U ... UV, of the variables ofv.
Parameter: k,¢ € N.

Problem: Decide if there is a sizé subsetl/; of V; such that for every
sizek subset; of V5 there exists ... such that the truth assign
ment setting all variables iti; U ... U U, to TRUE and all other
variables toFALSE satisfies.

Definition 4. (1) AW[SAT] is the class of all parameterized problems that are FPTeiblduto

AWSAT(PROB, that s,
AW([SAT] = [AWSAT(PROB]™T.

(2) AWIP] is the class of all parameterized problems that are FPTeiblduto AWSAT (CIRCUIT), that

IS,
AWI[P] = [AWSAT(CIRCUIT)]™T.

Remark 5. Of course there are also classes W= [{AWSAT(C; 4) | d > 1}]FPT corresponding to the
WI[t]. It turns out, however, that AJ] = AW([1] for all ¢ > 1 (cf. [9]). For that reason, the class AWis
usually denoted by A¥].

There is another hierarchy, the so called A-hierarchy, whotgsses are obtained by fixing the number
of alternations (i.e. thé) in the definition of AWx]. We refer the reader to [13] for the precise definition.

3. Machine descriptions

In this section we derive machine-based characterisatibMé[P], AW[P], and of W1] (= A[1]). The
latter one can easily be generalised to the classes of therarbhy. In an informal way, we can describe
our results by the following equalities:

W[P] = parameter-bounded nondeterminism + FPT (Theorem 8)
WI[1] = FPT + parameter-bounded nondeterminism (Theorem 15)
AW[P] = parameter-bounded alternating nondeterminism + FPT (Emed7(1))
AW[x] = FPT + parameter-bounded alternating nondeterminism (Ened7(2))
A-hierarchy = FPT + parameter-bounded alternating nondeterminism

of bounded alternation depth (Theorem 17(3))

Our machine model is based on the standard random accesme®(RAMS) described in [20]. The
arithmetic operations are addition, subtraction, andstbvi by two (rounded off), and we use a uniform
cost measure. For details, we refer the reader to Sectioof 226)].

Our model is non-standard when it comes to nondeterminigsted of just allowing our machines to
nondeterministically choose one bit, or an instructionhaf program to be executed next, we allow them
to nondeterministically choose a natural number. Of cothiseis problematic, because if the machine
can really “guess” arbitrary numbers, computations carongér be described by finitely branching trees,
and nondeterministic machines can no longer be simulatedebgrministic ones. To avoid the kind of
problems resulting from this, we decided that a “bounded$iem of this unlimited nondeterminism is
most appropriate for our purposes. Therefore, we defineraleterministic RAMo be a RAM with an
additional instruction “"GUESS j” whose semantics is: Guess a natural number less than of teciha
number stored in registérand store it in registej. Acceptance of an input by a nondeterministic RAM
program is defined as usually for nondeterministic machiSteps of a computation of a nondeterministic
RAM that execute a GUESS instruction are calt@shdeterministic steps

While this form of nondeterminism may seem unnatural at iggt, we would like to argue that it is
very natural in many typical “applications” of nondeteriisim. For example, a nondeterministic algorithm
for finding a clique in a graph guesses a sequence of verticdgearaph and then verifies that these
vertices indeed form a clique. Such an algorithm is mucheeai@scribed on a machine that can guess
the numbers representing the vertices of a graph at onterrdtan guessing their bits. In any case, we
believe that our results justify our choice of model. ForHar discussion of this issue we refer the reader
to Remark 12.

Definition 6. A nondeterministic RAM prograri? is a W -program if there is a computable functiofi
and a polynomiap such that for every input, k) with || = n the progran® on every run

(1) performs at mosf (k) - p(n) steps;

(2) at mostf (k) steps are nondeterministic;

(3) at most the firsf (k) - p(n) registers are used;

(4) atevery point of the computation the registers contambers< f (k) - p(n).

By standard arguments one gets:

Lemma 7. Let@ be a parameterized problem. The following are equivalent:

(1) There is &V -program deciding?.

(2) There is a nondeterministic Turing machihé deciding@ such thatM on input(z, k) performs at
mostg(k) - ¢(n) steps and at most(k) - log n nondeterministic steps (for some computapbnd
polynomialg).

(3) There is a nondeterministic Turing machihgaccepting?). Moreover, for everyz, k) € @ there is

an accepting run of\/ of length at mosy(k) - ¢(n) such that the nondeterministic steps are the first
g(k) - log n ones (for some computalyeand polynomial).

Theorem 8. Let () be a parameterized problem. Théhe WIP] if and only if there is al//-program
deciding@.

Proof: Assume first that) € W[P]. Then by the definition of W], @ <™T WSAT[CIRCUIT]. Hence
there are computable functioffsandg, a polynomialp, and an algorithmd assigning to everyz, k), in
time < f(k) - p(n), a circuitC, ;, and a natural numbéf = k'(x, k) < g(k) such that

Qzk <= (.} has a satisfying assignment of weigft

Thus, we can assume that the nodes of the ciCuit are (labelled by) natural numbess f (k) - p(n).
The claimedV -programP on input(z, k) proceeds as follows:

1. It compute<, ;, andk’;
2. It guesses thé’ (labels of) input nodes to be settauk;
3. It evaluates the circuif, , and acceptér, k) if the circuit outputsTRUE.

(When carrying out line 1P simulates the algorithm step by step and after each step increases a fixed
register, say registép by “1”. Now, line 2 can be realized by invokirnig times an instruction of the form
GUESS;i, j and storing the guesses appropriately.) Clearly, the nuwigeps thal® performs can be
bounded by:(k)-g(n) (for some computable and some polynomial) and the number of nondeterministic
steps isk’ (< g(k)).

For the converse direction suppose tfyas decided by &17-programP. By the previous lemma, there
are a computable functiofy a polynomialp and a nondeterministic Turing machiné accepting?) such
that for every(z, k) € Q there is a run of\ acceptingx, k) of length at mostf (k) - p(n) such that the
nondeterministic step are thgk) - log n first ones. W.l.0o.g. we may suppose that on every idgufirst
carries out the nondeterministic steps and that they ahegeonsist in appending to the indut &) a 0-1
string.

The deterministic part of the computationaf can be simulated by a circui, ; in the standard way
(e.g., compare the proof of Theorem 8.1 in [20]) such that

M acceptgz, k) < C,j has a satisfying assignment. ()

Cs k has size< g(k) - ¢(n) for some computablg and polynomialy. It has f(k) - log n input nodes
corresponding to the 0-1 string chosen in the nondetertitirpart of the computation of/ (if more
bits are required by the deterministic part of the compatatf M, the circuitC, , will not accept the
corresponding assignment).

