Trivial, Tractable, Hard. A Not So Sudden Complexity Jump in Neighborhood Restricted CNF Formulas

Dominik Scheder* ** ***

Aarhus University

Abstract. For a CNF formula F we define its 1-conflict graph as follows: Two clauses $C, D \in F$ are connected by an edge if they have a nontrivial resolvent – that is, if there is a unique literal $u \in C$ for which $\bar{u} \in D$. Let $lc_1(F)$ denote the maximum degree of this graph.

A k-CNF formula is a CNF formula in which each clause has exactly k distinct literals. We show that (1) a k-CNF formula F with $lc_1(F) \leq k - 1$ is satisfiable; (2) there are unsatisfiable k-CNF formulas F with $lc_1(F) = k$; (3) there is a polynomial time algorithm deciding whether a k-CNF formula F with $lc_1(F) = k$ is satisfiable; (4) satisfiability of k-CNF formulas F with $lc_1(F) \leq k + 1$ is NP-hard.

Furthermore, we show that if F is a k-CNF formula and $lc_1(F) \leq k$, then we can find in polynomial time a satisfying assignment (if F is satisfiable) or a treelike resolution refutation with at most |F| leaves (if F is unsatisfiable). Here, |F| is the number of clauses of F.

1 Introduction

There are several parameters to measure the structural complexity of CNF formulas, and they influence the computational complexity of their associated satisfiability decision problem. Some of them yield a fixed-parameter tractable problem – for example the treewidth of formulas (Allender, Chen, Lou, Papakonstantinou, and Tang [1]). For other parameters we are hit by the full power of NP-completeness once the parameter is large enough. Think of k, the maximum clause width of a formula: For k = 2 we know polynomial algorithms, for $k \ge 3$ the problem is NP-complete. In this paper we define in a natural way a graph on the clauses of the formula and investigate the complexity of the satisfiability problem depending on the maximum degree of this graph. We connect two

^{*} The author acknowledges support from the Danish National Research Foundation and The National Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, and from the CFEM research center (supported by the Danish Strategic Research Council), within which this work was performed.

^{**} Research was supported by the SNF Grant 200021-118001/1.

^{***} The author acknowledges support from the Simons Institute for the Theory of Computing, UC Berkeley.

clauses C, D of our formula with an edge if those clauses have a non-trivial resolvent. That is, if there is exactly one literal $u \in C$ for which $\bar{u} \in D$. We call this the 1-conflict graph. Thus, the degree of a clause C in this graph is the number of potential resolution partners in the formula. This graph is similar to the one defined by Ostrowski, Grégoire, Mazure, and Sais [2].¹ We show that a k-CNF formula is satisfiable if its 1-conflict graph has maximum degree at most k - 1; the satisfiability problem is NP-hard if we allow a maximum degree of k + 1; in between, for k-CNF formulas graphs of maximum degree k, there is a nontrivial algorithm that runs in polynomial time. If the formula is satisfiable, the algorithm returns a satisfying assignment. If it is unsatisfiable, it returns a treelike resolution refutation of size at most 2m - 1, where m is the number of clauses.

1.1 Notions of Degree, Neighborhood, and Conflict

A k-CNF formula in which every variable appears in at most $2^k/(ek)$ clauses is satisfiable. This is a direct consequence of the Lovász Local Lemma [3] and was first observed by Kratochvíl, Savický, and Tuza [4]. There is no reason to believe that $2^k/(ek)$ is tight. This motivates the following definition: Let f(k) be the largest integer d such that every k-CNF formula F with $\Delta(F) \leq d$ is satisfiable. Here, Δ is the "maximum degree" of a formula: The maximum number of clauses in which a variable appears. The above result shows that $f(k) \geq 2^k/(ek)$. Proving matching upper bounds, i.e., constructing unsatisfiable k-CNF formulas of low maximum variable degree, turned out to be not trivial at all. The upper bound has been improved in several papers, to $O(2^k/k^{0.26})$ by Savický and Sgall [5] and to $O(2^k \log k/k)$ by Hoory and Szeider [6]. Gebauer [7] improved it to $O(2^k/k)$, which is tight up to a constant factor, and finally Gebauer, Szabó, Tardos [8] proved that $f(k) = (1 \pm o(1))2^{k+1}/ek$, i.e., they even found the right constant factor.

How difficult is satisfiability of k-CNF formulas of bounded degree? Let (k, d)-SAT denote the problem of deciding whether a given k-CNF formula F of maximum degree $\Delta(F) \leq d$ is satisfiable. Clearly, (k, f(k))-SAT is trivial: All instances are satisfiable. Kratochvíl, Savický, and Tuza [4] showed that (k, d)-SAT exhibits a complexity jump: When the number of permitted occurrences per variable increases from f(k) to f(k) + 1, the complexity of the decision problem jumps from trivial (all instances are satisfiable) to NP-complete. It seems surprising that one can prove such a result without knowing the value of f(k).

