
Trivial, Tractable, Hard. A Not So Sudden
Complexity Jump in Neighborhood Restricted

CNF Formulas

Dominik Scheder? ?? ? ? ?

Aarhus University

Abstract. For a CNF formula F we define its 1-conflict graph as follows:
Two clauses C,D ∈ F are connected by an edge if they have a nontrivial
resolvent – that is, if there is a unique literal u ∈ C for which ū ∈ D.
Let lc1(F) denote the maximum degree of this graph.
A k-CNF formula is a CNF formula in which each clause has exactly k
distinct literals. We show that (1) a k-CNF formula F with lc1(F) ≤
k − 1 is satisfiable; (2) there are unsatisfiable k-CNF formulas F with
lc1(F) = k; (3) there is a polynomial time algorithm deciding whether
a k-CNF formula F with lc1(F) = k is satisfiable; (4) satisfiability of
k-CNF formulas F with lc1(F) ≤ k + 1 is NP-hard.
Furthermore, we show that if F is a k-CNF formula and lc1(F) ≤ k,
then we can find in polynomial time a satisfying assignment (if F is
satisfiable) or a treelike resolution refutation with at most |F | leaves (if
F is unsatisfiable). Here, |F | is the number of clauses of F .

1 Introduction

There are several parameters to measure the structural complexity of CNF for-
mulas, and they influence the computational complexity of their associated satis-
fiability decision problem. Some of them yield a fixed-parameter tractable prob-
lem – for example the treewidth of formulas (Allender, Chen, Lou, Papakon-
stantinou, and Tang [1]). For other parameters we are hit by the full power of
NP-completeness once the parameter is large enough. Think of k, the maximum
clause width of a formula: For k = 2 we know polynomial algorithms, for k ≥ 3
the problem is NP-complete. In this paper we define in a natural way a graph
on the clauses of the formula and investigate the complexity of the satisfiabil-
ity problem depending on the maximum degree of this graph. We connect two

? The author acknowledges support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, and from the
CFEM research center (supported by the Danish Strategic Research Council), within
which this work was performed.

?? Research was supported by the SNF Grant 200021-118001/1.
? ? ? The author acknowledges support from the Simons Institute for the Theory of Com-

puting, UC Berkeley.

clauses C,D of our formula with an edge if those clauses have a non-trivial re-
solvent. That is, if there is exactly one literal u ∈ C for which ū ∈ D. We call
this the 1-conflict graph. Thus, the degree of a clause C in this graph is the
number of potential resolution partners in the formula. This graph is similar to
the one defined by Ostrowski, Grégoire, Mazure, and Sais [2].1 We show that a
k-CNF formula is satisfiable if its 1-conflict graph has maximum degree at most
k − 1; the satisfiability problem is NP-hard if we allow a maximum degree of
k + 1; in between, for k-CNF formulas graphs of maximum degree k, there is a
nontrivial algorithm that runs in polynomial time. If the formula is satisfiable,
the algorithm returns a satisfying assignment. If it is unsatisfiable, it returns a
treelike resolution refutation of size at most 2m − 1, where m is the number of
clauses.

1.1 Notions of Degree, Neighborhood, and Conflict

A k-CNF formula in which every variable appears in at most 2k/(ek) clauses is
satisfiable. This is a direct consequence of the Lovász Local Lemma [3] and was
first observed by Kratochv́ıl, Savický, and Tuza [4]. There is no reason to believe
that 2k/(ek) is tight. This motivates the following definition: Let f(k) be the
largest integer d such that every k-CNF formula F with ∆(F) ≤ d is satisfiable.
Here, ∆ is the “maximum degree” of a formula: The maximum number of clauses
in which a variable appears. The above result shows that f(k) ≥ 2k/(ek). Proving
matching upper bounds, i.e., constructing unsatisfiable k-CNF formulas of low
maximum variable degree, turned out to be not trivial at all. The upper bound
has been improved in several papers, to O

(
2k/k0.26

)
by Savický and Sgall [5] and

to O
(
2k log k/k

)
by Hoory and Szeider [6]. Gebauer [7] improved it to O

(
2k/k

)
,

which is tight up to a constant factor, and finally Gebauer, Szabó, Tardos [8]
proved that f(k) = (1 ± o(1))2k+1/ek, i.e., they even found the right constant
factor.

How difficult is satisfiability of k-CNF formulas of bounded degree? Let (k, d)-
SAT denote the problem of deciding whether a given k-CNF formula F of max-
imum degree ∆(F) ≤ d is satisfiable. Clearly, (k, f(k))-SAT is trivial: All in-
stances are satisfiable. Kratochv́ıl, Savický, and Tuza [4] showed that (k, d)-SAT
exhibits a complexity jump: When the number of permitted occurrences per
variable increases from f(k) to f(k) + 1, the complexity of the decision prob-
lem jumps from trivial (all instances are satisfiable) to NP-complete. It seems
surprising that one can prove such a result without knowing the value of f(k).