We think of thef (k) - log n input nodes of,, ;, as being arranged ifi(k) blocks of logn nodes. Let
us obtain the circuiD,, ;, by addingf (k) blocks ofn new input nodes t6, ,, and by ensuring that at most
one input node of each block can be setRUE (in a satisfying assignment @, ;). Moreover, we wire
the new input nodes with the old input nodes (i.e., the inmaes ofC,) in such a way that if thgth
input node of théth block of D,, ;; is set toTRUE then exactly those old input nodes of iftle block, which
correspond to positions of the binary representationhadrrying a 1, are set toRUE. Then

Cs 1 has a satisfying assignment<—=- D, ;, has a satisfying assignment of weigh).
Altogether, we have shown th@ < T WSAT[CIRCUIT], i.e.Q € W[P]. O
Remark 9. Some of the arguments in the second half of the previous paaf been used by Downey and
Fellows [7] in a similar context. Specifically, the arguneleiading to (1) and hence, to the equivalence

(x,k) € Q <= (. has a satisfying assignment

show that) <FPT SHORT CIRCUIT SATISFIABILITY (cf. [7]). The transition fron€,. ;. to D, .. duplicates
the proof of [7] showing that W[P] containsi®RT CIRCUIT SATISFIABILITY ; there, the method is called
the “k - log n trick”.

Note that the reduction of the second part of the proof of trevipus theorem is a PL-reduction
(parameterized logspace reduction); thus:

Corollary 10. WSAT[CIRCUIT] is W[P]-complete undePL-reductions.

Moreover, by Lemma 7 we obtain:

Corollary 11. Let@ be a parameterized problem. Th@ne W[P] if and only if there is a nondeterministic
Turing machine\/ deciding@ such that) on input(z, k) performs at mosg(k) - g(n) steps and at most
g(k) - log n nondeterministic steps (for some computable fungjiand polynomiag).

Remark 12. The previous corollary shows that if we define nondeternimRAMSs by allowing the ma-
chines to guess only one bit per nondeterministic step adsté an arbitrary number, then Theorem 8
remains true if we allow a W-program to perforfijk) - log n nondeterministic steps (cf. clause (2) in
Definition 6).

The reason that we chose our non-standard definition of nemdimistic RAMs is that it also gives us
a nice machine description of the clas$ly\(see Theorem 15).

As a further corollary we get a slight strengthening of a itasfU5]:

Corollary 13. BOUNDED NONDETERMINISTIC MACHINE COMPUTATION (BNTMC) is W[P]-complete
underPL-reductions.

Here, (BNTMC) denotes the following problem:

BNTMC
Input: A nondeterministic Turing machin® andn € N in unary.
Parameter: k e N.
Problem: DoesM accept the empty string in at maststeps and using at
mostk nondeterministic steps?

Proof: BNTMC is in W[P] by Corollary 11: Given a nondeterministicfling machineM andn € N in
unary, as input, and € N, as parameter, the nondeterministic Turing machine we airguesses the
k - log n bits describing the (number and behaviour of the) nondetestic steps ofd/ and then simulates
n steps ofM accordingly.

And BNTMC is W[P]-hard: We show that W& [CIRCUIT] <P BNTMC. Given a circuitC of
sizen andk € N design a nondeterministic Turing machii&: ;, whose alphabet, among others, has a
letter for every input node of the circuitand that first guessdsinput nodes to be set toRUE and then
deterministically evaluates the circuit. Hence, for soralypomialg, we have

C has a satisfying assignment of weight < ((Mc¢x, k + ¢(n)), k) € BNTMC,
which gives the desired reduction.]

We now turn to a machine characterisation of the cla$s] WDur proof uses the following result due
to Cai, Chen, Downey, and Fellows [4]:

Theorem 14 (Cai et al. [4]). The following parameterized probleBHORT TURING MACHINE ACCEP
TANCE (STMA) is W[1]-complete undeFPT-reductions:

STMA
Input: A nondeterministic Turing machingf .
Parameter: &k € N.
Problem: DoesM accept the empty string in at mdssteps?

Theorem 15. Let @ be a parameterized problem. Théhe W/[1] if, and only if, there is a computable
functionh and a W-prograni® deciding@ such that for every run @ all nondeterministic steps are among
the lasth(k) steps of the computation, whekés the parameter.

Proof: First assume thaf) € W[1]. ThenQ <°T STMA. Hence, there are a computable function
f, a polynomialp, and an algorithm assigning to every instarieek) of @, in time < f(k) - p(n), a
nondeterministic Turing machin® = M, ;, and a natural numbéf = £'(z, k) < g(k) such that

Qrk <= M accepts the empty string in at mdststeps.

We can assume that the states and the symbols of the alplaketoe natural numbers f(k) - p(n).
The claimed¥ -program on(z, k) proceeds as follows:

1. It computesM andk’;
2. It guesses a sequencefdfconfigurations of\/;
3. It verifies that the sequence of guessed configurations aaecapting computation a¥/.

Note that the number of steps needed by line 2 and line 3 isdexlbyh (k) for a suitable computable
functionh; thus, the nondeterministic steps of this program are artfoatasth (k).

Assume now that th&/-programP decides?) and that for some computable functibnon every run
of P on input(x, k) the nondeterministic steps are among the ld&f). Choose a computable functign
and a polynomiap for P according to the definition df/-program. We show thap <PT STMA.

Fix an instanc€z, k) for . The nondeterministic Turing machidd = M, “incorporates in its
alphabet and in its transition function the status ofitigorogramP immediately beforé carries out its
first nondeterministic step and simulates the nondeterministic partidf A little bit more in detail:

— The alphabet o} contains as symbols the numbérs, ..., f(k) - p(n).

— M has a statecon:. If m; is the content of registgrimmediately before the nondeterministic part of
P begins, then\/ has an instruction

if M readsj in stateceont then it printsm; ...
— Foreveryi < f(k) - p(n), M has a state,qq; and an instruction

if M readsj < f(k) - p(n) in statecaqq; then it prints; + j (in casei + j < f(k) - p(n))

— Letj < h(k). If i1,...,1i, are the registers whose content has been changed in th¢ diesps of
the nondeterministic part @& anday, . . ., ap are their contents after thegesteps, then eventually a
work-tape ofM contains the tuple€i,a1),. .., (i¢, a¢) in any order.

It should be clear that! = M, ;, needsy(h(k)) steps to simulate the nondeterministic parPaind that
M can be obtained in tim&(f’(k) - p’(n)) for some computablg’ and polynomiap’. Altogether we
have an FPT-reduction @} to STMA. a

3.1. Alternation. To characterise AWP|, AW([«], and the classes of the A-hierarchy, we need alternating
machines. In addition to the “GUESS;” instruction, analternating RAMalso has a “FORALL; j”
instruction. To emphasise the duality, we call the “GUESS instruction “EXISTS: j” from now on.

The semantics is defined as usually for alternating machif¢sps of a computation of an alternating
RAM in which EXISTS or FORALL instructions are executed aadled existential step®r universal
stepsrespectively. All other steps are callddterministic steps

Definition 16. An alternating RAM progran® is anAW-programif there is a computable functighand
a polynomialp such that for every inputz, k) with |2:| = n the progran® on every run

(1) performs at mosf (k) - p(n) steps;

(2) at mostf (k) steps are existential or universal;

(3) at most the firsf (k) - p(n) registers are used;

(4) atevery point of the computation the registers contambers< f(k) - p(n).

Analogously to Theorem 8 and Theorem 15, but, instead of STiMAv using the corresponding halting
problem for alternating Turing machines (cf. [13]), we caove the following:

Theorem 17. Let() be a parameterized problem.
(1) Qisin AWIP] if, and only if,Q is decided by an AW-program.
(2) @ is in AW[«] if, and only if, there is a computable functidnand an AW-progran® deciding®

such that for every run oP all existential and universal steps are among the fagt) steps of the
computation, wheré the parameter.