Other structural parameters exhibit complexity jumps, too. For a clause Cin a CNF formula F, let $\Gamma_F(C)$ denote the clauses of F (excluding C) that have at least one variable in common with C, regardless of its sign. Let $\Gamma(F) := \max_{C \in F} |\Gamma_F(C)|$. Again by the Lovász Local Lemma, every k-CNF formula Fwith $\Gamma(F) \leq 2^k/e - 1$ is satisfiable. Gebauer, Moser, Welzl, and myself [9]

¹ Their graph has edges also between clauses with a trivial resolvent, for example $(x \lor y \lor \overline{z}), (u \lor \overline{y} \lor z)$, which is labeled as a trivial edge. Our graph is such the subgraph of all non-trivial edges of the graph of Ostrowski et al.

showed that there is some number $\ell(k)$ such that (1) all k-CNF formulas F with $\Gamma(F) \leq \ell(k)$ are satisfiable; (2) there exists an unsatisfiable k-CNF formula F with $\Gamma(F) \leq \ell(k) + 1$; (3) satisfiability of k-CNF formulas F with $\Gamma(F) \geq \max(k+3,\ell(k)+2)$ is NP-hard. Note that $k+3 \leq \ell(k)+2$ for sufficiently large k. This means an "almost sudden" complexity jump, where in the case $\Gamma(F) = \ell(k) + 1$ the decision problem is neither known to be in P nor to be NP-complete.

Define $\Gamma'_F(C)$ to be the number of clauses in F with which C has a *conflict*, that is those clauses D for which $u \in C$ and $\bar{u} \in D$ for some literal u. Let $lc(F) := \max_{C \in F} |\Gamma'_F(C)|$. Here, lc stands for *local conflict*. The *lopsided* Lovász Local Lemma shows that every k-CNF formula F with $lc(F) \leq 2^k/(ek) - 1$ is satisfiable. In [9] it was proven that this notion of conflict degree exhibits a sudden complexity jump: There is a function lc(k) such that (1) all k-CNF formulas F with $lc(F) \leq lc(k)$ are satisfiable; (2) deciding satisfiability of k-CNF formulas F with $lc(F) \geq lc(k) + 1$ is NP-hard.

1.2 Our Contribution

Two clauses C, D have a 1-conflict if there is exactly one literal u such that $u \in C$ and $\bar{u} \in D$. In other words, if C and D have a non-trivial resolvent. For example, the clauses $\{x, y, z\}$ and $\{\bar{x}, y\}$ have a 1-conflict, but $\{x, y, z\}$ and $\{\bar{x}, \bar{z}\}$ do not. We denote by $\Gamma_F^1(C)$ the set of clauses $D \in F$ such that C and D have a 1-conflict, and $lc_1(F) := \max_{C \in F} |\Gamma_F^1(C)|$. In contrast to $\Delta(F), \Gamma(F)$ and lc(F), it turns out that we completely understand the complexity of k-SAT when we restrict lc_1 :

Theorem 1 (Complexity Jump). The following three statements hold for all $k \ge 0$:

- 1. Every k-CNF formula F with $lc_1(F) \leq k-1$ is satisfiable.
- 2. There exists an unsatisfiable k-CNF formula F with $lc_1(F) = k$.
- 3. Satisfiability of k-CNF formulas F with $lc_1(F) \leq k$ is in P.
- 4. Deciding satisfiability of k-CNF formulas F with $lc_1(F) \leq k+1$ is NP-complete, if $k \geq 3$.

Let us say a word about the proof of this theorem. Point 2 is very simple, we just provide a construction of a k-CNF formula for every $k \in \mathbb{N}$. Point 4, the hardness result, uses a reduction that is very similar to that of Kratochvíl, Savický, and Tuza [4] and Gebauer, Moser, Welzl, and myself [9]. Point 1 uses the concept of *blocked clauses* (Kullmann [10]). These are special clauses that are redundant and can be removed. The proof of Point 3 is the most interesting in our opinion. It consists of two main observations: (1) It is enough to decide satisfiability separately for each connected component of the 1-conflict graphs. (2) If the 1-conflict graph is connected, then splitting on a variable and iteratively deleting blocked clauses drastically reduces the size of the input formula. Blocked clause elimination (Järvisalo, Biere, and Heule [11]; Ostrowski, Grégoire, Mazure, and Sais [2]) is a known preprocessing step in SAT solvers and is quite useful in practice. In theory, however, eliminating blocked clauses can increase the resolution complexity of a formula exponentially: There are examples of formulas with short resolution proofs, but if one removes blocked clauses, every resolution proof of the remaining formula most be of exponential size; see for example Cook [12]. The class of formulas we discuss in Point 3 is thus *not* of this form: Blocked clause elimination is provably beneficial here.

Point 3 shows that there is a provable gap between the trivial and the NPhard regime of the parameter lc_1 . Such a gap is non-existent or not known to exist for the other parameters discussed above. We give a SAT algorithm that is correct in general, and in the special case of k-CNF formulas F with $lc_1(F) \leq k$ runs in polynomial time. It is a branching algorithm and thus produces a treelike resolution refutation whose size is bounded by the number of recursive calls (this is a well-known fact; for a proof see [13], Theorem 3.2.5, page 35). Therefore, we get the following theorem:

Theorem 2 (Short Resolution Proofs). If F is an unsatisfiable k-CNF formula and $lc_1(F) = k$, then there is a treelike resolution refutation of F with at most |F| leaves, where |F| is the number of clauses in F.