Other structural parameters exhibit complexity jumps, too. For a clause C
in a CNF formula F , let ΓF (C) denote the clauses of F (excluding C) that have
at least one variable in common with C, regardless of its sign. Let Γ (F) :=
maxC∈F |ΓF (C)|. Again by the Lovász Local Lemma, every k-CNF formula F
with Γ (F) ≤ 2k/e − 1 is satisfiable. Gebauer, Moser, Welzl, and myself [9]

1 Their graph has edges also between clauses with a trivial resolvent, for example
(x ∨ y ∨ z̄), (u ∨ ȳ ∨ z), which is labeled as a trivial edge. Our graph is such the
subgraph of all non-trivial edges of the graph of Ostrowski et al.

2

showed that there is some number `(k) such that (1) all k-CNF formulas F with
Γ (F) ≤ `(k) are satisfiable; (2) there exists an unsatisfiable k-CNF formula
F with Γ (F) ≤ `(k) + 1; (3) satisfiability of k-CNF formulas F with Γ (F) ≥
max(k + 3, `(k) + 2) is NP-hard. Note that k + 3 ≤ `(k) + 2 for sufficiently
large k. This means an “almost sudden” complexity jump, where in the case
Γ (F) = `(k) + 1 the decision problem is neither known to be in P nor to be
NP-complete.

Define Γ ′F (C) to be the number of clauses in F with which C has a conflict,
that is those clauses D for which u ∈ C and ū ∈ D for some literal u. Let
lc(F) := maxC∈F |Γ ′F (C)|. Here, lc stands for local conflict. The lopsided Lovász
Local Lemma shows that every k-CNF formula F with lc(F) ≤ 2k/(ek) − 1
is satisfiable. In [9] it was proven that this notion of conflict degree exhibits
a sudden complexity jump: There is a function lc(k) such that (1) all k-CNF
formulas F with lc(F) ≤ lc(k) are satisfiable; (2) deciding satisfiability of k-CNF
formulas F with lc(F) ≥ lc(k) + 1 is NP-hard.

1.2 Our Contribution

Two clauses C,D have a 1-conflict if there is exactly one literal u such that
u ∈ C and ū ∈ D. In other words, if C and D have a non-trivial resolvent.
For example, the clauses {x, y, z} and {x̄, y} have a 1-conflict, but {x, y, z} and
{x̄, z̄} do not. We denote by Γ 1

F (C) the set of clauses D ∈ F such that C and
D have a 1-conflict, and lc1(F) := maxC∈F |Γ 1

F (C)|. In contrast to ∆(F), Γ (F)
and lc(F), it turns out that we completely understand the complexity of k-SAT
when we restrict lc1:

Theorem 1 (Complexity Jump). The following three statements hold for all
k ≥ 0:

1. Every k-CNF formula F with lc1(F) ≤ k − 1 is satisfiable.
2. There exists an unsatisfiable k-CNF formula F with lc1(F) = k.
3. Satisfiability of k-CNF formulas F with lc1(F) ≤ k is in P.
4. Deciding satisfiability of k-CNF formulas F with lc1(F) ≤ k + 1 is NP-

complete, if k ≥ 3.

Let us say a word about the proof of this theorem. Point 2 is very simple,
we just provide a construction of a k-CNF formula for every k ∈ N. Point 4,
the hardness result, uses a reduction that is very similar to that of Kratochv́ıl,
Savický, and Tuza [4] and Gebauer, Moser, Welzl, and myself [9]. Point 1 uses
the concept of blocked clauses (Kullmann [10]). These are special clauses that
are redundant and can be removed. The proof of Point 3 is the most interesting
in our opinion. It consists of two main observations: (1) It is enough to decide
satisfiability separately for each connected component of the 1-conflict graphs.
(2) If the 1-conflict graph is connected, then splitting on a variable and iteratively
deleting blocked clauses drastically reduces the size of the input formula. Blocked
clause elimination (Järvisalo, Biere, and Heule [11]; Ostrowski, Grégoire, Mazure,

3

and Sais [2]) is a known preprocessing step in SAT solvers and is quite useful
in practice. In theory, however, eliminating blocked clauses can increase the
resolution complexity of a formula exponentially: There are examples of formulas
with short resolution proofs, but if one removes blocked clauses, every resolution
proof of the remaining formula most be of exponential size; see for example
Cook [12]. The class of formulas we discuss in Point 3 is thus not of this form:
Blocked clause elimination is provably beneficial here.