(3) Forallt > 1, @ is in A[t] if, and only if, there is a computable functidnand an AW-progran®
deciding@ such that for every run oP

— all existential and universal steps are among the lggt) steps of the computation, whektas
the parameter,

— there are at most— 1 alternations between existential and universal stated,thr first nonde-
terministic state is existential.

4. Parametric Space vs Alternation

In a well-known paper, Chandra, Kozen, and Stockmeyer [i@gldished a precise connection between al-
ternating time classes and deterministic space classpatrtioular, they proved that alternating polynomial
time is equivalent to polynomial space.

Wouldn't it be nice if a similar connection held in the worlfarameterized complexity theory? Un-
fortunately, the structure of parameterized complexiagses tends to be more unwieldy than the structure
of classical classes, and there is no direct translationwdsst classical and parameterized classes. How-
ever, it can be argued that the classes of the W-hierarchgthegwith WSAT] and WP] correspond to
NP in classical complexity theory. One reason for this ig glethese classes are defined in terms of the
NP-complete satisfiability problem. Furthermore, it hatiéad out that natural parameterizations of NP-
complete problems tend to be complete for one of these da$be characterisations of #} and WP] in
terms of nondeterministic machines given in the last saalso support this point of view.

If we accept that the W-classes are the parameterized areatddNP, then we may argue similarly that
the AW-classes, that is, weg, denn die A-Hierarchy entipiicdiesem Bild der polynomiellen Hierarchie
und nicht alternating PTIME.] A¢], AW[SAT], and AWP], form a parameterized analogue of alternating
polynomial time.

It is now tempting to jump to the conclusion that, since al&ing polynomial time is equivalent to
polynomial space, the AW-classes can be seen as a parazedtanialogue of polynomial spat&lowever,
as we want to argue, some care needs to be taken here. One sugptart the view that AW corresponds
to polynomial space would be to show that the parameterinatbgue of a “typical” PSPACE-complete
problem is complete for some AW-class. The most generic EEPéomplete problem, of course, is
the space bounded halting problem for Turing machines @@ia Turing machine and an integein
unary, doesM have an accepting computation that only uses spgd¢eand this problem has a natural
parameterization:

CTMC
Input: A deterministic Turing machin&/ and a stringe.
Parameter: k€ N.
Problem: Is there an accepting computation/af on inputx that visits at
mostk work tape squares?

2Downey and Fellows must have had this in mind when they callecchapter of their book [7] that deals with the AW-classes
“Fixed-Parameter Analogs of PSPACE andMove Games”.

The version of this problem for nondeterministic machinesiénoted by CNTMC. Abrahamson,
Downey, and Fellows [1] (compare also Theorem 14.4 of [7jralthat CNTMC is AWP]-hard under
FPT-reductions. Unfortunately, the proof of this resuleglmot seem to be corretiWhat the proof shows
is that CNTMC is hard for AGAT] under FPT-reductions. Indeed, as we shall see below, eeatetier-
ministic version CTMC is hard for ABAT].

We do not know whether this hardness result extends tdPiWot even for the nondeterministic
version, although we tend to believe that this is not the .cA8fe also believe that neither CTMC nor
CNTMC are contained in AWP], but again we have no real evidence to support this beliewgdgition 26
below may be viewed as giving some evidence that at least C&MIZCNTMC are not contained in \®].

The main result of this section shows that CTMC and CNTMC areplete for a natural parameterized
space complexity class derived from the classical detastisnrand nondeterministic logarithmic space
classes. To define these classes, we need a few more notampdérameterized complexity theory.

A classical problemas opposed to a parameterized problem) is simply a langkage >* over
some finite alphabet. For a parameterized problegh C >* x N andk € N, the kth slice Q. is the
classical problend);, := {z | (z,k) € Q} C ¥*. If Kiis a classical complexity class, XK is the class of
parameterized problems all of whose slices are irJkiform-XK is the class of parameterized problems
Q all of whose slices are in K uniformly, that is, there is a cangfle function assigning to evekye N a
Turing machine witnessing thét;, € K.

It is easy to see that all parameterized complexity clasgebave considered so far in this paper are
contained in uniform-XP. Here, we are mainly interestedniea tlasses uniform-XL and uniform-XNL
derived from the classical classes logarithmic space (@eitay L) and nondeterministic logarithmic space
(denoted by NL). It is easy to derive the following altermatcharacterisations of these classes:

Proposition 18. Let@ C ¥* x N be a parameterized problem. Then:

(1) @ isinuniform-XL if, and only if, there is a computable functigh N — N and an algorithm that,
given a pair(z, k) € ¥* x N, decides if z, k) € Q in space at mosf (k) - log (n).

(2) Qisinuniform-XNL if, and only if, there is a computable functigh N — N and a nondeterministic
algorithm that, given a paifz, k) € ¥* x N, decides ifz, k) € @ in space at mosf (k) - log (n).

Proof: The backward direction is trivial. For the forward directjdet M be a machine that on inpét
computes a machink/;, deciding thekth slice@;, of @ in space at most; - log n (for some constanty,).
Mj, is deterministic for (1) and nondeterministic for (2). Thesded functionf is a computable function
such thatf (k) > ¢, and f (k) is an upper bound for the space required\byon inputk. |

The following remark is intended for the reader familiartwfiL4].

Remark 19. A standard diagonalization argument shows that parazNiniform-XNL. Therefore, by the
last proposition there are parameterized problems savabsome Turing machine and some computable
function in space(f (k) - log n) but not solvable in spaa@(g(k) + log n) for any computable function

g. This solves a problem stated in Remark 4 of [14].

Corollary 20. Bothuniform-XL anduniform-XNL are closed under PL-reductions.

It is worth noting that FPTZ XNL unless PTIME= NL. To see this, take any PTIME-complete
(classical) problenk and consider the parameterized probl@me= | J, .y R x {k}. Itis in FPT, but unless
PTIME = NL itis not in XNL because the first slic®; = R is notin NL.

Since the closur@”]™T of any nontrivial parameterized problefhcontains FPT, this also shows that
FPT-reductions are not really appropriate when investigahe classes uniform-XL and uniform-XNL.
We use PL-reductions insteéd.

30ne strong argument showing this is that the reduction de=tin the proof is actually a PL-reduction. Thus if the retihn
would work, then CNTMC would be hard for AjY] under PL-reductions. By Corollary 25, this would imply tmaindeterministic
logarithmic space is equivalent to polynomial time.

40One may argue that PL-reductions, that is, parametetiagspacereductions, are still too powerful when considering thesla
uniform-XL and that a weaker form of reduction would be maguprapriate here, but we do not want to blow up the formal mzeyi
even more, so we simply use PL-reductions.

10

Theorem 21. (1) CTMC is uniform-XL-complete undePL-reductions.
(2) CNTMC is uniform-XNL-complete undePL-reductions.

Before proving part (2) of this theorem (statement (1) capieed analogously), we fix some notation.
A nondeterministic Turing/ machine is a tupl¢X, @, qo, ¢+, q—,6). By default,M has one input tape
and one work tapeX. is thealphabetof A, in addition M uses théblank symboll and theend marker
>; we always assume that1 € 3. @ is the set ofstates qo,q+,q— € @ are thestarting state the
accepting stateand theejecting staterespectively. Finallyj is thetransition relationconsisting of tuples
(g,a,b,q',b', h1, ha), written in the formgab — ¢'b'h1ha, Whereq,q' € Q, a,b,b’ € X U {U, >}, and
hi,hs € {—1,0,1} with the obvious meaning.