Theorem 3 (Finding the Satisfying Assignment). Suppose F is a satisfiable k-CNF formula and $lc_1(F) \leq k$. Then we can find a satisfying assignment in polynomial time.

2 Notation

A CNF formula is a conjunction (AND) of clauses: $C_1 \wedge \cdots \wedge C_m$. A clause is a disjunction (OR) of literals: $x \vee \bar{y} \vee z$, where a literal is either a variable or its negation. We typically let n denote the number of variables in a formula, m the number of clauses, and k the size of its clauses: In a k-CNF formula, all clauses have size k. For notational purposes, we view formulas as set of clauses and clauses as sets of literals. So $\{\{x, y\}, \{\bar{x}, \bar{y}\}\}$ is the 2-CNF formula $(x \vee y) \wedge (\bar{x} \vee \bar{y})$ (which by the way is equivalent to $x \oplus y$). By vbl(C) and vbl(F) we denote the set of variables in a clause C or formula F, respectively. For a clause $D = \{u_1, \ldots, u_k\}$, we write $\bar{D} := \{\bar{u}_1, \ldots, \bar{u}_k\}$. This is not the negation of D. For a CNF formula F and a variable $x, F^{[x \mapsto 1]}$ is the CNF formula we obtain by replacing x by the constant 1. Thus, every clause containing x is satisfied (and can be removed from F), and every occurrence of \bar{x} is unsatisfied and can be removed. We define $F^{[x \mapsto 0]}$ analogously.

2.1 Resolution

If C and D have a one-conflict, i.e., $C \cap \overline{D} = \{u\}$, we call the clause $E := (C \setminus \{u\}) \cup (D \setminus \overline{u})$ the resolvent of C and D. It is an easy exercise to show that the formulas $C \wedge D$ and $C \wedge D \wedge E$ are equivalent. Let F be a CNF formula. A

resolution derivation from F is a sequence of clauses C_1, C_2, \ldots, C_m where each C_i is (1) a clause of F or (2) the resolvent of two earlier clauses in the sequence. It is not difficult to see that F implies each clause in the sequence; that is, any assignment satisfying F satisfies C_1, \ldots, C_m . If $C_m = \Box$, i.e., the empty clause, which always evaluates to 0, we call C_1, \ldots, C_m a resolution refutation, as it shows that F is unsatisfiable. A treelike resolution derivation from F is a binary tree T with the following properties: Every vertex u is labeled with a clause C_u ; a leaf is labeled with a clause of F; if an inner vertex u has children v and w, then C_u is the resolvent of C_v and C_w . If the root is labeled with the empty clause \Box , we call it a treelike resolution refutation of F.

3 Proofs

We prove Point 2 of Theorem 1, which is the simplest of the four points. Take k variables and let F_k be the k-CNF formula containing all 2^k k-clauses over the k variables. F_k is unsatisfiable and $lc_1(F_k) = k$. For an alternative construction, take 2k - 1 variables and let G_k consist of all $\binom{2k-1}{k}$ completely positive k-clauses and all $\binom{2k-1}{k}$ completely negative k-clauses. Again one checks that G_k is unsatisfiable and $lc_1(G_k) = k$. For example, for k = 2 those two constructions yield

$$\{\{x, y\}, \{\bar{x}, y\}, \{x, \bar{y}\}, \{\bar{x}, \bar{y}\}\}$$
(1)
and
$$\{\{x, y\}, \{x, z\}, \{y, z\}, \{\bar{x}, \bar{y}\}, \{\bar{x}, \bar{z}\}, \{\bar{y}, \bar{z}\}\}$$
. (2)

Their 1-conflict graphs are a C_4 and a C_6 , respectively.

3.1 Basic Properties of the 1-Conflict Graph

Before we attack the remaining three points of the theorem, let us collect some interesting facts about 1-conflicts. Let us start with a simple but surprising observation, which probably is folklore.

Proposition 1. Every CNF formula F with $\Box \notin F$ and $lc_1(F) = 0$ is satisfiable.

Note that without that proposition, the notion "1-conflict" would be misleading. After all, under any reasonable notion of conflict, a formula without conflicts should be satisfiable (extreme cases like $\Box \in F$ excluded). A direct consequence of the above proposition is that a hypergraph in which $|e \cap f| \neq 1$ for all hyperedges e, f is 2-colorable. This is a result of Lovász (Problem 13.33 in [14]).

Proof. A CNF formula F is unsatisfiable if and only if there is a resolution derivation of the empty clause (For a proof use induction over the number of variables or see for example [15], Theorem 4.2.1, page 26). Since F has no 1-conflicts, we cannot build any new resolvents. Since $\Box \notin F$, the formula is satisfiable.

Lemma 1. A CNF formula F is satisfiable if and only if every connect component of its 1-conflict graph is satisfiable. Furthermore, given satisfying assignments $\alpha_1, \ldots, \alpha_t$ for each of its t connected components, we can efficiently find a satisfying assignment α of F.

Again, this is something we expect from a reasonable notion of conflict.