Point 3 shows that there is a provable gap between the trivial and the NP-
hard regime of the parameter lc1. Such a gap is non-existent or not known to
exist for the other parameters discussed above. We give a SAT algorithm that is
correct in general, and in the special case of k-CNF formulas F with lc1(F) ≤ k
runs in polynomial time. It is a branching algorithm and thus produces a treelike
resolution refutation whose size is bounded by the number of recursive calls (this
is a well-known fact; for a proof see [13], Theorem 3.2.5, page 35). Therefore, we
get the following theorem:

Theorem 2 (Short Resolution Proofs). If F is an unsatisfiable k-CNF for-
mula and lc1(F) = k, then there is a treelike resolution refutation of F with at
most |F | leaves, where |F | is the number of clauses in F .

Theorem 3 (Finding the Satisfying Assignment). Suppose F is a satisfi-
able k-CNF formula and lc1(F) ≤ k. Then we can find a satisfying assignment
in polynomial time.

2 Notation

A CNF formula is a conjunction (AND) of clauses: C1 ∧ · · · ∧ Cm. A clause is a
disjunction (OR) of literals: x ∨ ȳ ∨ z, where a literal is either a variable or its
negation. We typically let n denote the number of variables in a formula, m the
number of clauses, and k the size of its clauses: In a k-CNF formula, all clauses
have size k. For notational purposes, we view formulas as set of clauses and
clauses as sets of literals. So {{x, y}, {x̄, ȳ}} is the 2-CNF formula (x∨y)∧(x̄∨ ȳ)
(which by the way is equivalent to x⊕ y). By vbl(C) and vbl(F) we denote the
set of variables in a clause C or formula F , respectively. For a clause D =
{u1, . . . , uk}, we write D̄ := {ū1, . . . , ūk}. This is not the negation of D. For
a CNF formula F and a variable x, F [x 7→1] is the CNF formula we obtain by
replacing x by the constant 1. Thus, every clause containing x is satisfied (and
can be removed from F), and every occurrence of x̄ is unsatisfied and can be
removed. We define F [x7→0] analogously.

2.1 Resolution

If C and D have a one-conflict, i.e., C ∩ D̄ = {u}, we call the clause E :=
(C \ {u})∪ (D \ ū) the resolvent of C and D. It is an easy exercise to show that
the formulas C ∧D and C ∧D ∧E are equivalent. Let F be a CNF formula. A

4

resolution derivation from F is a sequence of clauses C1, C2, . . . , Cm where each
Ci is (1) a clause of F or (2) the resolvent of two earlier clauses in the sequence.
It is not difficult to see that F implies each clause in the sequence; that is, any
assignment satisfying F satisfies C1, . . . , Cm. If Cm = �, i.e., the empty clause,
which always evaluates to 0, we call C1, . . . , Cm a resolution refutation, as it
shows that F is unsatisfiable. A treelike resolution derivation from F is a binary
tree T with the following properties: Every vertex u is labeled with a clause Cu;
a leaf is labeled with a clause of F ; if an inner vertex u has children v and w,
then Cu is the resolvent of Cv and Cw. If the root is labeled with the empty
clause �, we call it a treelike resolution refutation of F .

3 Proofs

We prove Point 2 of Theorem 1, which is the simplest of the four points. Take k
variables and let Fk be the k-CNF formula containing all 2k k-clauses over the
k variables. Fk is unsatisfiable and lc1(Fk) = k. For an alternative construction,
take 2k − 1 variables and let Gk consist of all

(
2k−1

k

)
completely positive k-

clauses and all
(
2k−1

k

)
completely negative k-clauses. Again one checks that Gk

is unsatisfiable and lc1(Gk) = k. For example, for k = 2 those two constructions
yield

{{x, y}, {x̄, y}, {x, ȳ}, {x̄, ȳ}} (1)

and

{{x, y}, {x, z}, {y, z}, {x̄, ȳ}, {x̄, z̄}, {ȳ, z̄}} . (2)

Their 1-conflict graphs are a C4 and a C6, respectively.

3.1 Basic Properties of the 1-Conflict Graph

Before we attack the remaining three points of the theorem, let us collect some
interesting facts about 1-conflicts. Let us start with a simple but surprising
observation, which probably is folklore.

Proposition 1. Every CNF formula F with � 6∈ F and lc1(F) = 0 is satisfiable.

Note that without that proposition, the notion “1-conflict” would be mislead-
ing. After all, under any reasonable notion of conflict, a formula without conflicts
should be satisfiable (extreme cases like � ∈ F excluded). A direct consequence
of the above proposition is that a hypergraph in which |e∩ f | 6= 1 for all hyper-
edges e, f is 2-colorable. This is a result of Lovász (Problem 13.33 in [14]).

Proof. A CNF formula F is unsatisfiable if and only if there is a resolution
derivation of the empty clause (For a proof use induction over the number of
variables or see for example [15], Theorem 4.2.1, page 26). Since F has no 1-
conflicts, we cannot build any new resolvents. Since � 6∈ F , the formula is
satisfiable. �

5

Lemma 1. A CNF formula F is satisfiable if and only if every connect compo-
nent of its 1-conflict graph is satisfiable. Furthermore, given satisfying assign-
ments α1, . . . , αt for each of its t connected components, we can efficiently find
a satisfying assignment α of F .