Theencodingend M) of M, endM) € {0,1}*, starts with the numbgg| in unary, ended by &,
followed by|@] in unary and ended by another And then it indicates the initial, accepting and rejecting
states, each by lof)| bits. Finally, it has a description @ which begins with 4| in unary ended by a
0, and then gives the sequence of tuples @hcoded in a natural way. For example, tiiesymbol of
Y U {U, >} is encoded by the binary representation of length log (]3| + 2).

The encoding en(e) of a stringz € ¥* is the{0, 1} string consisting of the encoding of the symbols
of z and thus has length| - log (|| + 2). In a more precise form, CNTMC is the problem:

CNTMC
Input: endM)end),® whereM is a nondeterministic Turing machine
andz a string over its alphabet.
Parameter: k e N.
Problem: Is there an accepting computationaf on inputz that visits at
mostk work tape squares?

By NTIME(f) we denote the set of classical problems decided by a Turahine in time: - f for some
¢ € N. The class NSPACHj) is defined analogously.
By Proposition 18, the following lemma shows that CNTMQiniform-XNL.

Lemma 22. CNTMC C NSPACEK - log |endM)endz)|). Moreover,CNTMC(X) € NSPACEk +
log lend M)endx)|), whereCTMC(X) denotes the proble@NTMC restricted to Turing machines with
alphabet>.

Proof: To simplify the presentation of the argument the desiredmmac)/, has 5 work tapes: On input
(end M)endx), k), My starts by writing on the first tape the number= (|| + 2)* - |Q| - |z| - k in
binary, i.e., the number of possible configurationg/fwhich only use: squares. Thei{, simulatesi/
decreasing the value on the first tape by one after the siionlat a step of\/. Thereby, it uses the second
work tape to record the current state/af, the third and fourth to record the head position\éfs input
tape and of\/’s work tape, respectively, and the fifth one to store theaatantents of\/’s work tape, a
string of length< k - log (|2| + 2). In particular, if M, has simulated + 1 steps ofM or if the content
of its fourth work tape (head position @ff's work tape) is already and M tries to increase it, thef,
rejects. The space complexity dfj is

O(log (=] +2)" - |Q[- || - k)) + log |Q| + log || + log k + & - log (|3 + 2))
= O(k-log |lendM)| + log |endz)|) = O(k - log |lend M)endz)|).

For fixed alphabek the first line of the displayed equality shows that the spamaptexity is O(k +
log lend M)endx)|). m|

Proof of Theorem 21:To prove (2), it remains to show that CNTMC is uniform-XNLfdaunder PL-
reductions. Let) C ¥* x N be a parameterized problem in uniform-XNL. We shall prowat th <Pt
CNTMC.

5Due to our encoding we can pinpoint the end position of A% in enq M)endz) easily.

11

By Proposition 18 (2) there are a computable functfoand a nondeterministic Turing machiié
that decides) in spacef (k) - log n. Note that the alphabet of this machingis= X U {(,),, } (the last
comma is an element of the set, that is, a symbal’9pf Then

(x,k) e Q@ <<= (endM)end(z,k)), f(k)-log|z|) € CNTMC,

and this equivalence suggests a reduction fé@m CNTMC. Unfortunately, this reduction is not a param-
eterized reduction, because there is no computable fungtidgth f (k) - log || < g(k) as required in the
definition of PL-reduction. To overcome this problem, givewe use the technique of tape compression
where each tape square holds a symbol (of a new alphabetseing the contents of a string ov&rof
length log|z| and where the new machine by its instructions keeps trackhadlwsymbol of%:’, among
those represented by a new symbol, is actually scannéd byhe following data of tape compression are
relevant to us.

Let |z| = n. The new machiné/,, has alphabet,, := (X' U {U,>})"9" and set of stateg,, :=
Q % {0,...,logn —1} x {0,...,logn — 1}. Thus,|=,| := (|%| 4+ 2)°9" = /9 (¥'1+2) and|Q,,| =
|Q| - (log n)2. Hence,|M,| < |M| - n¢ for some constant not depending om. Denote by com the
compression map, com¥’)* — X*. Then

(x,k) €@ <= M acceptgz, k) using spacec f(k) - log |z
<= M), accepts corf(z, k)) using space< f(k)
< (endM,)endcom((z,k))), f(k)) € CNTMC.

Altogether this gives a PL-reduction ¢fto CNTMC.]

Proposition 23. AWSAT (PROB € uniform-XL and thusAW [SAT] C [uniform-XL]| e

Proof: Itis easy to see (and well-known) that propositional forasudan be evaluated in logarithmic space.
More precisely, there is an algorithfthat, given a formulax € PROP and a truth value assignmént
for the variables of this formula, decides in spaygog n) whetherT satisfiesx.

Recall that an instance of AW (PROB consists of a formular € PROP, positive integers ¢, and
a partitionIy, ..., I, of the set of variables af. Letwv be the number of variables of, m the size ofa.
Storing an assignment to the variablesxoih which for everyi exactlyk of the variables in/; are set to
TRUE requires space - ¢ - log v. Using the algorithm\ as a subroutine, it is easy to design an algorithm
solving AWSaT (PROB in spaceO(k - £ - log v + log m). |

Corollary 24. CTMC is hard forAW[SAT] underFPT-reductions.

Corollary 25. AssumeNL # PTIME. ThenCNTMC is notFPT-hard underPL-reductions.
Proof: Suppose for contradiction that CNTMC is FPT-hard under &ductions. Then by Theorem 21 (2),
FPT C uniform-XNL. But we have already noted (on page 10) that EPXNL unless PTIME= NL. O

The next result may be seen as giving some evidence thasatd@dC and CNTMC are not contained
in W[P].

Proposition 26. If CTMC € W/[P] then there is am such thal. C NTIME(n").
The analogous result holds f@NTMC with NL instead ofL.

Proof: Suppose that CTMG= W[P]. Then by Theorem 21, uniform-XIC W[P]. We shall prove that
L C NTIME(n") for somer > 1.

Since for any alphabet andR C X* with R € L, we haveR{*!} .= {endz) | = € R} € L, it
suffices to consider Turing machines with alphafietl }. Let

(Mo, co), (M, c1), ...

12

be a computable enumeration of the p&iv§, ¢), wherelM is a deterministic Turing machine with alphabet
{0,1} andc € N. We set

L(k) = {xze{0,1}"| M, acceptsc using space< ¢ - log |z|}

and

Q = [JL(k) x{k}.

keN

Clearly, @ € uniform-XL and thus by our overall assumptiaf, € W[P]. Then by Corollary 11() €

NTIME(f(k) - n") for some computable functiofiand constant. Thus for everyk, Qi € NTIME(n").
|

Remark 27. We state a stronger version of Proposition 26 showing thatibverse also holds. Recall that
para-NP (cf. [14]) is the nondeterministic analogue of Fia} is, a parameterized problepnis in para-
NP if and only if there is a nondeterministic algorithm adiegp(@ in time g(k) - p(n) for some computable
¢ and some polynomial. Clearly, WP] C para-NP (e.g., apply Corollary 11).