Proof. One direction is trivial: If F is satisfiable, then all connected components are satisfiable. For the other direction, write $F = F_1 \uplus F_2$ such that there is no 1-conflict between F_1 and F_2 . By induction on the number of connected components, both F_1 and F_2 are satisfiable.

Choose a pair α_1, α_2 of assignments to vbl(F) such that α_1 satisfies F_1, α_2 satisfies F_2 , and the Hamming distance $d_H(\alpha_1, \alpha_2)$ is minimized. We claim that α_1 satisfies F_2 as well, and therefore F. Suppose for the sake of contradiction that this is not the case. There is a clause $D \in F_2$ such that α_1 does not satisfy D. Since α_2 satisfies D, there is a literal $u \in D$ such that $\alpha_1(u) = 0$ and $\alpha_2(u) = 1$. Define $\alpha'_1 := \alpha[u \mapsto 1]$. Clearly $d_H(\alpha'_1, \alpha_2) = d_H(\alpha_1, \alpha_2) - 1$. If we can prove that α'_1 still satisfies F_1 , we have arrived at a contradiction to d_H being minimal, and are done. Consider any $C \in F_1$. By the assumptions of the lemma, there is no 1-conflict between C and D. Hence either $C \cap \overline{D} = \emptyset$ or $|C \cap \overline{D}| \ge 2$. In the first case, $\alpha_1(C) = \alpha'_1(C) = 1$. In the second case, α_1 satisfies at least two literals in C, and therefore, α'_1 satisfies at least one literal in C. This shows that α'_1 indeed satisfies F_1 , contradicting minimality of $d_H(\alpha_1, \alpha_2)$.

As for the algorithmic aspect, suppose we are given assignments α_1 and α_2 satisfying F_1 and F_2 , respectively. As above, we we locally modify α_1 , reducing the Hamming distance between to α_2 , until we arrive at a single assignment α satisfying both F_1 and F_2 . This takes only polynomial time.

3.2 Blocked Literals and Blocked Clauses

It will pay off to introduce some notation. Let F be a CNF formula, C a clause, and $u \in C$ a literal. Define $\Gamma_F^1(C, u) := \{D \in F \mid C \cap \overline{D} = \{u\}\}$, that is, those clauses that have a 1-conflict with C, and this 1-conflict is generated by u. Note that

$$\Gamma_F^1(C) = \bigcup_{u \in C} \Gamma_F^1(C, u) \; ,$$

and this union is a disjoint one.

Definition 1 (Blocking Literals and Blocked Clauses, Kullmann [10]). We say u blocks C in F if $\Gamma_F^1(C, u) = \emptyset$. A clause C is blocked in F if some $u \in C$ blocks C in F.

If the ambient formula is understood, we simply say that u blocks C and C is blocked, not explicitly referring to F. Blocked clauses are redundant, in some way:

Proposition 2 (Kullmann [10]). Let F be a CNF formula and $C \in F$ some clause. If C is blocked in F, then F is satisfiable if and only if $F \setminus \{C\}$ is. Furthermore, given a satisfying assignment α of $F \setminus \{C\}$, we can efficiently find a satisfying assignment α' of F.

We can use Proposition 2 to repeatedly remove blocked clauses in a formula, finally arriving at a formula without blocked clauses, which we denote by deleteBlocked(F).

Proposition 3 (Kullmann [10]). Let F be a CNF formula and let F' := deleteBlocked(F). Then F is satisfiable if and only if F' is, and given a satisfying assignment α' of F', we can efficiently construct a satisfying assignment α of F.

Proof. This follows from Proposition 2 and induction on the number of clauses. \Box

Proposition 3 yields another proof of Proposition 1: If $lc_1(F) = 0$, then every non-empty clause is blocked by one of its literals. The algorithm **deleteBlocked** will remove one by one, finally arriving at the empty formula, which is satisfiable. Here we were using an innocent but crucial fact: If a clause C is blocked with respect to F, then it is also blocked with respect to every subformula $F' \subseteq F$ for which $C \in F'$.

This proves Point 1 of the theorem: If F is a k-CNF formula and $lc_1(F) \le k-1$, then every clause contains at least one literal that blocks it. Thus deleteBlocked $(F) = \{\}$, the empty formula, thus it is satisfiable.

3.3 Simple and Tight Formulas

Definition 2. A CNF formula F is simple if $|\Gamma_F(C, u)| \leq 1$ for every $C \in F$ and every $u \in C$. It is tight if $|\Gamma_F(C, u)| = 1$ for every $C \in F$ and every $u \in C$.

For example, the following formula is tight and satisfiable.

$$\{\{\bar{x}_1, x_2\}, \{\bar{x}_2, x_3\}, \dots, \{\bar{x}_{n-1}, x_n\}, \{\bar{x}_n, x_1\}\}$$

As another example, the formulas in (1) and (2) are tight and unsatisfiable.

Proposition 4. Suppose F is simple. Then deleteBlocked(F) is tight. Suppose F is a k-CNF formula and $lc_1(F) \leq k$. Then deleteBlocked(F) is tight.