Again, this is something we expect from a reasonable notion of conflict.

Proof. One direction is trivial: If F is satisfiable, then all connected components
are satisfiable. For the other direction, write F = F1] F2 such that there is
no 1-conflict between F1 and F2. By induction on the number of connected
components, both F1 and F2 are satisfiable.

Choose a pair α1, α2 of assignments to vbl(F) such that α1 satisfies F1, α2

satisfies F2, and the Hamming distance dH(α1, α2) is minimized. We claim that
α1 satisfies F2 as well, and therefore F . Suppose for the sake of contradiction that
this is not the case. There is a clause D ∈ F2 such that α1 does not satisfy D.
Since α2 satisfies D, there is a literal u ∈ D such that α1(u) = 0 and α2(u) = 1.
Define α′1 := α[u 7→ 1]. Clearly dH(α′1, α2) = dH(α1, α2) − 1. If we can prove
that α′1 still satisfies F1, we have arrived at a contradiction to dH being minimal,
and are done. Consider any C ∈ F1. By the assumptions of the lemma, there
is no 1-conflict between C and D. Hence either C ∩ D̄ = ∅ or |C ∩ D̄| ≥ 2. In
the first case, α1(C) = α′1(C) = 1. In the second case, α1 satisfies at least two
literals in C, and therefore, α′1 satisfies at least one literal in C. This shows that
α′1 indeed satisfies F1, contradicting minimality of dH(α1, α2).

As for the algorithmic aspect, suppose we are given assignments α1 and α2

satisfying F1 and F2, respectively. As above, we we locally modify α1, reducing
the Hamming distance between to α2, until we arrive at a single assignment α
satisfying both F1 and F2. This takes only polynomial time. �

3.2 Blocked Literals and Blocked Clauses

It will pay off to introduce some notation. Let F be a CNF formula, C a clause,
and u ∈ C a literal. Define Γ 1

F (C, u) := {D ∈ F | C ∩ D̄ = {u}}, that is, those
clauses that have a 1-conflict with C, and this 1-conflict is generated by u. Note
that

Γ 1
F (C) =

⋃
u∈C

Γ 1
F (C, u) ,

and this union is a disjoint one.

Definition 1 (Blocking Literals and Blocked Clauses, Kullmann [10]).
We say u blocks C in F if Γ 1

F (C, u) = ∅. A clause C is blocked in F if some
u ∈ C blocks C in F .

If the ambient formula is understood, we simply say that u blocks C and C
is blocked, not explicitly referring to F . Blocked clauses are redundant, in some
way:

6

Proposition 2 (Kullmann [10]). Let F be a CNF formula and C ∈ F some
clause. If C is blocked in F , then F is satisfiable if and only if F \ {C} is.
Furthermore, given a satisfying assignment α of F \ {C}, we can efficiently find
a satisfying assignment α′ of F .

We can use Proposition 2 to repeatedly remove blocked clauses in a for-
mula, finally arriving at a formula without blocked clauses, which we denote by
deleteBlocked(F).

Proposition 3 (Kullmann [10]). Let F be a CNF formula and let F ′ :=
deleteBlocked(F). Then F is satisfiable if and only if F ′ is, and given a sat-
isfying assignment α′ of F ′, we can efficiently construct a satisfying assignment
α of F .

Proof. This follows from Proposition 2 and induction on the number of clauses.�

Proposition 3 yields another proof of Proposition 1: If lc1(F) = 0, then every
non-empty clause is blocked by one of its literals. The algorithm deleteBlocked

will remove one by one, finally arriving at the empty formula, which is satisfiable.
Here we were using an innocent but crucial fact: If a clause C is blocked with
respect to F , then it is also blocked with respect to every subformula F ′ ⊆ F
for which C ∈ F ′.

This proves Point 1 of the theorem: If F is a k-CNF formula and lc1(F) ≤ k−
1, then every clause contains at least one literal that blocks it. Thus deleteBlocked(F) =
{}, the empty formula, thus it is satisfiable.

3.3 Simple and Tight Formulas

Definition 2. A CNF formula F is simple if |ΓF (C, u)| ≤ 1 for every C ∈ F
and every u ∈ C. It is tight if |ΓF (C, u)| = 1 for every C ∈ F and every u ∈ C.

For example, the following formula is tight and satisfiable.

{{x̄1, x2}, {x̄2, x3}, . . . , {x̄n−1, xn}, {x̄n, x1}}

As another example, the formulas in (1) and (2) are tight and unsatisfiable.