Then the following three statements are equivalent:

(1) CNTMC € para-NP
(2) uniform-XNL C para-NP.

(3) Thereis an € N such that NLC NTIME (n") and this inclusion holds in an effective way, i.e., there
is an algorithm that, given a Turing machifé andc € N, yields a Turing machin@/” and¢’ € N
such that

if M is c-logn space-bounded theW’ is ¢’ - n" time-bounded and/ and M’ accept the
same language.

To conclude this section, let us return to our original gioesdf how alternation in parameterized complex-
ity relates to space. In particular, we were interested inthver the problem CTMC, which we have seen
to be hard for AWSAT], is also contained in AYBAT] or at least in AWP]. By Theorem 21, the latter
would imply that uniform-XLC AW[P]. We do not believe that this is the case. The intuitive redson
this is that alternation in AWP| is parameter-boundedut that to simulate a space-bounded computation
of lengthm by an alternating machine one needs aboutitoguantifier alternations.

We can turn this argument around and show that if we have dnaltgrnations, then we indeed get a
problem that is hard for uniform-XNL.

LAWSAT
Input: o € PROP,/ k € N with ¢ < k -log |«|, a partition
ViU ... UV, of the variables inv.
Parameter: k € N.

Problem: Decide if there is a sizk subset/; of V4 such that for every size
k subset/s of V; there exists .. .such that the truth assignment
setting all nodes i; U ... U U, to TRUE and all other input
nodes taFALSE satisfiesy.

Theorem 28. (1) LAWSAT is hard foruniform-XNL underPL-reductions.
(2) LAWSAT is contained iruniform-X DSPACElog %n).

Proof: Let an instance (i.e., an input and a parameter) of LAWBe given as in its definition. We use the
following terminology: If the instance is in LAW& we say that the quantified propositional formula

WVVa...QVia

13

(with Q =V for event, and@ = 3 for odd /) holds in thek-interpretation.

To prove (1), by Theorem 21 it suffices to show that there is adeluction of CNTMC to LAWRT.
For this purpose let(M, x), k) (more precisely(enqdM)endx)), k) be an instance of CNTMC and de-
note byn the length of en@\/)endx). Let ¢ be the number ok space-bounded configurations of the
nondeterministic Turing maching (on inputs of lengtt). Thenc < n®* for some constant.

To describe such a configuration we use propositional viesa¥ (i, a), HI (i), HW(3), and.S(q) with
1 < i < n and wherez andq range over the alphabet and the set of stated/ofrespectively. Their
intended meaning is:

X(iya) : theith cell of the work tape contains the letter
HI(Q) : the head of the input tape scans ittecell;
HW(3) : the head of the work tape scans ittecell,
S(q) : M is in stateg.

Let C be the set of these propositional variables. In the follgwihwe write C’ or C; (with j € N) we
mean the set of the corresponding primed or indexed vagable

One easily writes down a propositional formy@lé&C) such that their satisfying assignments of weight
k + 3 correspond té space-bounded configurations/daf in a natural way.

By induction onm, we define a quantified propositional formdlg, (C, C") expressing that there is
a computation of lengtkd 2™ leading from the configuratio@' to the configuratiorC’ (and where all
intermediate configurations akespace-bounded):

Lo(C,C") is a propositional formula of the form(C) A B(C") A v(C,C”") and
of lengthO(k - n);
“FJC (T (C,C1) AT, (C, CN))”
JC1 (VCVC5((Co = C N C5=C1)V (Co =C1 AC3 =C")
— I (Ca, C3))).

1—‘m-ﬁ—l (Ca C/)

The last line guarantees that,, (C,C")| € O(m - k - n). We set
I':= 3Cﬂcl(ﬁinit(c) A ﬁaocep{c/) A 1—‘d»k»log n(Ca C/))a

wheregini (C') andSBaccep{ C') €Xpress that’ is the initial or an accepting configuration bf, respectively.
Moving all quantifiers to the front of the formula and addingntmy variables where necessary, one
obtains an equivalent formuld = I' ¢,y ar)enq)), 1) OF the form

FI = 301V02303 N QC@’}/
wherel € O(k - log n) and such that
((endM)endx)), k) € CNTMC <= TI'holdsinthek + 3 interpretation

By the introductory remark this gives the desired reductditNTMC to LAWSAT (if necessary, we
can ensure that < (k + 3) - ||, by adding, for some constaat up ton® many trivial conjunctions to
To(C,CM).

It is easy to check that this reduction indeed is a PL-reducti

For (2) note that LAW ST considered as a classical problem is in DSPAECE(og 2n) and hence, the
parameterized problem LAWS is in uniform-X DSPACElog %n). |

5. Descriptive Complexity

The main results of this section are logical descriptionthefclasses \f?] and AWP]. We need a few
preliminaries from logic. For more details on the notionsakirare briefly described in the next subsection
we refer the reader to [11].

14

5.1. Structures and Logic.A vocabularyis a finite set of relation, function, and constant symbokche
relation and function symbol has anity. = always denotes a vocabulary. structure A of vocabulary
T, or T-structure, consists of a sdtcalled the universe, and an interpretatiof of each symbol € 7:
Relation symbols and function symbols are interpreted latioms and functions ow of the appropriate
arity, and constant symbols are interpreted by elements &e only consider structures whose universe
is finite.

Let7' C 7 be vocabularies. The -reductof a7-structureA is ther’-structure with the same universe
as A that coincides with4 on all symbols inr’. A 7-expansiorof a 7’-structureA’ is a r-structure A
such thatd’ is the7’-reduct of A. If A is ar-structure and3 C A*, we often write(A, B) to denote the
7 U {R}-expansion ofd in which R is interpreted byB. HereR is ak-ary relation symbol not contained
in 7 that is understood from the context. Similarly, we wiit, a1, ..., ax) or just(A4,a) to denote the
expansion of4 by a tuple of constants.

Example 29. (1) Directed graphsmay be viewed as structurgs= (G, E©) whose vocabulary consists
of one binary relation symbdt.

(2) Letrere = {E,I,G), Gy, G-, out}, whereE is a binary relation symbol,, G, Gy, G- are unary
relation symbols, and out is a constant symbol. Booleamitgenay be viewed ag;.-structures

C= (C7EcalchC 7GC ,GS,OUIC),

where(C, E°) is the directed acyclic graph underlying the circuft, is the set of all input node€;< ,
Gf/, G€ are the sets of and-gates, or-gates, and negation-gatesctizely, and otis the output node.

Let T be another unary relation symbol.dfis a circuit andl’® C I€, then we may interpret thg;.c U
{T}-expansion(C, T) of C as a representation of the circditogether with the truth value assignment
that sets precisely the input nodeglifi to TRUE.

For every vocabulary we let7°d = 7 U {<, S, min, max}, where< is a binary relation symbog a unary
function symbol, and min and max are constant symbolsomleredr-structureis ar°-structure4 such
that<“ is a linear order of4, min* and max! are the minimum and maximum elementof!, andS4 is
the successor function associated wittt, where we letS4(max*) = max*. By ORD[r] we denote the
class of all ordered-structures.