Proof. Suppose F is simple. Then any subformula $F' \subseteq F$ is simple, too. Thus $F' := \text{deleteBlocked}(F) \subseteq F$ is simple. It contains no blocked clauses, so $|\Gamma_{F'}(C, u)| \geq 1$ for all $u \in C \in F'$. But $|\Gamma_{F'}(C, u)| \leq |\Gamma_F(C, u)| \leq 1$, which means they must be exactly 1. In other words, F' is tight.

For the second statement, suppose F is a k-CNF formula and $lc_1(F) \leq k$. Then this statement is true for F' := deleteBlocked(F), too. Since F' contains no blocked clause, $|\Gamma_{F'}(C, u)| \geq 1$ for all $u \in C \in F'$. Thus $k \leq \sum_{u \in C} |\Gamma_{F'}(C, u)| = |\Gamma_{F'}(C)| \leq lc_1(F') = k$, so equality holds throughout, meaning $|\Gamma_{F'}(C, u)| = 1$, and F' is tight. \Box

Proposition 5. Suppose F is simple, and x is a variable. Then $F^{[x\mapsto 1]}$ is simple, and so is $F^{[x\mapsto 0]}$.

Proof. Suppose $F' := F^{[x\mapsto 0]}$ is not simple. We will show that F is not simple. By assumption on F', there is a clause $C' \in F'$ and a literal $u \in C'$ such that $|\Gamma_{F'}(C', u)| \geq 2$. This means there are clauses D'_1, D'_2 such that $C' \cap \bar{D}'_1 = C' \cap \bar{D}'_2 = \{u\}$. Since $F' = F^{[x\mapsto 0]}$, this means that F contains clauses C, D_1, D_2 such that either C = C' or $C = C' \lor x$; either $D_1 = D'_1$ or $D_1 = D' \lor x$; either $D_2 = D'_2$ or $D_2 = D' \lor x$. None of those clauses contains \bar{x} , though. Therefore $C \cap \bar{D}_1 = C' \cap \bar{D}'_1 = \{u\}$, and similarly $C \cap \bar{D}_2 = C' \cap \bar{D}_2 = \{u\}$. Thus, $D_1, D_2 \in \Gamma^1_F(C, u)$, and F is not simple, either.

3.4 An Efficient Algorithm

We will now use the above notions of blocked clauses and simple and tight formulas to prove the main result of this paper, i.e., Point 3 of Theorem 1. We give an algorithm that efficiently decides satisfiability of k-CNF formulas F with $lc_1(F) \leq k$. See Algorithm simpleSAT below. To see the correctness simpleSAT,

Algorithm 1.1. simpleSAT(CNF formula F)

1: $F \leftarrow \texttt{deleteBlocked}(F)$ 2: if $\Box \in F$ then 3: return false 4: else if $F = \{\}$ then 5: return true6: else if $F = F_1 \uplus F_2$ for some $F_1, F_2 \neq \{\}$ and $|C \cap \overline{D}| \neq 1$ for all $C \in F_1, D \in F_2$ then return simpleSAT(F_1) \land simpleSAT(F_2) 7: 8: else $x \leftarrow \operatorname{vbl}(F)$ 9: $G_1 := \texttt{deleteBlocked}(F^{[x \mapsto 1]})$ 10: $G_0 := \texttt{deleteBlocked}(F^{[x\mapsto 0]})$ 11:return simpleSAT $(G_1) \lor$ simpleSAT (G_0) 12:13: end if

consider lines 1.1 and 1.1. The algorithm recurses on F_1 and F_2 and returns true if both calls return true. By Lemma 1, F is satisfiable if and only if F_1 and F_2 are both satisfiable individually. The challenging part is to argue that its running time is polynomial in our case.

Lemma 2. If F is simple, then simpleSAT(F) runs in polynomial time. More precisely, let m be the number of clauses in F. The total number of calls to simpleSAT(F) during its execution is 2m - 1 if $m \ge 1$ and 1 otherwise.

Proof. If m = 0, then $F = \{\}$ and the algorithm just returns **true**. So the claim holds for m = 0. After the first line, F is tight, which follows from Proposition 4.

If m = 1, then $F = \{\Box\}$ or $F = \{\}$ after the first line, so there is no further recursive call either. So the claim holds for m = 1, too.

Otherwise, suppose $m \geq 2$, i.e., F has at least two clauses. Then simpleSAT either recurses on two subformulas F_1, F_2 (line 1.1) or on G_0, G_1 (line 1.1). Suppose simpleSAT recurses on F_1 and F_2 . Note that both F_1 and F_2 have at least one clause. We apply induction to F_1 and F_2 and see that the total number of calls is at most $1 + (2|F_1| - 1) + (2|F_2| - 1) = 2(|F_1| + |F_2|) - 1 = 2m - 1$. If simpleSAT recurses on G_0 and G_1 , things are more complicated. This is the only point where we need that F is tight:

Proposition 6. Suppose F is tight, $x \in vbl(F)$, and let $G_0 := deleteBlocked(F^{[x\mapsto 0]})$ and $G_1 := deleteBlocked(F^{[x\mapsto 1]})$. Then $|G_0| + |G_1| \leq |F|$.

With this proposition, we apply induction to G_0 and G_1 . If both G_0 and G_1 contain at least one clause, then the total number of calls is $1 + (2|G_0| - 1) + (2|G_1| - 1) \le 2|F| - 1$.