Proposition 4. Suppose F is simple. Then deleteBlocked(F) is tight. Sup-
pose F is a k-CNF formula and lc1(F) ≤ k. Then deleteBlocked(F) is tight.

Proof. Suppose F is simple. Then any subformula F ′ ⊆ F is simple, too. Thus
F ′ := deleteBlocked(F) ⊆ F is simple. It contains no blocked clauses, so
|ΓF ′(C, u)| ≥ 1 for all u ∈ C ∈ F ′. But |ΓF ′(C, u)| ≤ |ΓF (C, u)| ≤ 1, which
means they must be exactly 1. In other words, F ′ is tight.

For the second statement, suppose F is a k-CNF formula and lc1(F) ≤
k. Then this statement is true for F ′ := deleteBlocked(F), too. Since F ′

contains no blocked clause, |ΓF ′(C, u)| ≥ 1 for all u ∈ C ∈ F ′. Thus k ≤∑
u∈C |ΓF ′(C, u)| = |ΓF ′(C)| ≤ lc1(F ′) = k, so equality holds throughout, mean-

ing |ΓF ′(C, u)| = 1, and F ′ is tight. �

7

Proposition 5. Suppose F is simple, and x is a variable. Then F [x 7→1] is sim-
ple, and so is F [x 7→0].

Proof. Suppose F ′ := F [x 7→0] is not simple. We will show that F is not simple.
By assumption on F ′, there is a clause C ′ ∈ F ′ and a literal u ∈ C ′ such that
|ΓF ′(C ′, u)| ≥ 2. This means there are clauses D′1, D

′
2 such that C ′ ∩ D̄′1 =

C ′∩ D̄′2 = {u}. Since F ′ = F [x 7→0], this means that F contains clauses C,D1, D2

such that either C = C ′ or C = C ′ ∨ x; either D1 = D′1 or D1 = D′ ∨ x; either
D2 = D′2 or D2 = D′ ∨ x. None of those clauses contains x̄, though. Therefore
C ∩ D̄1 = C ′ ∩ D̄′1 = {u}, and similarly C ∩ D̄2 = C ′ ∩ D̄2 = {u}. Thus,
D1, D2 ∈ Γ 1

F (C, u), and F is not simple, either. �

3.4 An Efficient Algorithm

We will now use the above notions of blocked clauses and simple and tight
formulas to prove the main result of this paper, i.e., Point 3 of Theorem 1. We
give an algorithm that efficiently decides satisfiability of k-CNF formulas F with
lc1(F) ≤ k. See Algorithm simpleSAT below. To see the correctness simpleSAT,

Algorithm 1.1. simpleSAT(CNF formula F)

1: F ← deleteBlocked(F)
2: if � ∈ F then
3: return false

4: else if F = {} then
5: return true

6: else if F = F1] F2 for some F1, F2 6= {} and |C ∩ D̄| 6= 1 for all C ∈ F1, D ∈ F2

then
7: return simpleSAT(F1) ∧ simpleSAT(F2)
8: else
9: x← vbl(F)

10: G1 := deleteBlocked(F [x 7→1])
11: G0 := deleteBlocked(F [x 7→0])
12: return simpleSAT(G1) ∨ simpleSAT(G0)
13: end if

consider lines 1.1 and 1.1. The algorithm recurses on F1 and F2 and returns
true if both calls return true. By Lemma 1, F is satisfiable if and only if F1

and F2 are both satisfiable individually. The challenging part is to argue that
its running time is polynomial in our case.

Lemma 2. If F is simple, then simpleSAT(F) runs in polynomial time. More
precisely, let m be the number of clauses in F . The total number of calls to
simpleSAT(F) during its execution is 2m− 1 if m ≥ 1 and 1 otherwise.

Proof. If m = 0, then F = {} and the algorithm just returns true. So the claim
holds for m = 0. After the first line, F is tight, which follows from Proposition 4.

8

If m = 1, then F = {�} or F = {} after the first line, so there is no further
recursive call either. So the claim holds for m = 1, too.

Otherwise, suppose m ≥ 2, i.e., F has at least two clauses. Then simpleSAT

either recurses on two subformulas F1, F2 (line 1.1) or on G0, G1 (line 1.1).
Suppose simpleSAT recurses on F1 and F2. Note that both F1 and F2 have at
least one clause. We apply induction to F1 and F2 and see that the total number
of calls is at most 1 + (2|F1| − 1) + (2|F2| − 1) = 2(|F1| + |F2|) − 1 = 2m − 1.
If simpleSAT recurses on G0 and G1, things are more complicated. This is the
only point where we need that F is tight:

Proposition 6. Suppose F is tight, x ∈ vbl(F), and let G0 := deleteBlocked(F [x 7→0])
and G1 := deleteBlocked(F [x 7→1]). Then |G0|+ |G1| ≤ |F |.