We distinguish between the size of the univessef a r-structure4, which we denote byA|, and the
sizeof A, which is defined to be

LAl == [l + Al + Y[R - arity(R) - log | A,
ReT

where||7|| denotes the size (of a natural encoding) of

The formulas ofirst-order logicof vocabularyr are built up fromatomic formulasising the Boolean
connectives-, A, andv, and existential and universal quantification (over thenelets of the universe of a
structure). Remember that atomic formulais a formula of the formt = w or Rt; . ..t,., whereR € 7 is
anr-ary relation symbol and, «, ¢4, . . ., ¢, aretermsformed fromvariablesand constant symbols using
function symbols. FO denotes the class of formulas of firdeoblogic. Asentencas a formulay in
which every variable is bound by a quantifier. dfz1, ..., zx) is a formula with free variables among
r1,..., 75, A a structure of the same vocabulary, ad, ..., a;) € AF ak-tuple of elements of4,
we write A = (a1, ..., a;) to denote thatd satisfiesy if the variableszy, ...,z are interpreted by
ai,...,ay, respectively.

The results in this section are mainly concerned with anneskda of first-order logic calletbast fixed-
point logic, or FO(LFP) for short. To introduce least fixed-point logie first observe that any formula
o(x1,...,z1) of vocabularyr U { X}, whereX is ak-ary relation symbol not contained in for every
T-structureA defines an operatdr;' : Pow(A*) — Pow(A*) given by

FNB) ={(a1,...,ar) € A¥ | (A, B) = (a1, .., ax)}

15

for everyB C A*.

If X only occurgpositivelyin ¢, that is, only in the scope of an even number of negation sysniiten
for every structured the operatoﬁ%“ is monotoneand therefore haslaast fixed pointwhich we denote
by Ifp(F2).

Now the formulas of FO(LFP) are formed by the same rules afottmeulas of FO and the following
additional formula formation rule: X is a k-ary relation symbol not contained in the vocabulaty
zZ = (x1,...,2x) andy = (y1, ..., yx) arek-tuples of variables, and is a formula of vocabulary U { X }
such thatX only occurs positively irp, then

¥(y) = [LFPz x ¢](7)

is a new formula of vocabulary. To define the semantics @f(y), for any r-structure A and k-tuple
b € A of elements of4, we let A = ¢(b) iff b € Ifp(F7).

Although we suppress this in our notation to simplify mattéet us point out that the subformuta
of [LFPz x ¢](7) may have additional free variables besides those appearifighese are simply treated
as free variables of the whole formula. Moreover, the typlaay contain arbitrary terms and not just
variables. For a more thorough introduction to least fixeidtdogic we refer the reader to [11].

l¢|| always denotes the size (of a natural encoding) of a firstravdleast fixed-point formula.

Example 30. In this example, we show how to define thmnotone circuit value problein FO(LFP).
A monotone circuifs a circuit without negation gates. Recalling Example 28,may view a monotone
circuit as a structure of vocabulafyon-cic = Teirc \ {G-}. As in this example, we VieWmon-circ U {7'}-
expansions$C, T°) of circuitsC by setsT® C I¢ as circuits together with truth value assignments.

Let C be a monotone circuit arffi® C I¢. We observe that the set of all nodesCofhat evaluate to
TRUE under the truth value assignment that sets precisely the impdes in7° to TRUE is the least set
TRUE of nodes such that:

— TRUE containg .

— If all children of an and-gate € Gf\ are in TRUE theru is in TRUE. (Thechildrenof a are all
b € C suchthafa,b) € EC.)
— If at least one child of an or-gatec G@ is in TRUE theru is in TRUE.

C
A moment's thought reveals that therefore TRUE is the leastifpoint of the operatde;C’T) associated
with the formula

p(z) =Tz V (Grz AVy(Ezy — Xy)) V (Gyz A Jy(Ezy A Xy)).
Thus TRUE is the set of all nodésuch that
(C.T) | [LFP, x 0] (b).
This means that the circuit evaluates ta RUE under the assignment representedtyif, and only if,
(C.T) |= [LFP,x] (ou). (2)

This gives us the desired definition of the monotone circaiitig problem in FO(LFP). Let us point out that
the circuit value problem for arbitrary circuits is also detble in FO(LFP). It requires a more complicated
formula, though.

5.2. Logical Descriptions of WP] and AW[P]. In [13] and [14] descriptive characterisations of various
parameterized complexity classes were derived, incluthiegclasses of the W- and of the A-hierarchy.
Here we give similar characterisations of the classég\a4hd AWP]. The importance of such descriptive
characterisations lies in the fact that they neither defena particular machine model nor on a particular
complete problem, the latter being particularly importEmtsuch parameterized complexity classes that
are defined in terms of complete problems. In addition, tiggckd descriptions allow it to translate open

16

complexity-theoretic problems such as WERPW/1] into purely logical problems on the expressive power
of logics (compare Corollary 24 in [14]).

In descriptive complexity theory, algorithmic probleme aonsidered as classes of ordered structures
of some vocabulary rather than languages over some alphabesequently, parameterized problems are
considered as subsefsC ORD[7] x N for some vocabulary. Itis required that for each € N the kth
sliceQy, := {A € ORD[7] | (A, k) € Q} of Q is closed under isomorphisms.

We recall some definitions from [14]. Let L be a logic. A paraemzed problent) C ORD[r] x N is
slicewisel -definableif there is a computable functigh: N — L such that for all4 € ORD[7] andk € N
we have

(Ak)eP <« Aok

A family (L;)sen of logics capturesa parameterized complexity class C if for every vocabutagnd
every parameterized probleghC ORD|[7] x N we have

Q € C < thereis ars > 1 such that) is slicewise L,-definable.

If this is the case, we write
C= U slicewise-L,.

s>1
Fors > 1, let LFP*! consist of all formulas of least fixed-point logic of the form
[LFP;z x ¢]Z,

whereX is of arity < s andy € FOl, that is, is a first-order formula, and ip at mosts individual
variables are quantified (note thatna variable may be quantified several times and that, bedides t
guantified variablesy may contain other variables; thus, iﬁ]@trictly contains the finite variable fragment
FO* consisting of the first-order formulas with at masvariables at all). Finallys; LFP*! denotes the
class of all formulas of the forriz; ... 3z,p, wherep € LFP®!, andIILFP"! the class of formulas
Qi1 ... Qexpp, wherel > 1,Q, ..., Q. € {V,3}, andp € LFP.

The proof of the following theorem parallels that of Theorérh in [13]. We use the following two
facts, the first implicit in [24] and the second in the prootioé Immerman-Vardi Theorem [17, 23] (also
see [11]). Fixs > 1:

(¥) There is an algorithm that for every vocabularyevery formulap(y) € LFPl! of vocabularyr,
everyr-structureA, and every tupla € A'*"9"%) decides ifA = ¢(a) intime O (¢l - ||(A, a)||>*).

(+x) For every vocabulary there is & € N and a computable function that associates with ederyN
and evenyO(n?)-algorithm accepting a clags of structureq.A, @) with A € ORD[r] anda € A% a
formulap(y) € LFP! of vocabularyr such that for every-structure4 and everyi € A4 we have
A= ¢(a)ifand onlyif (4,a) € C.