At this point we are almost done, but have to deal with the annoying special case that G_0 or G_1 might be empty. If G_0 contains no clause but G_1 does, then we apply induction on G_1 and see that the number of calls is $1+1+(2|G_1|-1)=2|G_1|+1\leq 2|F|-1$, since $|G_1|<|F|$. If $G_0=G_1=\{\}$, then there is a total of 3 calls. Since F has $m\geq 2$ clauses, this completes the proof of the lemma. \Box .

Proof (of Proposition 6). Let $C \in F$ be a clause. We argue that C may make its way into either G_0 or G_1 , but not both. Thus $|G_0| + |G_1| \leq F$.

There are two cases: Suppose $x \in C$ or $\bar{x} \in C$, without loss of generality $x \in C$. Then setting $x \mapsto 1$ satisfies C, and C does not make it into G_1 , but $C^{[x\mapsto 0]}$ may make it into G_0 (provided it survives deleteBlocked).

So suppose $x \notin C$ and $\bar{x} \notin C$. After line 1.1, the 1-conflict graph of F is connected. So there is a path $C = C_1, C_2, \ldots, C_{t-1}, C_t$ such that $x \in vbl(C_t)$ but $x \notin vbl(C_i)$ for $1 \leq i \leq t-1$. Without loss of generality, $x \in C_t$. After setting $x \mapsto 1$, the clause C_t is satisfied, and C_{t-1} has one 1-conflict neighbor less. So now C_{t-1} is blocked, and deleteBlocked $(F^{[x \mapsto 1]})$ deletes it. Thus C_{t-2} loses a neighbor and becomes blocked, and so on, until finally $C = C_1$ will be removed. See Figure 1 for an illustration. Thus, C does not make its way into G_1 . This proves the proposition.

Resolution Size – Proof of Theorem 2

The algorithm simpleSAT is a branching algorithm, and it is a well-known fact that branching algorithms implicitly produce a treelike resolution refutation when run on an unsatisfiable formula (see e.g. [13], Theorem 3.2.5, page 35). The number of clauses in the refutation is at most the number of recursive calls. Since an unsatisfiable formula has $m \ge 1$ clauses, the number of calls is at most 2m - 1, by Lemma 2. Thus the resolution tree has at most 2m - 1 nodes, and therefore at most m leaves. This proves Theorem 2.

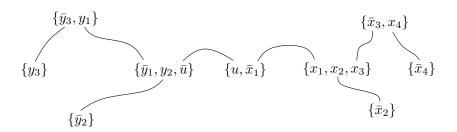


Fig. 1. Illustration of Proposition 6. When we set u to 1, the clause $\{u, \bar{x}_1\}$ disappears. The clause $\{x_1, x_2, x_3\}$ has only one outgoing edge labeled x_1 . Once $\{u, \bar{x}_1\}$ disappears, the literal x_1 will block $\{x_1, x_2, x_3\}$, and $\{x_1, x_2, x_3\}$ will be deleted, too. Then \bar{x}_2 will block $\{\bar{x}_2\}$ and \bar{x}_3 will block $\{\bar{x}_3, x_4\}$, thus these clauses are also deleted, and so on.

Finding the Satisfying Assignment – Proof of Theorem 3

Suppose F is a satisfiable k-CNF formula and $lc_1(F) \leq k$. We construct a satisfying assignment F by tracking the execution of simpleSAT(F). Denote by F' := deleteBlocked(F) the input formula after the first line. By Proposition 4, F' is tight. If we can efficiently find a satisfying of F', then by Proposition 3 we can efficiently find a satisfying assignment of F. If simpleSAT recurses in line 1.1 on F_1 and F_2 , we assume by induction that we know satisfying assignments α_1 of F_1 and α_2 of F_2 . By Lemma 1 we can efficiently combine α_1, α_2 into a single α satisfying of F'. If simpleSAT recurses in line 1.1 on G_0 and G_1 , suppose without loss of generality that G_1 is satisfiable and let α be a satisfying assignment. Since $G_1 = deleteBlocked(F'^{[x \mapsto 1]})$, we can efficiently find a satisfying assignment α' of $F'^{[x \mapsto 1]}$, by Proposition 3. Thus, $\alpha' \cup [x \mapsto 1]$ satisfies F'. Summing up, we can construct a satisfying assignment of F by adding some bookkeeping to simpleSAT.

4 Hardness for $lc_1 \ge k + 1$: Proof Sketch

We sketch a reduction from k-SAT to k-SAT with $lc(F) \leq k+1$, but refer the reader to the appendix for the full details. Let F be a k-CNF formula and let $\deg_F(x)$ denote the number of clauses in F in which x occurs, regardless of its sign. In a first step, we introduce $2 \deg_F(x)$ new variables $x_1, x_2, \ldots, x_{2 \deg_F(x)}$ for each $x \in vbl(F)$ and replace the *i*th occurrence of x by x_{2i} .