With this proposition, we apply induction to G0 and G1. If both G0 and G1

contain at least one clause, then the total number of calls is 1 + (2|G0| − 1) +
(2|G1| − 1) ≤ 2|F | − 1.

At this point we are almost done, but have to deal with the annoying special
case that G0 or G1 might be empty. If G0 contains no clause but G1 does, then
we apply induction on G1 and see that the number of calls is 1+1+(2|G1|−1) =
2|G1|+ 1 ≤ 2|F | − 1, since |G1| < |F |. If G0 = G1 = {}, then there is a total of
3 calls. Since F has m ≥ 2 clauses, this completes the proof of the lemma. �.

Proof (of Proposition 6). Let C ∈ F be a clause. We argue that C may make
its way into either G0 or G1, but not both. Thus |G0|+ |G1| ≤ F .

There are two cases: Suppose x ∈ C or x̄ ∈ C, without loss of generality
x ∈ C. Then setting x 7→ 1 satisfies C, and C does not make it into G1, but
C [x7→0] may make it into G0 (provided it survives deleteBlocked).

So suppose x 6∈ C and x̄ 6∈ C. After line 1.1, the 1-conflict graph of F is
connected. So there is a path C = C1, C2, . . . , Ct−1, Ct such that x ∈ vbl(Ct)
but x 6∈ vbl(Ci) for 1 ≤ i ≤ t − 1. Without loss of generality, x ∈ Ct. After
setting x 7→ 1, the clause Ct is satisfied, and Ct−1 has one 1-conflict neighbor
less. So now Ct−1 is blocked, and deleteBlocked(F [x 7→1]) deletes it. Thus Ct−2
loses a neighbor and becomes blocked, and so on, until finally C = C1 will be
removed. See Figure 1 for an illustration. Thus, C does not make its way into
G1. This proves the proposition. �

Resolution Size – Proof of Theorem 2

The algorithm simpleSAT is a branching algorithm, and it is a well-known fact
that branching algorithms implicitly produce a treelike resolution refutation
when run on an unsatisfiable formula (see e.g. [13], Theorem 3.2.5, page 35).
The number of clauses in the refutation is at most the number of recursive calls.
Since an unsatisfiable formula has m ≥ 1 clauses, the number of calls is at most
2m − 1, by Lemma 2. Thus the resolution tree has at most 2m − 1 nodes, and
therefore at most m leaves. This proves Theorem 2.

9

{u, x̄1} {x1, x2, x3}

{x̄3, x4}

{x̄4}

{x̄2}

{ȳ1, y2, ū}

{ȳ2}

{ȳ3, y1}

{y3}

Fig. 1. Illustration of Proposition 6. When we set u to 1, the clause {u, x̄1} disappears.
The clause {x1, x2, x3} has only one outgoing edge labeled x1. Once {u, x̄1} disappears,
the literal x1 will block {x1, x2, x3}, and {x1, x2, x3} will be deleted, too. Then x̄2 will
block {x̄2} and x̄3 will block {x̄3, x4}, thus these clauses are also deleted, and so on.

Finding the Satisfying Assignment – Proof of Theorem 3

Suppose F is a satisfiable k-CNF formula and lc1(F) ≤ k. We construct a sat-
isfying assignment F by tracking the execution of simpleSAT(F). Denote by
F ′ := deleteBlocked(F) the input formula after the first line. By Proposition 4,
F ′ is tight. If we can efficiently find a satisfying of F ′, then by Proposition 3 we
can efficiently find a satisfying assignment of F . If simpleSAT recurses in line 1.1
on F1 and F2, we assume by induction that we know satisfying assignments α1

of F1 and α2 of F2. By Lemma 1 we can efficiently combine α1, α2 into a single α
satisfying of F ′. If simpleSAT recurses in line 1.1 on G0 and G1, suppose without
loss of generality that G1 is satisfiable and let α be a satisfying assignment. Since
G1 = deleteBlocked(F

′[x 7→1]), we can efficiently find a satisfying assignment
α′ of F

′[x 7→1], by Proposition 3. Thus, α′ ∪ [x 7→ 1] satisfies F ′. Summing up,
we can construct a satisfying assignment of F by adding some bookkeeping to
simpleSAT.

4 Hardness for lc1 ≥ k + 1: Proof Sketch

We sketch a reduction from k-SAT to k-SAT with lc(F) ≤ k + 1, but refer the
reader to the appendix for the full details. Let F be a k-CNF formula and let
degF (x) denote the number of clauses in F in which x occurs, regardless of its
sign. In a first step, we introduce 2 degF (x) new variables x1, x2, . . . , x2 degF (x)

for each x ∈ vbl(F) and replace the ith occurrence of x by x2i.
In a second step, we add an equalizer formula Eq(x1, . . . , x2 degF (x)) for each

x ∈ vbl(F). This is a 2-CNF formula which is satisfied if and only if its 2 degF (x)
variables receive the same truth value. The resulting formula is satisfiable if and
only if F is. However, it is not a k-CNF formula, because it contains 2-clauses.