Theorem 31.
WIP] = [J slicewisex; LFP*!.

s>1

Proof: First, suppose tha) C ORDJ|7] x N is slicewiseX; LFP'*l-definable via the computable function
§: N — 5, LFPE. Letd(k) == 3g¢(7) andg = y1 - .. ya. LetA,y be the algorithm obtained by by
fixing the input formulap(3). Then,

(Ak)eQ <= AETyp(y)
<= therearei,...,aq € Awith A = p(a)
<= thereareu,...,aq € Asuchthat, acceptg.A,a).

Hence, a nondeterministic Turing machimé carrying out the Algorithm 1 accept3. ThereforeQ) €
WIP], sinceM is a machine satisfying the requirements in Corollary 11e mbmber of steps needed for

17

computes(k) = Jy; ... Jyap(y) € 1 LFPLE
computeA. ;5 (cf. (x))
guess elements,...,aqin A
simulateA ;) on input(A, a)
if Asq) acceptgA, a)

then accept

elsereject.

~NOoO o~ OWDN P

Algorithm 1

lines 1 and 2 only depends @nline 3 consists in guessinglog | A| (< g(k)-log ||.A]|) bits; and (compare
line 4) A, (5, on input(A, a) performsO(||(A, a)|**) = h(k) - O(||.A||***') steps for some computable
h.

For the other direction, suppose tfatC ORD|[7] x N is in W[P]. Choose a nondeterministic Turing
machineM accepting@ according to Corollary 11 (or Lemma 7): For eveih, k) € @, there is a
run of M accepting(A, k) of length at mosy(k) - n® (for some computablg ands > 1) such that
the nondeterministic steps are among the fjf&t) - log » ones and that they consist in choosing a 0-1
string of lengthg(k) - log n. Note that for some depending o only, we have for any structurd,
(logn =)log || A]| < c-log |A|. Hence, for any instande4, k) of @, we can arrange such an 0-1 string
in f(k) (< ¢ g(k)) blocks of log| A| bits, each such block corresponding to the binary repratientof a
number< |A| and hence, to an element &f Letay, ..., az) be the corresponding elements. Now, we
can view the deterministic part 8 as ag(k) - n°* bounded algorithm applied {04, @). Then §x) yields,
for everyk, an LFP*-formulay(7) such that for all4 € ORD[7]

AlETJgp(y) <= M acceptd A, k)
= (Ak)eq.
This gives the desired slicewise definition@fin £, LFP! . O

Essentially the same proof also gives a characterisatidi\F:

Theorem 32.
AWIP] = | | slicewisell LFP!*),

s>1

Besides the various weighted satisfiability problems thatused to define the W and AW classes, there
is another generic family of problems that are completeliesé classes: model-checking problems. The
parameterized model-checking problémna logic L is the following problem:

p-MC(L)
Input: A structured and an L-sentenceg.
Parameter: ||¢||.
Problem: Decide ifA |= .

The parameterized model-checking problem for first-ordgid is complete for the class AW under
FPT-reductions [10]. For each of the classes of the W-hibsaand the A-hierarchy there is a fragment
of first-order logic whose parameterized model checkindlem is complete for the class [8, 13]. Using
Theorems 31 and 32 we get the following:

Theorem 33. (1) Forall s > 1 the parameterized model-checking problemXgt.FP*! is complete for
WI[P] under FPT-reductions.

18

(2) For all s > 1 the parameterized model-checking problemIfidrFP*! is complete forAW[P] under
FPT-reductions.

Proof: (1) Note that the algorithm existing according #Q orks for all vocabularies; hence, similarly
as in the first part of the preceding proof, we get pM@FP[S]) € WI[P] for all s > 1. By Theorem
31, the W[P]-complete (ordered) problem pREUIT is slicewiseX;LFP*! for somes, > 1. Thus,
p-MC(%; LFP[S]) is W[P]-hard fors > so. We shall see in the proof of Theorem 35 that we can choose
S = 1.

The proof of (2) is similar. |

Remark 34. The only standard parameterized complexity classes forhwiie have not been able to give
a descriptive characterisation in the spirit of Theorema8d 32 are WWSAT] and AW[SAT]. We neither
know complete parameterized model-checking problemdesé logics.

However, Papadimitriou and Yannakakis [21] showed thdedihtly parameterized model-checking
problems are complete for these classes. Instead of pagdrieg the model-checking by the length of the
input formula, they parameterized it by the number of vdeab

p-MC(L, var)
Input: A structureA and an L-sentenaeg.
Parameter: Number of variables irp.
Problem: Decide ifA |= .

Essentially, they proved that p-MEO, var is complete for AWSAT] and p-MGX4, var) is complete for
WI[SAT], whereX; is the set of all existential first-order formulas in prenexmal form. (We give the
precise statement for AT]: Letr > 1 and denote by, [r] the set of3;-formulas without function
symbols and where all relation symbols are of afity. Then p-MGX, [r], var) is complete for WSAT].)

5.3. Fagin Definability. Besides the model-checking problems there is another ofasstural parame-
terized problems derived from logic, which has been dublagri-definable problems in [13].

Let) be a formula of vocabulary U {Z}, whereZ is anr-ary relation symbol not contained in It
Fagin-defines parameterized problem p-Eb;:

P-FDy(2)
Input: A 7-structureA.
Parameter: k e N.
Problem: IsthereB C A” with |B| = k and(A, B) = ¢?

For alogic L, we let FIL) denote the class of all problems that are Fagin defined byhaularin L. Recall
that for a class C of parameterized problef@;"" denotes the closure of this class under FPT-reductions.
Downey, Fellows, and Regan [8] proved that for each1

)} FPT

[FO(1,)] ™" = wit),

wherell, is the set of all first-order formulas of the form

Vxll AN .V:Z?lkl 3:1721 e 3:E2k2 e Q:Z?tl N ertkt 1/),

wherey is quantifier-free and) = 3 if ¢ is even and) = V if ¢ is odd.
We give a characterisation of the class W[P] in terms of Fdgfimability:

Theorem 35. ot
[FD(FO(LFP))] — WP,

More precisely, there is akO(LFP)-formula+ such thatp-FD,,(z is complete folW[P] under FPT-
reductions, and for eacRO(LFP)-formula the problenp-FD,, 7y is contained inWV[P].

19

Proof: We first prove that there is an FOFP)-formula+ such that p-FR) is hard for WP] under
FPT-reductions.

Recall Example 30, where it was shown how to define the momatmaouit value problem in FQ.FP).
We can easily extend this to the circuit value problem focwits innegation normal formthat is, circuits
in which negations gates only appear directly above inptggdo do this, we simply have to add a clause
to the formulap(x) of Example 30 which says thatifis a negation gate then it evaluatesuE if it has
a child not contained in the s&€ of input nodes set tosRUE. We get a formula

¢ (x) =Tz V (G-z A Jy(Ezy A -Ty)) V (Gpz AVy(Ezy — Xy)) V (Gyaz A Jy(Exy A Xy)),

and letyy’ = [LFP, x¢'](out). Then a circuitC in negation normal form evaluates T®UE under the
assignment that sets precisely the input nod&<qirC I€ to true if, and only if,

(C,T°) E o'
Thus a circuitC in negation normal form has a satisfying assignment of wéidgh and only if, there exists
ak-element sef C I such thatC,T¢) |= +'. Lettingy = ¢’ AVx(Tz — Iz), we see that, on the
class of circuits in negation normal form, p-F-[3 is precisely the weighted satisfiability problem.
Since every circuit can be transferred to an equivalentitia negation normal form in polynomial

time, this yields an FPT-reduction from VK8&(CIRCUIT) to p-FD, 7y and thus shows that p-Efp is
WIP]-hard under FPT-reductions.