In a second step, we add an equalizer formula $\operatorname{Eq}(x_1, \ldots, x_{2 \deg_F(x)})$ for each $x \in \operatorname{vbl}(F)$. This is a 2-CNF formula which is satisfied if and only if its $2 \deg_F(x)$ variables receive the same truth value. The resulting formula is satisfiable if and only if F is. However, it is not a k-CNF formula, because it contains 2-clauses.

In a third step, we "fill up" each 2-clause $\{u, v\}$ to a k-clause, by adding k-2 new variables. This is, we replace $\{u, v\}$ by $\{u, v, w_3, \ldots, w_k\}$. Finally, we add a "forcer" for every new variable w_i introduced in the third step. A forcer is a k-CNF formula that is satisfiable, but only if w_i is set to 0. Such a forcer can be

built in a rather straightforward manner from an unsatisfiable k-CNF formula G with $lc_1(G) = k$.

Acknowledgments

I am very thankful to Heidi Gebauer, Robin Moser, and Emo Welzl. The question posed and answered in this paper arose during our work on [9]. Furthermore, I am grateful to Navid Talebanfard, who pointed out Exercise 13.33 from [14].

References

- 1. Allender, E., Chen, S., Lou, T., Papakonstantinou, P., Tang, B.: Widthparameterized SAT: time-space tradeoffs. ECCC TR12-027 (2012)
- Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from CNF formulas. In Hentenryck, P.V., ed.: CP. Volume 2470 of Lecture Notes in Computer Science., Springer (2002) 185–199
- Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In Hajnal, A., Rado, R., Sós, V.T., eds.: Infinite and Finite Sets (to Paul Erdős on his 60th birthday), Vol. II. North-Holland (1975) 609–627
- Kratochvíl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes satisfiability jump from trivial to NP-complete. SIAM Journal of Computing 22(1) (1993) 203–210
- Savický, P., Sgall, J.: DNF tautologies with a limited number of occurrences of every variable. Theoret. Comput. Sci. 238(1-2) (2000) 495-498
- Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences per variable. SIAM Journal on Discrete Mathematics 20(2) (2006) 523–528
- Gebauer, H.: Disproof of the neighborhood conjecture with implications to SAT. In Fiat, A., Sanders, P., eds.: 17th Annual European Symposium on Algorithms (ESA 2009). Volume 5757 of Lecture Notes in Computer Science., Springer (2009) 764–775
- Gebauer, H., Szabó, T., Tardos, G.: The local lemma is tight for SAT. In Randall, D., ed.: SODA, SIAM (2011) 664–674
- Gebauer, H., Moser, R.A., Scheder, D., Welzl, E.: The Lovász Local Lemma and satisfiability. In Albers, S., Alt, H., Näher, S., eds.: Efficient Algorithms. Volume 5760 of Lecture Notes in Computer Science., Springer (2009) 30–54
- Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97 (1999) 149–176
- Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In Esparza, J., Majumdar, R., eds.: TACAS. Volume 6015 of Lecture Notes in Computer Science., Springer (2010) 129–144
- Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4) (October 1976) 28–32
- 13. Hoffmann, J.: Resolution proofs and DLL algorithms with clause learning (2007) Diploma Thesis, Ludwig-Maximilians-Universität München.
- 14. Lovász, L.: Combinatorial problems and exercises (2. ed.). North-Holland (1993)
- Krajicek, J.: Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press (1995)

A Hardness for $lc_1 \ge k + 1$: Full Proof

Finally, we show point 4 of Theorem 1. The proof is similar to the proof by Gebauer et al. [9] that the number of local conflicts exhibits a complexity jump. We will give a reduction that takes a k-CNF formula F as input and outputs a k-CNF formula F', such that F is satisfiable if and only if F' is, and $lc_1(F') \leq k+1$, i.e., every clause in F' has a 1-conflict with at most k + 1 other clauses. In fact, F' will have a stronger property: For every clause $C = \{u_1, \ldots, u_k\} \in F', k-1$ of its literals generate at most one 1-conflict, say $|\Gamma_{F'}^1(C, u_i)| = 1$ for $1 \leq i \leq k-1$, and one literal is may have up to two 1-conflicts: $|\Gamma_{F'}^1(C, u_k)| \leq 2$. For $k \geq 3$ this shows that deciding satisfiability of k-CNF formulas with $lc_1(F) \leq k+1$ is NP-complete.

For a variable x, denote by $\deg_F(x)$ the number of clauses of F in which x occurs, regardless of its sign. In a first step, for each variable $x \in vbl(F)$ we set $d := \deg_F(x)$ and introduce 2d new variables x_1, x_2, \ldots, x_{2d} . We replace the d occurrences of x by the variables x_2, x_4, \ldots, x_{2d} . Skipping the odd indices will prove useful soon. We call the new formula F_2 . For example, if x appears in three clauses, say

$$F = \{\{x, \bar{y}, \bar{z}\}, \{x, u, v\}, \{\bar{x}, y, \bar{u}\}, \dots\},\$$

then we replace those three occurrences by x_2 , x_4 , and x_6 and obtain

$$\{\{x_2, \bar{y}, \bar{z}\}, \{x_4, u, v\}, \{\bar{x_6}, y, \bar{u}\}, \dots\}.$$