In a third step, we “fill up” each 2-clause {u, v} to a k-clause, by adding k−2
new variables. This is, we replace {u, v} by {u, v, w3, . . . , wk}. Finally, we add
a “forcer” for every new variable wi introduced in the third step. A forcer is a
k-CNF formula that is satisfiable, but only if wi is set to 0. Such a forcer can be

10

built in a rather straightforward manner from an unsatisfiable k-CNF formula
G with lc1(G) = k.

Acknowledgments

I am very thankful to Heidi Gebauer, Robin Moser, and Emo Welzl. The question
posed and answered in this paper arose during our work on [9]. Furthermore, I
am grateful to Navid Talebanfard, who pointed out Exercise 13.33 from [14].

References

1. Allender, E., Chen, S., Lou, T., Papakonstantinou, P., Tang, B.: Width-
parameterized SAT: time-space tradeoffs. ECCC TR12-027 (2012)

2. Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting struc-
tural knowledge from CNF formulas. In Hentenryck, P.V., ed.: CP. Volume 2470
of Lecture Notes in Computer Science., Springer (2002) 185–199

3. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In Hajnal, A., Rado, R., Sós, V.T., eds.: Infinite and Finite Sets
(to Paul Erdős on his 60th birthday), Vol. II. North-Holland (1975) 609–627

4. Kratochv́ıl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes
satisfiability jump from trivial to NP-complete. SIAM Journal of Computing 22(1)
(1993) 203–210

5. Savický, P., Sgall, J.: DNF tautologies with a limited number of occurrences of
every variable. Theoret. Comput. Sci. 238(1–2) (2000) 495–498

6. Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences
per variable. SIAM Journal on Discrete Mathematics 20(2) (2006) 523–528

7. Gebauer, H.: Disproof of the neighborhood conjecture with implications to SAT.
In Fiat, A., Sanders, P., eds.: 17th Annual European Symposium on Algorithms
(ESA 2009). Volume 5757 of Lecture Notes in Computer Science., Springer (2009)
764–775

8. Gebauer, H., Szabó, T., Tardos, G.: The local lemma is tight for SAT. In Randall,
D., ed.: SODA, SIAM (2011) 664–674

9. Gebauer, H., Moser, R.A., Scheder, D., Welzl, E.: The Lovász Local Lemma and
satisfiability. In Albers, S., Alt, H., Näher, S., eds.: Efficient Algorithms. Volume
5760 of Lecture Notes in Computer Science., Springer (2009) 30–54

10. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97 (1999) 149–176

11. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In Esparza, J.,
Majumdar, R., eds.: TACAS. Volume 6015 of Lecture Notes in Computer Science.,
Springer (2010) 129–144

12. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution.
SIGACT News 8(4) (October 1976) 28–32

13. Hoffmann, J.: Resolution proofs and DLL algorithms with clause learning (2007)
Diploma Thesis, Ludwig-Maximilians-Universität München.

14. Lovász, L.: Combinatorial problems and exercises (2. ed.). North-Holland (1993)
15. Krajicek, J.: Bounded Arithmetic, Propositional Logic and Complexity Theory.

Encyclopedia of Mathematics and its Applications. Cambridge University Press
(1995)

11

A Hardness for lc1 ≥ k + 1: Full Proof

Finally, we show point 4 of Theorem 1. The proof is similar to the proof by
Gebauer et al. [9] that the number of local conflicts exhibits a complexity jump.
We will give a reduction that takes a k-CNF formula F as input and outputs a k-
CNF formula F ′, such that F is satisfiable if and only if F ′ is, and lc1(F ′) ≤ k+1,
i.e., every clause in F ′ has a 1-conflict with at most k+ 1 other clauses. In fact,
F ′ will have a stronger property: For every clause C = {u1, . . . , uk} ∈ F ′, k−1 of
its literals generate at most one 1-conflict, say |Γ 1

F ′(C, ui)| = 1 for 1 ≤ i ≤ k−1,
and one literal is may have up to two 1-conflicts: |Γ 1

F ′(C, uk)| ≤ 2. For k ≥ 3
this shows that deciding satisfiability of k-CNF formulas with lc1(F) ≤ k + 1 is
NP-complete.