It remains to prove that p-F[y , is in W[P] for everyy € FO(LFP). By using a well-known normal
form for least fixed-point logic [17] (also see [11]) we cas@®e that) has the form

Jy[LFPz xx(z,y)|(y - - -),

wherey is a first-order formula of vocabularyU { X, Z} and neithetX nor Z are contained irr. For
notational simplicity, we assume th&tis unary. Lets be the number of variables quantifiedyinWe show

that p-FQb(X) is slicewiseX; LFP*l-definable. Given a parameterset (with new variables,, . . ., zx)
<pk = Jzy ... 2y [LFP, x (/\ 2 # 25 N X")](y cY),
1<i<j<k

wherex* is obtained fromy by replacing each atomic formula of the fodit by (t = z; V...Vt = z).
Theny* € £, LFP*! and for every structure,

(A k) € p-FDy 5 — AE "
This shows that p-F])) is slicewiseX; LFP"l-definable and thus in \¥| by Theorem 31. a

6. Conclusions

By giving machine characterisations and logical desaiptiof the classes W] and AWP] we feel that
we have gained a much clearer understanding of these claBsedogical descriptions place the classes
into a uniform framework that we had started to develop idi@awork, so that now we have a fairly
comprehensive picture of the logical side of parameterizadplexity classes. The only important classes
not yet integrated into this picture are the class¢SA] and AWSAT].

The machine characterisation of[/ is very simple and natural and provides a precise connection
between parameterized complexity theory and limited nterdénism. Moreover, as far as we know it
is the first machine characterisation for any of the standdrectable parameterized complexity classes;
only characterisations via complete problems were knowarbe We gave similar characterisations for
the classes \I|, Aft] for ¢ > 1, AW[«], and AW¢]. Curiously, we werenot able to give such charac-
terisations for the classes[YV/for ¢ > 2. It remains an interesting open problem to find natural nraehi
characterisations for these classes.

Another open problem is the relation between the classegpavid[uniform-XNL]FPT, the closure of
uniform-XNL under FPT-reductions. This is equivalent te tiuestions of whether the problem CNTMC
is contained in AWP] and whether it is hard for A/P]. We conjecture that the answer to both of these
guestions is negative.

Appendix A provides an overview over all classes studiedhis paper and a few more.

20

References

[1] K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixeatgmeter tractability and completeness
IV: On completeness for W[P] and PSPACE analofysnals of pure and applied logi@3:235-276,
1995.

[2] M. Alekhnovich and A. Razborov. Resolution is not autdizable unless W[P] is tractable. In
Proceedings of the 41st Annual IEEE Symposium on Foundatb&omputer Scienc001. To
appear.

[3] H.L. Bodlaender, R.G. Downey, M.R. Fellows, M.T. Hatleand H.T. Wareham. Parameterized
complexity analysis in computational biolog@omputer Applications in the Biosciencé4:49-57,
1995.

[4] L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. On the paterized complexity of short compu-
tation and factorizationArchive for Mathematical Logic36:321-337, 1997.

[5] M. Cesati. The Turing way to the parameterized intraititgb2001. Submitted for publication.

[6] A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternatiddournal of the ACM28(1):114-133,
1981.

[7] R.G. Downey and M.R. FellowsParameterized Complexitypringer-Verlag, 1999.

[8] R.G. Downey, M.R. Fellows, and K. Regan. Descriptive pbexity and thdl/-hierarchy. In P. Beame
and S. Buss, editor®roof Complexity and Feasible Arithmetiolume 39 ofAMS-DIMACS Volume
Seriespages 119-134. AMS, 1998.

[9] R.G. Downey, M.R. Fellows, and K. Regan. Parameterizexlit complexity and thél -hierarchy.
Theoretical Computer SciencE91:97-115, 1998.

[10] R.G. Downey, M.R. Fellows, and U. Taylor. The paramieet complexity of relational database
queries and an improved characterizatioMoffl]. In D.S. Bridges, C. Calude, P. Gibbons, S. Reeves,
and |.H. Witten, editorsCombinatorics, Complexity, and Logic — Proceedings of DIST@h5, pages
194-213. Springer-Verlag, 1996.

[11] H.-D. Ebbinghaus and J. Fluririnite Model Theory Springer-Verlag, 2nd edition, 1999.

[12] R. Fagin. Generalized first—order spectra and polyaé#time recognizable sets. In R. M. Karp,
editor,Complexity of Computation, SIAM-AMS Proceedings, \ighages 43—73, 1974.

[13] J. Flum and M. Grohe. Fixed-parameter tractabilityfjrtability, and model checkingSIAM Journal
on Computing31(1):113-145, 2001.

[14] J. Flum and M. Grohe. Describing parameterized coniplestasses. In H. Alt and A. Ferreira,
editors, Proceedings of the 19th Annual Symposium on TheoreticadAsmpf Computer Science
volume 2285 ot ecture Notes in Computer Scienpages 359-371. Springer-Verlag, 2002.

[15] G. Gottlob, N. Leone, and M. Sideri. Fixed-parametenptexity in Al and nonmonotonic reasoning.
In M. Gelfond, N. Leone, and G. Pfeifer, editotggic Programming and Nonmonotonic Reasoning,
5th International Conference, LPNMR’'9@lume 1730 of ecture Notes in Computer Scienpages
1-18. Springer-Verlag, 1999.

[16] M. Grohe. The parameterized complexity of databaseigsie In Proceedings of the 20th ACM
Symposium on Principles of Database Systgrages 82—92, 2001.

[17] N. Immerman. Relational queries computable in polyraitime. Information and Contrql68:86—
104, 1986.

[18] N.Immerman. Languages that capture complexity ce&&M Journal on Computind.6:760-778,
1987.

21

[19] N. Immerman.Descriptive ComplexitySpringer-Verlag, 1999.
[20] C.H. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[21] C.H. Papadimitriou and M. Yannakakis. On the complegitdatabase queriedournal of Computer
and System Sciencés3:407-427, 1999.

[22] U. Stege.Resolving Conflicts in Problems from Computational BioloByD thesis, ETH Zuerich,
2000. PhD Thesis N0.13364.

[23] M.Y. Vardi. The complexity of relational query languesy InProceedings of the 14th ACM Sympo-
sium on Theory of Computingages 137-146, 1982.

[24] M.Y. Vardi. On the complexity of bounded-variable gig=: InProceedings of the 14th ACM Sym-
posium on Principles of Database Systepages 266—276, 1995.

22

€¢

FPT
para—F

WI[1]
Al1]

(W[2] (W3] = —=(W[SAT] }-=(W[P])

A2l —=(A3] = ={AW[{—=(AW[SAT] =AW[P])

[[uniform—XL] FPT}

[[uniform—XN L] FPT}

uniform—XP

para—-PSPAC

uniform—-XN

(uniform-XPSPACE

‘uoIsn|o

-Ul 91e2IPUI SMOLIY "sasse|d Alixajdwoaipaauweled juenodwl 1SOW ay) surejuod ainbiy Buimojjoy ayL

MBINIBAQ 1V Xipuaddy