We apply the same procedure to y, z, and all other variables. F_2 has no conflicts, since each variable appears in only one clause. It is satisfiable, which is not good, because we want a formula F' such that F is satisfiable if and only if F' is. We introduce an *equalizer* formula for the variables x_1, x_2, \ldots, x_{2d} . This is a formula which is satisfied if and only if one assigns the same value to x_1, x_2, \ldots, x_{2d} :

$$Eq(x_1, \dots, x_{2d}) = \{\{\bar{x}_1, x_2\}, \{\bar{x}_2, x_3\}, \dots, \{\bar{x}_{2d-1}, x_{2d}\}, \{\bar{x}_{2d}, x_1\}\}$$

 $Eq(x_1, \ldots, x_{2d})$ has exactly two satisfying assignments: All-1 and All-0. We obtain F_3 by adding an equalizer for every variable $x \in vbl(F)$:

$$F_3 := F_2 \cup \bigcup_{x \in \operatorname{vbl}(F)} \operatorname{Eq}(x_1, x_2, \dots, x_{2 \deg_F(x)}) \ .$$

The property of the equalizers implies F is satisfiable if and only if F_3 is. Furthermore, $|\Gamma_{F_3}^1(C)| \leq |C| + 1$ for every $C \in F_3$: Since each occurrence of a variable in F gets replaced by a fresh copy of this variable, there are no conflicts within F_2 . Every clause $C \in F_2$ has a 1-conflict with exactly |C|clauses in the equalizer formulas: If $x_i \in C$, then C has a 1-conflict with the clause $\{\bar{x}_i, x_{i+1}\} \in \text{Eq}(x_1, \ldots, x_{\deg_F}(x))$. Similarly, if $\bar{x}_i \in C$, then C has a 1conflict with $\{\bar{x}_{i-1}, x_i\}$. Therefore, C is simple. Consider a clause $\{\bar{x}_i, x_{i+1}\}$ in an equalizer. Each of the two literals generates one 1-conflict with another equalizer-clause. Additionally, \bar{x}_i (if i is even) or x_{i+1} (if i is odd) might generate a 1-conflict with a clause in F_2 . Thus, $|\Gamma_{F_3}^1(C)| \leq |C|$ if $C \in F_2$, and $|\Gamma_{F_3}^1(C)| \leq |C| + 1$ if C is an equalizer-clause. The formula F_3 fulfills almost all our needs, except that its clauses are too short: We want to output a k-CNF formula. For this reason, we add k-2 new variables to each equalizer clause: We replace $\{\bar{x}_i, x_{i+1}\}$ by

$$\{\bar{x}_i, x_{i+1}, u_3, \ldots, u_k\}$$

We add clauses that force the variables u_3, \ldots, u_k to 0: For each u_j , we construct a formula that is satisfiable if and only if u_j is set to 0. Let v_1, \ldots, v_k be new variables and let $CF(v_1, \ldots, v_k)$ denote the k-CNF formula consisting of all 2^k k-clauses over v_1, \ldots, v_k . This formula is unsatisfiable and tight. Pick one clause from this formula, say $\{v_1, \ldots, v_k\}$, and replace it by $\{v_1, \ldots, v_{k-1}, \bar{u}_j\}$. We call this k-CNF formula $G(u_j)$. It is satisfiable, but every satisfying assignment sets u_j to 0. Furthermore, $G(u_j)$ is simple, and \bar{u}_j blocks $\{v_1, \ldots, v_{k-1}, \bar{u}_j\}$ in $G(u_j)$. We denote by F' the k-CNF formula we obtain from F_3 by filling up the equalizer-clauses and adding the formulas $G(u_j)$ to it. By construction F' is satisfiable if and only if F is.

Let us summarize the construction of F'. For every $x \in vbl(F)$, we add $2 \deg_F(x)$ equalizer clauses, each of which we fill up to a k-clause, introducing a total of $(k-2)2 \deg_F(x)$ new variables. Finally, we add the formulas $G(u_j)$, consisting of 2^k clauses. That is, for each $x \in vbl(F)$, we add $2 \deg_F(x) + 2(k-2) \deg_F(x)2^k$ clauses. This increases the total size of F by a constant factor.

Let us verify that $lc_1(F') \leq k + 1$. There are three types of clauses in F': First, there are the "original" clauses, those of F_2 . These clauses have at most k 1-conflict neighbors in F_3 and also in F'. Second, there are equalizer clauses $\{\bar{x}_i, x_{i+1}, u_3, \ldots, u_k\}$. Here, every literal causes at most one 1-conflict, except possibly x_i (if i is even) or x_{i+1} (if i is odd), which may cause up to two 1-conflicts. Thus this clause has at most k + 1 many 1-conflicts. Third, there are clauses in $G(u_j)$. Every clause $C \in G(u_j)$ has at most k 1-conflict neighbors in $G(u_j)$, and the literal \bar{u}_j blocks $\{v_1, \ldots, v_{k-1}, \bar{u}_j\}$ with respect to $G(u_j)$. Since u_j occurs in exactly one equalizer clause, this adds exactly one 1-conflict to $\{v_1, \ldots, v_{k-1}, \bar{u}_j\}$. Therefore every $C \in G(u_j)$ has at most k 1-conflict neighbors in F'. This concludes the proof.