For a variable x, denote by degF (x) the number of clauses of F in which x
occurs, regardless of its sign. In a first step, for each variable x ∈ vbl(F) we set
d := degF (x) and introduce 2d new variables x1, x2, . . . , x2d. We replace the d
occurrences of x by the variables x2, x4, . . . , x2d. Skipping the odd indices will
prove useful soon. We call the new formula F2. For example, if x appears in three
clauses, say

F = {{x, ȳ, z̄}, {x, u, v}, {x̄, y, ū}, . . . },
then we replace those three occurrences by x2, x4, and x6 and obtain

{{x2, ȳ, z̄}, {x4, u, v}, {x̄6, y, ū}, . . . }.
We apply the same procedure to y, z, and all other variables. F2 has no conflicts,
since each variable appears in only one clause. It is satisfiable, which is not good,
because we want a formula F ′ such that F is satisfiable if and only if F ′ is. We
introduce an equalizer formula for the variables x1, x2, . . . , x2d. This is a formula
which is satisfied if and only if one assigns the same value to x1, x2, . . . , x2d:

Eq(x1, . . . , x2d) = {{x̄1, x2}, {x̄2, x3}, . . . , {x̄2d−1, x2d}, {x̄2d, x1}} .
Eq(x1, . . . , x2d) has exactly two satisfying assignments: All-1 and All-0. We ob-
tain F3 by adding an equalizer for every variable x ∈ vbl(F):

F3 := F2 ∪
⋃

x∈vbl(F)

Eq(x1, x2, . . . , x2 degF (x)) .

The property of the equalizers implies F is satisfiable if and only if F3 is.
Furthermore, |Γ 1

F3
(C)| ≤ |C| + 1 for every C ∈ F3: Since each occurrence of

a variable in F gets replaced by a fresh copy of this variable, there are no
conflicts within F2. Every clause C ∈ F2 has a 1-conflict with exactly |C|
clauses in the equalizer formulas: If xi ∈ C, then C has a 1-conflict with the
clause {x̄i, xi+1} ∈ Eq(x1, . . . , xdegF (x)). Similarly, if x̄i ∈ C, then C has a 1-
conflict with {x̄i−1, xi}. Therefore, C is simple. Consider a clause {x̄i, xi+1}
in an equalizer. Each of the two literals generates one 1-conflict with another
equalizer-clause. Additionally, x̄i (if i is even) or xi+1 (if i is odd) might gen-
erate a 1-conflict with a clause in F2. Thus, |Γ 1

F3
(C)| ≤ |C| if C ∈ F2, and

|Γ 1
F3

(C)| ≤ |C|+ 1 if C is an equalizer-clause.

12

The formula F3 fulfills almost all our needs, except that its clauses are too
short: We want to output a k-CNF formula. For this reason, we add k − 2 new
variables to each equalizer clause: We replace {x̄i, xi+1} by

{x̄i, xi+1, u3, . . . , uk} .

We add clauses that force the variables u3, . . . , uk to 0: For each uj , we construct
a formula that is satisfiable if and only if uj is set to 0. Let v1, . . . , vk be new
variables and let CF (v1, . . . , vk) denote the k-CNF formula consisting of all 2k

k-clauses over v1, . . . , vk. This formula is unsatisfiable and tight. Pick one clause
from this formula, say {v1, . . . , vk}, and replace it by {v1, . . . , vk−1, ūj}. We
call this k-CNF formula G(uj). It is satisfiable, but every satisfying assignment
sets uj to 0. Furthermore, G(uj) is simple, and ūj blocks {v1, . . . , vk−1, ūj} in
G(uj). We denote by F ′ the k-CNF formula we obtain from F3 by filling up
the equalizer-clauses and adding the formulas G(uj) to it. By construction F ′ is
satisfiable if and only if F is.

Let us summarize the construction of F ′. For every x ∈ vbl(F), we add
2 degF (x) equalizer clauses, each of which we fill up to a k-clause, introducing
a total of (k − 2)2 degF (x) new variables. Finally, we add the formulas G(uj),
consisting of 2k clauses. That is, for each x ∈ vbl(F), we add 2 degF (x) + 2(k −
2) degF (x)2k clauses. This increases the total size of F by a constant factor.

Let us verify that lc1(F ′) ≤ k + 1. There are three types of clauses in F ′:
First, there are the “original” clauses, those of F2. These clauses have at most
k 1-conflict neighbors in F3 and also in F ′. Second, there are equalizer clauses
{x̄i, xi+1, u3, . . . , uk}. Here, every literal causes at most one 1-conflict, except
possibly xi (if i is even) or xi+1 (if i is odd), which may cause up to two 1-
conflicts. Thus this clause has at most k + 1 many 1-conflicts. Third, there are
clauses in G(uj). Every clause C ∈ G(uj) has at most k 1-conflict neighbors in
G(uj), and the literal ūj blocks {v1, . . . , vk−1, ūj} with respect to G(uj). Since
uj occurs in exactly one equalizer clause, this adds exactly one 1-conflict to
{v1, . . . , vk−1, ūj}. Therefore every C ∈ G(uj) has at most k 1-conflict neighbors
in F ′. This concludes the proof.

13

	Trivial, Tractable, Hard. A Not So Sudden Complexity Jump in Neighborhood Restricted CNF Formulas

